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There have been significant recent advances in the 
develop ment of single-cell analysis tools. For example, 
approximately 5 years ago, patch-clamping electro-
physiology methods1, fluorescence in situ hybridization2,3, 
flow cytometry4,5 and enzyme-linked immunospot6 
assays were among the few single-cell molecular analy sis 
tools available. Most of those methods could only analyse 
between 1 and 3 molecules from a given cell, although 
multicolour flow cytometry could capture approximately 
12 cell surface protein markers7.

This landscape is rapidly changing, and several tech-
nologies that can comprehensively analyse the single cell 
at the molecular level have now emerged. For example, 
some single-cell tools and methods can assay reasonably 
large numbers (>40) of secreted proteins8, equally large 
numbers of cell surface markers9 and elements of phos-
phoprotein signalling pathways10,11. In addition, single 
cells can now be analysed for the genome at focused12,13 
or high coverage14, the transcriptome at sparse cover-
age15,16 or the entire transcriptome with moderate17 or 
high18 cell statistics.

Additional reports in which integrated measurements  
of genes and transcripts19, limited numbers of proteins, 
transcripts20,21 and genes22, and panels of proteins and 
metabolites23 from single cells have also appeared. 
Microfluidics methods permit molecular analysis to be 
correlated with measurements of specific cellular func-
tions (such as motility) or enable the analysis of defined, 
small populations of cells (that is, two to three cells)24–26. 
Microfluidic designs can also permit cell analysis within 
highly controlled, custom environments27–29, or can allow 
for non-destructive cell analysis so that cells identified as 
interesting, such as B cells producing specific antibodies, 
can be harvested for further use30,31. Two recent tissue 
staining methods, in situ RNA profiling via sequential 

hybridization32–34 and proteomic analysis via ion beam 
profiling35, enable the analysis of single cells within 
fixed, intact tissues, with a level of multiplexing that 
significantly exceeds traditional immunohistochemical 
staining methods. The level of analyte quantification 
varies from measurements that yield copy numbers per 
cell18,32,36 to relative quantification between cells. Many of 
these methods generate relatively new types of data and 
are therefore being integrated with new computational 
approaches37–41. In fact, the development of computa-
tional tools that can analyse increasingly large single-cell 
datasets is lagging behind the advances in experimental 
methods.

Although these diverse and rapidly evolving single- 
cell technologies provide remarkable opportunities for 
drug discovery and development, they also provide a 
deluge of information for the non-technologist. This 
Review is therefore intended to serve as a guide for the 
non-specialist. Here, we describe the state of the art of 
single-cell biology tools for different analyte classes and 
discuss the new types of biological information that can 
be gleaned through the use of these tools, highlighted 
using three examples. To illustrate the broader appli-
cation of these emerging technologies, these tools are 
placed within the context of two classes of cancer thera-
pies. The first is the development and use of targeted 
inhibitors for treating heterogeneous tumours. The 
second is cancer immunotherapy, which is an area in 
which several single-cell analysis tools are already having 
important roles.

Single-cell analysis tools can be grouped according to 
the measured analytes, that is, genomics-, transcriptomics-,  
proteomics- or metabolomics-based approaches, or by a 
combination of these. It is anticipated that the methods 
described here are likely to emerge in the marketplace 
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Abstract | The genetic, functional or compositional heterogeneity of healthy and diseased 

tissues presents major challenges in drug discovery and development. Such heterogeneity 

hinders the design of accurate disease models and can confound the interpretation of 

biomarker levels and of patient responses to specific therapies. The complex nature of virtually  

all tissues has motivated the development of tools for single-cell genomic, transcriptomic  

and multiplex proteomic analyses. Here, we review these tools and assess their advantages and 

limitations. Emerging applications of single cell analysis tools in drug discovery and 

development, particularly in the field of oncology, are discussed.
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Whole-genome 

amplification

A method, first reported using 

PCR by Arnheim’s group,  

for nonselectively amplifying  

all DNA sequences present  

in a given sample, including  

a single cell.

Multiple displacement 

amplification

A non-PCR based, room 

temperature DNA amplification 

technique reported by Lasken’s 

group that is commonly  

used for whole-genome 

amplification.

Multiple annealing  

and looping-based 

amplification cycles

(MALBAC). A PCR-type 

approach reported by Xie’s 

group in which the enzymatic 

amplification of cDNAs 

proceeds via a linear process.

Exome sequencing

Genome sequencing that is 

limited to only the small 

fraction (1%) of the genome 

that is protein encoding.

RNA-sequencing

(RNA-seq). Also called whole 

transcriptome shotgun 

sequencing, RNA-seq is a 

method for analysing the 

transcriptome of a sample 

using next-generation 

sequencing tools.

Molecular barcoding

An approach through which a 

DNA sequence or some other 

molecular identifier is used as 

an identifier of a specific cell or 

a specific transcript generated 

by that cell.

Cytoseq

A microchip-based single-cell 

transcriptomics method 

reported by Fodor’s group at 

Cellular Research in 2015.

inDrop

A nanodrop-based single-cell 

transcriptomics method 

reported by Klein and others  

in 2015.

Unique molecular index

(UMI). A molecular barcode 

used to identify a specific 

transcript from a specific cell.

DropSeq

A nanodrop-based single-cell 

transcriptomics method 

reported by Macosko and 

others in 2015.

within a couple of years, although earlier generation  
variants are, in many cases, already commercially available  
as whole platforms, commercial services or through the 
purchase of essential reagents.

Single-cell analysis tools

Below, we review the state of the art in analytical tools 
designed for single-cell genomics, transcriptomics and 
proteomics, with a particular emphasis on quantitative, 
highly multiplex assays that can perform measurements 
on many single cells in a given experimental run. Many 
of the reviewed methods are very new.

Single-cell genomics. The rapid technological advances in 
DNA sequencing tools have exposed the whole genome, 
the exome and the transcriptome for single-cell analysis.  
For single-cell whole-genome sequencing12,42,43, the 
genome must be amplified before sequencing. In prin-
ciple, amplification can be performed with PCR-based 
whole-genome amplification methods44, but such methods 
are prone to bias because random genes can be over- 
or under-amplified by the nonlinear PCR process45.  
A commonly used alternative is the multiple displacement 

amplification method, which is a technique that utilizes 
the φ29 DNA polymerase enzyme for DNA synthesis46, 
and can amplify DNA isothermally at 30 oC. Multiple 
displacement amplification provides an improved rep-
resentation of the entire genome, but the φ29 enzyme 
is still a nonlinear amplifier (similar to PCR), and can 
therefore yield bias. Such bias in turn makes it difficult 
to discern copy number variations and single-nucleotide 
variations, although Dago and co-workers have reported 
measurements of such quantities from single circulating 
tumour cells (CTCs) originating from prostate cancer47. 
A second whole-genome amplification approach, called 
multiple annealing and looping-based amplification cycles 
(MALBAC), has been recently reported48. MALBAC is 
designed so that the initial polymerase amplification steps 
yield an amplicon that cyclizes due to complementary 
sequences incorporated into the 3ʹ and 5ʹ ends, which 
makes the amplicon unavailable as a template. The cycli-
zation of the amplicon keeps the initial genome amplifi-
cation process linear and reduces amplification bias. As 
a result, copy number variations and single-nucleotide  
variations can be reliably quantitated at the single-cell 
level. As an illustrative example, MALBAC has been 
extended to the analysis of CTCs from patients with lung 
cancer49. For certain challenging genes, such as oncogenes 
with multiple variants50 or the T cell receptor-α (TCRα) 
and TCRβ genes (TCRA and TCRB, respectively), nested 
PCR methods51,52 coupled with Sanger sequencing are 
used. Recent, highly parallel, multi-step RT-PCR-based 
techniques, coupled with next-generation sequencing 
tools, now allow such sequences to be determined from 
many (100 or more) single cells in parallel53.

Various target-enrichment strategies have been 
developed to broadly select genomic regions of interest  
for sequencing54. For example, as methods for exome 

sequencing have become standardized55,56, they have been 
extended to single-cell analysis57. Exome sequencing is a 
relatively cost-effective procedure that yields an enriched 

dataset of highly penetrant variants, such as those that 
are relevant to genetic disorders or diseases that exhibit 
a genetic instability, such as many cancers. Examples of 
single-cell investigations include capturing the genetic 
heterogeneity of tumours57,58 or comparing CTCs with 
the originating tumour or metastatic lesion59. Exome 
sequencing is a technique of rapidly increasing relevance 
to immunotherapy, as discussed further below.

Single-cell transcriptomics. Although the analysis of 
gene expression at the single-cell level dates back to the 
early 1990s60, the field has rapidly advanced over the past 
5 years, with RNA sequencing (RNA-seq) exploiting the  
success of next-generation sequencing tools61. Indeed, 
RNA-seq has advanced at such a rapid pace that a new 
report emerges almost every month describing a new 
set of protocols that enable an increasingly deeper 
and more quantitative analysis of larger numbers of  
single cells18,39,62–65. Applications of RNA-seq include the 
analysis of immune cells64 and CTCs66, and capturing 
the transcriptional heterogeneity of various healthy16,67 
and diseased tissues17. The basic biochemical method 
of RNA-seq is PCR, but the major technical challenges 
have been to engineer contamination-free methods that 
can account for PCR bias correction and yield absolute 
quantification. This goal has been best accomplished 
through the combined use of microfluidics platforms63, 
including microdrop technologies68,69 and molecular  

barcoding techniques62,69. The microfluidics character of 
these approaches implies that individual cells are isolated 
in volumes ranging from a few tens to a few hundreds 
of picolitres, and this produces several advantages. First, 
molecular diffusion times within such small volumes are 
short, which can then significantly shorten the times 
required for chemical reactions that are part of the pro-
cesses flow. Second, the small volume raises the relative 
concentration of the cellular analytes being investigated 
and lowers the copy numbers of any molecular contam-
inants. Finally, small volumes limit reagent costs and 
allow many cells to be interrogated in parallel.

Two very recent quantitative single-cell transcriptomic 
methods — CytoSeq and inDrop — are conceptually sim-
ilar, but distinct in practice (FIG. 1). Fan et al.18 reported 
the CytoSeq technique, which utilizes dilute cell loading 
into 20 pl volume microwells. Each microwell contains a 
20 μm magnetic bead that is functionalized with many 
oligo nucleotide primers, each containing a universal 
PCR priming site, a combinatorial cell label (the bar-
code), a unique molecular index (UMI)70 and an mRNA 
capture sequence. All primers on each bead contain the 
same cell label but incorporate a diversity of molecular 
indices. Many mRNA molecules from a lysed cell are cap-
tured on a single bead, and all beads are combined for 
amplification and sequencing. Each sequence carries the 
barcode (single-cell identity), the molecular index (one 
index per transcript) and the gene identity, thus yielding 
a relatively deep, bias-free and quantitative analysis of the 
transcriptome from many single cells in parallel.

Two droplet-based microfluidics variants of this bar-
coding approach for single-cell transcriptomics are the 
DropSeq method69 and the (simultaneously published) 

REV IEWS

2 | MARCH 2016 | VOLUME 15 www.nature.com/nrd

© 2015 Macmillan Publishers Limited. All rights reserved



dc

ba

P
ri

n
ci

p
a

l c
o

m
p

o
n

e
n

t 
2

5

10

0

–5

0 10 15 205

Principal component 1

–5

mES cells
Day 2 early
Day 2 late
Day 4
Day 7

Universal5′

• Identical for all oligos on a bead
• Unique for each bead

• Variable among oligos on the same bead

Cell label Molecular index Oligo-dTBead

Bead

Cells + beads in microwellsCells in microwells

Cell

Oil

Cells

DNA
barcoding
hydrogels

Oil

Nanodrops

Microfluidics methods in which 

individual assays are carried 

out in isolated nanolitre-size 

droplets of water, separated 

from one another by oil.

inDrop approach68. The basic concept of droplet micro-
fluidics is to use microfluidic channel designs and flow 
control to combine oil and water so that the water divides 
into sub-nanolitre volume droplets separated by oil. Each 
of those nanodrops can be seeded with, for example,  
a cell, a barcoded microbead (or equivalent) or cell  
lysis reagents, such that each nanodrop comprises a 
self-contained reaction vessel. Advanced microchip 
designs allow virtually the entire process, from cell intro-
duction to delivery of reagents for sequencing, to be auto-
mated on a microchip that is approximately the size of a 
microscope slide. The DropSeq method was utilized for 
the analysis of ~45,000 single mouse retinal cells, which is 
a testament to the scalability of droplet microfluidics, and 
similar to the capabilities of the CytoSeq method.

A common concern with single-cell methods is the 
relationship between what is measured and the copy 
numbers of the analyte that were actually in the cell. 
Even genetically identical cells, cultured side by side, 
will naturally exhibit significant variations in copy 
numbers of transcripts, proteins, metabolites and other 

analytes38,71 (BOX 1). For any analyte, capture efficiency is 
always an issue, and can be highly challenging to quantify. 
For transcriptomics, this concern is complicated by the 
fact that the actual mRNA transcript is not measured. 
Instead the mRNA transcript is a cDNA complement, 
amplified to many copies, that provides the input into the 
sequencer. Different mRNAs can be differentially ampli-
fied, and noise can be amplified along with signal45,72–74. 
Of course, having a single-cell technique that captures 
the biological heterogeneity of the cells under study, 
rather than the measurement noise of the technique 
itself, is advantageous. Various methods have been used 
to increase and/or characterize the quantitative nature of 
single-cell transcriptomics75.

The UMI62,70,71 mentioned in the description of 
CytoSeq, which is also used by inDrop and DropSeq, is 
a protocol designed to limit amplification bias by associ-
ating a unique molecular signature to each mRNA copy 
that is captured. A related method was reported by Fu 
and co-workers76,77. Thus, if ten copies of a specific tran-
script are captured from one cell, each will have the same 

Figure 1 | Quantitative single-cell transcriptomic methods. Two separate but conceptually similar methods and with 

similar throughput capabilities are illustrated in this figure, along with representative data. a | The CytoSeq method is 

based on isolating individual cells within 30 μm diameter (20 pl volume) wells, and then placing into each well a single 

barcoded bead. b | Each barcoded bead is designed with the shown structure. Each bead contains tens to hundreds of 

millions of distinct oligonucleotide (oligo) primers that are each composed of a barcode that identifies the bead (and thus 

the single cell) plus a unique molecular index (UMI) that is associated with a particular mRNA capture sequence.  

After bead and cell colocalization within a well, cells are lysed and mRNAs are captured via hybridization onto specific 

bead-bound oligonucleotides. The beads are then all removed from the multiwell plate, and all amplification reactions are 

carried out in a single tube. c | The microdrop-based inDrop technique for single-cell transcriptomics. For this method, 

single cells are entrained into a single droplet along with a hydrogel microsphere. Each hydrogel microsphere contains 

photocleavable oligonucleotide primers that have a similar construction to the bead shown in part b, while the droplets 

contain the cell lysis buffers and reverse transcription reagents. The whole process from cell capture and lysis to signal 

amplification occurs separately in each droplet. d | A snapshot of representative data from an inDrop study of the kinetics 

of differentiation of mouse embryonic stem (mES) cells following leukaemia inhibitory factor (LIF) withdrawal. For this plot, 

datasets representing five time points are analysed using principal component analysis to reveal asynchrony in mES cell 

differentiation. Each dot represents a single cell. Figure parts a and b are adapted from Fan, H. C., Fu, G. K. & Fodor, S. P. 

Combinatorial labelling of single cells for gene expression cytometry. Science 347, 1258367 (2015). Reprinted with 

permission from AAAS. Figure parts c and d are adapted with permission from REF. 68.
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barcode but a different UMI; therefore, the copy numbers  
of a given mRNA captured is simply the number of 
unique UMIs for a given barcode. The use of UMIs, 
although a significant step towards absolute quantifica-
tion, does have limitations for counting low copy number  
transcripts71. A second major issue is that of capture effi-
ciency, which can vary from <5%71 to ~20%78, and can 
be assessed by counting mRNA copies using UMIs rela-
tive to those recorded using fluorescence in situ hybrid-
ization71. Of course, a low capture efficiency will have a 
correspondingly large variance across many mRNAs or 
between different single cells, especially for low copy 
number transcripts. Thus, quantitating and increasing 
capture efficiency is an analytical frontier of the field.

Multiplex single-cell proteomics methods. Multiplex  
single-cell proteomic methods (FIG. 2; TABLE 1) are classi-
fied as either microfluidics platforms or flow cytometry7 
or mass cytometry9 (for example, CyTOF) tools. Each of 
these methods rely on antibodies; therefore, in contrast 
to mass spectrometry proteomics of bulk samples79,80, 
single-cell proteomics methods cannot yet serve as  
discovery-level tools. Among the microfluidics platforms, 
the microengraving technique31,81, single-cell barcode chips 
(SCBCs) and single-cell western blottings82 (scWesterns) 
provide the most advanced capabilities. Several alterna-
tive approaches, typically with reduced levels of multi-
plexing, have been reported, including high-throughput 
microdroplet-based screening approaches29,83–86, some of 
which have been reviewed elsewhere87.

For analysis and cell sorting based on cell surface 
markers, flow cytometry-based fluorescent-activated 
cell sorting (FACS) is the mature single-cell proteomics 
method4, and interfaces with almost all other single-cell 
methods described in this Review. FACS is routinely used 
to analyse and sort viable cells based on six or more cell 
surface markers, and is therefore tremendously useful for 
purifying cellular phenotypes for subsequent analysis.

The analysis of cellular function at the molecular level, 
or the specific influence of drugs on that function, typi-
cally requires the analysis of functional analytes, such as 
phosphorylated kinases or secreted cytokines, apoptotic 
or proliferation markers, and/or metabolites. In general, 
these different classes of molecules can require different 
assay methods. For analysing functional cytoplasmic pro-
teins, CyTOF is the most mature tool11, although SCBCs 
have emerged with similar and complementary capa-
bilities10. ScWesterns represent the youngest technology, 
even though the origins of this technique can be traced 
back to single-cell gel electrophoresis assays, known as 
comet assays88,89. ScWesterns are also perhaps the method 
that is most closely aligned to standard biology practice. 
Each of these tools has advantages and limitations. For 
analysing secreted proteins, SCBCs have the unique capa-
bility of capturing large panels (>40) of proteins secreted 
from viable cells8. Microengraving tools capture only a 
few secreted proteins, but permit kinetic studies of pro-
tein secretion from individual cells90. For both SCBCs 
and microengraving, cells that exhibit unique or desirable 
protein signatures may be further analysed30. CyTOF can 
capture large panels of ‘secrete-able’ proteins, but protein 

Box 1 | The biophysical interpretation of single-cell data

The ability to quantitate the level of analytes from single cells provides fundamentally 

new insight into cellular biology. For example, the abundance distribution of an 

analyte, as tabulated across many single cells, is also called the fluctuations of that 

analyte, and represents a unique single-cell measurement. A certain width of the 

fluctuations is fundamental and unavoidable, and is reflective of the statistics 

associated with the many steps through which signals are processed by gene and 

protein networks. For purely stochastic96 processes, the distribution width should 

narrow as the square root of the average copy numbers per cell of the analyte 

increases162. However, most analytes will not behave according to this limit and, in fact, 

the shapes of analyte distributions can reveal new biology, such as evidence of bistable 

steady states163, evidence that the cells are in a stable steady state38 or are unstable and 

responding to a perturbation (for example, a drug). A relevant example of bistability 

might be a cell population that is composed of both a quiescent state and an active 

state164,165, and thus yields differential responses to drugging.

Measurements of multiple analytes from the same single cells can be used to extract 

quantitative analyte–analyte correlations (and anti-correlations). Again, this is a 

unique single-cell measurement. Consider, for example, the levels of the three 

hypothetical phosphoproteins (p-A, p-B and p-C) shown in the figure. These proteins 

represent a small signalling network within a cell. Stimulation (or drugging) of the  

cell may collectively repress these phosphoprotein levels, as is reflected in the bulk 

immunoprecipitation assays. However, a more in-depth picture of the signalling is 

revealed by an analysis of a statistical number of single cells, such as is presented in 

the two-dimensional scatter plots. Note that in the plots for the undrugged cells,  

all phosphoprotein levels are high, but only p-A and p-B are strongly correlated.  

On drugging, all phosphoproteins are repressed, but p-A and p-B are non-correlated, 

p-C and p-B are strongly correlated, and p-A and p-C are anti-correlated. This inferred 

correlation network is shown in the figure, in which the protein levels are indicated by 

the sizes of the spheres and the correlations are indicated by the edges. Correlation, 

of course, does not mean causation, but a correlation network generated at the 

single-cell level can provide a rich set of testable hypotheses that may ultimately 

allow the chemical kinetic relationships that comprise a signalling network to be 

extracted. In principle, if one knows these relationships, then one can make accurate 

predictions regarding how a specific drug will disrupt the cellular signalling 

machinery. Improved measurement quantification provides significant additional 

value. This is because most signalling cascades actually behave as excitable devices 

with built-in excitability thresholds, enabling them to integrate diverse temporal  

and spatial inputs to produce specific signalling responses166. In other words,  

the outputs of a signalling cascade are not typically linearly dependent on the  

inputs, and quantitative assays permit such input–output relationships to be more 

accurately defined.
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Mass cytometry

A single cell proteomics 

method based on traditional 

flow cytometry methods  

but uses mass labels and  

mass spectrometry for  

protein analysis.

Microengraving

A microfluidics single-cell 

proteomics method.

Single-cell barcode chips

(SCBCs). A single-cell 

proteomics method

Single-cell western blottings

(scWesterns). A microchip- 

based method for carrying  

out western blotting assays  

on single cells.

Figure 2 | Emerging single-cell proteomics methods. a | Mass cytometry uses antibodies (Abs), encoded with 

transition metal-containing mass tags, to label proteins of interest. Cells are fixed and permeabilized to permit antibody 

staining of cytoplasmic proteins. Single cells are entrained into vapour and atomized. A mass filter separates the 

transition metal atoms, which are then mass analysed. The abundance and identities of the transition metal atoms are 

traced back to the antibody staining reagents. b | The microengraving technique utilizes a microchip with many 

thousands of microwells, into which none to a few cells of interest are loaded. An antibody-coated coverslide (few-plex 

Ab-coated slide) is placed over the microchip to capture a few specific secreted proteins. Microchip addresses are 

correlated with regions on the coverslide and with microscopy images to associate a given cell with a given secretion 

profile. Captured proteins are detected using fluorescent secondary antibodies, with different proteins identified using 

different fluorophores. The coverslide can be replaced during the time course of an experiment to capture single-cell 

secretion kinetics. Cells of interest may be removed for further analysis. c | Single-cell barcode chips contain up to a few 

thousand microchambers, into which none to a few cells are loaded. An antibody-barcoded glass slide (many-plex Ab 

barcoded slide) is patterned so that each microchamber contains a complete, miniaturized antibody array onto which 

many cytoplasmic or membrane proteins are captured following their secretion or release upon cell lysis.. Protein assays 

are developed using fluorescently labelled secondary antibodies, with different proteins identified according to the 

spatial location of the immunoassay within the barcode. If cells are not lysed (only secreted proteins detected), then the 

cells remain viable and may be further investigated. d | Single-cell westerns are miniaturized variants of traditional 

western blotting methods, with ~1,000 single cells analysed per microchip.
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secretion must be blocked and the cells fixed before  
analysis. Consequently, the detected proteins are not actu-
ally secreted and the cells cannot be further analysed9. 
For the microfluidics tools, the cells can be imaged in situ 
and factors such as cell motility or morphology can be 
correlated with the secretion of specific proteins91. The 
microfluidics tools also permit assays on discrete num-
bers of cells24,40,92. As CyTOF utilizes antibody staining of 
fixed cells, staining can be performed within fixed tissues, 
thus permitting CyTOF to be used as a powerful variant 
of immunohistochemical staining35. Each of these tools 
requires significant user skill, although that requirement 
is likely to diminish as the platforms mature.

Similar to transcriptomic methods, quantitative 
assessment of single-cell protein levels is an increasingly 
important issue. All single-cell proteomics methods  
utilize antibodies as the dominant detection technology. 
A recent publication provided a protocol for establishing 
a clear, quantitative metric for antibody performance93 
and raised serious questions regarding whether a given 

antibody even detects its intended target. Of the 1,124 
antibodies tested, only 452 recognized their target in 
HEK293 cell lysates88. Given that large caveat, the use 
of antibodies for staining (as with flow cytometry or 
CyTOF methods) is markedly different from their use 
in western blotting or fluorescent sandwich immuno-
assays (SCBCs and microengraving), with each affording 
different quality checks. scWesterns, similar to standard 
immunoprecipitation western blotting methods, pro-
vide two separate measurements of each protein: the 
mass ladder (albeit of lower resolution than is typical 
for bulk western blotting assays) plus a primary detec-
tion antibody94. However, absolute quantification and 
absolute assessments of experimental uncertainty can 
be challenging. For multiplex fluorescent sandwich 
immunoassays, each individual protein assay provides 
two separate measurements per cell (as two antibodies 
per protein are used). Each individual assay can also 
be compared against every other assay in the panel for 
crossreactivity95, and each assay can be calibrated against 

Table 1 | Characteristics and capabilities of single-cell proteomics methods

Method Protein detection 
method

Comments Refs

Fluorescence 
activated cell 
sorting (FACS)

Staining with  
fluorophore-labelled 
antibodies

• Standard for cell sorting based on membrane protein cell 
surface markers

• High-throughput tool with excellent statistics
• Mature technique
• Multiplexing is colourimetric
• Typically requires large sample sizes
• Sorted and analysed cells are viable for subsequent analysis
• Commercial product (many vendors)

4,7

Mass cytometry 
(CyTOF)

Staining fixed cells 
with mass-tag labelled 
antibodies

• Good for cytoplasmic proteins
• Excellent statistics
• Demonstrated as a drug screening tool
• >30 proteins assayed per cell
• Multiplexing is via mass spectrometry
• Applicable to fixed-tissue analysis
• Commercial product (Fluidigm)

9,11,35, 
41,104

Single-cell 
barcode chips 
(SCBCs)

Spatially encoded 
antibody array 
for fluorescent 
immunoassays of 
secreted proteins or 
analytes released  
from lysed cells

• Permits absolute quantitation
• Suitable for small (100−1,000 cells) biospecimen sizes
• Demonstration of >40 proteins assayed per cell
• Secreted proteins detected from viable cells
• Some designs integrate cell lysis to permit cytoplasmic 

protein assays and integrated protein and metabolite assays
• Analysis of cell–cell interactions
• Cost-effective
• Multiplexing is via spatially encoded arrays
• Commercial service (Isoplexis)

8,10,23, 
89,91

Microengraving Fluorescent 
immunoassays of 
secreted proteins

• Small numbers of secreted proteins
• >10,000 single cells assayed in parallel
• Cost-effective
• Permits kinetic studies of protein secretion
• Recovery of analysed cells for further analysis
• Analysis of cell–cell interactions
• Suitable for small (100−1,000 cells) biospecimen sizes
• Multiplexing is colourimetric

31,76, 
85,99

Single-cell 
western blotting 
(scWestern)

Miniaturized, 
automated western 
blotting on a  
microchip

• Suitable for small (100−1,000 cells) biospecimen size
• 1,000 cells assayed per microchip
• Multiplexing to ~12 proteins demonstrated
• Permits cytoplasmic proteins from lysed cells
• Reasonably fast (4 hours)
• Provides protein ladder reference
• Relative quantitation

77
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solutions spiked with recombinant standards10,95, thus 
providing assay readouts in terms of copy numbers per 
cell. However, on a cautionary note, recombinant stand-
ards may not be commercially available or may be modi-
fied from the corresponding protein produced within the 
cells. SCBC platforms have an additional quality check 
in that individual protein levels can be assayed multiple 
times from the same single cell10, thus providing a metric 
for experimental accuracy. Single-cell methods that rely 
on antibody staining of cells are the most challenging 
to quantitate, although experiments on FACS-sorted 
cells can provide validation that the antibodies used for 
staining surface markers are effective, thus providing a 
level of quantification regarding the cell fractions that 
are positive or negative for specific markers.

Applications of single-cell analysis

With the development of tools that can analyse larger 
numbers of single cells with an increasing depth of  
analysis, a central emergent theme is that cellular biol-
ogy is highly heterogeneous at virtually all molecular 
levels beyond the genome. Some of this heterogeneity is  
intrinsic to the nature of single cells (BOX 1), although 
some of it is reflective of genetic or epigenetic influ-
ences96,97. In many cases, it is becoming apparent that 
such heterogeneity is not arbitrary, and may be mined 
to yield new biological information. A second emergent 
theme is that a few cells can bias a population average98,99.

Single-cell genomic or transcriptomic analysis can 
permit lineage tracing of rare cell types (see below), 
which can provide insight into the origin (for example, 
primary tumour or metastatic site) of CTCs, or into the 
use of CTCs as a liquid biopsy that reflects the origi-
nating lesion49,59,100,101. A second application, pioneered 
by Quake and colleagues, has been to provide a deep, 
molecular view of healthy16 or diseased102 tissue devel-
opment via lineage tracing at the transcript and protein 
level. Related work has focused on identifying how 
multiple genetic defects associated with a single gene, 
but non-uniformly distributed throughout the tumour, 
influence tumour development and drug response50.

Advances in single-cell proteomics have largely 
exploited the ability to interrogate combinations of 
secreted (or secrete-able) cytokines, chemokines and 
cytotoxic granules from highly defined cells of the hae-
matopoietic lineage103,104. These advances have permitted 
comparisons of the importance of immune cell function 
versus immune cell abundance7,9,90,95 (see below), and 
also revealed deeper insight into the haematopoietic  
lineage. Such studies are being applied in cancer immuno-
therapies25,53,99,105, as discussed later. Single-cell proteomics 
has also provided detailed characterizations of the struc-
ture of phosphoprotein signalling pathways10,11 (see below 
and BOX 1).

An emerging frontier is the use of microfluidics plat-
forms that permit highly customized assays designed to 
correlate weak perturbations to single cells with changes 
in the transcriptome or proteome38. Two examples are 
studies that correlated cell motility with proteomic87 or 
transcriptome analysis28. A third example is an analysis 
of how specific cancer cells respond to targeted inhibitors  

as the physical environment is altered from normoxia 
to hypoxia27. Other examples include studies of cellular 
responses to engineered molecular stimulations (that is, 
periodic versus continuous)106,107, or studies designed 
to interrogate how one cell is influenced by another108, 
including how that influence depends on cell–cell sep-
aration distance24,40. Such studies are enabled by the 
standardization of the relevant single-cell assay bio-
chemistries, and are limited only by the imagination 
of the researchers. Together, such research represents 
tremendously powerful approaches for decoding how 
genetic and epigenetic influences (such as drugs) are 
processed by living organisms.

Lineage tracing of cellular phenotypes. Single-cell pro-
teomics and transcriptomics can be used to understand 
the origins of cellular heterogeneity, as demonstrated by 
Dalerba and co-workers in colon cancer102 (FIG. 3). It was  
found that the transcriptional diversity of a human 
tumour could be largely explained by in vivo multiline-
age differentiation102. These findings are consistent with 
additional models109 and mechanistic110 investigations 
that demonstrate the ability of cancer cell differentiation 
(and de-differentiation) to maintain a phenotypic equi-
librium within certain tumours. The study by Dalerba 
and colleagues102 was limited by the numbers of tran-
scripts per cell, and the numbers of single cells, that 
could be analysed a few years ago. The recent advent of 
high-throughput, single-cell global transcriptome analy-
sis and exome sequencing should allow for such lineage 
tracing studies to dive significantly deeper into a host of 
developmental biology problems with relevance to both 
healthy and diseased states.

Understanding cellular functionality. Immune cells 
of the myeloid lineage are often considered the first 
responders of host defence against bacterial infection, 
whereas haematopoietic stem and progenitor cells 
(HSPCs) are thought to respond in a delayed manner to 
ensure the sufficient production of myeloid cells, which 
are consumed during an infection111–113. This response 
of HSPCs was considered to be a passive response to the 
depletion of downstream immune cells. However, recent 
evidence suggests that HSPCs may participate directly by 
sensing systemically elevated cytokines as well as bacte-
rial and viral components through cytokine receptors 
and Toll-like receptors, respectively114,115.

Single-cell functional proteomics (12-plex SCBC 
assays), combined with flow cytometry cell sorting 
and genetically engineered mouse models, indicated 
that short-term haematopoietic stem cells (HSCs) and 
multipotent progenitor cells also have the capacity 
to respond to bacterial components via the Toll-like 
receptor–nuclear factor-κB axis103. In fact, HSPCs were 
significantly more potent cytokine producers in terms 
of speed, breadth and especially quantity than the con-
ventional cytokine producers of the immune system, 
such as myeloid cells and lymphocytes95. Clustering of 
data from HSC SCBC assays revealed four functional 
subsets of LKS HSCs (defined as Lineage–Sca1+cKit+); 
these cells secreted a set of lymphoid cytokines, a set 
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of myeloid-associated cytokines, produced all proteins 
or were completely silent95. The overall findings indi-
cated that short-term HSCs and multipotent progenitor  
cells, although rare cells, can aggressively translate 
danger signals arising from an infection into the vig-
orous production of cytokine signals that allow them 
to directly self-regulate stress-induced haematopoiesis. 
These findings have multiple implications, with one 
possibility being related to patients who have undergone 
lymphodepletion regimens as part of a therapeutic pro-
cedure. As the single-cell functional proteomics assays 

are non-destructive to the cells, a logical next step in this 
type of work would be to analyse those functional subsets 
at the transcriptome level to identify whether there are 
specific cell surface markers that can be used to further 
differentiate these HSPC functional subsets.

High-throughput drug screening. Although single-cell 
methods can provide valuable information, most are 
limited to analysing only one to a few samples at a time. 
However, cellular barcoding techniques are evolving to 
remove this limitation18,116. For mass cytometry, the basic 

Figure 3 | Single-cell analysis traces the lineage of a colon cancer. The work flow proceeds from the left.  

a | A biopsy of a healthy colon is analysed using fluorescent-activated cell sorting (FACS) to separate cells extracted 

from the crypt-like structures of the colon epithelium. The bottom regions of the crypts are enriched in stem cell-like 

populations, with those cells identified as epithelial cell adhesion molecule (EpCAM)+/CD44+. More differentiated 

enterocyte and goblet cells are found near the top of the crypts and are defined as EpCAM+/CD44−/CD66ahigh.  

b | Single cell, multiplex transcriptomics is used to develop a 53 gene expression classifier. Principal component  

analysis of the single-cell data resolves the major cellular subpopulations. The genes that define these subpopulations 

are plotted with respect to how they are represented within the two dominant principal components. The plot reveals 

how the classifier resolves immature progenitors (top left of graph), enterocyte-like cells (top right), and goblet-like 

cells (bottom left). Classifiers of these populations, also identified from hierarchical clustering of the single cell 

transcriptome data, provide the colour coding for each mRNA on the plot. c | Once established, the classifier can be 

used to analyse cells collected from a patient colon cancer tumour. In this case, the tumour cells (shaded in grey) are 

largely goblet-like and immature progenitors. A single immature progenitor tumour cell is sorted from the patient 

tumour using FACS, and implanted into a mouse model to grow a monoclonal tumour. Analysis of that tumour reveals  

a cellular composition reminiscent of the original patient tumour, implying that the tumour cellular heterogeneity  

can originate from expansion and lineage differentiation of a single progenitor-like cell. CA2, carbonic anhydrase 2; 

GUCA2B, guanylate cyclase activator 2B; LGR5, leucine-rich repeat containing G protein-coupled receptor;  

OLFM4, olfactomedin 4. Figure part b is adapted with permission from REF. 102.
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idea is that cells are separated into a multiwell plate and 
barcoded with a unique combination of mass signa-
tures that identify a given cell with its well location and 
the experimental conditions (that is, a specific dose of a 
specific drug) applied to that location. The cells are then 
analysed simultaneously to enable the parallel capture of 
many experimental conditions. For example, Bodenmiller 
and co-workers116 used 7 mass-labelled barcodes to pro-
vide up to 27 barcoding capacity (128 possible addresses). 
This method was applied to a 96-well plate format to 
explore the kinetic and/or dosing influences of 27 inhib-
itors on 14 distinct peripheral blood mononuclear cell 
phenotypes (defined by 10 cell surface markers) via the 
monitoring of 14 phosphorylation sites per cell. From 
these data, half-maximal inhibitory concentration (IC

50
) 

values and percentage inhibition of the phosphorylation 
levels for all phosphorylated sites were extracted116.

As described above, single-cell, multiplex phospho-
proteomic assays yield both the levels of the assayed pro-
teins and the protein–protein correlations. Thus, a major 
advantage and distinguishing feature of this high-through-
put screening approach is that it permits an analysis of how 
both on-target and off-target drug interactions influence 
the signalling networks, rather than just the relevant pro-
tein levels. A major challenge going forward will be to 
expand the multiplexing of these types of assays to capture 
more complete pictures of the phosphoprotein signalling 
networks, as well as additional networks associated with 
cellular proliferation, apoptosis and metabolism.

Single-cell analysis in oncology

The single-cell analytical methods discussed in this 
Review are being applied towards addressing several 
fundamental biomedical problems, particularly in can-
cer biology and clinical oncology. Below, we discuss how  
single-cell analysis is being applied to two key areas of can-
cer research and drug discovery: cancer immunotherapy  
and tumour heterogeneity.

Cancer immunotherapy. The prototype model for our 
understanding of cellular differentiation and diversifi-
cation in humans is the haematopoietic system. In fact,  
this knowledge has provided a scientific cornerstone 
under lying the recent and remarkable advances in cancer  
immunotherapy117,118. Single-cell technologies have 
emerged as a critical set of tools for advancing this 
knowledge, often in a dramatic manner.

For cancer immunotherapies, single-cell analytical 
tools are beginning to provide critical guidance across 
multiple levels of biological information. Whether the 
immunotherapy is based on dendritic cell vaccines119, 
adoptive cell transfer120 or checkpoint inhibitors121–123, 
or some combination thereof, the primary tumour cell  
killers are T cells. Some of the most important biomarkers 
are the kinetic persistence and functional behaviours of 
specific antitumour T cell phenotypes across the course 
of a given patient’s therapeutic regimen. For cell-based 
therapies, the importance of designing clinical protocols 
that account for T cell differentiation has emerged as a 
key consideration124. In addition, a few years ago it was 
suggested that patient-specific mutant epitopes125 (called 

neoantigens) may be a potentially important factor for 
understanding, or perhaps controlling, the antitumour 
specificity of an immunotherapy; this theory has recently 
been confirmed105,126–130. Closely associated factors are 
the TCRα and TCRβ chain sequences that recognize the  
specific expressed neoantigens with high avidity53.

Much of this work has involved highly multiplex 
flow and mass cytometry methods7,9,131,132 and associated 
reagent development133–138. These techniques enable the 
phenotypic characterization of immune cells and also 
the study of intracellular signalling pathways. With the 
realization that T cell responses to cancer can lead to 
unprecedented levels of durable tumour responses in 
several types of cancer (for example, melanoma, lung, 
bladder, lymphoma, leukaemia)139, there is a need for 
further characterization of such responses to facilitate 
the increased refinement of therapeutic approaches and 
continued improvements in patient care.

To understand immune responses to cancer, it is of 
significant interest to develop approaches that can match 
the TCR genes with their specific (or cognate) antigen, 
which usually result from nonsynonymous somatic 
mutations specific for each cancer105,133,135–138,140,141. As 
each T cell has two TCR chains, it is important that they 
are defined from individual T cells to allow their correct 
pairing. Single-cell analysis platforms coupled with DNA 
sequencing for TCR chains and paired neoantigens have 
the potential to revolutionize our knowledge about this 
critical interaction, guiding the success of cancer immu-
notherapy strategies17,53. With the increased knowledge, 
it is easy to envision that in the near future the definition 
of TCR chains that specifically recognize neoantigens in 
cancers may be translated into truly personalized cancer 
immunotherapy approaches for patients.

Once the recognition elements of T cells are fully 
defined, a next question is which T cell subsets are empow-
ered to fight cancer. Although these T cell subsets are each 
governed by specific transcription factors and can be iden-
tified by a series of surface molecules142, a specific subset 
can also exhibit a broad range of functional phenotypes, 
ranging from antitumour to immunomodulatory99. Single-
cell assays provide an unparalleled quantitative assessment 
of the different T cell subtypes, their progenitors and their 
functional capabilities9,12,37,99,103. These assays are being 
applied to the characterization of T cell responses to cancer 
induced by several immunotherapy approaches99,103. Such 
methods are helping to define how patients respond to 
or resist immunotherapy approaches, such as checkpoint 
blockade therapy, and may help guide the next genera-
tion of combination therapy studies that will be designed 
based on understanding what is lacking in patients whose 
immune systems do not respond to these therapies.

Advances in cell therapy manufacturing for adoptive 
cell transfer approaches, in which a large army of T cells 
are manufactured in the laboratory and re-infused back 
into patients, are being supported by new biotechnology 
approaches designed to guide higher level T cell char-
acterizations25,53,105,130. The understanding of TCR speci-
ficity and the generation of chimeric antigen receptors to 
genetically redirect T cell specificity to cancer enables the 
manufacture of autologous cell therapies143. By applying 

REV IEWS

NATURE REVIEWS | DRUG DISCOVERY  VOLUME 15 | MARCH 2016 | 9

© 2015 Macmillan Publishers Limited. All rights reserved



highly multiplexed single-cell analyses, the different 
T cell subsets can be surveyed before and after infusion of 
these cell therapies to patients to define which approaches 
improve their long-term functionality to attack cancer. 
It has become clear that less mature cells that have long-
term repopulation ability (for example, naive, T stem 
cell and long-term memory cells) are preferred in these 
adoptive cell transfer approaches124; more mature T effec-
tor cells have short-term functionality and cancer may 
regrow after their infusion99,144.

The next wave of advances in cancer immunotherapy 
are likely to rely on the characterization of large numbers 
of single immune cells at the DNA, RNA and protein levels  
to deconvolute the complexity of immune responses to 
cancer and guide further therapeutic strategies. Lower 
order analyses fail to provide the necessary knowledge 
to understand immune responses to cancer and cannot 
explain the heterogeneity in patient responses.

Understanding tumour heterogeneity. Intratumoural 
heterogeneity is increasingly being recognized as a cen-
tral hallmark of human cancer145, and encompasses three 
main types of variability: variations in mutational patterns 
among tumours of the same histological type; variations in 
histological patterns within a tumour; and intratumoural 
mutational polyclonality, that is, variations in the muta-
tional complement within individual cells of a tumour146. 
In addition to mutational polyclonality, single cells within 
a tumour will intrinsically vary in the activity of their sig-
nalling10,11 and metabolic23 networks, thus influencing 
the biological properties and therapeutic vulnerabilities 
of distinct tumour cell subpopulations. Due to a lack of 
suitable genetic tools, the impact of intratumoural muta-
tional polyclonality and heterogeneity of signalling and 
biochemical networks on treatment and resistance are not 
currently well understood.

Tumours develop into a complex heterogeneous 
tumour mass, primarily through the intertwined forces 
of spontaneous somatic mutation coupled to clonal 
sequential selection for aggressive subclones145,147–149.  
As tumours progress, new mutations are produced with 
an ever increasing frequency, accelerating the extent of 
intratumoural mutational polyclonality and confounding  
treatment strategies146,147. Intratumoural mutational 
polyclonality is enhanced in cancers that are associated 
with a causal environmental insult that directly damages 
DNA150, as well as by the progressive loss of key tumour 
suppressor proteins, and mutations in genes that sense 
and repair damaged DNA151.

The local microenvironment also provides a critical 
non-genetic force. Autocrine and paracrine interactions 
among inflammatory, stromal, endothelial and tumour 
cells are just a few factors that can influence the process of 
selection, and may yield cells bearing different mutations 
within different parts of a tumour or its distant metas-
tases152,153. Treatments also provide a source of non-genetic 
heterogeneity, expanding or collapsing tumour cell sub-
populations depending on the treatment145,146,149.

Exome and genome-wide surveys have provided an 
atlas of driver mutations and a compelling road map for 
guiding the implementation of precision and personalized 

cancer medicine. However, intratumoural heterogeneity  
presents a serious challenge to this paradigm154. Fortuna-
tely, single-cell technologies are poised to address this 
challenge.

Glioblastoma, the most common and lethal form of 
primary brain cancer, provides an illustrative example. 
Glioblastoma was one of the first cancers sequenced by 
The Cancer Genome Atlas155,156. In that survey, 57% of 
tumours contained epidermal growth factor (EGFR) 
amplification and/or gain-of-function mutations, 
including EGFR variant III (EGFRvIII)157,158. EGFRvIII 
is oncogenic in mouse models when introduced in 
association with cyclin-dependent kinase inhibitor 2 
(CDKN2A) loss159; a combination that commonly occurs 
in patients146. However, EGFRvIII protein expression  
varies dramatically among cells within a glioblastoma, 
and single-cell DNA sequencing50, RNA sequencing17, 
as well as bulk analysis of DNA and RNA extracted from 
different regions of a tumour160,161 demonstrate consider-
able DNA, transcript and protein heterogeneity, including 
of EGFRvIII. Importantly, recent research suggests that 
the widespread variability of gene, transcript and protein 
levels of EGFRvIII within individual cells of a glioblas-
toma may contribute to the resistance to EGFR-targeted 
therapies that is currently seen in the clinic110. In addi-
tion, single-cell barcode proteomics and metabolomics 
assays point to considerable variability in the signalling 
and metabolic networks of individual glioblastoma cells23 
within an EGFRvIII+ tumour, potentially shedding new 
light on mechanisms of resistance (either pre-existing  
and/or adaptive) to targeted therapies that could be used 
to guide more effective combination treatments.

Challenges, limitations and outlook

The emergence of single-cell omics tools over the past 
5 years has happened at a lightning pace, and the potential 
for their use in the discovery and development of broad 
classes of therapies and therapeutic strategies is high. The 
resultant datasets do not simply provide deeper views of 
biology that are already measured using existing methods, 
but also provide a fundamentally different view that is not 
masked by the intrinsic heterogeneity of a cell population. 
However, the novelty of these single-cell techniques also 
implies various limitations. For example, most methods 
discussed in this Review have just recently emerged from 
academic laboratories and therefore require significant 
skill sets and cross-disciplinary infrastructure that may be 
new to those in the drug discovery and development com-
munity. As cases in point, REFS. 102,103,116 (discussed 
above) have, on average, 13 authors representing 5 differ-
ent departments or institutions, which demonstrate the 
need to effectively integrate experts in technology, biol-
ogy and computational analysis. A second caveat is that 
algorithms for the in-depth analysis of single-cell data 
are even less mature than the experimental platforms, 
and effective visualization and interpretation of what 
are increasingly large datasets remain challenging, with 
techniques that vary across research groups. However, 
as methods mature, the experimental protocols, the 
reagents and the computational analysis routines will 
become more standardized. This standardization has,  
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of course, largely occurred for multicolour flow cytometry, 
and it is beginning to happen for CyTOF and single-cell 
RNA-seq, but even these methods are rapidly evolving 
and all involve dedicated user facilities.

Much of modern biological practice is designed around 
extracting correlations and associated statistical trends 
from biological systems that are intrinsically hetero-
geneous and therefore noisy. The promise of single-cell 

biology is to resolve and make sense of this confounding 
heterogeneity. Several studies highlighted in this Review 
provide hints of the resultant clarity that can be achieved. 
It is likely that, as the tools of the field increase in terms 
of quantification, throughput and ease of use, the impact 
will be to fundamentally change the practice of biology, 
as well as the associated applied sciences, including drug 
discovery and development.
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