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Single-cell and spatial analysis reveal interaction of
FAP+ fibroblasts and SPP1+ macrophages in
colorectal cancer
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Colorectal cancer (CRC) is among the most common malignancies with limited treatments

other than surgery. The tumor microenvironment (TME) profiling enables the discovery of

potential therapeutic targets. Here, we profile 54,103 cells from tumor and adjacent tissues to

characterize cellular composition and elucidate the potential origin and regulation of tumor-

enriched cell types in CRC. We demonstrate that the tumor-specific FAP+ fibroblasts and

SPP1+ macrophages were positively correlated in 14 independent CRC cohorts containing

2550 samples and validate their close localization by immuno-fluorescent staining and spatial

transcriptomics. This interaction might be regulated by chemerin, TGF-β, and interleukin-1,

which would stimulate the formation of immune-excluded desmoplasic structure and limit

the T cell infiltration. Furthermore, we find patients with high FAP or SPP1 expression achieved

less therapeutic benefit from an anti-PD-L1 therapy cohort. Our results provide a potential

therapeutic strategy by disrupting FAP+ fibroblasts and SPP1+ macrophages interaction to

improve immunotherapy.

https://doi.org/10.1038/s41467-022-29366-6 OPEN

1 Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and
Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 2 Shanghai Jiao Tong University School of Medicine-Yale Institute for
Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China. 3Department of Biliary and Pancreatic Surgery, Renji Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China. 4 Department of Gastroenterology, Center for Immune-related Diseases, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China. 5 Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of
Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China,
Hefei 230001, China. 6Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical
School, Houston, TX 77030, USA. 7 Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Immunos Building, Level 3 and 4, Singapore
138648, Singapore. 8These authors jointly supervised this work: Youqiong Ye, Bing Su. ✉email: youqiong.ye@shsmu.edu.cn; bingsu@sjtu.edu.cn

NATURE COMMUNICATIONS |         (2022) 13:1742 | https://doi.org/10.1038/s41467-022-29366-6 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29366-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29366-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29366-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-29366-6&domain=pdf
http://orcid.org/0000-0001-7864-8649
http://orcid.org/0000-0001-7864-8649
http://orcid.org/0000-0001-7864-8649
http://orcid.org/0000-0001-7864-8649
http://orcid.org/0000-0001-7864-8649
http://orcid.org/0000-0002-3535-6467
http://orcid.org/0000-0002-3535-6467
http://orcid.org/0000-0002-3535-6467
http://orcid.org/0000-0002-3535-6467
http://orcid.org/0000-0002-3535-6467
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-7380-2640
http://orcid.org/0000-0002-2857-7755
http://orcid.org/0000-0002-2857-7755
http://orcid.org/0000-0002-2857-7755
http://orcid.org/0000-0002-2857-7755
http://orcid.org/0000-0002-2857-7755
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0001-8332-4710
http://orcid.org/0000-0003-0871-7666
http://orcid.org/0000-0003-0871-7666
http://orcid.org/0000-0003-0871-7666
http://orcid.org/0000-0003-0871-7666
http://orcid.org/0000-0003-0871-7666
mailto:youqiong.ye@shsmu.edu.cn
mailto:bingsu@sjtu.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Colorectal cancer (CRC) is the third most common malig-
nancy (after lung and breast cancer) and causes around
800,000 deaths annually world-wide. Recently, following

its success in previously difficult-to-treat solid tumors, such as
melanoma and lung cancer, an immune checkpoint blockade
(ICB) strategy was applied to CRC treatment1. There have been
many studies exploring T cells for effective anti-tumor
immunotherapies2. However, the PD-1-targeting antibody,
pembrolizumab, is only effective for mismatch repair-deficient
tumors with high microsatellite instability (MSI-H), which
account for <5% of metastatic CRC cases3,4. Therefore, it is
necessary to understand the mechanism of cellular and molecular
remodeling in the tumor microenvironment (TME) of CRC and
find potential intervention targets to enhance the therapeutic
efficacy of immunotherapy. Recent research has revealed that
stromal cells and myeloid cells may form a distinctive niche for
tumor growth and metastasis5,6, making them potential ther-
apeutic targets.

Mesenchymal stromal cells represent non-epithelial, non-
hematopoietic cell components essential for tissue remodeling,
inflammatory response, epithelial cell growth, and
immunosuppression7. While lacking typical lineage markers, they
are positive for vimentin, collagens, PDGFRα/β, and podoplanin
with diverse distribution patterns across tissues and cell types7,8.
Recent advances in single-cell transcriptomics have enabled the
systemic profiling of cell populations at an unprecedented degree
of resolution in colorectal diseases, including inflammatory bowel
disease9–12, and CRC13–16. Diverse stromal cell populations may
play distinctive roles in IBD development. For instance, a stromal
cell population was reportedly located in the crypt niche with a
normal repair and regeneration response function, while another
stromal population possessed pro-inflammatory features that
contribute to disease severity9. In addition, inflammatory fibro-
blasts expressing IL13RA2 and IL11 were associated with resis-
tance to anti-TNF treatment in IBD patients10. The heterogeneity
of stromal cells is also thought to be associated with the outcome
of CRC progression14,16. Two groups of fibroblasts, including
myofibroblasts and cancer-associated fibroblasts, have been
identified and found to be preferentially enriched in CRC
tumors16. In addition, myofibroblast-related gene signature has
also been identified as one of the major characteristics of the CRC
consensus molecular subtype 4, which is defined by the enrich-
ment of tumor stroma and TGF-β signaling mediated extra-
cellular matrix remodeling17. Emerging evidence suggests that the
tumor myofibroblasts could be a tumor-driven stromal
population14. However, because the stromal cells used from the
above studies represented only a small fraction of the total
sequenced population, which prevented their in-depth investi-
gation at a high resolution, it is urgently needed to understand the
definitive function of stromal subtypes, especially with regards to
their crosstalk with other cells in the TME. In this regard, single-
cell RNA sequencing (scRNA-seq) has revealed the importance of
cell crosstalk within many types of cancer and identified the
interactions of endothelial cells with macrophages18 and tumor-
specific keratinocytes with other types of cells within the TME19.

It has been reported recently that exclusion of infiltrating
immune cells from the TME was associated with poor prognosis
for CRC patients20, and tumor-associated macrophages (TAMs)
localizing on the tumor margin have been suggested to prevent
the infiltration of cytotoxic lymphocytes (CTL) into the tumor
core21. Two types of TAMs with distinct inflammatory and
angiogenic signatures, and opposite responses to the CSF1R
blockade treatment were reported16. Other studies also reported a
positive correlation between macrophages which expressed mar-
kers of M2 macrophages (e.g., CD163, DC-SIGN) or cancer-
associated fibroblasts which expressed FSP1, FAP, and poor

outcome for CRC patients22. A subtype of TAM with a unique
feature called SPP1+ macrophages was reported recently to carry
immunosuppressive property and positively correlated with EMT
markers as a potential target for anti-tumor growth and
metastasis23. However, the interaction between myeloid cells and
other types of cells in the CRC TME has not been sufficiently
investigated.

Here, we identify the presence of diversified tumor micro-
environment landscape in colorectal cancer, in which FAP+

fibroblasts and SPP1+ macrophages are enriched in the tumor
tissue. This work further highlights that the infiltration of FAP+

fibroblasts and SPP1+ macrophages are highly correlated, and
their presence is negatively correlated with lymphocyte infiltra-
tion and predicted a poor patient survival. This interaction is
validated by immunofluorescent staining and spatial tran-
scriptomics approach, and their co-existence is associated with
enriched extracellular matrix expression, thus promoting the
formation of tumor desmoplastic structure. Furthermore, high
expression of either FAP or SPP1 contributes to resistance to PD-
L1 blockade immunotherapy. Together, this work unravels the
complex interplay between stromal and macrophages subsets,
which could serve as potential targets for CRC immunotherapy.

Results
A single-cell transcriptomic atlas of paired human normal
mucosa and CRC tissues. To elucidate the cellular composition of
colorectal tumors, tumor samples and adjacent normal tissue were
surgically obtained from five non-metastatic patients (Supplemen-
tary Table 1; colonic adenocarcinoma (COAD), n= 2; rectal ade-
nocarcinoma (READ), n= 3). The specimens were immediately
processed for 3′-end single-cell (sc) RNA-seq using the 10× Geno-
mics platform (Fig. 1a). After filtering the scRNA-seq data to exclude
damaged or dead cells and putative cell doublets, a total of 54,103
cell transcriptomes from the five patients were retained for sub-
sequent analysis, in which 29,481 cells were originated from adjacent
non-malignant tissues and 24,622 cells from tumors (Fig. 1b). Fol-
lowing gene expression normalization for sequencing depth and
mitochondrial read count, we applied principal component analysis
(PCA) based on highly variably expressed genes across the
sequenced cells. To correct the batch effect, we integrated the
scRNA-seq data for tumor and adjacent normal tissue with the
Harmony algorithm24. We further employed the Harmony-
corrected principal components to generate a unified UMAP
embedding space and then performed graph-based clustering and
annotated each cluster with their respective markers (Supplementary
Data 1). The cells were classified into nine major cell types
(Fig. 1b–d), including epithelial cells (n= 8940) identified by the
expression of EPCAM and CDH110, T/ILCs cells (n= 17,420) which
expressed the T-cell receptor (TCR) signaling mediators CD3E and
CD3G15, B cells (n= 2998) marked by MS4A1 and CD79A11,
plasma cells (n= 7252) identified by SDC1 and MZB1 expression25,
myeloid cells (n= 4617) which were positive for CD14 and FCGR3A
expression26, mast cells (n= 2781) defined by their classical markers
KIT, IL1RL1, and MS4A2, endothelial cells (ECs; n= 2205) marked
by PECAM1 and CDH511, mesenchymal stromal cells (MSCs;
n= 7451) marked by COL1A1 and COL3A111, and glial cells
(n= 439) marked by S100B and CDH210. Although all nine major
cell types were presented in both tumor and adjacent normal tissues
from the five patients (Fig. 1e), the grade of infiltration for each of
these major cell types was different, possibly reflecting differences in
the stage of CRC progression.

Characteristics of cell populations in tumor tissues from CRC
patients reveals hallmark signatures of TME and prediction of
clinical outcome. To investigate the changes in the regulatory
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networks of tumor-infiltrating cell subsets, we utilized hallmark
gene sets of the Molecular Signatures Database (MsigDB)27 to
analyze the alterations in pathways of MSCs, ECs, glial cells,
myeloid cells, T cells, and B cells between adjacent normal and
tumor tissues (Fig. 2a). The immune-related pathways, including
inflammatory response, IL2/STAT5 signaling, and IL6/JAK/

STAT3 signaling, were enriched not only in immune cell popu-
lations, such as myeloid cells and T/ILC cells, but also in MSCs
and ECs in tumor compared to normal tissues (Fig. 2a), sug-
gesting the involvement of MSCs and ECs in the immune
response against colorectal cancer. Hallmark gene set for hypoxia
was more enriched in MSCs, ECs, and myeloid cells from tumors

Fig. 1 Single-cell Atlas of paired human normal mucosa and CRC tissues. a Graphic overview of this study design. Normal mucosa and tumor tissue from
CRC patients were processed into single-cell suspension and unsorted cells were used for scRNA-seq with 10x Genomics. Tumor slides were processed to
obtain spatial transcriptomics by 10x Genomics Visium. The following integrated analysis of single-cell transcriptome data is described in squares. b UMAP
plots of 29,481 cells from normal mucosa and 24,622 cells from tumor tissue of 5 CRC patients, showing 9 clusters in each plot. Each cluster was shown in
different color. R package harmony was used to correct batch effects and constructed one UMAP based on all cells from adjacent tissue and tumor, and
then split cells by these two tissues. c Dot plots showing average expression of known markers in indicated cell clusters. The dot size represents percent of
cells expressing the genes in each cluster. The expression intensity of markers is shown. d Expression levels of selected known marker genes across 54,103
unsorted cells illustrated in UMAP plots from both normal and tumor tissue in CRC patients. e Proportion of 9 major cell types showing in bar plots in
different donors (left panel), tissues (middle panel), and total cell number of each cell type (right panel) are shown. CRC, colorectal cancer. Source data are
provided as a Source data Fig. 1b–e.
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than those of normal samples (Fig. 2a). These characteristics
might reflect a stromal cell interaction localized in the hypoxic
region of the tumor that links macrophages, MSCs, and ECs to
remodel the CRC microenvironment. In addition, tumor-
infiltrating myeloid cells and T/ILC exhibited greater

enrichment of metabolism-related genes, including fatty acid
metabolism, xenobiotic metabolism, bile acid metabolism, and
cholesterol homeostasis, than those cells from normal mucosa
(Fig. 2a), suggesting immunometabolism was reprogrammed in
the CRC TME. Taken together, these findings indicated that the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29366-6

4 NATURE COMMUNICATIONS |         (2022) 13:1742 | https://doi.org/10.1038/s41467-022-29366-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


regulatory pathways of major cell types were shaped in the CRC
TME.

As the sample size of our scRNA-seq dataset was limited, we
utilized a deconvolution algorithm CIBERSORTx28 to simulate the
cell-type-specific gene expression profiles to predict the abundance
of each cell types quantified by scRNA-seq in large scale datasets
from the COAD and READ cohort of The Cancer Genome Atlas
(TCGA) and 12 independent CRC cohorts from the Gene
Expression Omnibus (GEO; Supplementary Table 2)29–40. The
robustness of CIBERSORTx to predict cell-type-specific gene
expression profiles from TCGA and GEO datasets was trained
using our own scRNA-seq dataset (Supplementary Note 1;
Supplementary Fig. 1). To determine the relationship among the
different cell populations in the CRC microenvironment, we
analyzed pairwise Spearman correlations within the infiltration
patterns of nine major cell types across 14 independent CRC
cohorts. We observed a significantly positive correlation between
MSCs and myeloid cells in all interrogated cohorts (Spearman
correlation coefficient [|Rs|] > 0.3 and false discovery rate [FDR] <
0.05 were considered significant correlation), with the Rs ranging
from 0.47 in the GSE18105 dataset with 98 CRC samples to 0.76 in
the GSE17537 dataset with 55 CRC samples (Fig. 2b, c). To assess
the clinical relevance for the infiltration of each cell type in CRC
TME, we examined the correlation of cell-type infiltration with the
overall survival (OS) and progression-free survival (PFS) of CRC
patients. These analyses revealed that CRC patients in the TCGA
CRC cohort (Fig. 2d, e) with higher MSC infiltration were
associated with worse OS (log-rank test, p= 0.02) and PFS (log-
rank test, p= 0.00071)17, which is consistent with the previously
reported results of mesenchymal-type CRC. In addition, greater
infiltration of myeloid cells was also associated with worse OS (log-
rank test, p= 0.026) and PFS (log-rank test, p= 0.033; Fig. 2d, e).
Furthermore, we revealed a positive correlation between MSCs
infiltration and the infiltration of myeloid cells in TME (Fig. 2b, c),
and both MSCs and myeloid cells were enriched in CMS4 type of
CRC (Supplementary Fig. 2i, j).

Tumor-specific FAP+ fibroblasts are associated with colorectal
cancer progression. The differences in infiltrated cell types
between tumor-adjacent tissues and tumor tissues suggest that a
dynamic remodeling of TME plays an important role in CRC
progression (Supplementary Note 2). MSCs and fibroblast-like
cells have long been suggested as a key stromal cell type involved
in regulating tumorigenesis and the progression of cancer41–45.
However, the identity of these heterogeneous cell population
remains elusive. We employed specific cellular signature markers9

reported before to cluster MSCs into 10 subtypes (Fig. 3a). Tel-
ocytes were positive for SOX6, FOXL1, and F3 expression9, which
were further sub-clustered based on ICAM1 expression into
ICAM1+ telocytes (n= 1016) and ICAM1− telocytes (n= 550)

(Fig. 3a, Supplementary Fig. 2c). Myofibroblasts were clustered
based on the high expression of contractile genes, ACTG2 and
MYH119, and further classified into DES+ myofibroblasts and
MFAP5+ myofibroblasts (Fig. 3a, Supplementary Fig. 2c). CD24+

fibroblasts (n= 228) were characterized by the expression of
CD24 and Wnt agonist gene, RSPO3, capable of supporting
intestinal stem cell niche46 (Fig. 3a, Supplementary Fig. 2c). The
other fibroblast subtypes included NT5E+ (encoding CD73,
essential for adenosine production and immune suppression)
fibroblasts47 (n= 930), FGFR2+ fibroblasts48 (n= 2023), and
FAP+ (canonical CAF activation marker) fibroblasts49 (n= 1091)
(Fig. 3a, Supplementary Fig. 2c). In addition, the proliferating
fibroblasts were marked by the expression of MKI67 (Fig. 3a,
Supplementary Fig. 2c).

We next performed data integration between publicly available
single-cell transcriptomics data of CRC MSCs and our own datasets
to validate tumor-specific FAP+ fibroblasts (Supplementary Note 3).
We compared the differential infiltration of MSC subtypes between
tumor and adjacent normal tissue in each donor (Supplementary
Fig. 4a). The FAP+ fibroblasts (Diff= 42.4%, p= 0.0052), prolifer-
ating fibroblasts (Diff= 2.29%, p= 0.0099), and pericytes (Diff=
10.4%, p= 0.031) were markedly enriched in tumor tissue as
compared to that from adjacent normal tissue, while NT5E+

fibroblasts (Diff = 14.7%, p= 0.0053), FGFR2+ fibroblasts (Diff =
19.3%, p= 0.015), ICAM1− telocytes (Diff=−6.53%, p= 0.0071),
and MFAP5+ myofibroblasts (Diff = 9.84%, p= 0.0066) were
enriched in tumor-adjacent normal tissue (Fig. 3b, c, Supplementary
Figs. 2d and 4b). There is no significant difference of CD24+

fibroblasts, DES+ fibroblasts, and ICAM1+ telocytes between the
tumor and tumor-adjacent normal tissues (Fig. 3b, Supplementary
Figs. 2d and 4b). To further validate the changes in MSCs subtypes,
we estimated the abundances of cell types in large datasets from
TCGA CRC and the 12 other independent CRC cohorts described
above. The analysis was performed using CIBERSORTx with cell-
type-specific gene expression profiles for 58 cell types defined by our
scRNA-seq. In agreement with the results discussed above, FAP+

fibroblasts were significantly enriched in the CRC samples
(p= 3.7 × 10−8; Fig. 3d). FAP+ fibroblasts expressed the markers
FAP, MMP1, and MMP3 (Supplementary Data 2) typically
associated with fibroblast activation and extracellular matrix
remodeling. Interestingly, CRC patients with higher degrees of
FAP+ fibroblasts infiltration exhibited shorter PFS in both the
TCGA and dataset GSE17536 related cohorts (Fig. 3e, Supplemen-
tary Fig. 4c). In addition, the infiltration of FAP+ fibroblasts was
promoted at the late cancer stage and was higher in patients with
MSI-H in the TCGA CRC cohort (Supplementary Fig. 4d). To
validate this tumor-specific fibroblast infiltration, we analyzed the
expression of stromal cell subtype markers CD24, CD26, NT5E,
FAP, and FGFR2 in colorectal tumor and non-malignant large
intestine samples by flow cytometry (Fig. 3f, g). The results showed

Fig. 2 MSCs and myeloid cells are positively correlated in tumor infiltration and associated with the clinical outcome. a Dot plots of 50 hallmarks for
differentially expressed genes in the global cell type between tumor and adjacent normal tissues. The intensity represents average fold change of gene
expression in tumor versus normal mucosa. Dot size shows FDR for each hallmark. Wilcoxon signed-rank test was used to assess the difference. b The
proportion of CRC cohorts with positive (Spearman correlation; correlation coefficient [Rs] >0.3 and FDR < 0.05, in red), negative (Rs <−0.3 and
FDR < 0.05, in blue), or non-significant (gray) correlation for the infiltration of pairwise cell types in 14 independent CRC cohorts. c Scatter plots show the
correlation between the infiltration of MSCs and myeloid cells across 14 independent datasets with CRC, including TCGA COAD/READ (n= 635);
GSE39582 (n= 566); GSE14333 (n= 290); GSE17536 (n= 177); GSE13294 (n= 155); GSE41568 (n= 133); GSE41568 (n= 133); GSE37892 (n= 130);
GSE21510 (n= 123); GSE20916 (n= 111); GSE18105 (n= 94); GSE33113 (n= 90); GSE17537 (n= 55); GSE23878 (n= 35). The error band indicates 95%
confidence interval. d, e The Kaplan–Meier curves showed patients with higher infiltration of MSCs (left) or myeloid cells (right) are associated with worse
OS (d) and PFS (e) in TCGA COAD/READ cohort. FDR, false discovery rate. MSCs, mesenchymal stromal cells; OS, overall survival, PFS, progressive free
survival; TCGA, The Cancer Genomic Atlas; COAD, colon adenocarcinoma; READ, rectum adenocarcinoma. A paired two-sided Wilcoxon signed-rank test
was used to assess the difference in (a). A two-sided log-rank test p < 0.05 is considered as a statistically significant difference in (d, e). Source data are
provided as a Source data Fig. 2a–e.
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the infiltration of FAP+ fibroblasts were significantly increased,
while NT5E+ and FGFR2+ fibroblasts were significantly decreased
in CRC samples (Fig. 3g, Supplementary Fig. 4e, f).

Then, we performed RNA “velocity” analysis, a computational
approach that utilizes nascent transcription in scRNA-seq
datasets to infer differentiation trajectories of FAP+ fibroblasts50.
This analysis predicted that tumor-specific FAP+ fibroblasts likely
originated from FGFR2+ fibroblasts or ICAM1+ telocytes

(Fig. 3h). The differentiation of FAP+ fibroblasts is orchestrated
by a sophisticated network of transcription factors (TFs) that
regulate each other and their effectors by interacting with their
cofactors and downstream genes. Therefore, we evaluated the top
five specifically expressed TFs and the top five activities of the TF
regulatory network by pySCENIC51. We found that TWIST1 had
the highest expression and activity levels in the regulatory
network of FAP+ fibroblasts and may represent the master TF
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driving this differentiation pathway (Fig. 3i–l). Hypoxia is one of
the most important characteristics of the TME, and a previous
study demonstrated that TWIST1 might be regulated by
hypoxia52,53. Indeed, the hypoxia-dependent HIF-1α signaling
pathway was significantly enriched in FAP+ fibroblasts compared
with other MSC subtypes (Fig. 3k).

To understand the differentiation of FAP+ fibroblasts from
their two potential precursors is regulated, we analyzed the
differentially expressed genes and performed KEGG enrichment
analysis (Supplementary Fig. 4g–j). In addition to the above-
mentioned TWIST1, when compared to FGFR2+ fibroblasts and
ICAM1+ telocytes, respectively, FAP+ fibroblasts showed higher
expression of PRRX1 (Supplementary Fig. 4g, h), which is critical
for tuning cancer-associated fibroblast activation and plasticity in
cancer54. In addition, compared with ICAM1+ telocytes, FAP+

fibroblasts showed marked expression of FAP, IGFBP4 (encodes a
growth factor), FN1 (encodes a glycoprotein of the extracellular
matrix), and HES4 (important for transcription factor binding
and protein dimerization) (Supplementary Fig. 4h). Furthermore,
FAP+ fibroblasts were enriched in ECM-receptor interaction and
focal adhesion-related pathways compared with either FGFR2+

fibroblasts or ICAM1+ telocytes (Supplementary Fig. 4i, j),
implying the involvement of these cells in the ECM formation.
We further demonstrated that genes highly expressed in FAP+

fibroblasts compared with all other MSCs subtypes were mostly
the genes involved in ECM-receptor interaction, TNF signaling
pathway, and fatty acid biosynthesis, suggesting that activation of
these processes is involved in the commitment of FAP+

fibroblasts (Supplementary Fig. 4k).

Tumor-specific SPP1+ macrophages are associated with CRC
progression. The remodeling of myeloid cells of CRC patients
suggests the cells have functional roles in tumorigenesis. Three
dendritic cell (DC) subtypes were identified (Fig. 4a). Activated
DCs (n= 73) were marked by high expression of CCR7, required
for innate lymphoid cell trafficking to draining lymph nodes55,
and FSCN1, essential for DC maturation56 (Fig. 4a and Supple-
mentary Fig. 2c). XCR1 and CLEC9A were highly expressed in
cDC1 (n= 91), while FCER1A and CD1C57 were upregulated in
cDC2 (n= 487) (Fig. 4a and Supplementary Fig. 2c). THBS1+

macrophages (n= 1028) were characterized by THBS1 expression
(Fig. 4a and Supplementary Fig. 2c), which was shown to activate
M1-like TAMs and promote the malignant migration of cancer58.
In addition, VCAN+ macrophages (n= 600) were identified by
high expression of VCAN, and another macrophage subtype,
C1QC+ MRC1− macrophages (n= 1480), were positive for
expression of the complement component gene C1QC but lacked
MRC1 expression (Fig. 4a and Supplementary Fig. 2c). SPP1+

macrophages showed high expression of SPP1 and the scavenger
receptor MARCO59 (n= 443) (Fig. 4a and Supplementary
Fig. 2c). Furthermore, we observed a neutrophil population
characterized by CSF3R expression57 and proliferating myeloid
cells known for MKI67 expression (Fig. 4a and Supplementary
Fig. 2c). Furthermore, we integrated our single-cell tran-
scriptomics of myeloid cells with data from two previous studies
to supplement the information on the myeloid landscape in CRC
(Supplementary Note 4).

We investigated the alterations in myeloid cell subtypes among
adjacent tissues and tumor tissues and showed that macrophage and
neutrophil populations were predominantly present in tumor
tissues, while DCs were enriched in adjacent normal tissues (Fig. 4a,
b and Supplementary Fig. 6a, b). Importantly, SPP1+ macrophages
are tumor-specific macrophages, accounting for 11.6% of myeloid
cells in tumor samples but only 0.68% of the myeloid cells in
adjacent normal tissues (Fig. 4c). SPP1+ macrophages in CRC
expressed the C1QC, MRC1, STAT1, and PPARG (Supplementary
Data 2) markers typically associated with the polarization of
macrophages. Consistent with these results, the infiltration of SPP1+

macrophages in tumor samples were found to be significantly
upregulated compared with adjacent normal tissues in the TCGA
cohort when imputed cell infiltration by CIBERSORTx. CRC
patients in both TCGA and GSE17536 CRC cohorts with a higher
infiltration of SPP1+ macrophages exhibited shorter PFS (Fig. 4e,
Supplementary Fig. 6c), and the infiltration correlated with late-stage
cancer and MSI-H patients in the TCGA CRC cohort (Supplemen-
tary Fig. 6d). Based on the flow cytometric analysis of myeloid cell
subset markers CD14, CD206 (encoded by MRC1), CD209, and
CD13 (encoded by ANPEP) (Fig. 4f), we further documented that
SPP1+ macrophages were significantly increased in CRC compared
with non-malignant colon tissue while THBS1+ macrophages were
non-significant change (Fig. 4g, Supplementary Fig. 6e, f).
Furthermore, RNA velocity predicted that tumor-specific SPP1+

macrophages probably originated from THBS1+ macrophages
(Fig. 4h). SPP1+ macrophages showed higher expression of genes
encoding calcium- and zinc-binding proteins, including S100A10,
S100A8, and S100A6, and genes related to the extracellular matrix,
such as CD44 (Supplementary Fig. 6g). Moreover, SPP1+ macro-
phages were potentially regulated by the IL-17 signaling pathway,
HIF-1 signaling, and cytokine-cytokine receptor interaction, while
THBS1+ macrophages were capable of performing antigen-
processing and presentation, and regulating intestinal immune
network for IgA production (Supplementary Fig. 6h), implying that
SPP1+ macrophages and THBS1+ macrophages execute distinct
functions in TME.

To further determine the master regulator of SPP1+ macro-
phages, we performed pySCENIC analysis. Results indicated that

Fig. 3 Characterization of stromal cells in normal mucosa and tumor tissue. a UMAP showing the composition of MSCs colored by cluster. Red dashed
circle shows FAP+ fibroblasts. b Bar plots show the percentage of each MSCs subtypes in scRNA-seq. c Comparison of frequencies of FAP+ fibroblasts of
MSCs in paired normal mucosa (n= 5) and tumor (n= 5) tissue in scRNA-seq. d Comparison of absolute infiltration proportion of FAP+ fibroblasts
between paired normal (n= 41) and tumor (n= 41) in TCGA-COAD cohort. Boxes show the median ± 1 quartile, with the whiskers extending from the
hinge to the smallest or largest value within 1.5× the IQR from the box boundaries. e The Kaplan–Meier progression-free survival curves of COAD patients
stratified by FAP+ fibroblasts infiltration. f Violin plots showing the expression of selected genes. Colors as in (a). g Representative flow cytometry plots
(left) and proportion of FAP+ fibroblasts (right) in normal mucosa (n= 6) and tumor (n= 6) tissue. Gating strategies of FAP+ fibroblasts were as in
Supplementary Fig. 4e. p= 0.0006. h RNA velocity of MSCs subtypes. Color as in (a). Inferred developmental trajectory of FAP+ fibroblasts is red-circled
and enlarged (down). i Heatmap shows the relative expression (z-score) of top 5 transcription factors (TFs) genes in each MSCs subtypes as in
(a). j Heatmap shows normalized activity of top 5 TF regulons in MSCs subtype predicted by pySCENIC. Clusters are colored as in (a). TF regulons with top
activity for FAP+ fibroblasts are color-coded in red. k–m UMAP plots showing expression of TWIST1 (k), the activity of TWIST1-regulon (l), and the
enrichment score HI1α signal pathway (m). Cell is colored by the z-score normalized value. UMAP, Uniform Manifold Approximation and Projection;
P, patient. N, normal mucosa; T, tumor tissue; CRC, colorectal cancer. A paired two-sided Student’s t-test was used to assess the difference in (c), (d), and
(g). A two-sided log-rank test was used to assess statistical significance in (e). p < 0.05 is considered as a statistically significant difference. ***p < 0.001.
Source data are provided as a Source data Fig. 3a–g, k–m.
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STAT1, encoding master transcription factor that skews macro-
phages toward an M1 phenotype in the mouse, was highly active
in SPP1+ macrophages60 (Fig. 4i–l). Genes highly expressed in
SPP1+ macrophages were those involved in ECM−receptor
interactions, the PPAR signaling pathway, and glycolysis/
gluconeogenesis (Supplementary Fig. 6i). Interestingly, SPP1+

macrophages were also potentially regulated by the HIF-1

signaling pathway (Supplementary Fig. 6h, i), which is the typical
hypoxia-induced pathway. These findings suggest that activation
of these signaling pathways is involved in the commitment of
SPP1+ macrophages. Because FAP+ fibroblasts and SPP1+

macrophages were closely involved in the hypoxia-induced
pathway, we hypothesized the presence of a stromal cell-
mediated network localized in the hypoxic region of the tumor
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that links macrophages and MSCs, which collaborate to
exacerbate the CRC microenvironment.

High infiltration of FAP+ fibroblasts and SPP1+ macrophages
correlates with worse patient survival. FAP+ fibroblasts and
SPP1+ macrophages were mostly enriched in tumor tissue
(Figs. 3b and 4b), and a high correlation between the infiltration
of MSCs and myeloid cells was found in patients across 14 col-
orectal cancer datasets (Fig. 2b). To investigate the infiltration
status of these subsets, we then used CIBERSORTx to assess the
infiltration of 58 cell clusters identified by scRNA-seq in 14
independent CRC cohorts and further calculated the pairwise
Spearman correlations within the infiltrations of these cell clusters
in each cohort (Fig. 5a). We found that the FAP+ fibroblasts and
SPP1+ macrophages were the most highly correlated populations
across all examined cohorts (Fig. 5a, Supplementary Fig. 7). To
further uncover the clinical implication of such close correlation
between these two cell types, we compared the PFS of patients
with different levels of FAP+ fibroblasts and SPP1+ macrophages.
Patients with both high FAP+ fibroblasts and SPP1+ macro-
phages exhibited the shortest PFS compared with the signature
combination groups, suggesting that these two cell types can
synergistically promote tumor progression (Fig. 5b).

To further understand the potential triggers or downstream
signals that induce FAP+ fibroblasts and SPP1+ macrophages, we
calculated the differentially expressed genes between FAP+

fibroblastsHigh SPP1+ macrophagesHigh and FAP+ fibroblastsLow

SPP1+ macrophagesLow groups in a TCGA-COAD cohort and
performed GSEA analysis subsequently. Genes upregulated in
samples with FAP+ fibroblastsHigh SPP1+ macrophagesHigh

showed enrichment of epithelial–mesenchymal transition signa-
tures (Fig. 5c). These samples also displayed highly enriched
hypoxia gene set (Fig. 5c), which is consistent with the supposed
hypoxic environment of tumors53. Furthermore, TNFα signaling
and IL2/STAT5 signaling pathways were also enriched in FAP+

fibroblastsHigh SPP1+ macrophagesHigh tumor samples (Fig. 5c).
These findings suggest that FAP+ fibroblasts and SPP1+

macrophages respond to different stimuli and signals within the
TME of CRC. Then, we assessed the protein expression levels by
the H-score system in tissue microarray (TMA) of 78 CRC
patients to identify FAP and SPP1 both specifically increased in
tumor tissue compared with adjacent normal tissue (Fig. 5d, e)
and found patients with high protein levels of FAP or SPP1
enrolled in this TMA cohort exhibited shorter OS (Fig. 5f, g).
Furthermore, patients with high protein levels of both FAP and
SPP1 survived poorly compared to patients with lower level of
FAP or SPP1 (Fig. 5h). In addition, none of the patients in TMA
dataset expressed high levels of SPP1 but low FAP, probably due

to our relatively small sample size of only 78 individuals. We
further examined whether FAP+ fibroblasts and SPP1+ macro-
phages localize closely in CRC tissues. Immunofluorescent
labeling demonstrated the close proximity of SPP1-positive and
FAP-positive cells in CRC tissue (Fig. 5I, j), implying there is
potential crosstalk between these two cells.

Cell–cell interaction of FAP+ fibroblasts and SPP1+ macro-
phages revealed by spatial transcriptomics. To further assess the
spatial organization of FAP+ fibroblasts and SPP1+ macrophages,
we performed spatial transcriptomics (ST) with tumor tissue
sections from four CRC patients (Fig. 6a, d, Supplementary
Fig. 9a, d). Transcriptomics from 4457, 4248, 3890, and
1657 spots were obtained at a median depth of 7518, 6618, 4830,
and 16,868 UMIs/spot, 3083, 2778, 2051, and 4937 genes/spot,
and 10.66%, 10.63%, 14.37%, and 11.35% mitochondrial genes/
spot for patient #6, #7, #8, and #9, respectively (Supplementary
Fig. 8). Based on the unbiased clustering and spot features, we
classified the spots into 10 clusters, FAP+ fibroblasts/SPP1+

macrophages, malignant epithelial cells, epithelial cells, MSCs,
MT+ cells with fibrosis, FAP+ fibroblasts, myofibroblasts, endo-
thelial cells, immune cells, and unknown of patient #6 (Fig. 6a–c).
We also classified the spots of CRC patient #7 and #8 into six
clusters, i.e., FAP+ fibroblasts/SPP1+ macrophages, malignant
epithelial cells, MSC cells, myofibroblast cells, immune cells, and
unknown (Fig. 6d–f, and Supplementary Fig. 9a–c), classified the
spots of CRC patient #9 into 8 clusters, FAP+ fibroblasts/SPP1+

macrophages, malignant epithelial cells, epithelial cells, MSCs,
endothelial cells, myofibroblasts, immune cells, and unknown
(Supplementary Fig. 9d–f). Score spots in each cluster with FAP+

fibroblasts or SPP1+ macrophage signatures from scRNA-seq
data (top 25 specifically expressed genes) highlighted a cluster
with FAP+ fibroblasts and SPP1+ macrophages co-localization in
the same spot (Fig. 6g, h and Supplementary Fig. 9g–m) and
wrapped around malignant epithelial cells (Fig. 6i). In addition,
the signature score of FAP+ fibroblasts or SPP1+ macrophages
showed significantly positive correlation (Fig. 6j, k and Supple-
mentary Fig. 9n–o). Most FAP+ fibroblasts and SPP1+ macro-
phages were colocalized at the same spots, and a spot in the 10x
Genomics Visium platform could accommodate up to 10 cells,
suggesting that there was a physical interaction between the two
cell types. Furthermore, we found spots with FAP+ fibroblasts
and SPP1+ macrophages highly active in pathways that con-
tribute to the formation of desmoplastic structures in four ST
datasets, including extracellular matrix organization, collagen
fibril organization, and response to TGF-β (Fig. 6l). T cells or B
cells were excluded from tumor core (Fig. 6m, Supplementary
Fig. 9p–r). These results suggest the desmoplastic

Fig. 4 Characterization of myeloid cells in normal mucosa and tumor tissue. a UMAP of individual myeloid cells. Red dashed circle shows SPP1+

macrophages. Each dot denotes one cell; color represents cluster origin. b Bar plots showing proportion of each myeloid subtype in each sample.
c Comparison of SPP1+ macrophage percentages in paired normal mucosa (n= 5) and tumor (n= 5) tissue. d Comparison of absolute infiltration
proportion of SPP1+ macrophage between paired normal (n= 41) and tumor (n= 41) in TCGA-COAD cohort. The boxes show the median ± 1 quartile, with
the whiskers extending from the hinge to the smallest or largest value within 1.5× the IQR from the box boundaries. e The Kaplan–Meier curve shows
COAD patients survival with different SPP1+ macrophages infiltration. f Violin plots showing expression of selected genes. Color of each cluster refers to
(a). g Representative flow cytometry plots (left) and frequencies of SPP1+ macrophages (right) in normal mucosa (n= 4) and tumor (n= 4) tissue of CRC
patients. Gating strategies are shown in Supplementary Fig. 6e. p= 0.0002. h Grid visualization of RNA velocity for myeloid cell subtypes on a UMAP
embedding. Cells are colored as in (a). Inferred developmental trajectory of SPP1+ macrophage is red-circled and enlarged (down). i Heatmap shows
relative expression (z-score) of the top 5 highly expressed transcription factors (TFs) in each cell subtypes. Clusters were colored as in (a). j Heatmap
normalized activity of top 5 TF regulons in MSCs subtype predicted by pySCENIC. Clusters are colored as in (a). k, l UMAP plots show expression of STAT1
in myeloid cells (k), the activity of STAT1-regulon (l). Cell is colored by the z-score normalized value. UMAP, Uniform Manifold Approximation and
Projection; P, patient. N, normal mucosa; T, tumor tissue; CRC, colorectal cancer. A paired two-sided Student’s t-test was used to assess the difference in
(c), (d), and (g). A two-sided log-rank test was used to assess statistical significance in (e). p < 0.05 is considered as a statistically significant difference.
***p < 0.001. Source data are provided as a Source data Fig. 4a–g, k–i.
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microenvironment may be regulated by the interaction of FAP+

fibroblasts and SPP1+ macrophages to limit the infiltration of
immune cells into the tumor core.

FAP+ fibroblasts and SPP1+ macrophages interaction may
contribute to desmoplastic tumor microenvironment. To

further identify the key mediators of FAP+ fibroblasts and SPP1+

macrophages interaction in CRC patients, we investigated the
cell–cell communication mechanisms of FAP+ fibroblasts and
SPP1+ macrophages. To this end, we evaluated the putative
crosstalk with the R package “NicheNet” based on the expression
and downstream targets of ligand-receptor pairs61. We found that
FAP+ fibroblasts could directly contact with SPP1+ macrophages
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through the adhesive ligand-receptor pairs COL1A1/LAMA1-
ITGB1 (Fig. 7a). In addition, FAP+ fibroblasts enhanced the pro-
inflammatory activity of SPP1+ macrophages via the expression
of TGF-β superfamily genes, TGFB1 and INHBA, and TGF-β
induced expression of ACVRL1, ACVR1, or ACVR1B in SPP1+

macrophages (Fig. 7a). Furthermore, FAP+ fibroblasts enhanced
the recruitment of SPP1+ macrophages through the WNT5A-
FZD2 and CCL3-CCR5 pairs. Of note, FAP+ fibroblasts interacted
with SPP1+ macrophages through RARRES2-CMKLR1 (Fig. 7a).
We further determined the relative expression of RARRES2 across
MSC clusters and found this gene to be expressed at a higher level
in FAP+ fibroblasts than other MSC clusters (Fig. 7b). Chemerin,
encoded by RARRES2, was shown to be an independent risk
factor for CRC and has the ability to affect macrophage polar-
ization in the DSS-induced colitis model62,63. In addition,
CMKLR1, encoding the receptor for chemerin, showed higher
expression in both THBS1+ macrophages and SPP1+ macro-
phages (Fig. 7c). Since RNA “velocity” analysis indicated that
SPP1+ macrophages can be differentiated from THBS1+ macro-
phages (Fig. 4e), FAP+ fibroblasts might function as a driver,
promoting SPP1+ macrophage differentiation through chemerin.
Furthermore, we found that chemerin levels were significantly
higher in the plasma of CRC patients than in healthy donors
(Fig. 7d), suggesting that chemerin may serve as a predictive
marker for CRC.

Fibroblasts are the main producers of extracellular compo-
nents, including extracellular matrix components, which may
contribute to the formation of desmoplastic structures64. Genes of
extracellular matrix (ECM)-related pathways were highly
expressed in FAP+ fibroblasts and SPP1+ macrophages, suggest-
ing that either FAP+ fibroblasts or SPP1+ macrophages may
facilitate the generation of desmoplastic structures (Supplemen-
tary Figs. 4f and 6g). Therefore, we investigated whether SPP1+

macrophages promote the ECM remodeling ability of FAP+

fibroblasts. As revealed by NicheNet analysis, SPP1+ macro-
phages showed high TGFB1, IL1B, and IL1A ligand activity and
relatively high TGFB1, IL1B, and IL1A gene expression (Fig. 7e,
f). In addition, TGFB1 encoding protein bound to receptors
encoded by TGFBR3, ACVRL1, and TGFBR1 on FAP+ fibroblasts,
whereas ligands encoded by IL1B or IL1A interacted with
receptors encoded by IL1R1 or IL1RAP on FAP+ fibroblasts
(Fig. 7g), resulting in the expression of target genes encoding
collagen or matrix metallopeptidase in these cells (Fig. 7h). These
targets are important components of desmoplastic reactions, and
35 of the 100 predicted targets encoded components of ECM
pathways65, including extracellular niche fibrous components
(e.g., collagens [encoded by COL10A1, COL11A1, COL1A1,
COL1A2, COL3A1, COL5A1, COL8A1], fibronectin [encoded by
FN1], and integrins [encoded by ITGA5, ITGB5]), remodeling
proteins (e.g., the lysyl oxidase family [encoded by LOX, LOXL1,

LOXL2]), and matrix metalloproteinases (encoded by ADAM17,
MMP1, MMP14, MMP2, MMP3, TIMP1, TIMP2, TIMP3)
(Fig. 7h). We further performed NicheNet ligand activity analysis
of the gene set of KEGG pathways and the extracellular matrix.
Indeed, there was a high probability that the target genes
belonged to cytokine-cytokine receptor interaction, extracellular
matrix pathways, the TNF signaling pathway, and the TGF-beta
signaling pathway (Fig. 7i). We further explored the signaling
pathways among the top three ligands (encoded by TGFB1, IL1A,
and IL1B) and ECM-related targets, and we found 40 down-
stream regulators, including HIF1A, AKT1, STAT1, and NFKB1,
those are involved in signaling pathways connecting ligands
secreted by SPP1+ macrophages and ECM-target genes that
contribute to the formation of the desmoplastic region (Fig. 7j).
Taken together, our findings indicate that FAP+ fibroblasts and
SPP1+ macrophages form an interaction network supporting
each other’s maintenance and function. These two cell types may
play important roles in the remodeling of ECM, potentially
promoting the formation of the desmoplastic region of the TME.

High infiltration of FAP+ fibroblasts and SPP1+ macrophages
correlates with immunotherapy resistance. The tumor immune
microenvironment can generally be classified into immune-excluded,
inflamed (referred to as “hot” tumors, which respond to immu-
notherapy well), and immune-desert types based on the infiltration of
immune cells and CD8+ T cells5,66. We were, therefore, curious
about the local immune features of tumors with different infiltration
patterns of FAP+ fibroblasts and/or SPP1+ macrophages. Interest-
ingly, CRC tumors samples in the FAP+ fibroblastsHigh SPP1+

macrophagesHigh group showed a relatively high rate of non-silent
mutations and single-nucleotide variant (SNV)-predicted neoanti-
gens. In addition, they displayed a higher Shannon entropy index and
TCR richness, reflecting a non-effective T-cell response to neoanti-
gens (Fig. 8a–d). This subtype of CRC also displayed the lowest
lymphocyte infiltration among all CRC subtypes (Fig. 8e), suggesting
that the micro-environmental characteristics of this certain type of
tumors is immune-exclusive with high infiltration of both FAP+

fibroblasts and SPP1+ macrophages. Current tumor immunotherapy
mainly targets lymphocytes, therefore, the reduced lymphocyte
infiltration of this type of tumor would dampen the effect of
immunotherapy. To test this hypothesis, we performed association
analysis of survival time and FAP or SPP1 expression in patients with
bladder cancer treated with anti-PD-L1 using IMvigor210 dataset67.
Patients with high levels of either FAP or SPP1 expression showed
impaired OS in response to PD-L1 antibody treatment (Fig. 8f, g).
Furthermore, anti-PD-L1-treated patients with high levels of both
FAP and SPP1 expression showed shorter survival times (Fig. 8h).
Importantly, patients expressing high levels of either FAP or SPP1
showed a lower response (complete response [CR] and partial
response [PR]), but more progressive disease (PD) than patients with

Fig. 5 High infiltration of FAP+ fibroblasts and SPP1+ macrophages associated with worse patient survival and immunotherapy resistance. a Pie charts
show the proportion of CRC cohorts with positive (Spearman correlation; correlation coefficient [Rs] > 0.3 and FDR < 0.05, in red), negative (Rs <−0.3 and
FDR < 0.05, in blue), or non-significant (gray) correlation for the infiltration of pairwise 58 cell types in 14 independent CRC cohorts. b Progressive free
survival analyses for four subgroups of TCGA-COAD patients stratified by the infiltration of both FAP+ fibroblasts and SPP1+ macrophages using
Kaplan–Meier curves. c GSEA of epithelial–mesenchymal transition, hypoxia, TNFα signaling via NFKB, and IL2 STAT5 signaling pathways between FAP+

fibroblasts high/SPP1+ macrophages high and FAP+ fibroblasts low/SPP1+ macrophages low groups. Ranking genes by fold change in expression between
these two conditions. NES, normalized enrichment score. d, e Quantification of FAP (d) and SPP1 (e) staining intensity in the adjacent normal (n= 78) and
CRC tissue (n= 78) microarray. f–h Kaplan–Meier curves showed overall survival analyses for low and high expression FAP alone (f), SPP1 alone (g), and
both (h) CRC patients. i Representative IF staining of human CRC tissue (20x). EPCAM (gray), DAPI (blue), SPP1 (green), FAP (red), in individual and
merged channels are shown. Bar, 50 μm. Experiment was performed in three independent patients. j Proportion of FAP+ fibroblasts colocalized with SPP1-
positive cells (n= 9, 3 patients with 3 sections). Data represent mean ± SD. p= 0.0014. A two-sided log-rank test was used to assess statistical
significance in (b) and (f–h). A paired two-sided Student’s t-test was used to assess the difference in (d), (e), and (i). Source data are provided as a Source
data Fig. 5a–i.
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low expression of both FAP and SPP1 (Fig. 8i), suggesting that FAP-
or SPP1-enriched patients have a significantly poorer response to
anti-PD-L1 treatment than other patients.

Discussion
Although cancer immunotherapy has recently achieved remark-
able success, it was not effective for everyone, and the mechanism

of non-responsiveness is not fully understood. In clinical trials of
CRC patients received ICB therapies, there has been relatively
limited information obtained on predictive biomarkers and
immunotherapy strategies1. Previous single-cell transcriptomic
studies of CRC focused either on certain cell types13,15,16,68,69 or
on CRC classification based on consensus molecular subtypes14.
There is an urgent need to apply the single-cell transcriptomic

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29366-6

12 NATURE COMMUNICATIONS |         (2022) 13:1742 | https://doi.org/10.1038/s41467-022-29366-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


analysis to larger CRC cohorts and the analysis of the interactions
between two tumor-specific clusters or their impacts on immu-
notherapy. Through integrated analyses of scRNA-seq performed
in this study, publicly accessible scRNA-seq and bulk RNA-seq
datasets, spatial transcriptomics, FACS, IF, and transcriptomics
with ICB treatment, our study provided a comprehensive picture
of the landscape of TME and its adjacent normal tissue coun-
terpart at the single-cell resolution, as well as demonstrating that
the interaction between FAP+ fibroblasts and SPP1+ macro-
phages may play an instructive role in the formation of desmo-
plastic TME, which may lead to resistance to tumor
immunotherapy.

The heterogeneity of fibroblasts played important roles in
modulating the tumor immune microenvironment70. Recent
single-cell transcriptomic analyses have revealed, to some extent,
the heterogeneity of stromal cells. These analyses included the
investigation of ACTA2+ myofibroblasts and cancer-associated
fibroblasts expressing FAP16 and the characterization of the
myofibroblasts and stromal 1/2/3 clusters14. These studies
revealed that cancer-associated fibroblasts correspond to activated
fibroblasts, and they typically express markers, such as FAP, FSP,
and αSMA, and play an important function in tumor modulation
and chemotherapy resistance71. In this study, we systemically
deciphered the heterogeneity and features of stromal cells and
demonstrated the dramatic remodeling of stromal compartments
upon tumorigenesis. The remodeling involves a particular
increase in a cancer-associated fibroblast subtype, i.e., FAP+

fibroblasts, and a decrease in a mesenchymal stem-like cell sub-
type, i.e., NT5E+ fibroblasts. Further trajectory analysis indicated
that FAP+ fibroblasts might be generated by the TME-controlled
differentiation of FGFR2+ fibroblasts or ICAM1+ telocytes, and
TWIST plays a key regulatory role in this commitment. FAP+

fibroblasts are actively involved in tissue remodeling by affecting
ECM-receptor interactions or microenvironment metabolism
involving non-essential amino acids, galactose, and steroid or
fatty acid biosynthesis. Our results on the heterogeneity of stroma
cell subtypes might explain, at least in part, the findings of pre-
vious contradictory studies, in which the use of different deletion
systems to analyze IKKβ yielded contradicting effects, either
enhancing tumor growth or decreasing inflammation and sup-
pressing tumor growth72–74. Thus, our study has highlighted the
importance of further research on the function and tracing sys-
tem of different stromal subtypes.

Due to its dipeptidyl peptidase and collagenase activity, FAP
participates in tissue repair, fibrosis, and extracellular matrix
degradation71,75. Depletion of FAP-expressing cells in transgenic
mice carrying Lewis lung carcinoma or subcutaneous pancreatic
ductal adenocarcinoma resulted in rapid hypoxic necrosis of both
cancer and stromal cells, and the process was mediated by TNFα
and IFNγ76. However, phase II clinical trials of a single agent
Talabostat or humanized monoclonal antibodies targeting FAP
have failed in patients with metastatic CRC77,78. This lack of

efficacy might be a result of neglecting the complex cell interac-
tion networks in the tumor environment. This study used mul-
tiple independent CRC cohorts with large sample sizes to perform
association analysis of different cell subtypes, and we found that
myeloid cell subtype SPP1+ macrophages are the most relevant
cells that interact with MSC subtype FAP+ fibroblasts and are
associated with shorter OS and PFS of CRC patients.

Further analysis of myeloid cell subtypes revealed a dramatic
increase in SPP1+ macrophages in tumor tissue. One of the most
significant features of SPP1+ macrophages was the expression of
SPP1, implying that this subtype may correspond to the SPP1+

macrophages described by Zhang et al.16. We identified that the
C1QC+ MRC1− macrophage subtype in colon tissue was closely
related to CD14/CD16 monocytes identified in the blood by
Zhang et al., possibly reflecting the loss of this population during
tissue preparation16. In agreement with other studies on macro-
phages, we did not detect candidate human counterparts of
mouse M1 and M2 macrophages16,79,80. As validated by FACS,
the SPP1+ macrophages expressed the typical M2 marker CD206,
but showed high M1 macrophage regulator activity of STAT1 by
pySCENIC analysis81–83. Higher infiltration of SPP1+ macro-
phages correlated with shorter PFS in CRC patients. More effort
is needed to investigate the key transcription factors that govern
the SPP1+ macrophages and determine their function.

The TME can be categorized into three different types,
including the inflamed type, in which immune cells infiltrate but
are inhibited, the immune-excluded type, and the immune-desert
type5. In our study, we dissected the potential mechanism of the
generation of the immune-excluded microenvironment of CRC.
We investigated the interactions between FAP+ fibroblasts and
SPP1+ macrophages from multiple aspects, including single-cell
and spatial transcriptomics, immunofluorescent labeling, and
imputation analysis of other datasets. We predicted that FAP+

fibroblasts might promote the differentiation of THBS1+ mac-
rophages into SPP1+ macrophages through the RARRES2/
CMKLR1 interaction. ECM remodeling is necessary for generat-
ing desmoplastic regions, and SPP1+ macrophages promote the
expression of ECM-related genes in FAP+ fibroblasts by secreting
cytokines encoded by IL1A, IL1B, or TGFB1, suggesting the
desmoplastic microenvironment is controlled by SPP1+ macro-
phages and FAP+ fibroblast interactions. Desmoplastic TME
promotes tumor growth, and invasion through ECM remodeling,
in which stromal cells play a key role84,85. Interestingly, we found
that although tumor tissues with high infiltration of both FAP+

fibroblasts and SPP1+ macrophages showed high neoantigen
features, they were characterized by non-silent richness and SNV
neoantigens. The Shannon index and richness of TCR were
relatively high, indicating a diversified T-cell repertoire. Com-
bined with the observation of relatively decreased lymphocyte
infiltration and normal lymphocyte infiltration, we inferred that
this might represent an immune-excluded TME. In addition, we
found that high expression of FAP or/and SPP1 can predict

Fig. 6 Co-localization of FAP+ fibroblasts and SPP1+ macrophages revealed by spatial transcriptomics. a Hematoxylin and eosin (H&E) staining of
tissue sections of ST spots in CRC patient #6. Scale bar, 500 μm. Experiment was repeated twice for one tumor section. b Unbiased clustering of ST spots
and define cell types of each cluster. c Dot plots showing average expression of known markers in indicated cell clusters. The dot size represents percent of
cells expressing the genes in each cluster. The expression intensity of markers is shown. d–f H&E staining of tissue sections (d), unbiased clustering (e) of
ST spots, and dot plots showing average expression of known markers in indicated cell clusters (f) in CRC patients #7 as (a–c) shown. H&E staining was
repeated twice for one tumor block. g–i Spatial feature plots of signature score of FAP+ fibroblasts (g), SPP1+ macrophages (h), and epithelial cells (i) in
tissue sections. j, k The Pearson correlation of signature score of FAP+ fibroblasts (x axis) and SPP1+ macrophages (y axis) in FAP+ fibroblasts/SPP1+

macrophages cluster in patient #6 (j) and patient #7 (k). The error band indicates 95% confidence interval. l Gene ontology (GO) terms of genes
significantly enriched in FAP+ fibroblasts/SPP1+ macrophages cluster in four patients. The statistical analysis was performed by Fisher’s test. m Spatial
feature plots of gene expression of CD3D, CD8A, CD4, CD19, MS4A1, GZMA, PRF1, and GNLY in tissue sections of patient #6. Source data are provided as a
Source data Fig. 6b, c, e–m.
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shortening of the OS and a reduced response to anti-PD-L1
therapy. These results confirmed our conclusion of an immune-
excluded microenvironment, reflecting a desmoplastic TME in
CRC tumors. Furthermore, depletion of FAP+ stromal cells in
mouse tumor models disrupts the desmoplastic structure and
promotes tumor growth85. Our work further showed the potential
mechanisms involved and strengthened the hypothesis that the

interaction between FAP+ fibroblasts and SPP1+ macrophages
should be considered as a target for CRC treatment.

Together, these findings imply that FAP+ fibroblasts and SPP1+

macrophages contribute to ECM remodeling and coordinate to form
a desmoplastic microenvironment that prevents lymphocytes infil-
trating the tumor core, further reducing the efficacy of PD-L1
treatment (Fig. 8j). We propose that, mechanistically, FAP+
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fibroblasts are regulated by TWIST1, the expression of which is
induced by hypoxia; they also secrete chemerin, which can enter the
blood vessels and bind to THBS1+ macrophages, which may dif-
ferentiate into SPP1+ macrophages. In addition, SPP1+ macro-
phages might regulate FAP+ fibroblasts via TGFB1, thus promoting
the secretion of MMPs and collagen, which, together, contribute to
the remodeling of ECM (Fig. 8j). The biological interaction
mechanisms still need to be addressed in future work. Our study has
unveiled the detailed landscape of both immune and nonimmune
cells in the microenvironment of CRC and highlighted the potential
value of identifying and developing therapeutic strategies targeting
FAP+ fibroblasts, SPP1+ macrophages, or the molecules involved in
their crosstalk to overcome immune suppression and increase the
response of tumors to immunotherapies.

Methods
Collection of clinical human samples. Adjacent normal mucosa and tumor tis-
sues were collected from CRC patients with informed written consent, and under
approval of local medical ethnics from Ruijin Hospital Affiliated to Shanghai Jiao
Tong University, Renji Hospital Affiliated to Shanghai Jiao Tong University, and
The First Affiliated Hospital of University of Science and Technology of China.
Fresh tissues were kept in RPMI 1640 containing 10% FBS on ice, and ready for
transport.

Tissue dissociation. Fat tissue and visible blood vessels were removed before
tissue process. Fresh normal mucosa and CRC tissue were washed with ice-cold
PBS, and cut into small pieces. For normal mucosa, tissues were placed and shaken
into 10 mL of EDTA-containing buffer (5 mM EDTA, 15 mM HEPES, 1 mM DTT,
and 10% FBS-supplemented PBS) for 1 h at 37 °C. Tumor tissues were incubated
with 10 mL of DTT (65 mM)-containing PBS (supplemented with 10% FBS) for
15 min at 37 °C with shaking. EDTA and DTT were removed after the above
incubation with PBS twice. Small tissue pieces were minced and digested with
collagenase VIII at 0.38 mg/mL and DNase I at 0.1 mg/mL in complete RPMI 1640
medium (containing 10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin)
for 1 h at 37 °C. After digestion, tubes were shaken vigorously for 5 min. 21-gauge
syringes were used to dissociate cells mechanically. Cells were filtered through
100 μm filter and pelleted and washed with PBS twice. Freshly prepared cell sus-
pensions were ready for scRNA-seq and flow cytometry staining.

Single-cell RNA sequencing. Freshly prepared cell suspensions were performed
immediately according to the manufacturer’s protocol of 10 X Chromium 3’ v3 kit
(10x Genomics, Pleasanton, CA). Library was prepared and sequencing was per-
formed on a NovaSeq 6000 platform (Illumina, Inc., San Diego, CA) in GENERGY
BIO (Shanghai, China).

Raw 10× read alignment, quality control, and normalization. Raw sequencing
reads were transformed into fastq file with Illumina bcl2fastq2 Conversion Soft-
ware v2.20 at https://support.illumina.com/downloads/bcl2fastq-conversion-
software-v2-20.html, and quality checked with FastQC software v0.11.9, at https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/. Standard pipelines of cell
ranger were used to do sequence processing, alignment to GRch38 genome with
default parameters (https://support.10xgenomics.com/single-cell-gene-expression/
software/pipelines/latest/).

Dimension reduction and clustering analysis. We scaled data with top 2000
most variable genes by using FindVariableFeatures function in R package Seurat v3.
Clustering86. We used variable genes for principal component analysis (PCA), used
FindNeighbors in Seurat to get nearest neighbors for graph clustering based on PCs,
and used FindCluster in Seurat to obtain cell subtypes, and visualized cells with the
uniform manifold approximation and projection (UMAP) algorithm. To eliminate
the batch effect, we performed harmony algorithm in Harmony R package24 to
remove batch correction before clustering analysis, and applied FindNeighbors and
FindCluster in Seurat to obtain cell subtypes. Cells were clustered at two stages of
the analysis, partitioned cells into epithelial, stromal, myeloid, T, and B cells in the
first stage, then clustered cells from multiple samples into distinct subtypes in the
second stage. For the first step, the clusters were scored for the previously described
gene signatures10, including epithelial cells (EPCAM, KRT8, KRT18), stromal cells
(COL1A1, COL1A2, COL6A1, COL6A2, VWF, PLVAP, CDH5, S100B), myeloid
cells (CD68, XCR1, CLEC9A, CLEC10A, CD1C, S100A8, S100A9, TPSAB1, and
OSM), T cells (NKG7, KLRC1, CCR7, FOXP3, CTLA4, CD8B, CXCR6, and CD3D),
and B cells (MZB1, IGHA1, SELL, CD19, and AICDA). Signature scores were
calculated as the mean log2(LogNormalizedUMI+1) across all genes in the sig-
nature. Each cluster was assigned to the compartment of its maximal score and all
cluster assignments were manually checked to ensure the accurate partition of cells.
For the second step, we performed harmony algorithm before clustering analysis to
remove batch correction, and applied FindNeighbors and FindCluster in Seurat to
obtain cell subtypes. As an auxiliary tool, we defined 58 cell types in CRC based on
the gene signatures of each cell type and known lineage markers.

Assessment of the robustness of subclusters in a machine-learning protocol.
We performed the analysis by random forest in R package randomForest, using
50% of each subcluster for training and 50% for testing. Receiver operating char-
acteristic (ROC) curves of multi-class classifications were constructed, using the
false-positive rate (x axis) and the true positive rate (y axis) for all possible
thresholds of probabilities given by the random forest. The area under the curve
(AUC) was then calculated to assess the quality of cluster assignment and con-
sidered as the robustness of subclusters identification.

Differential-expression analysis. We used the “FindAllMarkers” function in
Seurat to identify genes that are differentially expressed between clusters with the
following parameters: min.pct= 0.1, logfc.threshold= 0.25, pseudocount.use= 0.1,
only.pos= T. The non-parametric Wilcoxon rank-sum test was used to obtain p-
values for comparisons, and the adjusted p-values, based on Bonferroni correction,
for all genes in the dataset. We used heatmap to visualize DEGs based on gene
expression after the log-transformed and scaling.

Trajectory reconstruction based on RNA velocity estimation. To investigate the
origin of differentiation for FAP+ fibroblasts and SPP1+ macrophage, we analyzed
expression dynamics by estimating the RNA velocities of single cells by distin-
guishing between unspliced and spliced transcripts based on loom files of scRNA-
seq data. We used the R package velocyto.R (https://github.com/velocyto-team/
velocyto.R) to calculate the RNA velocity value of each gene in each cell, and
embed the RNA velocity vector in a low-dimensional space, and then visualized it
on the UMAP projection using Gaussian smoothing on a regular grid50.

Transcription factor regulon analysis. The analysis of the regulatory network and
regulon activity was performed by pySCENIC51. The regulon activity (measured in
AUC) was analyzed by AUCell module of the pySCENIC, and the active regulons
were determined by AUCell default threshold. The differential-expression regulon
was identified by Wilcoxon rank-sum test in “FindAllMarkers” function in R
package Seurat with following parameters: min.pct= 0.1, logfc.threshold= 0.25,

Fig. 7 The interaction network between FAP+ fibroblasts and SPP1+ macrophages. a Heatmap of top predicated ligands expression across MSCs
subtypes of NicheNet which was used to predicate ligands expressed by FAP+ fibroblasts that modulate SPP1+ macrophages (left). Bottom, heatmap of
relative receptors expression on different myeloid subtypes. Middle, heatmap of significant ligand-receptor pairs between FAP+ fibroblasts and SPP1+

macrophages. FGFR2+ fibroblasts or ICAM1+ fibroblasts as reference cell types for ligand-receptor analysis. b, c UMAP plots showing the relative
expression of RARRES2 in MSCs subtypes (b) and CMKLR1 in myeloid cell subtypes (c). Intensity is shown with z-score normalized expression. d Statistical
analysis comparing the chemerin concentration in plasma of healthy donor (n= 17, blue) and CRC patients (n= 20, red). The error bars are presented as
the mean ± SEM. e Top-ranked ligands inferred to regulate FAP+ fibroblasts by SPP1+ macrophages according to NicheNet. f Dot plots showing the
expression percentage (dot size) and intensity (dot intensity) of top-ranked ligands (e) in each myeloid subtype. g Ligand-receptor pairs showing
interaction between SPP1+ macrophages and FAP+ fibroblasts ordered by ligand activity (e). h Heatmap showing regulatory potential of top 20 ranked
ligand (e) and the downstream target genes in FAP+ fibroblasts. i Representative KEGG pathways enrichment of the predicted target genes expressed in
FAP+ fibroblasts. The statistical analysis was performed by Fisher’s test. j Diagrams showing the network of top 3 active ligands (encoded by TGFB1, IL1A,
and IL1B) for target genes belonging to ECM and potential signaling pathways. An unpaired two-sided Student’s t-test was performed in (d), *p < 0.5.
UMAP, uniform manifold approximation and projection; MSCs, mesenchymal stromal cells; CRC, colorectal cancer. Source data are provided as Source
data Fig. 7b–i and Source data Fig. 7j.rds.
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pseudocount.use= F, only.pos= T. The scaled expression of regulon activity was
used to generate a heatmap.

To check the gene expression of transcription factors (TFs) alone, we retrieved
Genes encoding TFs from four TF-related public datasets: JASPAR87 (http://
jaspar.genereg.net/), DBD88 (http://www.transcriptionfactor.org/), AnimalTFDB89

(http://bioinfo.life.hust.edu.cn/AnimalTFDB/), and TF2DNA90 (http://

www.fiserlab.org/tf2dna_db/). We overlapped the TF genes with the DEGs quantified
above, and determined the most specifically expressed TFs in each cluster.

Characterization of cell-type infiltration based on single-cell expression
matrix. To establish the proportions of our defined 9 major cell types and

Fig. 8 The infiltration of lymphocytes in TME and response to PD-L1 blockade in patients affected by SPP1+ macrophages and FAP+ fibroblasts.
a–i The non-silent mutation rate (a), SNV neoantigen (b), TCR Shannon index (c), TCR richness (d), and the infiltration of lymphocyte (e) for four
subgroups of TCGA-COAD patients stratified by the infiltration of both FAP+ fibroblasts and SPP1+ macrophages, including FAP+High_SPP1+High
(n= 113), FAP+High_SPP1+Low (n= 87), FAP+Low_SPP1+High (n= 41), and FAP+Low_SPP1+Low (n= 225) The boxes show the median ± 1 quartile, with
the whiskers extending from the hinge to the smallest or largest value within 1.5× the IQR from the box boundaries. f–h Survival analyses for low and high
expression of FAP alone (f), SPP1 alone (g), and both (h) patient groups in the anti-PD-L1 immunotherapy cohort using Kaplan–Meier curves (IMvigor210
cohort). i Bar plots show patients with both low expression of FAP and SPP1 are more likely to respond to anti-PD-L1 treatment. j Working model for the
immune-excluded niche and crosstalk model between FAP+ fibroblasts and SPP1+ macrophages. CRC, colorectal cancer; TCGA, The Cancer Genomic
Atlas; COAD, colon adenocarcinoma; GSEA, gene set enrichment analysis; IF, immunofluorescence; TCR, T-cell receptor; SNV, single-nucleotide variant;
IQR, interquartile range; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. One-way ANOVA test was used in (a–e).
A two-sided log-rank test was used to assess statistical significance in (f–h). Fisher’s test was used in (i). Source data are provided as a Source data
Fig. 8a–i.
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58 subdivided cell types from bulk RNA-seq and microarray data, we used the online
tool CIBERSORTx28 to create a reference signature matrix from our single-cell RNA-
seq dataset and estimate cell-type proportions from 14 public bulk RNA-seq and
microarray datasets based constructed cell-type reference. Our 9 major cell types and
58 subdivided cell types reference dataset consisted of 54103 cells, each of which has
been annotated as the major or subdivided cell types as we described earlier. For
creating signature matrices, CIBERSORTx was run with quartile normalization was
disabled for RNA-seq datasets and was enabled for microarray datasets, and all other
parameters with their default settings. For the imputation of cell fractions, the quartile
normalization was disabled for RNA-seq datasets and was enabled for microarray
datasets, the permutation parameter was set to 500 times, and all other parameters are
kept at their default settings. Spearman’s correlation analysis was performed to assess
the relationship among the proportions of cell-type infiltration, and considered |
Rs| > 0.3 and FDR < 0.05 as significant correlation. The unsupervised clustering of R
package Heatmap.plus was used to assess and visualize the Euclidean distance of cell
infiltration among all cell types in CRC cohorts.

Survival analysis. Survival analysis was performed by R package survival. Hazard
ratio (HR) was calculated by Cox proportional hazards model and 95% CI was
reported, and Kaplan–Meier survival curve was modeled by survfit function. The
“maxstat.test” function of R package maxstat which all potential cutting points
were repeatedly tested to find the maximum rank statistic, was used to perform
dichotomy of cell population infiltration or gene expression, and then divide the
patients into two groups according to the selected maximum logarithm statistics.
The two-sided long-rank test was used to compare Kaplan–Meier survival curves.
The comparison of the percentage of patients who respond to ICB treatment
between different groups was determined by Chi-squared test.

Cancer hallmarks and GSEA analyses. Fifty hallmark gene sets were downloaded
from The Molecular Signatures Database27 (MSigDB, http://software.broadin-
stitute.org/gsea/msigdb/). Scoring these gene signatures was as previously
described10 (https://www.github.com/cssmillie/ulcerative_colitis). In briefly, the
gene signature score for each cell was calculated by the mean scaled expression
across all genes in the signatures. To identify statistically significant alteration of
gene signature between normal and tumor samples, we used “FindAllMarkers”
function in R package Seurat as described above.

To assess the gene expression signatures or pathway associated with the infiltration
of FAP+ fibroblasts and SPP1+ macrophages, we first divide the TCGA-COAD cohort
into four groups (FAPHigh SPP1High; FAPHigh SPP1low; FAP Low SPP1High; FAPLow

SPP1Low) based on the above dichotomy. We then used GSEA91 (http://
software.broadinstitute.org/gsea/index.jsp) to test whether any hallmark gene sets are
significantly enriched in the FAP+ High SPP1+ High group. We considered that gene
signatures or pathways with FDR < 0.05 as significantly enriched.

Quantitatively characterizing cell–cell communications. NicheNet was used to
infer the interaction between FAP+ fibroblasts and SPP1+ macrophages61. For ligands
and receptor interactions, genes which are expressed in larger than 10% cells of clusters
were considered. Top 100 ligands and top 1000 targets of differential expressed genes
of “sender cells” and “affected cells”, were extracted for paired ligand-receptor activity
analysis. When evaluating the regulatory network of FAP+ fibroblasts on SPP1+

macrophages, THBS1+ macrophages were considered as reference receiver cells due to
their potential differentiation trajectory to SPP1+ macrophages. Meanwhile, FGFR2+

fibroblasts and ICAM1+ telocytes were used as reference cells to check the regulatory
potential of SPP1+ macrophages on FAP+ fibroblasts. Nichenet_output$ligand_acti-
vity_target_heatmap was used to plot Ligands regulatory activity. Activity scores
ranged from 0 to 1. The expression of differential expressed ligands and receptors were
also shown in heatmap by calculating the average genes expression in indicated cell
types and scaled across indicated subtypes.

Spatial transcriptomics data analysis. Spatial Transcriptomics (ST) slides were
printed with two identical capture areas from four CRC patients. The capture of
gene expression information for ST slides was performed by the Visium Spatial
platform of 10x Genomics through the use of spatially barcoded mRNA-binding
oligonucleotides in the default protocol. Raw sequencing reads of spatial tran-
scriptomics were quality checked and mapped by Space Ranger v1.1. The gene-spot
matrices generated after ST data processing from ST and Visium samples were
analyzed with the Seurat package (versions 3.2.1) in R. Spots were filtered for
minimum detected gene count of 200 genes while genes with fewer than 10 read
counts or expressed in fewer than 3 spots were removed. Normalization across
spots was performed with the LogVMR function. Dimensionality reduction and
clustering were performed with independent component analysis (PCA) at reso-
lution 1.1 with the first 30 PCs. Signature scoring derived from scRNA-seq or ST
signatures was performed with the AddModuleScore function with default para-
meters in Seurat. Spatial feature expression plots were generated with the Spa-
tialFeaturePlot function in Seurat (versions 3.2.1).

Flow cytometry analysis of human cells. Briefly, fresh human cells from normal
mucosa and tumor tissue were washed and incubated with Live/Dead dye (Fixable
Viability stain 520, BD Biosciences) in PBS for 10min at 4 °C. After incubation, cells
were washed in PBS with 2% FBS and 2mM EDTA (FACS buffer). Fc block was
performed for MSCs staining for 15min at 4 °C, and not for myeloid cells. Indicated
antibodies for MSCs or myeloid cells were diluted in FACS buffer with appropriate
concentrations. Cells were stained for 30min at 4 °C, and then washed and resus-
pended with FACS buffer. For stromal subsets analysis, the following antibodies were
used: Alexa Fluor 488 anti-human CD326 (EpCAM) (clone 9C4), Biolegend,
Cat#324210, dilution 1:200; Alexa Fluor 488 anti-human CD31 Antibody (clone
WM59), Biolegend, Cat#303110, dilution 1:200; Alexa Fluor 700, anti-human CD45
Monoclonal Antibody (2D1), eBioscience, Cat#56-9459-42, dilution 1:200; PerCP/
Cyanine5.5 anti-human CD325 (N-Cadherin) (clone 8C11), Biolegend, Cat#350814,
dilution 1:200; Brilliant Violet 510 anti-human CD146 (clone P1H12), Biolegend,
Cat#361022, dilution 1:200; Brilliant Violet 785 anti-human CD90 (Thy1) (clone
5E10), Biolegend, Cat#328142, dilution 1:200; Brilliant Violet 421 anti-human CD24
Antibody (clone ML5), Biolegend, Cat#311122, dilution 1:200; PE/Cyanine7 anti-
human CD73 (Ecto-5’-nucleotidase) (clone AD2), Biolegend, Cat#344010, dilution
1:200; PE anti-human CD142 (clone HTF-1), eBioscience, Cat#12-1429-42, dilution
1:200; Alexa Fluor 700 anti-human ICAM1 (clone HA58), eBioscience, Cat#56-0549-
42, dilution 1:200; BV605 anti-human CD26 (clone L272), BD OptiBuild, Cat#745244,
dilution 1:200; APC anti-human FAP (clone # 427819), RD System, Cat# FAB3715A-
100, dilution 1:200. For myeloid subsets analysis, the following antibodies were
included, BV711 anti-human CD3 (clone UCHT1), BD Horizon, Cat#563725, dilution
1:200; BV786 anti-human CD19 (clone HIB19), BioLegend, Cat#302240, dilution
1:200; BV510 anti-human CD16b (clone CLB-gran11.5) (RUO), BD OptiBuild,
Cat#744968, dilution 1:200; APC-Fire700 (APC-Cy7) anti-human XCR1 (clone
S15046E), BioLegend, Cat#372608, dilution 1:200. APC anti-human CD1C (clone
L161), BioLegend, Cat#331524, dilution 1:200. PE/Cyanine7 anti-human CD209 (clone
9E9A8), BioLegend, Cat# 330114, dilution 1:200; Alexa Fluor® 700 anti-human CD14
(clone HCD14), BioLegend, Cat#325614, dilution 1:200; Brilliant Violet 605™ anti-
human CD45 (clone HI30), BioLegend, Cat#304042 PE anti-human CD13 (clone
WM15), BioLegend, Cat#301704, dilution 1:200; PercP-Cy5.5 anti-human CD163
(clone GHI/61), BD Pharmingen, Cat#563887, dilution 1:200; PE-TexaRed (PE-
CF594) anti-human CD206 (clone 19.2), BD, Cat#564063, dilution 1:200. Flow cyto-
metry was performed on a BD Symphony (BD Biosciences) and obtained data by BD
FACSDiva software v8.0.2, then analyzed with FlowJo v.10.5.3 (Tree Star Inc.). Sta-
tistical analysis was done by two-sided paired t-test with GraphPad Prism 6. p < 0.05
was considered as significant. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.

Immunofluorescence staining. Tissues were fixed in 1% PFA at 4 °C overnight,
dehydrated with 30% sucrose over 12 h, and transferred to OCT and frozen in
−80 °C for use. Tissues were sectioned into 10 μm-slices and rehydrated in PBS for
10 min. Permeabilization was done by soaking slices into pre-cooled methanol for
30 min at −20 °C. Sections were blocked with blocking buffer (0.3% Triton X-100,
1% BSA, 1% FBS and 0.1 mol/L Tris-HCL buffer) supplemented with goat and
mouse serum. Rabbit anti-human FAP antibody (1:150) was stained for 3 h at
room temperature and washed with washing buffer. Goat anti-rabbit AF647
(1:200), PE-labeled mouse anti-human osteopontin (SPP1), and Alexa Fluor 488-
labeled mouse anti-human EPCAM was stained at 4 °C overnight in humid
atmosphere. After washing, sections were mounted with anti-fading reagent and
coated with coverslips. Images were observed with Leica microscopy and were
analyzed with Imaris Version 7.2.3.

Chemerin concentration detection. Concentration of chemerin was detected by
enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, Cat.# DY2324) in
accordance with the manufacturer’s instructions. In summary, capture antibody
was coated in 96-well plates overnight and washed three times with wash buffer
(PBS with 0.05 % Tween 20) for three times. Plates were further blocked with 1%
BSA in PBS (reagent dilution buffer) for 1 h and washed for three times. Chemerin
standard concentration was done by two-fold dilution, and plasma was diluted with
appropriate dilutions in regent dilution buffer from healthy donors and CRC
patients. Incubation took 2 h at room temperatures and then washed. Chemerin
was further detected by detection antibody, and incubated with HRP-conjugated
antibody. TMB was used for reaction and 2N of H2SO4 was used to quench the
reaction. Optical density (OD) was detected at 450 nm and 570 nm. Concentration
of Chemerin was calculated with four-parameter logistic regression using the values
of OD450 minus OD570. Unpaired t-test was used for statistical analysis. p < 0.05
was statistically significant. *p < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data of single-cell RNA-seq and spatial transcriptomics generated in this study
were deposited in Genome Sequence Archive with accession ID HRA000979. Since these
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data are related to human genetic resources, raw data can be obtained within half year by
requesting and following the guidelines for Genome Sequence Archive for non-
commercial use at https://ngdc.cncb.ac.cn/gsa-human/request/HRA000979. There are no
time restrictions once access has been granted. The guidance for making a data access
request of GSA for humans can be downloaded from https://ngdc.cncb.ac.cn/gsa-human/
document/GSA-Human_Request_Guide_for_Users_us.pdf. The processed gene
expression data is submitted as Supplementary Data 3 and the metadata is submitted as
Supplementary Data 4. The processed CRC public scRNA-seq dataset were downloaded
from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), including
GSE14677116, GSE13246514, and GSE14473514. The public normalized gene expression
data based on fragments per kilobase of exon model per million reads mapped (FPKM)
of colon adenocarcinoma and rectum adenocarcinoma were obtained from TCGA data
portal (http://gdac.broadinstitute.org/). Expression datasets based on Affymetrix
microarray of CRC patients were downloaded from GEO, including GSE4156839,
GSE3958238, GSE3789237, GSE3311336, GSE2151034, GSE2091633, GSE1810532,
GSE1329429, GSE1433330, GSE2387835, GSE1753631, and GSE1753731. The data
information (e.g., sample size, overall survival times, progressive free survival time) were
summarized in Supplementary Table 2. The value of infiltration of lymphocyte, the
richness of T-cell receptor, non-silent mutation rate, and neoantigen load of CRC were
obtained from Thorsson et al.91. The public gene expression data and detailed clinical
information for patients with anti-PD-L1 (antibody: atezolizumab) treatment were
obtained from IMvigor210 cohort (Intervention treatment of advanced urinary tract
transitional cell carcinoma67). Source data are provided with this paper.

Code availability
Codes were implemented in R 3.6.0 and are deposited in https://github.com/youqiongye/
CRC_scRNAseq/tree/V1.0.0.
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