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Single-cell and spatial transcriptomics enables
probabilistic inference of cell type topography
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The field of spatial transcriptomics is rapidly expanding, and with it the repertoire of available
technologies. However, several of the transcriptome-wide spatial assays do not operate on a
single cell level, but rather produce data comprised of contributions from a - potentially
heterogeneous - mixture of cells. Still, these techniques are attractive to use when examining
complex tissue specimens with diverse cell populations, where complete expression profiles
are required to properly capture their richness. Motivated by an interest to put gene
expression into context and delineate the spatial arrangement of cell types within a tissue, we
here present a model-based probabilistic method that uses single cell data to deconvolve the
cell mixtures in spatial data. To illustrate the capacity of our method, we use data from
different experimental platforms and spatially map cell types from the mouse brain and
developmental heart, which arrange as expected.
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state where the entire transcriptome now can be spatially

resolved; however, methods providing an exhaustive por-
trait of the expression with deep coverage do not yet guarantee
resolution at the single-cell level! -3, Thus, transcripts captured at
a given position may stem from a heterogeneous set of cells, not
all necessarily of the same type. Hence, the observed expression
profile at any location can be considered a mixture of transcripts
originating from multiple distinct sources. Implicitly the presence
of such composite profiles means that even though the tran-
scriptional landscape can be thoroughly charted, the biological
identity and spatial distribution of the cells generating this
remains largely unknown.

As mentioned, spatial transcriptomics techniques face a
dilemma of knowing the location of transcripts but not which cell
that produced them. Conversely, single-cell RNA-sequencing
experiments associate each transcript to an individual cell, but
information regarding the positions of these transcripts within
the tissue is lost. Given this set of complementary strengths and
weaknesses, the notion of combining data from the two techni-
ques to delineate the spatial topography of cell type populations is
compelling.

Methods to deconvolve (bulk) RNA-seq data, informed by
single-cell data, have existed for some time and could theoreti-
cally be applied to spatial data*~°. More recently, similar methods
designed specifically for cell type deconvolution in spatial data
have emerged and offered new biological insights. For example,
the molecular characteristics of pancreatic ductal adenocarci-
noma was thoroughly explored by such integration, testifying to
the value of this approach’. However, these methods tend to
exhibit certain limitations such as: only select cell types can be
assessed, manual curation of data is required to form repre-
sentative cell type “signatures”, dependence on marker genes, or
the results—usually some form of normalized score—lack a clear
biological interpretation.

Here we first present a new alternative model-based method to
integrate single-cell RNA-seq and spatial transcriptomics data,
which utilize complete expression profiles rather than a select set
of marker genes. Next, we use this method to spatially map cell
types present in single-cell data originating from mouse brain and
developmental heart onto corresponding tissue sections. Finally,
we show how our approach outperforms others (designed for bulk
RNA-seq deconvolution) when presented with synthetic data.

Techniques for spatial transcriptomics have advanced to a

Results

Model description. The framework we propose uses single-cell
data to infer proportion estimates of each cell type at every capture
location within the spatial data, eliminating any need for inter-
pretation or annotation of abstract entities like factors or clusters
upon analysis of the spatial data®. We consider the types’
underlying expression profiles as inherent biological properties
unaffected by the experimental method used to study them;
meaning that certain information can be transferred between
different data modalities, hence our use of single-cell data to
guide the deconvolution process of the spatial data.

Our method rests on the primary assumption that both spatial
and single-cell data follow a negative binomial distribution,
commonly used to model gene expression count data, for a more
rigorous discussion regarding the validity of this assumption see
Supplementary Section 1.1 (ref. ). In single-cell data, observed
expression values of a specific gene are taken as realizations of a
negative binomial distribution where the first parameter (the rate)
is a product between a scaling factor (to adjust for a cell’s library
size) and a cell-type-specific rate parameter common to all cells of
the same type, and the second parameter (the success probability)

is only conditioned on gene and shared across all types. In the
spatial context, gene expression values associated with a cell at
any capture location is modeled similarly to the observations in
single-cell data: the rates consisting of the same cell-type-specific
parameters, but now adjusted for spot library size and bias
between the experimental techniques; the gene-specific success
probabilities are shared with the single-cell data without any
modifications. Varying bias in experimental techniques is
accounted for at a gene level, and treated as independent of
cell type.

Since observations from the spatial assays we focus on
represent sums of transcripts originating from multiple cells,
not individual ones, this prompts for further expansion of the
model. By virtue of the additive property among negative
binomial distributions with a shared second parameter, the
mixture of contributions—at a given capture location for a
certain gene—also follows a negative binomial distribution of
known character: the rate is equal to the sum of all the
contributing cells’ rates, while the success probability remains
unaltered.

If the cell type and gene-specific parameters are known,
deconvolving the spatial data is equivalent to finding the cell
type population that most likely generated the observed gene
expression values within each spatial location, for example by
maximum likelihood or maximum a posteriori (MAP) estima-
tion. Fortunately, these parameters can be estimated from
single-cell data, where no mixing occurs, to then be used
accordingly. We account for asymmetric data sets (when
the cell type population in the single cell and spatial data do
not match), by introducing an additional cell type in the
deconvolution process, with flexible parameters that can adjust
to the data. To briefly summarize our method, we first
characterize each cell type’s expression profile using single-
cell data, then—within each capture location—find the
combination of these types that best explains the spatial data,
Fig. 1 outlines this procedure. For a more detailed description
of the model, see “Methods”.

By design, our method is compatible with any kind of spatial
data where the observed transcription profiles consist of contribu-
tions from one or multiple individual cells. We will however
mainly focus on the method’s application to data originating from
the technique presented by Stéhl et al. (referred to as ST), launched
as the Visium platform and being one of the more accessible
approaches to high-throughput spatial transcriptomics1°

Implementation. We provide an (open-source) implementation
of our model, stereoscope, which performs the deconvolution
process and spatially maps cell types, see “Code Availability” for
more details. Only three items are required to conduct the ana-
lysis, raw count matrices for (i) the single cell and (ii) spatial data
together with (iii) annotations of the former. Due to the nature of
our model-based method, normalization and other transforma-
tion procedures are not necessary, neither is gene selection (e.g.,
of highly variable or informative genes) a requirement. Any
combination of single cell and spatial data sets of similar com-
position can be used, without the need for them to be paired (i.e.,
from the same tissue specimen), this allows publicly available
resources to be utilized.

Two distinct steps constitute the implementation; first para-
meters of the negative binomial distribution are estimated from
the single-cell data for all genes within each cell type. Equivalent
parameters for a distribution describing the expression from a
mixture of these types can be formed by a weighted combination
of the single-cell parameters. In the second step said weights are
estimated such that the resulting distribution provides the best
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Fig. 1 The observed expression profile at each capture location is a mixture of transcripts produced by one or multiple cells, where both the number
and their types are unknown. To model the unobserved cell population at a capture location, type-specific parameters are estimated from annotated
single-cell data and combined to best explain the observed data for all |G| genes. This probabilistic model, based on the negative binomial distribution,
enables inference of cell type proportions at each capture location; a procedure completely free from dependence on marker genes or gene set enrichment.
Doing this for all |S| capture locations, results in a map over the spatial cell type landscape of the whole tissue.

explanation of the spatial data. Cell type proportions are obtained
by normalizing the weights to make them sum to unity, see
“Methods”. Partitioning the process into two separate steps has
the advantage that once the single-cell parameters have been
estimated, they can be applied to any spatial data set of choice
without the need to be re-estimated.

Method application and evaluation. In order to show the utility
of our method we apply it to two different tissues: mouse brain
and human developmental heart (6.5 post conceptional weeks,
PCW). Furthermore, we only use spatial and single-cell sets
derived from disparate sources to illustrate how paired data is not
required to render factual results. See “Methods” for complete
specifications of the data used. We consider the mouse brain and
developmental heart tissues as good candidates to evaluate the
method. The developmental heart’s anatomy has been thoroughly
explored and previous studies provide insights into the expected
location of certain cell types. As for the mouse brain, it has also
been extensively studied, resulting in plenty of resources
describing its anatomical and molecular properties, one of them
being the Allen Brain Atlas (ABA)!!l. By combining information
of known cell type marker genes with the available in situ
hybridization (ISH) data in ABA, the expected spatial distribution
of these types can be deduced and used as a reference to compare
our results. Figure 2 displays a subset of the results obtained upon
mapping the single-cell data onto the mouse brain ST/Visium
data sets (complete analysis in Supplementary Figs. 1-3). Each
location is represented by a circular marker where the opacity of
the face color indicates how abundant a certain cell type is at the
given location, i.e. the higher the opacity, the higher the estimated
proportion of the studied cell type (see “Methods”). As shown in
Fig. 2a, single-cell clusters can be mapped onto the tissue,
informing us of what spatial patterns they exhibit and how these
clusters physically relate to each other—the spatial context may

also aid in assigning more distinct and descriptive identities to the
clusters.

Mouse brain analysis. When assessing our results for the mouse
brain hippocampal tissue, Rarres2 is taken as a marker gene for
ependymal cells (cluster 47), Prox1 for dentate granule neurons
(cluster 59), and Wfsl for pyramidal neurons (cluster 27). The
resource (mousebrain.org) from which we accessed the single-cell
data only provides broad classes like “Neurons” in its annotation,
but observing the clusters’ spatial arrangement enables us to
assign them to more granular subtypes of these classes!2-14. It is
evident how the estimated proportions agree with the signals
observed in the ISH experiments, confirming the proposed
locations of these cell types. There is a high degree of consistency
of the mapping between the different sections that are analyzed,
speaking in favor of the method’s robustness. In addition to
coinciding with marker gene expression, the suggested spatial
organization is further supported by already established knowl-
edge regarding these types. Ependymal cells line the ventricular
system, forming an epithelial sheet known as the ependyma, thus
observing strong signals for this cell type in the lateral ventricular
region is affirmativel. Dentate granule neurons reside within the
dentate gyrus, a feature that our mapping manages to repro-
duce!®, Pyramidal neurons belong to the broad class of excitatory
neurons and populate regions such as the amygdala, cerebral
cortex, and parts of Ammon’s horn in the hippocampus, again in
line with our results!”. The usefulness of our method might be
argued in a scenario where the marker gene(s) of types are
known, since — in theory — expression levels could simply be
visualized and used to infer the types’ presence. However, due to
the common presence of high sparsity and variance in spatial
data, this single-gene approach does not always manage to re-
create the patterns observed in ABA (see Supplementary Figs. 4-
6), attesting to how using the full expression profiles of cell types
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Fig. 2 Mouse brain results overview. a Visualization of the single-cell hippocampus data by using its gt-SNE embedding (inner region), with spatial
proportion estimates of several clusters overlaid on the H&E-image (outer region) of sample mb-V1 (10x Visium array, 55 pm spots). The cluster labels are
derived from the original single-cell data set (see “Methods")2431, b Estimated proportions for 3 of the 56 clusters, here taken as cell types, defined in the
mouse brain single-cell data set. Two different sections are used, mb-ST1 (ST array, 100 pm spots) and mb-V1, to illustrate the consistency between
different array resolutions. Marker gene expression patterns obtained by ISH are found in the bottom row, taken from the Allen Brain Atlas. Rarres2 is a
marker gene of ependymal cells, Prox1 for dentate granule neurons, and WfsT for pyramidal neurons (the latter two both being subtypes of neurons). Face
color opacity is proportional to the cell type proportion estimates; scale bars show Tmm in respective image.

is preferable to relying on a few genes when working with these
kinds of data.

Developmental heart analysis. In the developmental heart we
observe how ventricular and atrial cardiomyocytes have the
highest proportion values in the ventricular body and the atria,
respectively, see Fig. 3. From the hematoxylin and eosin (H&E)
images, blood cells are visible within the hollow cavities, the same
areas as they are mainly estimated to reside within. Smooth
muscle cells are almost exclusively mapped to the outflow tract,
again, in concordance with their expected location!8. Epicardial
cells form a thin outer layer of the heart known as the epicardium,
and this type is mainly assigned high proportion values in spots
covering the edges of the heart!®. Epicardium-derived cells
arrange adjacent to the epicardial cells on the inner side of the
heart in a somewhat thicker layer than the epicardium, and they
are also known to be present in the outflow tract during its for-
mation, a pattern recapitulated by our results20.

Additional experimental platforms. To illustrate how the
method may be used with other spatial techniques, we also
analyze Slide-seq data from the hippocampus and cerebellum,
where results from the technique’s original publication are suc-
cessfully reproduced. Cell types arrange similar to what was
previously reported, and when aggregated re-creates the popula-
tion landscape presented, see Supplementary Figs. 15-17. Using
the same approach as the Slide-seq authors used to determine the
number of “confidentially assigned” cell types to a capture loca-
tion, we observe concordance with their results, see Supplemen-
tary Fig. 18.

Ventricular

] Smooth Muscle
Cardiomyocytes Cells

Atrial
Cardiomyocytes

Developmental Heart
(Estimate)

Developmental Heart
(Estimate)

Fig. 3 Excerpts of the estimated cell type proportions for the
developmental heart, all from section dh-B. The cell types presented are
ventricular cardiomyocytes, atrial cardiomyocytes, smooth muscle cells,
epicardial cells, epicardium-derived cells, and erythrocytes. For complete
results see Supplementary Figs. 7-14.

Cell type co-localization. Once proportions have been estimated,
subsequent analysis supplementary to visualization can be con-
ducted. To exemplify, by looking at the spatial correlation
between cell types (Pearson correlation on a per location basis)
patterns of co-localization emerge, which may be informative and
aid in elucidating which cell types that tend to interact or exhibit
synergistic behavior. This is a complementary approach to those
relying on receptor-ligand pairs to assess cell type interactions,
without the need to curate lists of cognate receptors and ligands.
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Results from this type of analysis when applied to the develop-
mental heart can be seen in Supplementary Fig. 19.

Comparison with alternative methods. To enable comparison of
our method with others, we devised a procedure to assemble
synthetic data—resembling that obtained from the spatial tech-
niques—from real single-cell data. Briefly explained, to generate
synthetic data we randomly select cells from real single-cell data,
and then add fractions of their expression values together. The
exact proportions of cell types at each synthetic capture location
can be computed since the identities of the sampled cells are
known; hence, these datasets can be used as ground truth in
comparative analyses. Two recently published methods (DWLS
and deconvSeq) were used in the comparison; where our imple-
mentation outperformed both of these, see Supplementary Sec-
tion 1.2 (refs. ©21).

Discussion

In this study we formulate a probabilistic model to describe the
relationship between single cell and certain spatial tran-
scriptomics data, as a result we are able to develop a method that
performs guided deconvolution of the mixed expression profiles
present in the latter and thus spatially map the cell types iden-
tified in the former. When applied to real and synthetic data, our
method presented results that agreed with previous literature and
performed better than alternative approaches. Since the decon-
volution process is guided by the single-cell data, the results (cell
type proportions) are highly interpretable in contrast to those
produced from completely unsupervised methods (e.g., factors or
clusters), which tend to require further analysis to be annotated.
Given how our method leverages information from the complete
expression profiles, we see it as particularly attractive when
working with complex tissues populated by several similar cell
types, where mutually exclusive sets of marker genes are not
guaranteed to exist.

Applications of our method are plenty: presence and identity of
tumor-infiltrating immune cells could be assessed in cancers, or
the types that constitute the tumor microenvironment charted;
cell type interactions may be inferred from their spatial co-
localization patterns; and enrichment of cell types within anato-
mical regions of interest determined, by examining how the
proportion values are dispersed across the tissue. This list is far
from comprehensive, but illustrates how information regarding
the cell types’ spatial distribution may serve as a basis for a
multitude of different analyses. As a consequence of our two-step
implementation, one may also conceive of a scenario where a
database of fitted expression profiles (from the single-cell data) is
constructed, making it possible to map cell types without having
access to the raw count data as well as reducing the run time of
the analysis.

Constant progress is made with respect to the experimental
techniques, and while capture-based methods (e.g., Visium)
currently do not guarantee single-cell resolution, one might
envision this changing in the future. This would resolve the issue
of mixed contributions to the observed gene expression, and
eliminate the need to deconvolve data. Still, since the presence of
a single cell can be considered a special case of a cell mixture
(with one mixture component), we see a use of our method’s
ability to map types from one data modality to the other. For
example, it could be used to ensure that the large efforts put into
generation and annotation of single-cell atlases are not done in
vain; given how our method would allow for type annotations to
be transferred from single-cell data to the new and more highly
resolved spatial data, guiding the process of characterizing the
latter.

As outlined above, using single-cell data to guide the
deconvolution has plenty of benefits, but also comes with cer-
tain limitations. One obvious example is how proportion esti-
mates are only obtained for the cell types present in the single-
cell data, and therefore statements regarding the spatial
arrangement of cell populations are restricted to these types.
Hence, it is preferable if the single-cell data to some extent is
representative of the spatial data. This is especially true when
large variance between tissue sections is expected or the cell
type populations are highly specific to each individual (e.g.,
diseased tissues), in such cases paired data might be advanta-
geous to use. As always, the character of the data largely dictates
the quality of the results, for example; very shallowly sequenced
single-cell data might not map as well as more deeply
sequenced data if cell types are only distinguished by rare or
lowly expressed genes. Still, issues related to discrepancies
between the data sets are not unique to our method, but
expected in any guided deconvolution approach. Fortunately,
finding a suitable match for either data modality becomes
increasingly easier as the number of public atlases (both spatial
and single cell) continues to grow.

To conclude, we have presented a framework that enables
spatial data to be deconvolved in a guided process and thus map
cell types found in single-cell data onto a tissue. We have
implemented this method in code, and release it as an open-
source python package named stereoscope available at github.com/
almaan/stereoscope. The procedure is seamless, transferable over
multiple techniques, and does not require any pre-processing of
the data.

Methods

Model. The following notation will be used upon describing the model:

G—the set of all genes

S—the set of all spatial capture locations

Z—the set of all cell types

C,—the set of all cells contributing to capture location s
ng,—number of cells from cell type z at capture location s
xg—counts of gene g at capture location s

Xgee—counts of gene g at capture location s from cell ¢
z.—cell type of cell ¢

a,—scaling factor at capture location s
Bg—technique-based gene bias for gene g

re:—Trate parameter for cell type z and gene g
Pg—success probability parameter for gene g

| - |—cardinality of a given set

a—vector notation

Transcripts of a given gene (g) within a single cell (c) are taken as negative
binomially distributed—with the rate (rgzt) being conditioned on a cell’s type (z.)
and gene (g), while the success probability is only dependent on the gene in
question (a common postulation)®22, To account for certain technical biases, we
also include a cell specific scaling factor s,, set to the library size of respective cell.
Thus we have

Yo ~NB(s7g D)y 0= D e (1)

8€G

Values for the cell type specific parameters are then obtained by finding the MLE
(maximum likelihood estimates), given the provided single-cell data. In the
implementation this is achieved by taking the negative log-likelihood as an
objective function to be minimized w.r.t. the parameters. We use PyTorch’s
autograd framework for the optimization, with Adam as an optimizer (default
values are used for all parameters except learning rate, see below)?3.

In spatial data, the observable transcripts (x.) of a given gene (g) from a cell (c)
contributing to a specific capture location (s) are also considered negative
binomially distributed, with the same conditioning as for the single-cell data. We
assume that the efficiency by which certain genes are captured differs between the
two techniques (spatial and single cell RNA-seq), what would be referred to as
technique-based bias, and thus introduce a variable (f,) to correct for this. A
scaling factor (a) for each spatial location is also included to account for technical
variation between the spatial locations. The distribution used to model the spatial
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data thus takes the form:

Kyge ™ NB(a Tz, Pg)- (2)
The total number of transcripts (x) for a certain gene (g) at each spatial
location (s) is simply the sum of observed transcripts from each cell (c)
contributing to that spatial location, that is

Xog = D e 3)
c

With a shared second parameter (pg) between all types (z), the first parameter
exhibits an additive property and the total number of transcripts is negative
binomially distributed as well:

x ~ NB (Z asﬁgrgzL.’pg)' (4)

ceCy

By introducing a quantity coefficient n, representing the number of cells from a
certain type (z) present at spatial location s, a change of index from cells to types is
possible:

x, ~NB (Z asﬁgnnrgz,pg> . (5)

z€Z

We then bundle the spatial location-specific parameters together in a scaled
quantity coefficient (vy,):

xsg ~NB (Z :Bngzrgzvpg>ﬂ Vg = Gl (6)

zeZ

Using vector notation this expression can be rewritten as
T Z
Xy ~ NB(Bi1g,p,), Vi1, € R, (7)

To account for asymmetric data sets (where the cell types in spatial and single-cell
data do not overlap perfectly) and noise we also include a form of “dummy” cell
type, with gene specific rates (¢,) and a scaled quantity coefficient y.:

Xeg ™ NB(ﬁgvSTrg + y,.eg,pg). (8)

If we define w, as the normalized scaled quantity coefficients, excluding the noise
capturing dummy cell type, that is:

Vsz UMz _ N,

Wy = = = : 9
i Zzez Yz & Zzez ng Zzgz R ( )

This results in an expression which can be recognized as the proportion of each cell
type at a given spatial location.

To avoid promiscuous assignment of explanatory power to the dummy cell
type, we place a standard normal prior on all of its rates, i.e.

€, ~N(0,1). (10)

Cell type proportions (wy,) are then taken as the MAP estimate of the distribution
in Eq. (8) using the prior in Eq. (10), given the observed spatial data. Uniform
priors are assigned to all other variables. More precisely, this is implemented by
minimizing the negative logarithm of the posterior w.r.t. to the scaled quantities
({¥,}cs), the gene specific bias (), and parameters related to the dummy cell type
(y and e, respectively). Similar to the procedure for single-cell data, the
optimization is performed using PyTorch.

Data processing. Here we give a description of how the data are formatted and
processed; note that our “starting material” are raw count matrices of single cell
and spatial data. These matrices have cells or spatial locations along one dimension
and genes along the other, with meta-data containing type annotations associated
to the single-cell data. For exact details regarding how these count matrices were
obtained from the raw sequencing data, we refer to their original publications.

Gene selection: Our method is not dependent on marker genes or curation of
gene sets to be used during the inference; rather it is designed to use the complete
expression profiles (all genes). Still, we noticed that using a subset (of reasonable
size) of genes provide similar results to inclusion of all genes in the analysis, but
with the benefit of reduced run-time. For all real data sets we therefore used the top
5000 highest expressed genes (total expression across all cells) in the single-cell data
in our analyses.

More sophisticated criteria for selection of genes might enhance the
performance, especially if effort is put into ensuring that marker genes for
respective type are included in the subset. Given our claims of the method not
necessitating gene list curation or knowledge of marker genes, we nevertheless
deemed it appropriate to not incorporate such information in the process of
selection, since this would be contradictory to our statement. Hence, the more
simple “expression level”-based procedure.

Human developmental heart: The complete single cell data set provided in the
paper “A spatiotemporal organ-wide gene expression and cell atlas of the
developing human heart” was used to estimate the type parameters, hence resulting
in a usage of 3717 cells distributed over 15 clusters'®. Only the top 5000 highest

Table 1 Synthetic data generation.

Let D be an annotated single-cell data set;
Let Z be the set of all types found in D;
Let Idx(z) be the indices of cells belonging to type z € D;
Forsinl..S
C, ~ Unif(lb, ub);
|Zs ~ Unif(1, |1Z]);
Let Z; be a subset of Z, consisting of |Zj| types formed by uniform
sampling without replacement
p, ~Dir(ly), 1, eR% 7ez;
Ngy = rpsz’ : gsJ;

Wop = nsz'/ ; Nizs

Let I, be n,, samples taken from Idx(z') with equal probability and
without replacement;

ng: Z Z f“'ycgJ

Z'eZcely

expressed genes were used in the analysis. For the exact composition of the single-
cell data set, see Supplementary Section 1.4.

The data were obtained from the same publication as the single cell data, using
the eight sections from PCW 6.5. Only those spots under the tissue were used.
From the 5000 genes selected in the single-cell data, the intersection of these and
the complete set of genes found in the ST data was used.

Mouse brain—hippocampus: The single-cell data set was downloaded from
mousebrain.org, where we used data with cells originating from Hippocampal
tissue24. We first joined the “Class” and “Clusters” identifiers for each cell to form
type labels. A subset of 8449 cells were sampled from the 29,519 cells found within
the set. This subset was assembled by specifying both a global lower (I) and upper
(u) bound for the number of cells to be included from each type, and then applying
the procedure given in Eq (11) (n, representing the total number of cells from type
z). We use an upper bound to reduce run time.

Exclude cell type z n,,
Use all n, cells fromz I<n,<u, (11)
Sampleucells from z u<n,.

The lower and upper bounds were set to 25 and 250 cells, respectively, giving the
subset a total of 56 clusters. Only the top 5000 highest expressed genes were used in
the analysis.

From the ST/Visium data, only those spots under the tissue were used. Three
sections (mb-ST1, mb-ST2, and mb-V1) were used in the analysis. From the 5000
genes selected in the single-cell data, the intersection of these and the complete set
of genes found in the ST/Visium data were used. mb-ST1 and mb-ST2 were
analyzed together while mb-V1 was analyzed separately.

Slide-seq data were downloaded from Broad Institute’s single-cell portal
(singlecell.broadinstitute.org). We used the puck with ID 180413_7, taken from the
project named “Slide-seq study”. All beads with non-zero total counts were
included in the analysis while from the 5000 genes selected in the single-cell data,
the intersection of these, and the complete set of genes found in the Slide-seq data
were used.

Mouse brain—cerebellum: As for the hippocampal tissue we downloaded single-
cell data from mousebrain.org selecting “Cerebellum” as the tissue from which cells
should originate. For this single-cell data we used the “Clusters” label. The same
subsampling scheme as described above was used for this data, resulting in set of
7506 cells. Slide-seq data were downloaded from Broad Institute’s single-cell portal
(see above), more specifically the puck with ID 180819_11; all beads with non-zero
total counts were included in the analysis.

See Supplementary Section 1.3 for more details regarding the composition of
the sets.

ISH images: ISH images were downloaded from the Allen Brain Atlas. No
modifications except for cropping were applied. References for the used images are:

®  Rarres2 (ref. 25)
®  Proxl (ref. 26)
®  WfsI (ref. ¥7)

Comparative analysis. Method: To allow for performance comparison between
methods we devised a procedure for generation of synthetic data. We decided to
use a “semi-synthetic” approach not based on a negative binomial model, as this
potentially could favor our model. Instead, single-cell data are used to assemble
synthetic data with a structure similar to that of the spatial data our method is
designed for. The procedure is described in Table 1.

Meaning that for every spatial capture location (s) we first sample the number
of cells (C,) contributing to this, and the number of types (|Z,|) which these cells
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Table 2 Analysis parameters used for respective data set.

SC epochs Spatial epochs Learning rate Top N genes
Dev. heart 50,000 50,000 0.01 5000
Mouse brain? 50,000 50,000 0.01 5000
Synthetic data 50,000 50,000 0.01 500

aThe same single-cell parameter estimates (rates and logits) were used for all of the spatial data sets (ST, Visium, and Slide-seq), which were analyzed using identical settings.

may belong to. Ib and ub represent the lower and upper bound, respectively, for the
number of cells that are present at a spot. From the set of all types present in the
data (Z), we then form a subset (Z,) by uniform sampling of |Z] types from Z
(without replacement). Unadjusted proportions (p,) are then drawn from the
probability simplex using a Dirichlet distribution (concentration set to 1 for all
types). The actual number of cells from each type (n,) is then set to the nearest
integer number for the corresponding proportion of cells in the spatial capture
location (s). The adjusted proportions (w,, ) are given as the actual proportion
based on the number of cells after nearest integer rounding. For every type (z')
present at a given spatial location, we then sample (without replacement) indices
(I,) of cells labeled as the same type within the single-cell data. To generate the
expression value for a gene (x,,) we sum the nearest integer approximation of the
product between the single-cell expression values (y,,) and a scaling factor («), a
constant specified by the user, over all selected types and the sampled indices. By
applying this procedure one obtains a data set with similar properties to that of the
intended spatial data, but where the exact proportions are known.

Generated sets:Two synthetic data sets were generated by near identical
procedures, the only difference being the values for upper (ub) and lower (Ib)
bounds, defined as in Table 1. For the first set, we let the range of cells present at a
capture location be 10-30, which is representative of data originating from the ST
technique. For the second set, we used a lower range of 1-10 cells, more in line with
what is reported for the Visium platform.

The same single-cell data were used in the generation of both synthetic data
sets, which is the hippocampus data taken from mousebrain.org (same as for the
previous mouse brain analysis), we used the “Subclass” labels as annotations. We
also subsampled the set according to the procedure described above (using 60 as
lower and 500 as upper bound).

For each synthetic set, the subsampled set was split into two equally sized and
mutually exclusive sets, i.e. sharing no cells. We refer to these as generation and
validation sets. A synthetic spatial data set was then generated according to the
procedure outlined in Algorithm 1 using the generation set as input. The resulting
spatial data set consisted of 1000 spatial capture locations with expression values
for 500 genes. The purpose of the validation set is to be used as the single-cell data
used to deconvolve the spatial data by respective method.

Comparison and evaluation: To compare the performance between methods, we
provided each of them with the validation single-cell data set and the generated
synthetic spatial data to obtain proportion estimates for each spatial location. For
each method we then computed the RMSE (Eq. 12) between the estimated
proportions (w) and the ground truth (w).

Being interested in whether our method performed better than the others, we
conducted an one-sided paired Wilcoxon signed-rank test to see whether the
differences in RMSE values, in each capture location (n = 1000), were
asymmetrically distributed around zero—in favor of our method. This was done
using the R implementation of the Wilcoxon signed-rank test (wilcox.test : conf.int
= TRUE, alternative = “less”, paired = TRUE)28.

Two published methods, designed for deconvolution of bulk RNA-seq data
using single-cell data, were selected for comparison: DWLS and deconvSeq. The
approach presented by Moncada et al. was not included due to very limited code
availability and lack of a documented implementation.

DWLS treats the deconvolution task as an optimization problem cast in the
form of a vector decomposition. The bulk RNA-seq data are represented by a
vector (t) (of expression values) which is the product between a gene signature
matrix (S) and a cell type number vector (x), see Eq. (13).

Sx =t (13)

The gene signature matrix (S) is static and the elements represent average gene
expression values of marker genes from respective cell type derived from the single-
cell data. The objective then becomes to find the optimal x, according to a weighted
error function. The authors discard the more common OLS (ordinary least
squares) approach in favor of a weighted scheme to account for rare cell types and
ensure informative genes are not neglected during inference®. To conduct the
analysis we downloaded the DWLS source code from https://github.com/dtsoucas/
DWLS.

deconvSeq uses a negative binomial generalized linear model (GLM), with a log
link for the mean. From the single-cell data (or pure bulk RNA-seq data), a

projection matrix (Bo) is obtained by fitting a GLM to the data, the dispersion
parameter is determined using edgeR and only conditioned on gene. The cell type
proportions in a mixed sample are then estimated by finding the vector (x) that
best fit the data when projected by B, onto the gene expression space of the top
genes with the condition that all elements of x are non-negative and sum to one?!.
To conduct the analysis we downloaded source code for deconvSeq from https:/
github.com/rosedul/deconvSeq.

Slight modifications had to be made to the code in DWLS, though these changes
did not concern the actual proportion estimation. All code used throughout the
comparison, including wrappers for the methods when applying them to spatial
data, are found in the github repository. The aforementioned modifications are
accounted for in more detail at said repository.

To put the RMSE values into context, we compute the RMSE between
probabilities drawn from a Dirichlet distribution (all concentration values set to 1)
for an equal number of spatial locations as in the analyzed data sets. By repeating
this for a select number of times (n = 1000), we obtain a “null-distribution” of
RMSE values to compare the other RMSE distributions to it.

Statistics and reproducibility. Below, we describe specific details for the analysis
of each pair of data sets, allowing the results to be properly reproduced (Table 2).

We used an one-sided Wilcoxon signed-rank test when comparing the
performance between methods across all capture locations (n = 1000). We tested in
favor of our model, i.e. if stereoscope on average has a lower RMSE. For more
details see the “Methods” section “Comparison and evaluation”.

In Supplementary Fig. 19 correlation values are called as significant (p < 0.01) or
not; for exact computation of the p values we refer to the documentation for the
scipy (v.1.4.1) function scipy.stats.pearsonr, which was used (with default
parameters) for this purpose?®. The correlation values were computed across all
eight developmental heart sections: in total, 1375 capture locations.

Visualization and downstream analysis. Scripts for all of the visualizations are
provided at the github page.

Proportions—separate visualization: Upon visualizing the proportion of a single
type within a given spatial location, the opacity of the face color corresponds to the
estimated proportion. If nothing else is stated; proportion values are scaled within
each section and cell type, to emphasize the spatial patterns. Such scaling is
performed by dividing all proportion values of a certain cell type and section by the
largest element within this set. No threshold or further adjustments of the values
are applied after the scaling. When image data of the tissue are available, as for ST/
Visium data, the array coordinates are transformed to pixel coordinates and the
proportion estimates overlaid on the H&E image.

Single-cell clusters (Fig. 2a): To generate the image presented in Fig. 2a, we used
the coordinates obtained upon embedding the data within a two-dimensional
manifold using gt-SNE24 These coordinates were provided in the single-cell data
loom-file, as attributes named “_X” and “_Y”, respectively, and hence were not
generated by us. The cluster indices are those obtained upon joining the “Class”
and “Clusters” identifiers for each cell. Clusters excluded from the proportion
estimate analysis are not visualized in the gt-SNE plot. The proportion estimates
are those obtained upon analyzing the mb-V1 section together with the single-cell
data set as described in the section “Mouse brain—hippocampus”.

Cell type co-localization. By computing the Pearson correlation (see Eq (14))
between each pair of cell types, treating each spatial location as a distinct data
point, one obtains information regarding which cell types that share similar spatial
distributions.

- w, )(Wsz7 — W, )

)= ZSES(WSZ, . 2 .
Vs 0, = )% [ (i = )7

Jj

r(z;, Zj

(14)

In Eq. (14) z; represents cell type i, the bar indicates the arithmetic mean, and S is
the set of spatial locations in the studied data set. Where s represents a specific
spatial location and w;, the proportion of cell type z in said spatial location.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data used in this manuscript are publicly available and can be found at original
publications or repositories. We provide direct links to download all data in
Supplementary Table 1.

Code availability

The method is released as a tool named stereoscope available at https://github.com/
almaan/stereoscope. Documentation for stereoscope, a tutorial, scripts used for
visualization and further analyses are also found within the repository. In the tutorial we
provide walk-through to reproduce some of the analyses presented in this paper. Since
the code hosted at github might be updated as time progresses—to add new features or
better align with user needs—we have deposited a “frozen” image of the current
codebase, which will remain unaltered. This image can be found at https://doi.org/
10.5281/zen0do.3951884 (ref. 39).

The implementation and code for analysis are written in Python 3.7, the core functions
rely on the following libraries (and built with versions): numpy 1.17.4, torch 1.3.1, scipy
1.4.1, and pandas 0.25.3. Additional libraries for tasks such as parsing and logging are
used for the CLI application and visualization; the entire list is given at the github
repository and included in the installation file.
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