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Single-cell ATAC and RNA sequencing reveal pre-
existing and persistent cells associated with
prostate cancer relapse
S. Taavitsainen 1, N. Engedal 2, S. Cao3, F. Handle 4,5, A. Erickson6, S. Prekovic 7, D. Wetterskog8,
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R. Kaarijärvi11, M. Lahnalampi 11, H. Kaljunen 11, K. Nowakowska8, H. Syvälä1, M. Bläuer1, P. Cremaschi8,
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I. G. Mills6,15,16, G. Attard 8, W. Wang 3, M. Nykter 1✉ & A. Urbanucci 2✉

Prostate cancer is heterogeneous and patients would benefit from methods that stratify those

who are likely to respond to systemic therapy. Here, we employ single-cell assays for

transposase-accessible chromatin (ATAC) and RNA sequencing in models of early treatment

response and resistance to enzalutamide. In doing so, we identify pre-existing and treatment-

persistent cell subpopulations that possess regenerative potential when subjected to treat-

ment. We find distinct chromatin landscapes associated with enzalutamide treatment and

resistance that are linked to alternative transcriptional programs. Transcriptional profiles

characteristic of persistent cells are able to stratify the treatment response of patients.

Ultimately, we show that defining changes in chromatin and gene expression in single-cell

populations from pre-clinical models can reveal as yet unrecognized molecular predictors of

treatment response. This suggests that the application of single-cell methods with high

analytical resolution in pre-clinical models may powerfully inform clinical decision-making.
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P
rostate cancer (PC) relies on androgen-receptor (AR) sig-
naling for development and progression. Progression on
androgen-deprivation therapy (ADT) or AR signaling

inhibitors (ARSIs), such as the second-generation AR antagonist
enzalutamide (ENZ), leads to castration-resistant (CRPC) or
treatment-induced neuroendocrine prostate cancer (NEPC)1. The
most frequently characterized mechanisms of PC or CRPC
resistance to ARSIs, ADT, or both revolve around the restoration
of AR signaling via AR overexpression or AR mutations2–5.

PC is profoundly heterogeneous6–9 and patients would benefit
from methods that differentiate between clinically mild and more
aggressive forms of the disease. Although evidence of clonal
expansion has been shown6, most studies to date have char-
acterized genetic mutations10–12 that do not make allowance for
tissue complexity or the biological basis for the emergence of
treatment resistance. Furthermore, nongenetic changes in tran-
scriptomics, chromatin structure, and DNA accessibility of
transcription factor (TF)-binding motifs are more frequent but
less understood in PC drug resistance2–5. DNA accessibility is the
first layer of gene regulation and transcriptomic changes are now
being used to identify molecular predictors of cancer-treatment
response13. However, most RNA sequencing data are obtained
from the bulk of the tumors and therefore cannot account for PC
heterogeneity. This is because the transcriptome is the result of
several biological processes contributing to differential gene reg-
ulation and such processes are not necessarily synchronized in all
cells within the tumor bulk14,15. The development of single-cell
sequencing technologies has enabled a more detailed examination
of genomic features in treatment-resistant cancers, but the asso-
ciated analytical methods are just beginning to reveal their
potential.

In this work, we analyze the emergence of resistance in the
epithelial-derived component of prostate tumors in ENZ-exposed
and -resistant PC cell lines at a single-cell level to explore how
heterogeneous PCs respond to ARSIs. Through enrichment
analysis of transcriptional signals from molecular gene classifiers
derived in this study, we show evidence of treatment-persistent
and pre-existing PC cells that can predict treatment response in
both primary and advanced patients.

Results
Chromatin reprogramming underpins enzalutamide resis-
tance. To study the molecular consequences of AR signaling
suppression and drug-resistance dynamics in PC, we utilized
LNCaP parental cell lines, LNCaP-derived ENZ-resistant cell
lines RES-A and RES-B generated via long-term exposure to AR-
targeting agents16 (see “Methods”), and other independently
generated LNCaP- and VCaP-derived models (Fig. 1a, Supple-
mentary Table 1). We hypothesized that chromatin structure
would undergo reshaping in ENZ-resistant cells and lead to
modification of the transcriptome17,18.

To determine the contribution of chromatin structure to ENZ
resistance, we performed single-cell (sc) assays for transposase-
accessible chromatin and sequencing (scATAC-seq) on four
samples: (1) LNCaP parental cells (LNCaP), (2) LNCaP exposed
to short-term (48 h) ENZ (10 μM) treatment (LNCaP–ENZ48),
(3) RES-A, and (4) RES-B (Fig. 1a). We first analyzed the
scATAC-seq data as it would have been sequenced in bulk cells
(see “Methods”). The ATAC-seq signal at transcription-start sites
(TSS) decreased in ENZ-resistant cells compared with the
parental (average enrichment score 6.3 in resistant cells vs 7.8
in parental cells, p < 2.2e-16, Wilcoxon rank-sum test) (Fig. 1b).
This pattern was also observed for housekeeping genes, genes
from the androgen-response pathway, and genes involved in
MYC signaling, suggesting that this pattern is not restricted to a

particular gene set. We noted chromatin opening outside of the
TSS region in both resistant cell lines as the potential explanation
for the decreased TSS enrichment (Supplementary Fig. 1a). RES-
A and RES-B cells shared a large proportion of ENZ-resistance-
specific open-chromatin regions not found in parental LNCaP
(14% in RES-A and 17% in RES-B). Additionally, RES-A cells had
a higher proportion of unique open sites compared with RES-B
(19% vs 5%, p < 2.2e-16, chi-square test) and LNCaP (19% vs 7%,
p < 2.2e-16, chi-square test) (Fig. 1c).

We corroborated the extent of chromatin opening and
reprogramming in ENZ-resistant cells by performing
formaldehyde-assisted isolation of regulatory element (FAIRE)
sequencing19 on the parental LNCaP and RES-A cells subjected to
androgen starvation or exposed to androgens, ENZ, or both
agents (Supplementary Fig. 1b–g) (see “Methods”). Even in this
bulk assay, ENZ and androgen starvation appeared to be more
significant drivers of reprogramming in RES-A than in parental
LNCaP. While there was no significant difference in the total
number of open chromatin sites, ENZ-resistant samples had a
higher proportion of unique open sites compared with the
parental in the presence of androgens (24% vs 12%, p < 2.2e-16,
chi-square test) (Supplementary Fig. 1d) and in androgen-
deprived (castrate) conditions (27% vs 9%, p < 2.2e-16, chi-
square test) (Supplementary Fig. 1f). Read-distribution analysis
(see “Methods”) demonstrated that the chromatin of ENZ-
resistant cells is more open in the presence of androgens
(p < 0.001, t-test) (Supplementary Fig. 1e) and in castrate
conditions (p= 0.022, t-test) (Supplementary Fig. 1g).

Next, we used all samples with scATAC-seq to generate cluster
visualizations of cell subpopulations with different chromatin-
accessibility profiles (Fig. 1d) (see “Methods”). We identified
clusters that were unique or shared across the samples (Fig. 1e).
Unique clusters were specific to RES-A, RES-B, or both (named
ENZ-induced clusters), or specific to the untreated and/or short-
term ENZ-treated parental line (named initial clusters). Shared
clusters were present at similar proportions across the samples
and were named persistent clusters (Fig. 1e). We compared each
cluster to all other clusters to determine its unique chromatin
profile based on differentially accessible chromatin regions
(DARs; Supplementary Data 1).

The most prevalent chromatin-based scATAC-seq clusters in
terms of cell number (0, 1, and 2) were persistent (Fig. 1e) and
defined by fewer than 20 unique DARs, suggesting that 74% of
the cells share an overall similar chromatin-accessibility profile
during the development of ENZ resistance. We then assessed for
changes in cluster chromatin DARs between the parental LNCaP,
LNCaP–ENZ48, and in RES-A and RES-B (Supplementary
Data 1). DARs were observed around MYC and TP53 in several
clusters during the short-term response to enzalutamide, includ-
ing in cluster 6 that arises during ENZ resistance in RES-A.

Prior studies have shown that PC cell lines cultured for an
extended time without androgens tend to display
neuroendocrine-like phenotypes20,21. The largest fold changes
in chromatin accessibility based on average signal from all cells
showed over representation for neuronal system processes
between the parental (LNCaP or LNCaP–ENZ48) and resistant
cells (RES-A or RES-B) (Benjamini–Hochberg-adjusted
p= 0.0027 in RES-A and p= 0.0024 in RES-B, hypergeometric
test). Accordingly, we found elevated expression of NEPC-derived
signatures20,22 in RES-A and RES-B cells (particularly EZH2,
AURKA, STMN1, DNMT1, and CDC25B), as well as increased
expression of NEPC-downregulated genes in initial clusters
(Supplementary Fig. 1h). Interestingly, in bulk RNA sequencing
of the same cell lines, gene set variation analysis (see “Methods”)
of NEPC signatures showed higher expression of NEPC-
upregulated genes in RES-A cells only (Supplementary Fig. 1i).
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Overall, these data show extensive chromatin reprogramming
during the emergence of resistance to AR-targeting agents.

Enzalutamide resistance reconfigures availability of TF binding
DNA motifs in the chromatin. Chromatin accessibility deter-
mines the transcriptional output of cells by exposing a footprint
of TF DNA-binding motifs. We hypothesized that increased
chromatin opening in resistant cells would change the footprint
of exposed TF DNA motifs. To this end, we first utilized AR and
MYC binding-site maps in LNCaP cells23 and explored their
relationship with open chromatin sites in the bulk FAIRE-seq
data from RES-A cells. Using read-distribution analysis, we
observed a significant increase in open chromatin at MYC-
binding sites in ENZ-resistant cells (p < 0.001 in castrate condi-
tions and with androgens, t-test) (Fig. 2a, Supplementary Fig. 2a),
a reduction of open chromatin at AR-binding sites in castrate
conditions (p < 0.001, t-test), and interestingly, an increase in
open chromatin at AR-binding sites in androgen-exposed con-
ditions (p < 0.001, t-test) (Fig. 2b, Supplementary Fig. 2b). These
findings suggest that chromatin dysregulation in ENZ resistance
is associated with reconfiguration of AR and MYC chromatin

binding, consistent with previously reported increased MYC and
reduced AR transcriptional activity in these cells16.

To resolve how chromatin reprogramming affects TF DNA
motif exposure at the single-cell level, we performed a TF motif
enrichment analysis on the marker DARs characterizing the
scATAC-seq cell clusters in each sample (Fig. 2c). This analysis
confirmed the enrichment of motifs for several PC-associated TFs
such as AR and MYC, as well as GATA2, HOXB13, and others in
persistent clusters 3 and 5, as well as initial cluster 4 in parental
and LNCaP–ENZ48 (Fig. 2c). Clusters 3 and 5 remained enriched
for a subset of the same TF motifs in RES-A and RES-B, with
cluster 5 showing a consistent enrichment profile in all samples
(Fig. 2c). AR, CREB1, E2F1, GATA2, and ZFX were common
motifs. Cluster 3 was characterized by FOXA1 and JUND, while
cluster 5 was characterized by CTCF, ETS-like, and MYC.
Although they possessed distinct sets of DARs, the ENZ-induced
clusters 6 and 7 did not display enrichment of TF motifs in RES-
A or RES-B.

Between pairs of samples, DARs were predominantly closing
and opening in cluster 0 compared with all other clusters (on
average 43% of differentially closed DARs and 37% of
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Fig. 1 Chromatin reprogramming in enzalutamide resistance. a Overview of the cell-line models, assays, and treatments included in the study. Boxes with

sample names are colored according to the data types generated from the sample (single-cell (sc) assay for transposase-accessible chromatin (ATAC)-,

scRNA-, bulk RNA- and/or formaldehyde-assisted isolation of regulatory element (FAIRE) sequencing). b Smoothed line plots of LNCaP parental,

LNCaP–ENZ48, RES-A, and RES-B scATAC-seq enrichment scores in a 2-kb window around the transcription-start sites (TSS) of 5000 randomly selected

genes, housekeeping genes, androgen response genes (MSigDB), and MYC target genes (MSigDB). Enrichment scores at each TSS (position 0 in the plot
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cancer. See also Supplementary Fig. 1.
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differentially open DARs) (Supplementary Fig. 2c, Supplementary
Data 1). We performed selective TF motif enrichment analysis in
DARs opened (Fig. 2d) and closed (Supplementary Fig. 2d)
between pairs of samples (see “Methods”). While we observed no
enrichments after short-term ENZ treatment (LNCaP–ENZ48 vs
parental; Fig. 2d), comparing open DARs in RES-A or RES-B to
the LNCaP parental retrieved distinct sets of TFs, with MYC and
ESR1 being the most common across all clusters in RES-A and
RES-B, respectively (Fig. 2d). Similarly, comparing open DARs in
RES-A or RES-B vs LNCaP–ENZ48 showed enrichment of most
of the PC-related TF motifs tested in most clusters (Fig. 2d), and
to an even greater extent when considering closing DARs between
sample conditions (Supplementary Fig. 2d).

These analyses demonstrate that ENZ resistance is associated
with reconfiguration of TF DNA motif footprints.

Transcriptional patterns of enzalutamide resistance are
induced by divergent chromatin reprogramming. To study
transcriptional patterns in relation to reconfiguration of chro-
matin structure at the single-cell level, we performed scRNA-seq
in the LNCaP parental, RES-A and -B models. Integrated clus-
tering of four LNCaP samples (Fig. 3a) (see “Methods”) showed 7
persistent, 3 ENZ-induced, and 3 initial cell clusters (Fig. 3b)
defined by sets of marker differentially expressed genes (DEGs;
Supplementary Data 2; between 17 and 283 DEGs in the 13
clusters). To confirm that these cell subpopulations are relevant in
other independent models of ENZ resistance, we used the label-
transfer approach24 to query for matching cell populations in
independent scRNA-seq datasets: a LNCaP parental sample,
LNCaP ENZ treated for one week (LNCaP–ENZ168), and an

independent ENZ-resistant (RES-C) LNCaP-derived cell line
(Fig. 1a). Transferring scRNA-seq cluster labels confirmed the
presence of initial clusters (4, 6, and 10) in LNCaP parental
(Supplementary Fig. 3a) and RES-C (Supplementary Fig. 3b). The
presence of ENZ-induced clusters was confirmed in RES-C (17%
of cells in cluster 3) and LNCaP-ENZ168 (79% in cluster 3),
suggesting that one week of ENZ treatment is sufficient to give
rise to this cluster prior to the development of resistance (Sup-
plementary Fig. 3c). As a proportion of cells from most scATAC-
seq clusters were additionally found to correspond to cluster-3
cells from the scRNA-seq (Fig. 3e), this suggests that the cells of
this cluster may represent a common genomic configuration for
ENZ resistance or its development. Most importantly, we could
retrieve persistent subpopulations of cells in the alternative
LNCaP-parental sample (4%), in LNCaP–ENZ168 (13%), and in
RES-C (31%), suggesting that these persistent cells are con-
sistently found during the emergence of ENZ resistance.

We additionally performed scRNA-seq on a VCaP parental cell
line treated with DMSO or ENZ for 48 h to test for the
generalizability of our results beyond a single-cell line (Fig. 1a). A
similar analysis with VCaP cells confirmed the prevalence of
persistent cells in the VCaP parental (93% of cells), as well as
initial and ENZ-induced cells in VCaP–ENZ48 (38 and 55% of
cells, respectively) (Fig. 3c).

We then sought to determine whether the observed scRNA-seq
clusters (Fig. 3a) could be the result of enriched TF-binding
activity in alternative open DARs. Using annotated databases, we
queried the transcriptional targets of the enriched TFs in the open
DARs when comparing RES-A or B to the parental LNCaP
(Fig. 2d) in the matching scRNA-seq samples (see “Methods”).
Chromatin remodeling affected TF activity and consequently
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Fig. 2 Contribution of enzalutamide treatment-mediated chromatin reprogramming to transcription factor DNA motif footprint. a, b Normalized

average formaldehyde-assisted isolation of regulatory element (FAIRE)-seq read distribution in androgen-deprived conditions within a 2-kb interval around

a MYC-binding sites and b AR-binding sites in LNCaP cells. Sample comparisons of enrichment values at the middle of the distribution are indicated using

colored dots within the plots and the two-sided t-test p-value is shown. c Prostate cancer-associated transcription factor (TF) motif enrichment in open

differentially accessible regions (DARs) for each single-cell ATAC-seq sample. Enrichments with a Benjamini–Hochberg method-adjusted hypergeometric

test p-value < 0.05 are shown in colors, while nonsignificant (ns) enrichments are shown in white. The barplots above the matrices indicate the number of

open DARs found for each cluster in each sample. d TF motif enrichments in open DARs observed comparing the indicated conditions. Enrichments with a

Benjamini–Hochberg method-adjusted hypergeometric test p-value < 0.05 are shown in colors, while nonsignificant (ns) enrichments are shown in white.

See also Supplementary Fig. 2.
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DEGs in the scRNA-seq for up to a maximum of 11% in cluster 0
in RES-A and 7.1% in cluster 1 in RES-B (Fig. 3d). While target
DEGs for TFs such as MYC, JUND, and E2F were found in most
clusters in both RES-A and -B, other target DEGs for TFs such as
AR, RELA (a NF-kB subunit), and GRHL2 appeared more
specific to RES-A or -B, consistent with the proposed stoichio-
metric models of TF chromatin binding25. This analysis
confirmed that alternative open DARs in ENZ resistance can
activate divergent transcriptional programs.

Next, we connected the scRNA-seq clusters to their matching
scATAC-seq clusters. We again leveraged the label-transfer
approach to identify matching scRNA- and scATAC-seq cell
states in the same sample conditions (see “Methods”). In this

process, we assigned cell cluster labels within the scRNA-seq
sample to the scATAC-seq cells, or vice versa. We found that a
chromatin state can correspond to multiple transcriptional states
(96% of cells mapped from scATAC to scRNA vs 28% of cells
mapped from scRNA to scATAC in parental LNCaP, p < 2.2e-16,
chi-square test) (Supplementary Fig. 3d). By querying the
integrated scRNA-seq clusters in the scATAC-seq data (Fig. 3a,
b), we could find matching cell states in the scRNA for all
scATAC clusters, with cells in an scATAC cluster generally
corresponding to multiple scRNA clusters (Fig. 3e, Supplemen-
tary Fig. 3e). Notably, 58% of scATAC-seq cluster-4 cells were
projected to belong to scRNA-seq cluster 10, 83% of scATAC-seq
cluster-3 cells were predicted to belong to scRNA-seq cluster 9 or
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Fig. 3 Chromatin states of enzalutamide resistance can result in multiple transcriptional programs. a Uniform manifold approximation and projection

(UMAP) clustering visualization of single-cell RNA sequencing (scRNA-seq) of LNCaP parental, LNCaP–ENZ48, RES-A, and RES-B. b Proportions of cells in

clusters identified from scRNA-seq. Clusters are colored according to cluster type: initial (most prevalent in LNCaP parental and LNCaP–ENZ48), ENZ-

induced (most prevalent in RES-A or RES-B), or persistent (present in similar proportions in all samples). c Cluster-label transfer from the integrated

clustering of the LNCaP scRNA-seq data to VCaP parental (left) and VCaP treated with enzalutamide for 48 h (right), confirming the presence of these cell

states in the alternate model. In the UMAP, each cell is colored according to the LNCaP scRNA-seq cluster that it is predicted to belong to. The barplot

shows the proportion of the projected cluster labels for each scRNA-seq cluster. d Proportion of differentially expressed genes (DEGs) in each LNCaP

scRNA-seq cluster for the indicated sample comparisons that is composed of enriched transcription-factor (TF) target genes. The contributions of enriched

TFs identified in the scATAC-seq are shown as a stacked barplot. e Identification of matching cell clusters between the scRNA- and scATAC-seq data from

LNCaP visualized as heatmap. The heatmap shows the proportions of cells from each scATAC-seq cluster across all sample conditions assigned to each

scRNA-seq cluster as part of the label-transfer process. The proportions were calculated for each scATAC-seq cluster, with the total as the number of cells

from the scATAC-seq that could be confidently assigned to a scRNA-seq cluster (confidence score > 0.3). ENZ= enzalutamide. See also Supplementary

Fig. 3.
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11, and 77% of scATAC-seq cluster-7 cells were projected to
belong to scRNA-seq cluster 3 across the sample conditions
(Fig. 3e).

Taken together, these data show that transcriptional config-
uration of ENZ-resistant cells, especially cells persisting during
treatment, emerges from processes driven partially by chromatin
structure and TF-mediated transcriptional reprogramming. These
processes affect a number of important regulators of cell fate,

consistent with lineage commitment recently observed in tissue
development26.

Prostate cancer cell subpopulations with features of stemness
precede enzalutamide resistance. Cell cycle phase can be a
strong determinant of the integrative clustering of scRNA-seq
data. Accordingly, we found that persistent clusters 8, 9, and
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11 scored highly for S- and G2/M-phase-related genes using cell
cycle scoring in Seurat (see “Methods”) (Fig. 4a), suggesting that
cells in these clusters are more actively cycling and proliferating.
However, we found that cells in cluster 11 were characterized not
only by cell cycle genes, but also by the expression of genes
involved in chromatin remodeling and organization (CTCF,
LAMINB, ATAD2, and SS18), regulation of cell proliferation and
stemness (HES6 and its target PLK127, KRAS, FOXM1, and its
targets BIRC5, AURKA, AURKB, and CCNA228), and DNA repair
(BRCA2, FANCI, RAD51C, and POLQ) (Fig. 4b). Clusters 5 and
11 showed high expression of a gene set that characterized a cell
subpopulation with stem-like, androgen-insensitive, and cell
cycle-driven features from Horning et al.29 (Fig. 4c). We named
this gene signature Persist to highlight its association with cluster
11, a cell state that persists despite exposure and resistance to
ENZ. Karthaus et al. recently identified activated luminal prostate
cells able to regenerate the epithelium following castration30. We
extracted the gene expression profile associated with these pros-
tate luminal cells (see “Methods”) and used it to score each
scRNA-seq cluster. We found the initial cluster 10 to score highly
for this gene signature prior to ENZ treatment in the parental
LNCaP and named it PROSGenesis (Fig. 4d, Supplementary
Fig. 4a). We visualized the expression of PROSGenesis and Persist
genes in scRNA-seq samples from VCaP to confirm the presence
of these subpopulations of cells in other models (Fig. 4e).

We then set out to reconstruct the trajectories of how these
clusters of interest arise during the development of ENZ
resistance. Using CytoTRACE31 estimation of differentiation
states based on the number of expressed genes, cells in cluster
11 showed high developmental potential in most sample
conditions (Fig. 4f), suggesting that other cell subpopulations
could derive from cells in this cluster. RNA velocity analysis
estimated cluster 10 as a precursor of the enzalutamide-induced
clusters (Fig. 4g), concordant with a state derived from activated
regenerative luminal prostate cells as previously suggested30.
Cluster-specific differential velocity analysis in RES-A and RES-B
revealed downregulation of many PC-related genes such as
ATAD2, as well as upregulation of genes such as UBE2T, PIAS2,
PFKFB4, and EGFR (Supplementary Fig. 4b, c). ATAD2 and
UBE2T were otherwise upregulated in persistent clusters 8, 9, and
11 (Supplementary Fig. 4c), suggesting that additional transcrip-
tional reprogramming occurs in the ENZ-induced clusters.

These analyses point at two distinct subpopulations of PC cells
that precede ENZ resistance: one persistent cell cluster (cluster
11) matching Persist and one initial cluster (cluster 10) matching
PROSGenesis, a signature derived from tissue regeneration30.
Collectively, our data suggest that a small number of PC cells with
regenerative potential exist within the bulk tumor.

Model-based characterization of gene signatures in prostate
cancer bulk RNA sequencing. The use of molecular gene

classifiers or signature scores is an attractive strategy to select
cancer patients for treatment13,32. According to gene set variation
analysis, most of the persistent clusters and cluster 10 showed
enrichment of E2F target, G2M checkpoint, and MYC target
genes (Supplementary Fig. 4d). These data are largely concordant
with the bulk RNA-seq data on the same cells in our previous
study16, demonstrating that signals from subpopulations of cells
can be retrieved in bulk RNA-seq data. Differential expression
within clusters (Supplementary Data 2) and gene set enrichment
analysis further revealed that oxidative phosphorylation was
immediately upregulated in LNCaP–ENZ48, and that this process
is maintained selectively in RES-A but not in RES-B cells (Sup-
plementary Fig. 4e–g). Moreover, genes regulated by activated
mTORC1 signaling were consistently upregulated in most of the
clusters during the development of ENZ resistance (Supplemen-
tary Fig. 4e–g), in agreement with previous reports showing its
activation during ENZ treatment in patients26.

We therefore used a collection of signatures derived from the
scRNA-seq analysis to describe features of the same cells in bulk
RNA-seq datasets. In addition to Persist and PROSGenesis, we
included (1) NEPC markers (Supplementary Fig. 1g), (2) a
BRCAness gene signature33 as RES-A and RES-B maintain
sensitivity to PARP inhibition16 and the persistent cluster 11 is
characterized by markers of DNA repair (Figs. 4b), (3) gene sets
as proxies of AR signaling activation3, including activation of AR-
splice variants (AR-Vs), (4) the DEGs defining our scRNA-seq
clusters, and (5) gene sets for mTORC1 signaling and MYC
targets (Supplementary Fig. 4d–g) (Supplementary Data 3).

In the bulk, the ENZ-induced DEGs selectively appeared in the
RES-B cells (Fig. 5a). Similarly, the persistent clusters were
associated with the Persist signature only in RES-A and RES-B
when induced with DHT (Fig. 5a). On the other hand, the
PROSGenesis signature was elevated only in RES-B (Fig. 5a).

To confirm the properties of different signatures, we used
VCaP cells to develop an independent model of resistance to AR
signaling-targeted treatments, including ADT, bicalutamide,
ENZ, and bicalutamide/ENZ multiresistant sublines, and per-
formed bulk RNA-seq (Fig. 1a). These VCaP-based sublines did
not show NE features (Fig. 5b). Only ENZ-resistant VCaP cells
scored highly for the ENZ-induced DEGs, confirming the
specificity of this signature to ENZ treatment and resistance.
Parental and ENZ-resistant VCaP cells scored highly for the
PROSGenesis signature, while the scores of the persistent, Persist,
mTORC1 signaling, and MYC target signatures scored highly
selectively in resistant VCaP sublines (Fig. 5b). This suggests a
convergent mechanism of resistance to these agents in indepen-
dent models.

Next, we scored xenografts of AR+/NE−, AR−/NE+, or AR−/NE−

CRPC and NEPC tumors resistant to ENZ34,35 with the same
signature set (Supplementary Fig. 5a). AR+/NE− xenograft samples
clustered into two separate clusters. AR− tumors clustered together

Fig. 4 Transcriptional states in enzalutamide resistance. a Average expression of cell cycle-related genes (S- and G2/M phases) in cells from the single-

cell (sc) RNA-seq data. b, c Dot plot of average gene expression of the b indicated genes and of the c genes within the Persist signature in each scRNA-seq

cluster. The size of the dot reflects the percentage of cells in the cluster that express each gene. d Uniform manifold approximation and projection (UMAP)

visualization showing the average expression score of each cell for the genes in the PROSGenesis gene signature derived from Karthaus et al.30. e Cells in

VCaP and VCaP–ENZ48 (enzalutamide treated for 48 h) scored for their expression of Persist and PROSGenesis gene signatures. f Boxplots of predicted

cluster-differentiation states in the four LNCaP scRNA-seq samples based on cytoTRACE. Each cell is visualized as a point within its scRNA-seq cluster.

Clusters are ordered from left to right in order of decreasing predicted differentiation potential. The scRNA-seq clusters are labeled with numbers. The

boxplots show the 25th percentile, median, and 75th percentile, with the whiskers indicating the minimum and maximum values within the 1.5x

interquartile range. The two-sided Wilcoxon rank sum test was used to assess for differences in average cluster cytoTRACE scores and p-values are shown

within the figure (n= 111, 106, 122, and 126 for cluster-11 cells in LNCaP, LNCaP-ENZ48, RES-A, and RES-B; n= 127, 160, 379, and 226 for cluster-9 cells in

LNCaP, LNCaP-ENZ48, RES-A, and RES-B; and n= 135, 451 for cluster-8 cells in LNCaP–ENZ48 and RES-A). g RNA velocities based on scRNA-seq

depicted as streamlines. Clusters are shown in different colors and are numbered. ENZ= enzalutamide. See also Supplementary Fig. 4.
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with a series of AR+/NE− tumors due to low mTORC and MYC
signaling, while one cluster of AR+/NE− scored highly for all gene
sets apart from genes upregulated in NEPC. Interestingly, the
PROSGenesis signature, along with initial clusters and ENZ-induced
clusters, scored particularly high in AR+ tumors, while the Persist
signature, along with the persistent clusters, scored high in both
AR+/NE− and AR−/NE+ tumors (Supplementary Fig. 5a). This
suggests that the two signatures capture different tumor biologies. In
a transcriptome dataset based on an independent xenograft model36,
we found ENZ resistance to be uniquely associated with higher AR
activity, higher expression of MYC target genes, high score for
PROSGenesis, and high expression of the ENZ-induced cluster gene
set (Supplementary Fig. 5b). These data indicate that Persist status is
independent of AR status and that persistent cells might mediate the
development of both AR-positive CRPCs and AR-negative NEPCs.

Collectively, the persistent cluster, initial cluster, PROSGenesis,
and Persist gene signatures show potential for identifying
aggressive, regenerative features of PC from bulk RNA-seq.

Transcriptional signal enrichment analysis identifies
treatment-persistent cells and prognostic gene signatures in
prostate cancer patients. We hypothesized that we could use
enrichment of gene signature expression to stratify advanced and
primary PC patients.

To this end, we interrogated clinical data of CRPC patients
treated with ENZ reported in Alumkal et al.2 The patients
aggregated into two clusters based on our complete signature set
(Supplementary Fig. 5c), but patients in neither cluster had
significantly shorter progression-free survival (PFS; p= 0.049,
log-rank test). Utilizing a stepwise variable-selection process we
identified five significant signatures (NEPC upregulated, PROS-
Genesis, MYC targets, AR activity, and ARV) that are able to
identify patients with significantly shorter PFS (Supplementary
Fig. 5d). Moreover, PFS analysis of individual gene signatures
revealed association with shorter time to progression for patients
scoring high for the Persist signature (p= 0.025, log-rank test) or
for genes upregulated in NEPC (p= 0.00018, log-rank test)
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Fig. 5 Gene signatures derived from single-cell RNA sequencing capture important features of prostate cancer models and stratify patients with

advanced disease. a Heatmap of single-cell gene signature gene set variation analysis (GSVA) enrichment scores in bulk RNA-sequencing of LNCaP

treated with dihydrotestosterone (DHT) or enzalutamide (ENZ), and either sensitive or resistant to ENZ. b Heatmap of gene signature GSVA enrichment

scores in bulk RNA sequencing from VCaP subline derivatives VCaP-T (long-term cultured with 10 µM testosterone), VCaP-CT (VCaP-T long term

cultured with 0.1 nM testosterone), VCaP-CT-ET (VCaP-CT cultured long-term with 10 µM ENZ), VCaP-CT-BR (VCaP-CT cultured long term with

bicalutamide), and VCaP-CT-BR-ER (VCaP-CT-BR long-term treated with ENZ upon reaching bicalutamide insensitivity). c Kaplan–Meier progression-free

survival curves for Alumkal et al.2 patients stratified into two groups based on median GSVA score for the Persist gene signature. The two-sided log-rank p-

value is shown above the curves. d Kaplan–Meier progression-free survival curves for Alumkal et al. patients stratified into two groups based on median

GSVA score for the NEPC-upregulated gene signature. The two-sided log-rank p-value is shown above the curves. e Kaplan–Meier overall survival curve for

abiraterone (ABI)- and ENZ-naive patients from the Stand Up 2 Cancer (SU2C) CRPC cohort5 stratified into two groups based on median GSVA score for

the Persist gene signature. The two-sided log-rank p-value is shown above the curve. f Summary table of gene signature GSVA score associations with

progression-free survival (PFS) or overall survival (OS) in the clinical datasets. Only gene signatures significantly associated with PFS or OS in one or more

datasets are shown. Good indicates that a higher score for the signature (a score higher than the median) is associated with better survival outcome, while

poor indicates that a higher signature score is associated with worse survival outcome. Two-sided log-rank p-values are shown in parentheses. For each

dataset, the header indicates the number of samples included, along with other qualifying information of the dataset. We used ABI/ENZ-naive patients

from the capture-based SU2C CRPC RNA-seq dataset. See also Supplementary Fig. 5.
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(Fig. 5c, d), while patients with longer PFS scored highly for
PROSGenesis (p= 0.021, log-rank test) and for the initial cluster
signature (p= 0.018, log-rank test) (Supplementary Fig. 5e).

None of the cluster marker gene sets showed a significant
difference between Stand Up To Cancer (SU2C) CRPC
abiraterone/ENZ-naive and abiraterone/ENZ-exposed patients5

according to their latest treatment regime. This suggests that it
may be difficult to retrieve differences between these bulk-
sequenced tumors from heavily pretreated patients using single-
cell-derived signatures. However, Persist was still significantly
associated with poor overall survival in these patients (Fig. 5e),
supporting the potential significant activity of the persistent cells
in this group of patients. Similarly, we could not stratify patients
that developed resistance to ENZ in the SU2C West Coast DT
Quigley et al. dataset37 (Supplementary Fig. 5f), although in this
case, ENZ-sensitive patients had higher expression of PROSGen-
esis (p= 0.024, Wilcoxon rank-sum test) (Supplementary
Fig. 5g).

These data show that the Persist signature associated with
persistent cells (cluster 11) from our single-cell analysis of ENZ
resistance is a consistent classifier with the potential of stratifying
patients for response to second-line AR-targeted treatments
(Fig. 5f).

We then hypothesized that we could systematically use the
persistent cluster 11, Persist, initial cluster 10, and PROSGenesis
signatures as a proxy for the presence of PC cells with different
transcriptional features in clinical settings and to capture signals
from pre-existing subclones with metastatic potential in primary
untreated tumors. To this end, we took advantage of a recently
published scRNA-seq dataset on clinically relevant PC
specimens38 (Fig. 6a). We used GSVA scoring to highlight our
13 scRNA-seq clusters in 36424 cells from 13 primary untreated
PC specimens (Supplementary Fig. 6a). The analysis showed that
our LNCaP model-derived cell clusters scored higher in luminal
and basal/intermediate cells compared with fibroblasts (p= 0.047,
t-test) (Supplementary Fig. 6a). Additionally, luminal cells had
higher expression of genes associated with our initial scRNA-seq
clusters compared with the basal/intermediate cells (p= 0.020, t-
test) and compared with fibroblasts (p= 0.00015, t-test).

We then scored the cells for the expression of genes from the
Persist and PROSGenesis signatures, along with their associated
clusters (11 and 10, respectively) and control signatures linked to
AR activity (ARV, AR-FL, and AR activation), BRCAness, and
NEPC (Fig. 6b). We defined a high score for a gene signature to
be above the 90th percentile. About 48% percent of the cells that
scored highly for the Persist signature were luminal cells (Fig. 6c).
Cells scoring highly for the PROSGenesis signature were mostly
basal/intermediate (78% of high-scoring cells) (Fig. 6d). Each
tumor harbored on average 8% of cells scoring high for the Persist
signature (ranging from 2% in tumor 173 to 23% in tumor 156)
and 8% of cells scoring high for the PROSGenesis signature
(ranging from 0.9% in tumor 153 to 33% in tumor 172) (Fig. 6e).

To reconcile the presence of these cells and their relative
histopathological position, we assessed gene expression within
two sections of primary untreated PC (prostate A and B) with
spatial transcriptomics (see “Methods”). We reconstructed the
gene expression signal from stromal and epithelial components in
an average of 1682 spots per sample using clustering analysis and
annotated the tissue architecture in 5 clusters of stromal tissue
(ST), benign epithelium (BE), and adenocarcinoma (PC–AC)
(Fig. 6f, Supplementary Fig. 6b). PROSGenesis and Persist
signatures, as well as the companion model-derived cluster
10 signature, showed high expression scores within the sections
compared to scores from housekeeping gene signatures (Fig. 6g,
Supplementary Fig. 6c). We compared the score distributions of
our signatures to the housekeeping gene set score distributions

and determined the 90th percentile as a score cutoff for high
expression by allowing for 5% false positives (see “Methods”).
Spots with high signal were found interspersed in all five clusters
in both sections (Fig. 6h, Supplementary Fig. 6d). In prostate A,
however, spots scoring highly for the Persist signature were more
prevalent in the PC–AC cluster compared with ST (p= 0.0049,
chi-square test). Spots scoring highly for PROSGenesis were
further enriched in the BE and PC–AC clusters compared with ST
(p < 0.001 in both cases, chi-square test), while spots scoring
highly for cluster 10 were enriched in the BE clusters compared to
all other tissue regions (p < 0.001 for each comparison, chi-square
test) (Fig. 6h). Concordant observations were made for
PROSGenesis and cluster 10 signatures in prostate B (Supple-
mentary Fig. 6d). To validate these findings, we undertook a
similar approach to reanalyze spatial transcriptomics data from
prostate sections 3.3, 1.2, and 2.4 from Berglund et al.39, which
were annotated to contain a significant proportion of cancer.
Similar to our initial observations, these sections showed
enrichment of spots scoring highly for the PROSGenesis in the
PC–AC clusters compared with ST or prostatic intraepithelial
neoplasia clusters (Supplementary Fig. 6e–g). Spots scoring highly
for cluster 10 were more prevalent in both benign and cancerous
clusters. Taken together, these data suggest the presence of
treatment-persistent cells interspersed within the primary
untreated prostate tissue of PC patients with high metastatic
potential.

Finally, we verified whether we could predict recurrence in
primary PC patients using the signature genes derived from these
cells. We interrogated legacy primary tumor TCGA PRAD
(https://www.cancer.gov/tcga) (Fig. 7a) and early-onset PC
(EOPC) ICGC12 RNA-seq data (Supplementary Fig. 7a) for our
gene signatures of interest. Using all signatures for clustering, the
TCGA PRAD cohort separated 54% of Gleason score (GS)-7 and
15% of GS-8+ patients that would not benefit from additional
treatment, as they had relatively good prognosis (Fig. 7b). A
similar trend was also observed in the ICGC cohort (Supple-
mentary Fig. 7b). ENZ-induced cluster (Fig. 7c), PROSGenesis
(Fig. 7d), Persist (Fig. 7e), and persistent cluster (Fig. 7f) gene
signatures were the most significant contributors to cluster
separation in the TCGA cohort, while NEPC-downregulated
genes were the major determinant in the ICGC cohort
(Supplementary Fig. 7c). In line with previous reports2, signatures
reflecting AR activity (AR activity and full length AR) in these
tumors were consistently associated with longer time to
progression in the TCGA cohort (Fig. 7g, h), suggesting a better
response to inhibition of AR signaling in AR-driven tumors. In
the EOPC cohort, which is enriched in GS-7 tumors compared
with the TCGA PRAD cohort, the persistent cluster and
PROSGenesis signatures significantly stratified GS-7 patients
(p= 0.034 and p= 0.021, log-rank test) (Supplementary Fig. 7d,
e), suggesting the ability of these signatures to further refine GS-
based risk stratification in patients and avoid overtreatment. High
PROSGenesis score was associated with good prognosis together
with the gene set from the initial cluster 10 (Fig. 7i). Individually,
8 out of 13 cluster-derived signatures showed association with
PFS in the TCGA cohort (Fig. 7i), pointing at the utility of these
signatures in PC patient risk stratification.

Discussion
In this study, we provide a molecular perspective on the emer-
gence of resistance to AR-targeted treatment at a single-cell level.
Karthaus and colleagues recently found that luminal prostate cells
that persist after ADT in a mouse model can contribute to tissue
regeneration of the normal prostate epithelium by assuming
stem-like transcriptional properties30. Using PC specimen tumor
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DNA, we recently showed the presence of subclones within pri-
mary tumors that preserve the ability to expand and metastasize
years after treatment and that are found interlayered within dif-
ferent lesions of multifocal tumors9. Similarly, a recent work
studying lung cancer metastases found that metastatic capacity
arises from pre-existing and heritable differences in gene
expression40. Here we find that during exposure to AR-targeting
agents, a small proportion of persistent cells remain tran-
scriptionally unperturbed by the treatment.

We visualize these cells in primary untreated PC specimens
and find them to be enriched in cancerous regions of

histopathologically relevant tumors using spatial transcriptomics,
as well as interspersed in apparent benign tissue. As differ-
entiating between benign basal epithelia and tumor epithelia
remains one of the major questions of the PC field, understanding
the presence and function of these persistent and potentially
regenerative cells in histopathologically noncancerous regions
warrants further studies. Our data show evidence of a hierarchical
model of emergence of enzalutamide resistance41 in which
treatment-persistent cells are able to regenerate the bulk of
resistant cells. We describe the properties of the persistent cells
using RNA velocity and show different intermediate states in
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alternative trajectories of treatment resistance. This process is
partially driven by chromatin remodeling, which is consistent
with chromatin-accessibility lineage priming26,42.

In PC, gain of function of bromodomain-containing proteins
such as BRD443,44 and ATAD244,45, as well as loss of function of
the chromatin remodeler CHD14, have been shown to contribute to
PC progression and lineage plasticity in therapy resistance. This
process is likely accompanied by chromatin reprogramming20,44,46.
While many groups have focused on the effect of AR-targeted
treatment on chromatin-associated factors such as CREB547 or TFs
such as GR48 and AR49, in this study, we found that exposure to
AR-targeting agents increases the overall relaxation of the chro-
matin. While we used separate assays for scATAC-seq and scRNA-
seq in different cells, we were able to integrate these data using the
label-transfer method across datasets. These analyses revealed that
subpopulations of cells with different chromatin states may lead to
multiple transcriptional configurations, including those of persistent
cells. Availability of chromatin accessibility and gene expression
data from the same cell would further reduce technical variation
and enable more in-depth characterization of these configurations.
Using cell-line models mimicking alternative trajectories of treat-
ment resistance, we infer that differential DNA motif exposure
determined by chromatin structure may partially contribute to TF
activity-mediated transcriptional reprogramming in the different
cell subpopulations induced by enzalutamide exposure. According
to this analysis, specific subpopulations of PC cells are more subject
to TF activity reprogramming than others. This is consistent with
recent studies showing simultaneous detection of multiple tran-
scription factors on single DNA molecules and TF cooccupancy
frequently occurring at sites of competition with nucleosomes18.

We show that treatment-persistent cells have high cell cycle
turnover, compatible with high regenerative potential50,51, and
identify the transcriptional features characterizing this cell
population. As these features have been associated with more
aggressive tumors, we developed transcriptional signatures based
on two cell states: one state renamed PROSGenesis derived from
ADT-treated prostate cells by Karthaus et al.30 and another state
that we called Persist that was associated with persistent cells
during the emergence of ENZ resistance. PROSGenesis, Persist,
and associated signatures can capture different tumor types and
stratify ARSI-exposed CRPC patients’ outcome. Moreover, we
show that in primary PC patients undergoing ADT treatment,
high signature scores in treatment-naive specimens are associated
with shorter time to progression (biochemical recurrence).
Interestingly, in primary treatment-naive patients, high score for
PROSGenesis is associated with longer response to ADT, possibly
due to the stronger contribution of AR activity in these tumors.

Overall, we have identified and characterized gene signatures that
can be used to profile subpopulations of treatment-persistent cells
with regenerative properties that foster alternative trajectories of
AR-targeted treatment-resistant PCs.

Methods
Cell lines and culture. LNCaP and VCaP cell lines were obtained from American
Type Culture Collection (ATCC; LGC Standards), authenticated periodically (HPA
cultures or Eurofins), and tested for mycoplasma contamination monthly. RES-A
and RES-B cells were generated by prolonged exposure to the second-generation
anti-androgens enzalutamide and RD-162. RES-A was generated by passaging
LNCaP cells in increasing concentrations of enzalutamide for 9.5 months, whereas
RES-B was generated by continuous treatment with 10 µM RD-162 for
13 months16. LNCaP parental (ATCC), RES-A, and RES-B cells were cultured in
RPMI 1640 (Sigma R0883) supplemented with 10% FBS (Sigma F7524), 2 mM
Alanyl-glutamine (Sigma G8541), 1 mM sodium pyruvate (Merck TMS-005-C),
2.5 g/L glucose (Sigma G8769), and 1x Antibiotic–Antimycotic (Gibco, 15240062)
in a humidified 37 °C incubator with 5% CO2. RES-A and RES-B cells additionally
received 10 µM enzalutamide (MedChemExpress HY-70002) with each cell split-
ting/feeding. VCaP cells were cultured in DMEM (Gibco) supplemented with 10%
FBS in a humidified 37 °C incubator with 5% CO2.

For experimental treatments, ~1 × 106 cells were seeded into 5-cm culture plate
dishes, and allowed to settle before exposure to 10 µM enzalutamide or DMSO vehicle
control (0.1%) for 48 h or 168 h. The additional LNCaP cells (ATCC) and RES-C cells
were cultured in a humidified CO2 incubator at 37 °C in Gibco™ RPMI 1640 (1X)
media (Thermo Fisher Scientific) supplemented with 10% FBS (Gibco standard FBS,
Thermo Fisher Scientific), 2 mM L-Glutamine (Gibco®, Thermo Fisher Scientific),
and a combination of 100 U/ml Penicillin and 100 μg/ml Streptomycin (Gibco® Pen
Strep, Thermo Fisher Scientific). The enzalutamide resistant LNCaP RES-C cell line
was generated by passaging of LNCaP cells with continuous treatment with 10 µM
enzalutamide for nine months and maintained in the same medium as LNCaP except
for the supplementation with 10 µM enzalutamide.

Generation of resistant VCaP subline derivatives and RNA-seq. The androgen-
sensitive VCaP cell line (passage (p.) 15) was a gift from Dr. Tapio Visakorpi,
Tampere University, Finland. Cells were cultured in RPMI 1640 supplemented
with 10% DCC–FBS, 1% L-glutamine, 1% A/A, and 10 nM testosterone (T) for
seven months to establish T-dependent subclone VCaP-T. VCaP-T cells were then
cultured at low testosterone (0.1 nM) for 10 months to establish VCaP-CT, an
androgen-independent cell line able to grow despite low testosterone. VCaP-CT
was then cultured at 10 µM enzalutamide until the cells regained the ability to grow
despite enzalutamide, creating enzalutamide resistant cell line VCaP-CT-ET.
Another cell line was created by incubating first VCaP-CT cells with bicalutamide
and subsequently with enzalutamide upon reaching bicalutamide insensitivity.
Ultimately these cells also gained the ability to grow despite enzalutamide, creating
the multiresistant cell line VCaP-CT-BR-ER.

RNA sequencing of the VCaP cells was performed with Illumina HiSeq 3000.
We sequenced 3 replicates, obtaining an average of 111 million paired-end reads
per sample. Reads were aligned using STAR aligner v2.5.4b52 and Ensembl
reference genome GRCh38. Genewise read counts were quantified using
featureCounts v1.6.253 and Gencode release 28 annotations.

Single-cell sample preparation and sequencing. LNCaP parental (treated for 48 h
with enzalutamide or DMSO), RES-A, and RES-B cells were harvested with 0.05%
Trypsin-EDTA (Sigma T3924). After neutralization with complete medium,

Fig. 6 Transcriptional signal enrichment analysis identifies treatment-persistent cells in prostate cancer. a t-Distributed stochastic neighbor embedding

(tSNE) visualization of cell types from 13 treatment-naive prostate tumors from Chen et al.38. b Gene set variation analysis (GSVA) enrichment scores for

gene signatures in luminal, basal/intermediate, and fibroblast cells from Chen et al. GSVA enrichment scores were generated from the average expression

profile of each cell type. c-d tSNE plot of prostate tumor cells from Chen et al. colored according to their average expression of the genes in c the Persist

signature and d the PROSGenesis signature. The adjacent histograms show the distribution of average expression scores in the cells, with a red dashed line

marking the 90th percentile of scores. e Percentage of cells scoring at or above the 90th percentile for the Persist and PROSGenesis signatures belonging

to each prostate tumor from Chen et al. f–h Spatial transcriptomics (ST) from a prostate cancer tissue section, Prostate A. f The left panel shows the

hematoxylin and eosin (H&E) staining of the tissue section. In the middle, the uniform manifold approximation and projection (UMAP) visualization shows

the clusters of spots on the ST slide. Each cluster is labeled according to its histological tissue type, with BE referring to benign epithelium. The right panel

shows the UMAP clusters of spots overlaid on the H&E slide. g Sensitivity analysis of Persist and PROSGenesis signatures scores in ST against the score

distributions of control housekeeping gene signatures (see “Methods”). h The leftmost panel shows the ST UMAP clusters of spots overlaid on the H&E

slide. Each spot was scored according to its expression of genes in the Persist, PROSGenesis, and cluster-10 signatures. For each signature, spots scoring at

or above the 90th percentile (high) are colored in red, while spots scoring below the 90th percentile (low) are colored in yellow. The barplots indicate the

percentage of spots in each cluster scoring high or low for each signature. The bars are labeled with the cluster histology and the cluster number in

parentheses, with BE referring to benign epithelium. Differences in proportions of high-scoring spots between clusters were tested with the chi-square test.

See also Supplementary Fig. 6.
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centrifugation (300 × g for 5min), and resuspension in PBS/0.5% BSA, the cells were
filtered through a 35-µm Cell Strainer (Corning 352235) and a single-cell suspension
of living cells was acquired through sorting on a FACS Aria II cell sorter. The cell
concentration of the single-cell suspension was assessed with a Countess II FL
Automated Cell Counter and ~3 × 104 cells were pelleted (300 × g for 5min) for
further processing for using the Chromium Single Cell 3′ Library, Gel Bead &
Multiplex Kit, and Chip Kit (v3, 10x Genomics).

For the additional LNCaP parental and RES-C cells, 1 million cells were thawed
in RPMI (Gibco) with 10% FBS (Gibco) and centrifuged at 300 g for 5 min. The
cells were then suspended in PBS with 0.04% BSA (Ambion) and filtered with
Flowmi™ cell strainer (Bel-Art). Before loading, the cells’ viability and
concentration was determined using Trypan blue with Cellometer Mini Automated
Cell Counter (Nexcelom Bioscience). Chromium Single Cell 5′ RNA-seq was
performed using the 10X Genomics Chromium technology, according to the
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Fig. 7 Transcriptional signals from persistent prostate cancer cells can be used to stratify untreated patients. a Heatmap of gene set variation analysis

(GSVA) enrichment scores for all single-cell (sc)-derived gene signatures in the TCGA-PRAD cohort, including the marker gene sets for each scRNA-seq

cluster. Hierarchical clustering of the GSVA scores was used to separate the samples into two groups, labeled Branch 1 and Branch 2. b Kaplan–Meier

survival curve for TCGA–PRAD patients stratified into two groups as indicated in panel a. The two-sided log-rank p-value is shown within the plot. c–h

Kaplan–Meier survival curves for TCGA–PRAD patients stratified into two groups based on median GSVA score for ENZ-induced cluster, PROSGenesis,

Persist, persistent cluster, AR activity, and ARFL gene signatures. In each plot, the two-sided log-rank p-value is indicated above the plotted curves. i

Summary table of gene signature GSVA score associations with progression-free survival (PFS) in the TCGA–PRAD and ICGC–EOPC datasets. Only gene

signatures significantly associated with PFS in one or both datasets are shown. Good indicates that a higher score for the signature (a score higher than the

median) is associated with better survival outcome, while poor indicates that a higher signature score is associated with worse survival outcome. Two-

sided log-rank p-values are shown in parentheses. For each dataset, the header indicates the number of samples included. ENZ= enzalutamide,

NEPC= neuroendocrine prostate cancer. See also Supplementary Fig. 7.
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Chromium Next GEM Single Cell V(D)J Reagent Kits v1.1 kit User guide
CG000208 Rev D with loading concentration of 1000–2000 cells/µl.

The LNCaP–ENZ168, VCaP, and VCaP–ENZ48 single-cell RNA-seq samples
were prepared with Drop-seq54 using the Dolomite cell encapsulation system
(Dolomite Bio). Cells were trypsinized with TrypLETM Express Enzyme
(ThermoFisher Scientific, #12604021), spun down (5 min at 300 × g), and washed
with 0.1% BSA–PBS. After pelleting, the cells were resuspended in plain PBS and
passed through a 40-micron filter. The number of viable cells was estimated with
the use of trypan blue staining and Fuchs–Rosenthal hemocytometer chamber. The
concentration of cells was brought down to 3 × 105 cells/mL in 0.1% BSA–PBS. For
single-cell encapsulation, single-cell suspension, beads in lysis buffer and oil were
connected with the loops and tubing to the Mitos P pumps and run through the
glass microfluidic chip at the following flow rates: 100 μL/min (Oil channel), 20 μL/
min (Bead channel); 350 mbar (Cell channel). Droplets were separated by
centrifugation and beads counted with the use of Fuchs–Rosenthal hemocytometer
chamber and up to 90000 beads were collected into one tube for reverse
transcription reaction, exonuclease treatment, and amplification of cDNA library
according to the original protocol54. Tagmentation of cDNA was performed with
the Nextera XT DNA Library Preparation Kit (Illumina, #FC-131-1024). The PCR
product was cleaned up with AMPure XP beads, eluted in 10 μL of H2O, and
sequenced using Illumina HiSeq 2500 Rapid run.

For scATAC-seq, cell nuclei were isolated following the 10x Genomics
Demonstrated Protocol for Single Cell ATAC Sequencing (CG000169-Rev C).
Briefly, the cell suspension was washed once in PBS/0.04% BSA, and 2 × 105 cells
were pelleted (300 × g for 5 min), resuspended in 100 µl of freshly prepared lysis
buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20, 0.1%
NP40 Substitute, 0.01% Digitonin, and 1% BSA), and incubated on ice for 4 min
(LNCaP parental cells), 6 min (RES-A), or 5 min (RES-B). The lysates were diluted
with 1 ml of wash buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2,
0.1% Tween-20, 1% BSA), and the nuclei were pelleted (500 × g for 5 min) and
resuspended in 30 µl of 1× Nuclei Buffer (10× Genomics PN-2000153). Successful
preparation of intact, isolated nuclei was confirmed through visual inspection in a
phase-contrast microscopy, and nuclei concentration was assessed with a Countess
II FL Automated Cell Counter, before proceeding immediately to processing for
single cell ATAC sequencing using 10× Chromium, 10× Genomics library
preparation and the Chromium Single Cell ATAC Reagent Kits (v1) User Guide
(CG000168 Rev D).

Sequencing was performed on the Illumina NextSeq500 instrument at the
genomics core facility at the Oslo University Hospital, while sequencing of the
additional LNCaP parental and RES-C was performed with Novogene Company
Limited, Cambridge, UK’s sequencing core facility was used with a PE150 NovaSeq
sequencer, aiming at 50000 reads per cell.

For scRNA-seq, sequencing reads were processed into FASTQ format and
single-cell feature counts using Cell Ranger v3.0.255. Similarly, Cell Ranger ATAC
v1.1.056 was used to process sequencing reads from scATAC-seq into FASTQ
format and peak-barcode counts. In both cases, we used the Cell Ranger prebuilt
GRCh38 reference. The LNCaP–ENZ168, VCaP, and VCaP–ENZ48 Drop-seq
samples were preprocessed, aligned, and processed to cell count matrices with the
Drop-seq tools v2.3.0 pipeline (as described in https://github.com/broadinstitute/
Drop-seq/blob/master/doc/ Drop-seq_Alignment_Cookbook.pdf) using default
parameters and with the expectation that each sample contained 1000 cells54. The
pipeline uses the STAR aligner v2.7.3a52 and Picard Tools v2.18.22 (http://
broadinstitute.github.io/picard/). We utilized the human reference genome version
GRCh38, along with Gencode annotations version 33.

Formaldehyde-assisted isolation of regulatory element (FAIRE) sequencing

and analysis. FAIRE was performed on parental and RES-A cells in biological
triplicate according to the standard protocol57. Prior to FAIRE-seq, cells were
cultured for three days in RPMI medium supplemented with 5% DCC FBS and
10 µM enzalutamide was added only to the resistant cell line. Both sublines were
then treated with DMSO (control), DHT (10 nM; Sigma Aldrich), enzalutamide
(10 µM, Selleckchem), or a combination of DHT and enzalutamide for 18 h. The
DNA fragments isolated by FAIRE were used for library preparation with the
Roche KAPA library prep kit according to the manual and sequenced on the
Illumina HiSeq 2500 to produce 50-bp single-end reads at the Genomics core (KU
Leuven) and aligned using bwa v0.7.8-r45558 against hg19. Duplicates were marked
and realigned using Picard 1.118. Peak calling was performed on the aligned files
using MACS2 v2.1.059. MSPC v4.0.260 was used to jointly analyze the peaks called
in the three replicates from each sample. DiffBind v2.14.061 was used to explore
peak overlaps and to derive consensus peak sets. Read-distribution analysis around
common peak sites, MYC-binding sites, and AR-binding sites was performed by
counting the average number of reads across replicates for each sample condition
in 100 bp bins extending 1 kb up- and downstream of the sites. The read counts
were normalized using the average read counts at the flanks of the distribution
(100-bp on both sides). The value at the center (position 0) of the distributions was
compared between samples using the t-test to assess for differences in chromatin
openness at these sites.

Software and statistical testing. Software and tools utilized in this study are
described in Supplementary Table 2. Analyses were performed using R v3.6.3 or

Python v3.7.0, unless otherwise stated. Statistical testing was performed using R
v3.6.3. Statistical tests used are indicated in the text and in figure legends. All
statistical tests were two-sided. The Shapiro–Wilk test was used to test for
normality.

Single-cell RNA preprocessing and quality control. The Cell Ranger output was
used as the input to Seurat v3.2.024,62 for further analysis of the scRNA-seq
samples. For each sample, poor-quality cells were filtered based on the number of
detected genes, the total number of molecules detected, and the percentage of reads
arising from the mitochondrial genome. Specific filtering thresholds for each
sample and the associated quality metrics are shown in Supplementary Data 4. To
address the effects of cell cycle heterogeneity in the data, each cell was scored for its
expression of genes associated with S or G2/M phases (gene sets provided within
Seurat) using the Seurat CellCycleScoring function. The difference between the G2/
M- and S-phase scores was regressed out using sctransform63.

Single-cell RNA clustering. The mutual nearest neighbor approach fastMNN64 was
used to integrate the four LNCaP samples using 2000 integration features and account
for batch effect. Clustering using default parameters and uniform manifold approx-
imation and projection (UMAP) nonlinear dimensionality reduction were performed
using Seurat v3.2.0, and we refer to the result as our integrated clusters. The marker
genes of each cluster (genes differentially expressed in each cluster compared with all
other clusters) and differentially expressed genes between samples were identified with
Seurat using the generalized linear model MAST framework v1.12.065, using the
number of RNA reads as a latent variable. A gene was considered to be differentially
expressed with Bonferroni-corrected p-value < 0.01, at least 10% of the cells in the
cluster expressing the gene, and an average log-fold change of at least 0.25.

Single-cell RNA cluster and sample characterization. We utilized hallmark gene
sets from the Molecular Signatures Database (MSigDB) v7.066,67 to characterize
clusters and samples based on their differentially expressed genes. Gene set var-
iation analysis (GSVA) was performed using the GSVA package v1.34.0 to char-
acterize the average expression profile of each cluster. See the “Bulk RNA-seq and
clinical data analysis” section for a more detailed description of the method. To
characterize the gene expression changes within each cluster between samples, all
genes were ranked based on their average log-fold change. The fgsea package
v1.14.0 was then used to perform gene set enrichment analysis for the MSigDB
hallmark gene sets using 1000 permutations. The differentiation potential of each
cell in each sample was predicted using cytoTRACE v0.3.331 using R v4.0.4. The
RNA velocities of single cells in the scRNA-seq samples were assessed using scVelo
v0.2.268. Loom input files for scVelo were generated from the FASTQ files of each
sample using loompy v3.0.0, and the metadata for running scVelo (filtered cell
identifiers, UMAP coordinates, and cluster information) were extracted from the
integrated Seurat object and integrated with the Loom files.

Single-cell ATAC preprocessing and quality control. The output of the Cell
Ranger ATAC pipeline was used as the input to Signac package v0.2.569 for further
analysis of the scATAC-seq samples. For each sample, poor-quality cells were
filtered based on the following features: strength of nucleosome-binding pattern,
transcription start site enrichment score as defined by ENCODE, total number of
fragments in peaks, fraction of fragments in peaks, and percentage of reads in
ENCODE-blacklisted genomic regions. Specific filtering thresholds for each sample
and the associated quality metrics are shown in Supplementary Data 4. Data
normalization and dimensionality reduction was performed using Signac with
latent semantic indexing (LSI), consisting of term frequency-inverse document
frequency (TF-IDF) normalization and singular-value decomposition (SVD) for
dimensionality reduction, using the top 50% of peaks in terms of their variability
across the samples. The first LSI component reflected sequencing depth across the
samples and was not utilized in downstream analyses.

Single-cell ATAC clustering and analysis. Integrated clustering of the scATAC-
seq samples was performed with harmony v1.070 using LSI embeddings. The
resulting harmony-adjusted cell embeddings were used as input in the Signac
package for UMAP nonlinear dimensionality reduction and clustering using
default parameters and the smart local moving (SLM) algorithm for modularity
optimization.

A pseudobulk analysis of changes in chromatin accessibility in the scATAC-seq
samples was performed by pooling the reads from all good-quality cells in each
sample. Transcription start site enrichments were generated using the
TSSEnrichment function in Signac. Chromatin-accessibility tracks based on
fragment coverage were generated using the Signac CoveragePlot function.
Overrepresentation of Reactome pathways was assessed using ReactomePA
v1.30.071. Differentially accessible regions in the clusters were identified using
Signac with a logistic regression model that predicts group membership based on
each gene and uses a likelihood-ratio test to compare the result to a null model,
with the total number of peaks as a latent variable. Regions were considered
differentially accessible with Bonferroni-corrected p-value < 0.05, at least 10% of
the cells showing accessibility in the region, and an average log-fold change of at
least 0.25. Differentially accessible regions were annotated with their closest gene
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using the Signac ClosestFeature function. Visualization of differentially accessible
regions in clusters between samples was generated using R package ggradar v0.2.

Transcription factor motif enrichment of scATAC-seq and transcriptional

output. Transcription factor motif enrichment was performed using Signac in
differentially accessible chromatin regions between sample conditions and between
clusters in each sample with R package TFBSTools v1.26.0, R package BSgeno-
me.Hsapiens.UCSC.hg38 v1.4.1, and JASPAR database position-frequency matrices
retrieved from the R JASPAR2018 data package v1.1.1. The hypergeometric test
was used to test for significant motif enrichments, taking into account sequence
characteristics of the chromatin regions (e.g., GC frequency). P-values were
adjusted with the Benjamini–Hochberg method and motifs with adjusted p-values
less than 0.05 were considered to be enriched. Transcription factors that are known
to play a role in PC were filtered based on their expression in the single-cell dataset.
Chromatin states in scATAC-seq (as defined by the enriched TFs in differentially
open-chromatin regions) were connected to transcriptional outputs in the scRNA-
seq by assessing for overlap between the target genes of enriched transcription
factors and differentially expressed genes in the scRNA-seq clusters. Transcription
factor target genes were obtained using the GTRD database v18.0672 and selecting
those with differentially accessible regions observed between castration-resistant
prostate cancer and prostate cancer patients in Uusi-Mäkelä et al46.

Integration of scRNA-seq datasets and scRNA- and scATAC-seq datasets

using label transfer. The clusters identified from the integrated clustering of
scRNA-seq from LNCaP, LNCaP–ENZ48, RES-A, and RES-B (Fig. 3a) were
queried in additional scRNA-seq samples (alternative LNCaP parental,
LNCaP–ENZ168, RES-C, VCaP parental, and VCaP–ENZ48) (Fig. 1a) using the
label-transfer approach implemented in Seurat v3.2.024. The additional scRNA-seq
samples were individually clustered and anchors were identified for each additional
scRNA-seq sample (the query) and the LNCaP-integrated clusters (the reference).
This was done using the FindTransferAnchors function with principal component
analysis (PCA). The anchors were used to transfer cluster-label identifiers between
the two data types using the TransferData function. Each cell in the query was
assigned the cluster label with the highest prediction score, and only query cells
with prediction scores above 0.5 were considered to have been successfully label
transferred.

LNCaP, LNCaP–ENZ48, RES-A, and RES-B had scRNA-seq and scATAC-seq
data available from each sample (Fig. 1a). These data types were integrated using
the cluster-label transfer procedure as implemented in Signac v0.2.5 and Seurat
v3.2.0. Each scRNA-seq sample was clustered individually and its cluster labels
were projected onto the matching, individually clustered scATAC-seq sample, or
vice versa. The clustering resolution of each sample was assessed and decided using
clustree v0.4.373. Briefly, RNA-seq expression levels were imputed from the
scATAC-seq data by defining for each gene a genomic region, including the gene
body and 2 kb upstream of the transcription-start site and taking the sum of
scATAC-seq fragments within the region. Anchors were identified for condition-
matched scRNA- and scATAC-seq samples using the FindTransferAnchors
function and canonical correlation analysis (CCA) was performed on the scRNA
expression values and the scATAC-imputed gene expression values. The anchors
were used to transfer cluster-label identifiers between the two data types using the
TransferData function. Each cell in the query was assigned the cluster label with the
highest prediction score, and only query cells with prediction scores above 0.3 were
considered to have been successfully label transferred. We tested various
prediction-score thresholds and found that approximately 50% or more cells were
label transferred between data types in all samples using a threshold of 0.3
(Supplementary Table 3).

Signature gene selection. To generate the PROSGenesis signature, we extracted
the gene expression profile associated with the regenerative mouse prostate luminal
2 cells reported in Karthaus et al.30 and found 78 genes with homologs in humans
that were profiled in our scRNA-seq dataset. The mTORC1 signaling and MYC
target gene signatures were obtained from the hallmark gene sets from the
Molecular Signatures Database (MSigDB). Other signature gene sets were retrieved
from previous publications or from our scRNA-seq data analysis as indicated in the
main text.

Bulk RNA-seq and clinical data analysis. Each gene signature or set was assessed
for enrichment and scored in a sample using the GSVA package v1.34.0, which is a
nonparametric, unsupervised method for estimating gene set enrichment of each
sample from gene expression data. For GSVA analysis, first, scale normalization at
the seventy-fifth percentile based on the DSS package74 was applied to the raw read
counts from samples in datasets where these counts were available. For the TCGA
and ICGC cohorts, we then filtered out genes with a zero count in any of the tumor
samples. For each gene, GSVA performed a Poisson kernel transformation based
on its empirical cumulative density function (CDF) across all samples. For RNA-
sequencing datasets where only log-normalized expression values rather than raw
counts were available, Gaussian kernels were utilized instead of Poisson kernels in
the GSVA calculation. The kernel-transformed expression values were then

converted to ranks for each sample across all genes and the ranks were normalized
to centered at zero. Next, for a given gene signature or set, following a similar
procedure as GSEA67, the Kolmogorov–Smirnov-like random-walk statistics were
calculated using the normalized ranks based on two statistics: (1) a running sum of
the genes that belong to the gene set. It is denoted as S1. (2) A running sum for the
genes that do not belong to the gene set. It is denoted as S2. For sample j, and gene
signature k, we define ESþjk as the largest positive deviations from zero of S1–S2, and

ES�jk as the smallest negative deviations from zero of S1–S2. The final GSVA-

enrichment score of sample j and gene signature k is jESþjk j � jES�jk j. The GSVA

enrichment score emphasizes genes in pathways that are concordantly activated in
one direction only, either overexpressed or underexpressed relative to the overall
population. For pathways containing genes strongly acting in both directions, the
deviations of jESþjk j and jES�jk j will cancel each other out and show little or no

enrichment.
In cases where the expression of a gene set was assessed at the single-cell level,

the AddModuleScore function in Seurat was used to generate an average expression
score per cell. Survival analyses were performed using the survival package v3.2-3
and Kaplan–Meier curves were plotted using the survminer package v0.4.8. For
single-signature survival analyses, median GSVA score was used to stratify patients
into low- and high-expressing groups for the signature. For survival analyses of
multiple signatures, samples were clustered using their GSVA-enrichment scores
for each signature using Euclidean distance and hierarchical clustering. The
clustering result was then used to define the two-group split of samples for the
survival analysis.

We utilized a published scRNA-seq dataset of PC patient tumor samples from
Chen et al.38 to assess for the presence of our gene signatures in different cell types.
The data were processed and visualized according to the code provided as part of
the publication (https://github.com/chensujun/scRNA) using Seurat v3.2.0. Cell
types were identified from the data using the marker genes reported in Fig. 1B of
the publication.

Spatial transcriptomics analysis of primary prostate cancer tissue. Two sec-
tions of cryopreserved PC tissue were obtained from one patient (pT= 2b, T1c,
Gleason 6, PSA 3.5 ng/mL). The use of clinical material was approved by the ethical
committee of the Tampere University Hospital. Written informed consent was
obtained from the donor. The tissue sections were profiled for spatial tran-
scriptomics using the Visium Spatial library preparation protocol from 10x
Genomics with a resolution of 55 µm (1–10 cells) per spot. The tissues were
cryosectioned at 10-µm thickness to the Visium library preparation slide, fixed in
ice-cold 100% methanol for 30 min, hematoxylin and eosin (H&E) stained with
KEDEE KD-RS3 automatic slide stainer, and the whole slide was imaged using
Hamamatsu NanoZoomer S60 digital slide scanner.

Sequencing library preparation was performed according to the Visium Spatial
Gene Expression user guide (CG000239 Rev D, 10x Genomics) using a 24-min
tissue-permeabilization time. Sequencing was done on the Illumina NovaSeq
PE150 sequencer at Novogene Company Limited, Cambridge, UK’s sequencing
core facility, aiming at 50,000 read pairs per tissue-covered spot.

Sequenced data were first processed using Space Ranger v1.2.0 from 10x
Genomics to obtain per-spot expression matrices for both sections. Downstream
processing and clustering was then performed using Seurat v3.2.0. Normalization
of the data was performed with sctransform to account for differences in
sequencing depth across spots. Clustering was performed using the FindClusters
function using a resolution parameter value of 0.8. The resulting clusters were
found to correspond to histological characteristics of the tissue. The
AddModuleScore function of Seurat was used to score the spots for our scRNA-
seq-derived gene signatures, as well as length-matched random housekeeping gene
signatures from the Housekeeping and Reference Transcript Atlas v1.075. The
distributions of the gene expression scores for the housekeeping gene sets and our
scRNA-seq signatures were compared to determine the 90th percentile as a score
cutoff at which we considered a spot to have high expression of the scRNA-seq
signature, allowing for 5% false positives (spots scoring above the threshold for
housekeeping gene sets).

To validate our spatial transcriptomics findings, we utilized prostate sections 1.2,
2.4, and 3.3 from the spatial transcriptomics publication by Berglund et al.39. H&E
images and spot count matrices were provided by the Lundeberg lab. Processing,
clustering, and signature scoring of the data was performed identically to sections of
prostate A and B, but requiring that each spot would have a minimum of 500 read
counts. Similar to the analysis for prostate A and B, the 90th percentile cutoff for
high- versus low-scoring spots for the gene set enrichment was assessed and
confirmed using comparisons to housekeeping gene set scores for each spot.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The single-cell RNA, single-cell ATAC, FAIRE-seq, and RNA-seq data generated in this

study have been deposited in the Gene Expression Omnibus (GEO) archive under

accessions GSE168669 and GSE168733. The spatial transcriptomics data are available at the
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European Genome-Phenome Archive (EGA) under identifier EGAS00001000526. Other

publicly available datasets utilized but not generated in this study were AR- and c-MYC-

binding site maps (GEO archive: GSE73994), bulk RNA sequencing of LNCaP samples

analyzed using single-cell methods in this study (GEO archive: GSE130534), xenografts of

AR-positive/NE-negative and AR-negative/NE-positive CRPC tumors (GEO archive:

GSE124704 and GSE126078), single-cell RNA-seq of 13 treatment-naive prostate tumor

samples (GEO archive: GSE141445), LNCaP xenograft models of CRPC (Supplementary

File 1 in King et al., 2017 [https://doi.org/10.18632/oncotarget.22560]), patient RNA

sequencing from enzalutamide responders and nonresponders [https://doi.org/10.1073/

pnas.1922207117], RNA sequencing from SU2C CRPC patient samples [https://doi.org/

10.1073/pnas.1902651116], RNA sequencing from SU2C West Coast DT patient samples

[https://doi.org/10.1016/j.cell.2018.06.039], spatial transcriptomics data from prostate tissue

sections 1.2, 2.4, and 3.3 [https://doi.org/10.1038/s41467-018-04724-5], TCGA-PRAD

RNA-seq [https://portal.gdc.cancer.gov/], and ICGC-EOPC RNA-seq [https://doi.org/

10.1016/j.ccell.2018.10.016]. Databases utilized in the study were the Molecular Signatures

Database (MSigDB) v7.0 (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp), the GTRD

database v18.06 (https://gtrd.biouml.org/), and the Housekeeping and Reference Transcript

Atlas v1.0 (http://www.housekeeping.unicamp.br/). The remaining data are available within

the article, Supplementary Information, or Source Data file. Unique biological materials are

available from the corresponding authors upon reasonable request. Source data are provided

with this paper.
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