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The diversity of cells and tissues in an organism depends on chromatin 

organization, which controls access to genes and regulatory elements1. 

Regulatory proteins that catalyze post-translational histone modifica-

tions, remodel nucleosomes or otherwise alter chromatin structure 

are implicated in a wide range of developmental programs and are 

frequently mutated in cancer and other diseases2. Chromatin immu-

noprecipitation followed by sequencing (ChIP-seq) is a widely used 

method for mapping histone modifications, transcription factors and 

other protein-DNA interactions genome-wide. Complementary meth-

ods have also been established for mapping accessible DNA, chromo-

somal loops and higher-order structures and interactions. The various 

data types can be integrated into genome-wide maps that provide 

systematic insight into the locations and cell type specificities of pro-

moters, enhancers, noncoding RNAs, epigenetic repressors and other 

fundamental features of genome organization and regulation1,3,4.

A limitation of chromatin mapping technologies is that they require 

large amounts of input material and yield ‘averaged’ profiles that are 

insensitive to cellular heterogeneity. This is a major shortcoming 

given that cell-to-cell variability is inherent to most tissues and cell 

populations. Cellular heterogeneity may be evident histologically, 

functionally (for example, in self-renewal assays) or in gene expres-

sion measurements, which have revealed striking heterogeneity 

within apparently homogeneous samples5–7. However, despite some 

initial progress8–11, the extent and significance of chromatin-state 

heterogeneity remains largely uncharted.

Although single cell genomic technologies are evolving rapidly and 

challenging traditional views of biological systems6 enabling the study of 

genetic mutations and transcriptomes at single cell resolution, and reveal-

ing marked heterogeneity in tissues, cellular responses and tumors5,12–15, 

single cell analysis of chromatin states has remained elusive so far.

In parallel, advances in microfluidics are affecting chemistry, biol-

ogy and medical diagnostics16. Miniaturized lab-on-chip devices 

enable precise control of fluidics in increasingly sophisticated  

configurations. Drop-based microfluidics (DBM) is a further inno-

vation in which micron-sized aqueous drops immersed in an inert 

carrier oil are rapidly conducted through a microfluidics device17.  

The drops are ideal microreactors and can be precisely sized to 

contain one individual cell. Individual drops can be filled, steered, 

split, combined, detected and sorted in microfluidics devices, and  

thousands of individual drops can be manipulated in less than a 

minute using only microliters of reagent18–20.

Here we combined microfluidics, DNA barcoding and next-genera-

tion sequencing to acquire low-coverage maps of chromatin state in 

single cells. We applied the method to profile H3 lysine 4 trimethyla-

tion (H3K4me3) and dimethylation (H3K4me2) in mixed populations 

of mouse embryonic stem (ES) cells, embryonic fibroblasts (MEFs) 

and hematopoietic progenitors (EML cells), and we show that we can 

determine the identity of each individual cell and recapitulate high-

quality chromatin profiles for each cell state in the mixture. Although 

the resulting single-cell data are sparse—capturing on the order of 

1,000 marked promoters or enhancers per cell—the data are sufficient 

to identify distinct epigenetic states and to characterize underlying 

patterns of variability. Within the ES cell population, we detect coher-

ent variations at pluripotency enhancers and Polycomb targets, which 
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appear to reflect a spectrum of differentiation priming, and delineate 

three subpopulations of cells along this spectrum.

RESULTS

Microfluidics system indexes chromatin from single cells

A fundamental limitation of chromatin mapping technologies relates 

to the immunoprecipitation (ChIP) step in which an antibody to a 

modified histone or transcription factor is used to enrich target loci. 

Low levels of nonspecific antibody binding pull down off-target sites 

and lead to experimental noise. The issue is exacerbated in small-input 

experiments, where the amount of on-target epitope may be exceed-

ingly low. Although recent studies have used indexing and amplifi-

cation procedures to reduce input requirements substantially21–23, 

achieving single-cell resolution has remained unattainable.

We reasoned that this limitation might be overcome—at least in 

part—by labeling chromatin from single cells before immunopre-

cipitation. Indexed chromatin from multiple cells could then be 

combined, possibly along with carrier chromatin24, before immuno-

precipitation, thus avoiding the nonspecific noise associated with low 

input samples. We therefore sought to develop a microfluidics system 

capable of processing single cells to indexed chromatin fragments 

(Fig. 1, Supplementary Fig. 1, Supplementary Tables 1 and 2 and 

https://pubs.broadinstitute.org/drop-chip).

We developed a DBM device that captures and processes single cells 

in ~50-µm-sized aqueous drops (Figs. 1a and 2). As an initial step, we 

engineered a co-flow drop-maker module in which a suspension of 

dissociated ES cells is mixed with solution containing weak detergent 

and micrococcal nuclease (MNase), milliseconds before encapsula-

tion of individual cells in drops (Fig. 2a and Supplementary Video 1).  

We confirmed visually that a vast majority of the aqueous drops 

produced by the module contain either one or zero cells, and con-

firmed effective cell lysis by fluorescent staining. Under our optimized  

conditions, MNase preferentially cut accessible linker DNA and effi-

ciently digested the chromatin of single cells within drops (Fig. 3). 

The resulting mix of mono-, di- and trinucleosomes is retained in the 

same drop as the original cell.

In parallel, we engineered a barcode library consisting of a pool of 

drops, wherein each drop contains a distinct oligonucleotide adaptor. 

We designed 1,152 oligonucleotide adaptors each containing a unique 

‘barcode’ sequence, an Illumina-compatible adaptor and restriction 

sites for selecting ‘desired’ products (Fig. 3a). We then engineered 

a parallel drop-maker that extracts the oligonucleotides from indi-

vidual wells in 384-well plates across a pressure gradient into drops, 

such that each drop contains multiple copies of the same barcode 

(Supplementary Fig. 2). The barcode-containing drops are then  

combined into a single emulsion (Supplementary Fig. 2).

We used a three-point merging device to merge each nucleosome-

containing drop with a single barcode-containing drop (Fig. 2b). We 

reinjected a stream of nucleosome-containing drops into one inlet, 

a stream of barcode-containing drops into a second inlet, and an 

enzymatic buffer with DNA ligase into a third inlet. The barcode 

drops (smaller) and the nucleosome drops (larger) pair asymmetri-

cally owing to hydrodynamic forces, and an electric field triggers 

fusion between one barcode drop, one nucleosome drop and a small 

aliquot of the enzymatic solution. Barcoded adaptors are ligated to 

both ends of the nucleosomal DNA fragments, thus indexing the 

chromatin contents of each drop to their originating cell (Fig. 2b 

and Supplementary Video 2).

Although the microfluidics system is designed to yield fusions 

between one drop containing nucleosomal contents of a single cell 

and one drop containing a unique barcode, alternate scenarios are 

possible and must be minimized. First, to mitigate the possibility that 

one drop might contain more than one cell, we titrated the cell density 

of the initial suspension such that only 1 in 6 drops contain a cell. 
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Figure 1 Overview of Drop-ChIP procedure for acquiring single cell chromatin data. (a) Microfluidics workflow. A library of drops containing DNA 

barcodes is prepared by emulsifying DNA suspensions from plates (top left). Cells are encapsulated and lysed in drops and then their chromatin 

is fragmented (bottom left). Chromatin-bearing drops and barcode drops are merged in a microfluidic device, and DNA barcodes are ligated to the 

chromatin fragments, thus indexing them to originating cell. (b) Combined contents of many drops are immunoprecipitated in the presence of ‘carrier’ 

chromatin and the enriched DNA is sequenced. (c) Sequencing reads are partitioned by their barcode sequences to yield single cell chromatin profiles 

(left). An unsupervised algorithm identifies groups of related single cell profiles, which are then aggregated to produce high-quality chromatin profiles 

for subpopulations (right). See also Supplementary Figure 1.
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The remaining empty drops fuse with barcode but their inert con-

tents do not contribute to the eventual sequencing library (Fig. 2c).  

Second, we tuned the system such that each nucleosome-containing  

drop fuses with either one or two barcodes (Fig. 2d), with the  

understanding that these alternative scenarios can be decoded at the 

analysis stage (see also Online Methods). Third, we limit each collec-

tion to 100 cells paired with barcodes randomly drawn from a library 

of 1,152 barcodes, ensuring that >95% of barcodes will be unique to 

a single cell (per Poisson statistics). This conservative approach has 

little impact on throughput as we multiplex thousands of single cells 

by collecting multiple samples in parallel and adding a second ‘sample’ 

index before sequencing.

Chromatin immunoprecipitation and sequencing

The chromatin fragments generated by the microfluidics platform 

contain barcode adaptors that index them to originating cells and 

provide a handle for PCR. We combine indexed chromatin from 100 

cells with carrier chromatin from a different organism, perform ChIP 

and use the enriched DNA to prepare a sequencing library. The bar-

code adaptors comprise symmetric sequences, such that both ends are 

available for ligation to nucleosome ends (Fig. 3a). Each end contains 

the same 8-bp barcode (1 out of 1,152 possible sequences) flanked 

by a universal primer and restriction sites. Adaptor concatemers 

produced due the large excess of adaptors in the drops (~109 copies  

versus ~107 nucleosomal fragments) are eliminated by restriction 

before amplification (Fig. 3b). Symmetrically labeled nucleosomal 

fragments are amplified by PCR and a second restriction yields an 

overhang compatible with standard Illumina library preparation. At 

this stage, we introduce a second ‘sample’ barcode, enabling us to 

multiplex thousands of cells in a single sequencing run.

We paired-end sequence these ‘Drop-ChIP’ samples, reading the 

‘sample’ indexing barcode, the ‘single cell’ indexing barcode and the 

intervening genomic DNA. We used HiSeq 2500 (Illumina, USA) for 

sequencing, with each lane producing on average 320 million reads 

with high accuracy (88% of reads ≥Q30 (PF)). The typical yield per 

pool of 100 cells is 7 million aligned reads, of which ~700,000 are 

unique (Supplementary Table 3a). We performed a series of quality  

controls to ensure homogeneous distribution of barcodes within and 

across experiments (Fig. 3d), to ensure the stability of the barcode 

library (Fig. 3e) and to ensure that barcodes were not mixing or 

exchanging between drops (Fig. 3f). We then filtered the sequencing 

data to include only reads that contain symmetric barcodes on both 

sides of the nucleosomal insert (Fig. 3c; see also Online Methods) and 

to exclude highly over-represented barcodes that may have labeled 

two or more cells (Fig. 2d). After filtering, we retain between 500 and 

10,000 Drop-ChIP reads per single cell (Supplementary Table 3b).

Single-cell profiles deconvolute cell type-specific landscapes

We benchmarked Drop-ChIP in a series of biological settings. We 

initially focused on three different mouse cell populations: ES cells, 

MEFs and the hematopoietic line EML. We separately applied suspen-

sions of each cell type to the microfluidic device and labeled individual 

cells from each population with a different set of barcodes. We then 

combined labeled chromatin from the three cell types, performed 

ChIP with H3K4me3 antibody and sequenced the resulting library. 

We acquired a total 1.1 million (M) uniquely aligned sequencing  

reads. These reads were distributed on the basis of their barcodes into 

868 bins, each corresponding to a single cell.

Visual inspection of single-cell data for 50 individual ES cells and 50 

individual MEFs reveals the high quality of the resulting data (Fig. 4a 

and Online Methods). Reads from single cells have a strong tendency 

to coincide with peaks that are evident in bulk ChIP-seq profiles for 

the corresponding cell types. The specificity is sufficient that single-

cell profiles for ES cells are readily distinguished from single-cell MEF 

profiles by examination of differentially marked regions (for example, 

Anxa1 for MEFs; Oct4 and Sox2 for ES cells). Considering all single 

cells in the H3K4me3 data set, more than 50% of sequencing reads 
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Figure 2 Labeling single-cell chromatin by drop-based microfluidics.  

(a) Micrograph shows an aqueous suspension of cells (‘S’) co-flowed 

together with lysis buffer and MNase (‘B’) as they enter the drop maker 

junction and disperse in oil (‘O’), resulting in the formation of cell-bearing 

drops (see also Supplementary Video 1). (b) Micrograph shows cell-

bearing drops (~50-µm diameter) and barcode-bearing drops (~30-µm  

diameter) paired in a microfluidics “three-point merger” device.  

As adjacent drops flow by the electrodes (+ and −), an induced electric 

field triggers their coalescence; simultaneously, labeling buffer (B) 

containing ligase is injected into the merged drops (Supplementary 

Video 2). (c) Table depicts estimated frequencies of possible drop 

fusion outcomes. The number of cells in each drop was measured from 

Supplementary Video 1 (see panel a). Drops containing cells or cell debris 

may fuse with one (90%) or two (10%) barcode drops (green frame).  

Two-barcode fusion events can be detected and corrected in silico. 

Background reads contributed by drops that contain only cell debris are 

also filtered in silico. (d) The frequency distribution of barcodes is plotted 

as a function of the number of reads contributed by each barcode and 

fitted to a sum of two Poisson distributions, one for the background reads 

(blue) and one for the single-cells reads (green; see Online Methods). 

Barcodes in the highlighted range are assumed to originate from single 

cells and are retained for further analysis. Scale bars, 100 µm.
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fall within known positive regions, defined from bulk ChIP-seq data 

(Fig. 4b). This proportion is essentially identical to the proportion 

of reads in bulk ChIP-seq data sets that fall within enriched intervals. 

The sensitivity of the single-cell profiles is compromised by the low 

per-cell sequencing coverage. Only ~800 peaks are detected per cell, 

which corresponds to an overall sensitivity for peak detection of ~5% 

(Fig. 4b). The overall accuracy of the single-cell data is nonetheless  

supported by the very strong concordance of aggregated data to  

conventional ChIP-seq measurements (Supplementary Fig. 3).

Although the single-cell profiles lack sensitivity for de novo peak 

calling, we reasoned that detection of ~800 true peaks with high specif-

icity might be sufficient to classify or group individual cells with related 

chromatin landscapes. Indeed, we found that detection of just a few 

hundred peaks was sufficient to distinguish single-cell MEF profiles 

from single-cell ES cell profiles with nearly 100% accuracy. For exam-

ple, single-cell profiles are readily and accurately identified as ES cell 

or MEF by comparison against conventional ChIP-seq maps (Fig. 4c).  

Moreover, we could apply an unsupervised-clustering approach to dis-

tinguish the respective cell states without any prior information about 

their landscapes. Representing each single cell profile as the number 

of reads in nonoverlapping 5-kb windows spanning the genome, we 

calculated the covariance between all pairs of cells. We then used a 

divisive hierarchical clustering algorithm to cluster the cells based 

on pairwise distances (DIANA; see Online Methods). This unbiased 

analysis distinguished three main groups of cells, which are clearly 

evident in a cluster tree (Fig. 4d). Because each cell type had been 

labeled with a distinct barcode set in this pilot, we were able to evaluate  

the accuracy of the clustering. We found that >97% of cells in the first 

cluster were EML cells, >91% of cells in the second cluster were ES 

cells and >97% of cells in the third cluster were MEFs. Moreover, when 

we aggregated reads from single-cells in each cluster, the resulting 

profiles closely matched conventional ChIP-seq data for EML cells, 

ES cells and MEFs, respectively (Supplementary Fig. 4). We note that 

high-quality single-cell level information was absolutely critical for 

deconvoluting these populations: when we compromised in silico the 

resolution of our single cell profiles by randomly combining sets of 

five cells, we were no longer able to distinguish ES cells from MEFs 

or to deconvolute profiles for the cell types in the mixed population 

(Supplementary Fig. 5).

Finally, we performed an additional Drop-ChIP experiment in 

which we mixed ES cells and MEFs before their application to the 

microfluidics device. The DIANA algorithm again effectively resolved 

single cells of each type based solely on their chromatin profiles, ena-

bling us to produce aggregate profiles for ES cells and MEFs, which 

closely match conventional ChIP-seq data (Supplementary Fig. 6).

Epigenetic states distinguished in a population of ES cells

Transcriptional activity varies between individual cells, even within 

apparently homogeneous cell types or tissues. Yet how this transcriptional 

heterogeneity relates to cell-to-cell variability in the underlying gene 

regulatory elements remains an open question. We therefore examined 

H3K4me2, a marker of promoters and enhancers. H3K4me2 profiles have 

been used to survey regulatory element activity genome-wide in a range 

of cell and tissue types1,4. However, the extent to which these landscapes 

vary across single cells in a population has yet to be determined.

We acquired H3K4me2 data for 4,643 ES cells, cultured in serum 

with LIF, and 762 MEFs (numbers reflect cells retained after quality 

controls; see Online Methods). The DIANA algorithm readily clustered  

these cells into two major groups. Aggregation of reads from cells in 

the larger group yielded a chromatin profile that closely matched a 
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Figure 3 Symmetric barcoding and 

amplification of chromatin fragments.  

(a) Barcode adapters (top) are 64-bp  

double-stranded oligonucleotides with  

universal primers, barcode sequences and 

restriction sites, whose symmetric design  

allows ligation on either side. Schematic  

(bottom left) depicts possible outcomes of  

ligation in drops, including symmetrically  

labeled nucleosomes, asymmetrically labeled 

nucleosomes and adaptor concatemers.  

Concatemers are removed by digestion of  

PacI sites formed by adaptor juxtaposition  

(bottom center), allowing selective PCR  

amplification of symmetrically adapted  

chromatin fragments (bottom right). See also 

Supplementary Figure 2. (b) Gel electrophoresis 

for DNA products at successive assay stages. 

Left lane, DNA ladder; MNase, DNA fragments 

purified after capture, lysis and MNase 

digestion of single cells in drops confirm 

efficient digestion to mononucleosomes  

(~1 million drops collected); Concat, Illumina 

library prepared from adaptor-ligated chromatin fragments without PacI digestion reveals overwhelming concatemer bias; Library, Illumina library 

prepared from adaptor-ligated chromatin fragments digested with PacI, reveals appropriate MNase digestion pattern, shifted by the size of barcode and 

Illumina adapters. (c) Pie charts depict numbers of uniquely aligned sequencing read that satisfy successive filtering criteria (values reflect data from 

100 single cells, averaged over 82 trials). We select reads that have barcode sequences on both ends (top) with matching sequence (middle). We then 

apply a Poisson model to identify barcodes that represent single cells (bottom). (d) Heat map depicts homogeneity of barcode selection. Barcodes (rows) 

are colored according to their relative prevalence (rank order) across 37 experiments (columns). The absence of bias toward particular barcodes (light or 

dark horizontal stripes) indicates the homogeneity of the barcode library. The mean normalized rank over all barcodes (right) is close to 0.5, consistent 

with balanced representation. (e) Stability of the barcode library emulsion over time. The fraction of reads with matching barcodes on both ends is 

plotted as a function of time from encapsulation of the barcode library. (f) The microfluidics system was applied to barcode a mixed suspension of 

human and mouse cells. For each barcode, plot depicts the number of reads aligning to the mouse genome (y axis) versus the number of reads aligning 

to the human genome (x axis). The data suggest that a vast majority of barcodes is unique to a single cell.
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corresponding bulk H3K4me2 profile for ES cells, while aggregation of 

reads from the smaller group yielded a profile consistent with MEFs.

We next considered whether the single-cell clustering patterns 

might reveal additional substructure among the ES cells, poten-

tially reflecting subpopulations with distinct regulatory states. The 

existence of such subpopulations is supported by prior studies that 

examined gene reporters and transcriptional signatures at single-cell 

resolution25–29. However, when we used DIANA to cluster individual 

ES cells based on their H3K4me2 data, we found that the results were 

highly sensitive to algorithm parameters and technical attributes, such 

as mean single-cell coverage.

We therefore implemented an alternative approach based on the 

assumption that functionally related genomic elements, which tend 

to vary coherently across cell types, also vary coherently across indi-

vidual ES cells. We reasoned that our sensitivity to detect subsets of ES 

cells with distinct regulatory patterns would be increased by consider-

ing such element sets or ‘signatures’, which would have higher signal-

to-noise ratio in our data than individual elements. This strategy is 

analogous to signature-based methods that have been successfully 

applied in the analysis of single-cell RNA-seq, DNA methylation and 

chromatin accessibility data10,13,28 and in the interpretation of cancer 

mutations30,31. To identify signature sets relevant to chromatin states,  

we collected 314 publicly available ChIP-seq profiles for histone 

modifications, transcription factors and chromatin regulators.  

We collated target (enriched) regions for each profile and then clus-

tered the profiles based on the overlaps between these target regions. 

We thereby identified 91 representative signatures, each composed 

of a set of genomic elements with shared chromatin states (for exam-

ple, H3K9me3 in ES cells), transcription factor binding (for example,  

Oct4 targets), and/or chromatin regulator occupancy (for example, 

p300 targets) (Supplementary Fig. 7 and Supplementary Table 4).

For each individual ES cell (or MEF), we calculated the number of 

reads overlapping each signature, thereby creating a matrix of 5,405 single  

cells by 91 signatures. Agglomerative hierarchical clustering of the 

signature matrix distinguished several prominent groups of cells with 

correlated chromatin landscapes (Fig. 5a; see Online Methods). The 

major division segregated all MEFs from ES cells, which were distrib-

uted across several clusters. To visualize the relationship between cells, 

we derived multidimensional scaling (MDS) plots from the signature 

matrix (Fig. 5b). The MEFs show a relatively tight distribution, sugges-

tive of more concordant H3K4me2 landscapes. By contrast, the individ-

ual ES cells cover a much larger region within the MDS plot, segregating 

into three loose groups (Fig. 5b). The tighter distribution among indi-

vidual MEFs may relate to observations that such lineage-committed  

cells adopt a relatively constrained chromatin state. By contrast,  

ES cell chromatin is notable for its accessible and plastic state32.

Several lines of evidence support the robustness and validity of 

the signature-based clustering (Supplementary Note 1). First, the 

most prominent division accurately distinguishes ES cells from MEFs 

(98% of ES cells are correctly classified as ES cells; 95% of MEFs are 

correctly classified as MEFs). Second, the signature-based clusters 

are independent of read coverage (Supplementary Fig. 8a). Third, 

the signature-based clusters are robust with respect to the removal of 

subsets of single cells. When we repeatedly simulated the clustering 

after randomly removing 50% of the cells, only a fraction of cells at 

the edges of MDS clusters switched their assignments (Fig. 5c and 

Supplementary Fig. 8b). By contrast, when reads were randomly 

reassigned between cells, the correlation structure driving the cluster-

ing was lost (Supplementary Fig. 8c). We also tested our sensitivity 

to detect small subpopulations by removing cells from one of the 

clusters in silico. We found that sensitivity depended on the frequency 

of the subpopulation and the total number of sampled cells, such that 
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Figure 4 Single-cell H3K4me3 chromatin data 

inform about subpopulations of known cell 

types. (a) Drop-ChIP data is shown for 50 ES 

cells (ESCs) and 50 MEFs across representative 

gene loci. Each row represents data from a 

single cell. Each column includes reads in  

330-kb regions centered on selected genes 

(Anxa1, chr19: 20465000; M6pr,  

chr6: 122269000; Egr2: chr10: 67022000; 

Ring1b, chr17: 34262000; Cyb5d1, chr11: 

69207000; Ctbp2, chr7: 140254000; Pou5f1, 

chr17: 35612000; Sox2, chr3: 34573000). 

A high proportion of reads aligns to genomic 

positions enriched in both bulk ChIP-seq assays 

(‘Bulk’) and aggregated chromatin profiles 

from 200 single-cell assays (‘200’), providing 

evidence that single-cell data are informative. 

(b) The precision (fraction of single-cell reads 

overlapping known H3K4me3 peaks) and 

sensitivity (fraction of known H3K4me3 peaks 

occupied by single-cell reads) are plotted for 

the top 50 ES cells by sensitivity and for all ES 

cells in the data set. These data are compared 

to random profiles simulated by arbitrarily 

positioning reads. Middle bar marks the median, box covers the 25th–75th percentiles and whiskers cover the 1st–99th percentiles. The average ES cell 

H3K4me3 profile has a precision of 53% ± 12% and a sensitivity of 7% ± 4%, whereas the average ES cell H3K4me2 profile has a precision of 42% 

± 5% and a sensitivity of 3% ± 2% (not shown). (c) For 400 single-cell H3K4me3 profiles, scatterplot depicts normalized detection of ES cell–specific 

intervals versus MEF-specific intervals. In this experiment, ES cells (red) and MEFs (green) were separately barcoded in the microfluidics device, 

but collectively immunoprecipitated and processed. A naive classification (black line) distinguishes ES cell profiles from MEF profiles with >95% 

specificity and sensitivity. (d) ES cells, MEFs and EML cells were separately barcoded but collectively processed to acquire 883 single-cell profiles (314 

ES cells, 376 MEFs, 193 EMLs). These profiles were clustered using an unsupervised divisive hierarchical clustering algorithm (see Online Methods). 

The hierarchal tree discriminates between cell types with >95% accuracy, indicating that the information content of single-cell profiles is sufficient to 

accurately group related cells and thereby distinguish cell states within a mixed population. See also Supplementary Figures 3–6 and Online Methods.

n
p
g

©
 2

0
1
5 

N
a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.



1170 VOLUME 33 NUMBER 11 NOVEMBER 2015 NATURE BIOTECHNOLOGY

A RT I C L E S

detection of rarer subsets requires analysis of larger numbers of cells 

(for example, detecting a subpopulation present at 5% requires the 

analysis of 1,000 cells in total; Supplementary Fig. 9).

To test the dependence of the clusters on the set of signatures used, 

we repeated the agglomerative hierarchical clustering using (i) all 

314 signatures without any filtration or (ii) a distinct collection of 

signatures from a recently established resource of functional genomic 

data sets (E. Meshorer, Hebrew University, personal communication).  

In both cases, we again distinguished a tight cluster of MEFs, as well as 

three groups of ES cells that closely correspond to the groups derived 

using the original 91 signatures (Supplementary Fig. 8d). Finally, to 

exclude the possibility that the ES cell clusters reflect different cell cycle  

signatures, we tested, but found no evidence, for differential activity 

of cell cycle–related genes (Supplementary Fig. 8e).

Coherent variations at pluripotency elements and bivalent 

promoters

We considered the biological significance of the three ES cell sub-

populations defined from the single cell data, which we termed ES1, 

ES2 and ES3. First, we examined the distribution of signature scores 

across these subpopulations. We observed notable differences in the 

H3K4me2 signal distributions over pluripotency-related signatures, 

such as Oct4 or Sox2 targets33. Cells in the ES1 group tend to have 

the highest signal over pluripotency signatures, ES2 cells intermediate 

signals and ES3 cells the lowest signals over these elements (Fig. 6a). 

These differences in target element activity may relate to the hetero-

geneous expression of pluripotency factors, previously documented  

in ES cell populations27,29. We observed the opposite pattern for a 

signature composed of targets of FoxA2, with progressively higher 

signals in ES2 and ES3. FoxA2 is an endodermal transcription factor 

whose regulatory targets are dynamically activated during early ES 

cell differentiation34. Although FoxA2 expression is rarely evident in 

undifferentiated ES cells, this signature may reflect a degree of line-

age priming associated with very low expression of factors involved 

in early specification.

The respective subpopulations also vary in terms of their signal 

distributions over Polycomb and CoREST targets. Polycomb targets  

correspond to bivalent domains, which are inactive but poised in 

pluripotent cells35,36. CoREST is a potent repressor that silences neu-

ral-related genes in ES cells. H3K4me2 signals over Polycomb and 

CoREST signatures are lowest in ES1, consistent with a pure pluripotent  

state, but progressively increase in the ES2 and ES3 populations  

(Fig. 6a). In fact, the Polycomb signatures correlate inversely with 

pluripotency signatures across all single ES cells in the data set  

(Fig. 6b). Thus, the latter populations show reduced chromatin  

activity at pluripotency targets and increased activity at sites that are 

normally inactive in pluripotent cells.

We also generated aggregate H3K4me2 profiles for the ES1, ES2 and 

ES3 subpopulations by combining reads from the cells in each cluster 

(see Online Methods). Comparison of these profiles confirmed differ-

ences over elements in the various signatures, most notably pluripo-

tency and Polycomb targets. We also observed global differences 

between the landscapes. H3K4me2 peaks in the ES3 profile are present 

in fewer numbers and are narrower than in ES1 and ES2 (Fig. 5d,e).  

In addition to their global accessibility32, pluripotent cells have 

relatively larger numbers of elements marked by distal chromatin 

signatures37. The reduced H3K4me2 peaks in ES3 may thus be an 

additional reflection of a primed chromatin state. Alternatively 

or in addition, the changes in ES3 may reflect a spectrum of sub-

threshold priming events associated within alternative early fates; 

4,607 ES cells

27 MEFs

735 MEFs

36 ES cells
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Figure 5 A spectrum of ES cell subpopulations 

with variable chromatin signatures for 

pluripotency and priming. (a) Single-cell 

H3K4me2 data for 4,643 ES cells and 

762 MEFs were subjected to agglomerative 

hierarchical clustering based on their scores 

in 91 signature sets of genomic regions (see 

Online Methods). Pie chart at left depicts the 

proportions of individual ES cells that cluster 

into each of three clusters (1,436 cells in 

ES1, 1,550 cells in ES2 and 1,648 cells in 

ES3), and pie chart at right depicts the relative 

numbers of ES cells and MEFs that cluster into 

a fourth group, which corresponds to MEFs. 

Heat map (below) depicts the mean signature 

scores (rows) for each cluster (columns).  

(b) Multidimensional scaling (MDS) plot 

compares the chromatin landscapes of single 

ES cells and MEFs (colored dots). The distance 

between any two dots (cells) approximates 

the distance between their 91-dimensional 

signature vectors. The plot shows 1,000 single 

cells (randomly sampled from the 5,405 cells 

with H3K4me2 data), colored on the basis of 

their cluster association. Tight co-localization 

of the MEF cluster and, to a lesser degree, the 

ES1 cluster suggests that the corresponding 

landscapes are relatively more homogeneous. In contrast, the ES2 and ES3 clusters are more broadly distributed and may reflect a gradient of single 

cell states. (c) MDS plot as in b, but with cells that frequently switched clusters in bootstrapping tests on varying subsets of cells indicated in black (see 

Online Methods). These unstable cells are exclusively located on the borders between clusters. (d) Violin plots show the distribution of peak widths for 

peaks called from aggregate ES1, ES2 or ES3 profiles (see Online Methods). (e) Venn diagram depicts the relative numbers and overlaps of peaks called 

from aggregate ES1, ES2 or ES3 profiles. The ES1 cluster is notable for higher pluripotency-signature scores, larger numbers of peaks and tighter 

internal concordance. In contrast, the ES3 cluster has higher activity over Polycomb signatures and increased heterogeneity, potentially reflecting a 

mixture of primed states. See also Supplementary Figures 7 and 8, Supplementary Note 1 and the online source data for this figure.
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such a scenario might explain the relatively 

higher variance of the ES3 single cell profiles  

(Fig. 5b). Together, our findings suggest that the respective subpopu-

lations reflect a continuum of ES cell states with varying degrees of 

pluripotency- or priming-related chromatin features.

Earlier studies have documented variability in pluripotency factor 

expression and DNA methylation levels across individual ES cells, 

which may in part reflect naive and primed subpopulations27,38,39. 

Our findings suggest that this cell-to-cell variability is accompanied 

by widespread alterations at pluripotency-associated regulatory 

elements, lineage-specific genes and Polycomb targets. Yet lineage-

specific genes and Polycomb targets show sparse expression in ES 

cells27,40, suggesting that the chromatin alterations may occur with 

relative independence from downstream transcriptional changes. 

However, a recently published single-cell RNA sequencing study 

for ES cells41 reported that the expression of pluripotency genes and 

Polycomb targets is variable across individual ES cells—a conclusion 

that directly parallels our findings. Indeed, when we directly analyzed 

the single-cell RNA data, we found that the composite expression of 

pluripotency-related genes anticorrelates with the composite expres-

sion of Polycomb-target genes across single cells, again consistent 

with our chromatin findings (Fig. 6c,d). Furthermore, clustering of 

the single cell RNA profiles, based on these signature gene sets, dis-

tinguished two ES cell subpopulations with features of ES1 and ES3, 

respectively (Supplementary Fig. 10 and Supplementary Note 2). 

This concordance between single-cell chromatin and RNA profiling 

supports our technological approach and biological findings.

DISCUSSION

Access to genomic information is controlled by cell type–specific 

chromatin structures. Chromatin maps provide a systematic means 

to identify regulatory sequences and track their activity across cellular 

states1. However, current methods yield averaged ‘ensemble’ profiles 

that are insensitive to internal heterogeneity. This is a major limitation 

given that cellular heterogeneity is inherent to most, if not all, tissues, 

cell types and models.

Here we sought to overcome this limitation by combining drop-

based microfluidics with genomic barcoding to establish a platform 

for profiling chromatin at single-cell resolution. Although our method 

was able to detect cell-cell variations, this first attempt has limitations 

that will need to be addressed through further innovations. The cover-

age per cell will need to be increased by improved ligation efficiency, 

more efficient amplification and/or alternative barcoding methods.  

It may also be valuable to replace MNase digestion with other frag-

mentation strategies, thus expanding the strategy’s applicability 

beyond chromatin marks. Similarly, the use of barcoded beads could 

substantially increase the number of cells per sample and improve the 

efficiency of our method18,19.

The single-cell chromatin data are sparse, with only about 

1,000 peaks detected in each individual cell due to low coverage. 

Nonetheless, specificity is high, with ~50% of reads aligning to known 

positive sites. The accuracy and information content can be appreci-

ated through visualization of the single-cell tracks (Fig. 4a) and by 

comparing aggregate data for as few as 50 cells to conventional pro-

files. Regardless, the primary goal of our single-cell study is to find 

patterns of cell-to-cell variation across a population, rather than to 

examine an individual given cell. Several lines of evidence establish  

the capacity of our assay to acquire such information. First, the data 

from each single cell contains ample information to decipher its cell 

identity based on comparisons to known landscapes. Moreover, an 

unbiased clustering procedure applied to Drop-ChIP data generated 

for a mixed population of cells could effectively distinguish the ‘cell 

type’ of each single-cell profile with nearly 100% accuracy. Finally, 

aggregate profiles derived for each unbiased cluster closely matched 

conventional profiles for the respective substituents of the mixed 

population. Although this approach has been successful, we note 

that its success relies on the existence of a coherent chromatin state 

in a sufficient number of sampled cells. Power to distinguish such 

subpopulations thus benefits from sampling large numbers of cells 

and from the high throughput of microfluidics systems.
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cFigure 6 Orthogonal single-cell assays 

corroborate ES cell subpopulations and  

cell-to-cell variability in regulatory programs.  

(a) The distribution of single-cell scores for eight 

dominant signatures is plotted for ES1, ES2 and 

ES3. Vertical lines depict the mean score of each 

signature in MEFs. DNAme signature consists of 

10,000 regions identified by Kelsey et al.28 as 

most variable in their methylation status in ES 

cells. (b) Heat map depicts positive and negative 

correlations between six selected signatures, 

based on co-variation of H3K4me2 across 

single ES cells. (c) Heat map depicts positive 

and negative correlations between six selected 

signatures, based on co-variation of expression 

across single ES cells (See Supplementary  

Note 2). (d) Scatterplot depicts correlations 

between the indicated signature pairs across 

single ES cells, as determined from H3K4me2  

or RNA expression data. Best-fit line and Pearson 

correlation are also indicated. Thus, orthogonal 

single-cell techniques lead to similar conclusions 

regarding ES cell subpopulations and underlying 

patterns of variability in pluripotency and 

Polycomb signatures, suggestive of a continuum 

from pluripotent to primed states. See also 

Supplementary Figure 10.
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We used the method to investigate the cell-to-cell variability of dif-

ferent types of regulatory elements. We profiled H3K4me2, a marker 

of promoters and enhancers, in thousands of individual ES cells. We 

then asked whether coherent variations in the single cell chroma-

tin data might unveil subpopulations with distinct epigenetic states.  

To maximize our sensitivity in regard to distinguishing closely related 

cell states, we implemented a clustering procedure based on ‘signature’ 

sets of elements. In this way, we were able to delineate three subpopu-

lations (ES1, ES2 and ES3) whose identity is robust to permutations. 

The subpopulations are distinguished by their signals over loci bound 

by pluripotency- or differentiation-associated transcription factors or 

targeted by epigenetic repressors, including Ezh2, Ring1B and REST. 

Specifically, the ES1 population sustains high pluripotency factor 

activity and robust silencing over Polycomb and CoREST targets, and 

it may thus be analogous to ‘naive’ ES cells39. By contrast, the ES3  

population exhibits signs of differentiation priming, including 

increased chromatin activity over enhancers implicated in early endo-

dermal lineages and subtle derepression of Polycomb targets. This 

population also appears relatively heterogeneous, with lower concord-

ance between individual cells potentially reflecting alternate priming 

states. Remarkably similar patterns of cell-to-cell variability are evident  

in single-cell RNA expression data generated for an analogous ES 

cell population41. Here again, pluripotency factors and Polycomb 

targets are seen to vary coherently across individual cells, with  

positive and negative correlations among gene and regulator sets 

showing striking parallels to their corresponding patterns of chro-

matin activity (Fig. 6b–d). We suggest that integration of single-cell 

chromatin and single-cell expression data may allow more precise 

coupling of regulatory elements with target genes and deeper under-

standing of their functional dynamics and relationships.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Accession codes. GEO: GSE70253.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

ACKNOWLEDGMENTS

We thank A. Regev, N. Yosef, E. Shema, I. Tirosh, H. Zhang, S. Gillespie and  
J. Xing for their valuable comments and critiques of this work. We also thank  
G. Kelsey for sharing single-cell data for comparisons. This research was supported 
by funds from Howard Hughes Medical Institute, the National Human Genome 
Research Institute’s Centers of Excellence in Genome Sciences (P50HG006193), 
ENCODE Project (U54HG006991), the National Heart, Lung, and Blood Institute 
(U01HL100395), the National Science Foundation (DMR-1310266), the Harvard 
Materials Research Science and Engineering Center (DMR-1420570) and the 
Defense Advanced Research Projects Agency (HR0011-11-C-0093).

AUTHOR CONTRIBUTION

All authors designed experiments and approved the final manuscript. A.R. and 
O.R. performed experiments. A.R., O.R. and N.S. performed computational 
analyses. A.R., O.R. and R.A.S. developed experimental protocols. A.R., O.R. and 
N.S. developed analytical methods and tools. A.R., O.R., A.G., B.E.B. and D.A.W. 
conceived and designed the study. B.E.B., N.S., A.R., O.R. and D.A.W. wrote  

the manuscript. 

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details accompany the online 
version of the paper.

Reprints and permissions information is available online at http://www.nature.com/

reprints/index.html.

1. Rivera, C.M. & Ren, B. Mapping human epigenomes. Cell 155, 39–55 (2013).

2. Baylin, S.B. & Jones, P.A. A decade of exploring the cancer epigenome–biological 

and translational implications. Nat. Rev. Cancer 11, 726–734 (2011).

3. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the 

human genome. Nature 489, 57–74 (2012).

4. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human 

cell types. Nature 473, 43–49 (2011).

5. Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality in expression and 

splicing in immune cells. Nature 498, 236–240 (2013).

6. Kalisky, T. & Quake, S.R. Single-cell genomics. Nat. Methods 8, 311–314 

(2011).

7. Munsky, B., Neuert, G. & van Oudenaarden, A. Using gene expression noise to 

understand gene regulation. Science 336, 183–187 (2012).

8. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome 

structure. Nature 502, 59–64 (2013).

9. Brown, C.R., Mao, C., Falkovskaia, E., Jurica, M.S. & Boeger, H. Linking stochastic 

fluctuations in chromatin structure and gene expression. PLoS Biol. 11, e1001621 

(2013).

10. Cusanovich, D.A. et al. Multiplex single-cell profiling of chromatin accessibility by 

combinatorial cellular indexing. Science 348, 910–914 (2015).

11. Murphy, P.J. et al. Single-molecule analysis of combinatorial epigenomic states in 

normal and tumor cells. Proc. Natl. Acad. Sci. USA 110, 7772–7777 (2013).

12. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium 

using single-cell RNA-seq. Nature 509, 371–375 (2014).

13. Patel, A.P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in 

primary glioblastoma. Science 344, 1396–1401 (2014).

14. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation 

characteristics of a kidney tumor. Cell 148, 886–895 (2012).

15. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome 

sequencing. Nature 512, 155–160 (2014).

16. Sackmann, E.K., Fulton, A.L. & Beebe, D.J. The present and future role of 

microfluidics in biomedical research. Nature 507, 181–189 (2014).

17. Guo, M.T., Rotem, A., Heyman, J.A. & Weitz, D.A. Droplet microfluidics for high-

throughput biological assays. Lab Chip 12, 2146–2155 (2012).

18. Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to 

embryonic stem cells. Cell 161, 1187–1201 (2015).

19. Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual 

cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

20. Rotem, A. et al. High-throughput single-cell labeling (Hi-SCL) for RNA-Seq using 

drop-based microfluidics. PLoS ONE 10, e0116328 (2015).

21. Adli, M., Zhu, J. & Bernstein, B.E. Genome-wide chromatin maps derived from 

limited numbers of hematopoietic progenitors. Nat. Methods 7, 615–618 (2010).

22. Wu, A.R. et al. Automated microfluidic chromatin immunoprecipitation from 2,000 

cells. Lab Chip 9, 1365–1370 (2009).

23. Lara-Astiaso, D. et al. Immunogenetics. Chromatin state dynamics during blood 

formation. Science 345, 943–949 (2014).

24. O’Neill, L.P., VerMilyea, M.D. & Turner, B.M. Epigenetic characterization of the 

early embryo with a chromatin immunoprecipitation protocol applicable to small 

cell populations. Nat. Genet. 38, 835–841 (2006).

25. Hackett, J.A. & Surani, M.A. Regulatory principles of pluripotency: from the ground 

state up. Cell Stem Cell 15, 416–430 (2014).

26. Hough, S.R. et al. Single-cell gene expression profiles define self-renewing, 

pluripotent, and lineage primed states of human pluripotent stem cells. Stem Cell 

Rep. 2, 881–895 (2014).

27. Singer, Z.S. et al. Dynamic heterogeneity and DNA methylation in embryonic stem 

cells. Mol. Cell 55, 319–331 (2014).

28. Smallwood, S.A. et al. Single-cell genome-wide bisulfite sequencing for assessing 

epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

29. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline 

development. Nature 450, 1230–1234 (2007).

30. Ben-Porath, I. et al. An embryonic stem cell–like gene expression signature in poorly 

differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

31. Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. Nature 

500, 415–421 (2013).

32. Meshorer, E. & Misteli, T. Chromatin in pluripotent embryonic stem cells and 

differentiation. Nat. Rev. Mol. Cell Biol. 7, 540–546 (2006).

33. Chen, X. et al. Integration of external signaling pathways with the core transcriptional 

network in embryonic stem cells. Cell 133, 1106–1117 (2008).

34. Li, Z. et al. Foxa2 and H2A.Z mediate nucleosome depletion during embryonic 

stem cell differentiation. Cell 151, 1608–1616 (2012).

35. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 

532–538 (2006).

36. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes 

in embryonic stem cells. Cell 125, 315–326 (2006).

37. Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental 

and environmental cues. Cell 152, 642–654 (2013).

38. Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference 

of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

39. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 

487–492 (2009).

40. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two 

classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

41. Kumar, R.M. et al. Deconstructing transcriptional heterogeneity in pluripotent stem 

cells. Nature 516, 56–61 (2014).

n
p
g

©
 2

0
1
5 

N
a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

http://www.nature.com/doifinder/10.1038/nbt.3383
http://www.nature.com/doifinder/10.1038/nbt.3383
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70253
http://www.nature.com/doifinder/10.1038/nbt.3383
http://www.nature.com/doifinder/10.1038/nbt.3383
http://www.nature.com/doifinder/10.1038/nbt.3383
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


NATURE BIOTECHNOLOGYdoi:10.1038/nbt.3383

ONLINE METHODS
The procedures for Drop-ChIP are explained in Supplementary Figure 1 

and in a dedicated web portal with an interactive flow chart (https://pubs.

broadinstitute.org/drop-chip).

Buffers. Recipes for all buffers are described in Supplementary Table 1.

Reagents. For the inert carrier oil we use HFE-7500 (3M, USA) with 1% w/w  

of a block co-polymer surfactant of perfluorinated polyethers (PFPE) and 

polyethylene glycol (PEG) (008-FluoroSurfactant, Ran Biotechnologies, 

USA). To separate the emulsion we use a commercially available demulsi-

fier (1H,1H,2H,2H-perfluoro-1-octanol, CAS # 647-42-7, Sigma-Aldrich, 

USA). Antibodies for Immuno Precipitation were purchased from Millipore 

(H3K4me3: 07-473, H3K4me2: 07-030).

Microfluidic devices. We fabricate polydimethylsiloxane (PDMS) devices 

using photolithography and coat them with fluorophilic Aquapel (Rider, 

MA, USA) to prevent wetting of drops on the channel walls. Electrodes 

are fabricated on chip using low melting temperature solder42. The designs 

used to fabricate the devices are available in ACAD format (Supplementary  

Design Files). We use OEM syringe pumps (KD Scientific, MA, USA) to drive 

the fluidics and a fast camera (HiSpec1, Fastec Imaging,USA) to image encap-

sulation and drop fusion.

Cell cultures. Mouse embryonic stem cells from a male mouse embryo (v6.5, 

NBP1-41162, Novus, USA) were cultured on mitotically inactivated mouse 

embryonic fibroblasts (MEFs, Globalstem, USA). ES cells were maintained 

in medium containing Knockout DMEM (Gibco, USA), 15% Fetal Bovine 

serum, 1% Pen/Strep (Gibco, USA), 1% Non-essential amino acids (Gibco, 

USA), 1% Glutamax (Gibco, USA), 0.01% LIF (ESG1107, Millipore, USA) and 

0.0004% beta-mercaptoethanol. Mouse embryonic fibroblasts (Globalstem, 

USA) were cultured in the same medium but without LIF. EML (CRL-11691, 

ATCC, USA) were grown in Iscove’s modified Dulbecco’s medium (IMDM) 

with 4 mM l-glutamine adjusted to contain 1.5 g/L sodium bicarbonate 

containing 200 ng/mL mouse stem cell factor, 1% Pen/Strep (Gibco, USA) 

and 20% Fetal Bovine serum. Human K562 cells were grown in DMEM  

(Gibco, USA), 20% Fetal Bovine serum, 1% Glutamax (Gibco, USA) and 1% 

Pen/Strep (Gibco, USA). Cell lines were tested for mycoplasma contamination 

and ES cells authenticated by measuring Oct4 levels, characteristic morphol-

ogy and chromatin state.

Preparation of unlabeled chromatin. About 100M K562 cells were suspended 

in 1 mL of 1× digestion buffer. The suspension is incubated at 4 °C for 10 min to 

lyse the cells, after which MNase is activated by incubating at 37 °C for 15 min  

and inactivated by adding 40 µL of 0.5 M EGTA (final concentration of 20 mM).  

Next, we centrifuged the lysate for 5 min at max speed, separate the chromatin 

supernatant and mix it with 1 mL of 2× stopping buffer.

Barcode and primer design. The design of barcode adapters is shown in 

Supplementary Figure 2a. A sequence of 5 guanine nucleotides on each side 

of the barcode is not complementary and forms a loop. These loops were 

designed to prevent the formation of hairpins or stem-loops that inhibit prim-

ing during amplification of labels. The 1,152 barcode sequences are listed in 

Supplementary Table 2. To prime the barcoded genomic DNA, we use the 

following SC-PCR primer sequences:

TAAGGTGGGGGGGATAC 59.6(Tm)

TAAGGTCCCCCGGATAC 59.6(Tm)

Barcode library generation. Barcodes were commercially synthesized (IDT, 

USA) and suspended in 10 mM Tris at a concentration of 500 µM in 384-well 

plates. We use a 96 parallel drop-maker microfluidic chip with aqueous inlets 

for each drop-maker that precisely fit one quarter of a 384-well plate and that 

are immersed in 96 different wells, each containing a unique barcode. Oil 

with surfactant is distributed to all drop-makers via a common inlet that is 

connected to a pressurized (9 psi) oil reservoir. The plate and the microfluidic 

parallel device are placed in a pressure chamber while a common outlet for 

all 96 barcode drop-makers is located outside the pressure chamber. Upon 

pressurizing the chamber (6 psi), each of the 96 barcode solutions is forced 

through its own drop-maker, thereby forming an emulsion of ~35 µm diam-

eter drops where every drop contains about 1 billion copies of one of the 96 

barcodes. The process is repeated until all barcodes are encapsulated. Before 

use, the emulsion is pooled in a single tube and mechanically mixed by rolling 

the tube for 5 min.

Cell encapsulation. Cells were suspended at a concentration of 5 M/mL in PBS 

and loaded in a syringe together with a magnetic stirrer bar stirred by a motor-

ized magnet located externally to prevent sedimentation of the cell suspension. 

The suspension of cells is co-flowed at a 1:1 ratio with 2× digestion buffer 

containing both a detergent for cell lysis and Micrococcal Nuclease (MNase). 

MNase is an endonuclease that digests single-stranded nucleic acids, but is 

also active against double-stranded DNA and under optimized conditions will 

preferentially digest the open DNA at the inter-nucleosomal regions, resulting 

in the fragmentation of chromatin into primarily mono-nucleosomes. The two 

aqueous phasescell suspension and buffer—meet immediately before passing 

through the microfluidic drop making junction so that they only mix inside 

the ~50-µm-diameter drops containing them (Supplementary Video 1).  

After encapsulation, drops were incubated at 4 °C for 10 min for lysis and then 

at 37 °C for 15 min for MNase digestion.

Barcode-cell drop fusion. Drops containing native chromatin from single-

cells and drops containing barcodes are reinjected into a custom 3-point 

merger microfluidic device. The third inlet in the 3-point merging chip is fed 

with 2× labeling buffer, optimized for both end repair of dsDNA and blunt 

end ligation in the same solution. A high voltage amplifier (2210, TREK, USA) 

which supplies a 100 V square A/C wave at a frequency of 25 kHz is used to 

drive the device electrodes which induce an electric field that electro-coalesces 

the 3 phases (cell drops, barcode drops and labeling buffer). After merging, 

all fused drops are collected in a single tube preloaded with a bed of carrier 

drops that protect the sample drops from evaporating or wetting the tube walls. 

The carrier drops are 70 µm in diameter, similar to the size of the fused drops, 

and contain a carrier buffer optimized to match the mixed buffers in the fused 

drops, thereby minimizing the osmotic forces acting on the sample drops. 

To simplify the distribution of samples into wells downstream, we use 2 mL  

of carrier drops for every 10,000 cells collected. After collection, the mixed 

emulsion is incubated at room temperature for 2 h to allow ligation.

Extracting samples from fused drops. The 2 mL of emulsion containing fused 

drops and carrier drops are distributed in aliquots of 20 µL into wells contain-

ing 20 µL of 1% surfactant oil. This ensures that each well contains a sample of 

about 100 labeled cells. Each well is then topped with 50 µL stopping buffer that 

stops the ligation reaction and 25 µL of unlabeled chromatin from ~1M K562 

cells. The unlabeled chromatin acts as a buffer, minimizing nonspecific binding  

during ChIP and protecting the minute amounts of labeled chromatin from 

being lost during liquid handling. To separate the emulsion, 10 µL of demulsifier  

is added to each well and the plate is centrifuged at 1,000 r.p.m. for 30 s.  

The aqueous phase in each well, containing labeled chromatin from ~100 cells, 

separates above the oil phase and is transferred to a new well for ChIP.

ChIP. Each sample of ~100 cells was incubated at 4 °C overnight with 1–3 µL 

of antibodies (see reagents). The complexes were precipitated with 20 µL of 

protein-A coated magnetic beads (10008D, Life Technologies, USA) in a total 

volume of ~125 µL per sample. Beads were washed sequentially twice with low-

salt immune complex wash, twice with high-salt immune complex wash, once 

with LiCl immune complex wash, and twice with TE (10 mM Tris-HCl). Wash 

volumes are 100 µL per sample, except for the last wash, where the immunopre-

cipitated chromatin remains bound to the beads in 21.5 µL of TE per sample 

for downstream reactions and is eluted later in the library preparation.

Library preparation. To minimize the abundance of barcode adaptors concate-

mers, we add 1 µL of PacI restriction enzyme (R0547L, NEB, USA) and 2.5 µl  

of NEB Buffer 1 to each sample of 100 cells in 21.5 µL of TE and incubate at 37 °C  

for 2 h and then at 65 °C for 20 min. This is done immediately after ChIP wash-

ing steps and while the chromatin is still bound to the ChIP beads. PacI digest 
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in between bound concatemers and in the middle of each adaptor to form  

30 bp DNA fragments that can be easily filtered out using simple size selection  

(see Fig. 3a and Supplementary Fig. 2a). Next, we elute the chromatin by add-

ing 25 µL of 2× elution buffer, digest RNA contaminates by adding 3 µL of RNase 

(11119915001, Roche Diagnostics, USA) and incubate at 37 °C for 20 min and 

remove the nucleosomes by adding 3 µL of Proteinase K (P8102S, NEB, USA) 

and incubating at 37 °C for 2 h and deactivating at 65 °C for 30 min. We purify 

the DNA using 1.5× AMPure XP beads (A63880, Beckman Coulter, USA) and 

follow with 14 rounds of Single-Cell-PCR (SC-PCR, Supplementary Table 1) 

to amplify the labeled DNA and with another purification using 1.1× AMPure 

XP beads. To reduce unspecific Illumina adaptor ligation we first dephospho-

rylate all 5′ ends by adding 1 µL pf Antarctic Phosphatase (M0289L, NEB, 

USA) and 2.5 µL of Antarctic Phosphatase Buffer in a total volume of 25 µL  

including the DNA and incubating at 37C for 30 min. We then purify the DNA 

using 1.1× AMPure XP beads, add 1 µL of BciVi enzyme (R0596L, NEB, USA) 

and 2.5 µl of NEB Buffer 4 in a total volume of 25 µL including the DNA and 

incubate at 37 °C for 1 h. This will specifically cleave the labeled DNA, leaving 

an A overhang at the 5′ end of all DNA fragments with single cell adapters. 

To ligate Illumina adapters, we purify DNA using 1.1× AMPure XP beads, 

reduce the sample volume to 4 µL via evaporation, add 0.5 µL Quick Ligase 

(M2200L, NEB, USA), 6 µL of 2× Quick Ligation Reaction Buffer and 1.5 µL 

Illumina adapters diluted 1:150 and incubate at room temperature for 15 min. 

Before amplifying the Illumina adapters we apply PacI again to digest concate-

mers that may have formed during the ligation step. For this, we first purify 

DNA using 0.7× AMPure XP beads and then use the same concentrations 

and incubation times as the first application of PacI. Finally, we purify DNA 

using 0.7× AMPure XP beads and amplify the Illumina adapters by adding 

12.5 µL of PCR Mix (PfuUltra II Hotstart PCR Master Mix, 600850, Agilent 

Technologies, USA) and 0.5 µL of Illumina Primers at 25 µM in a total volume 

of 25 µL including the DNA and thermocycling (initial denaturation at 95 °C 

for 3 min, 14 rounds of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min, and 

final extension at 72 °C for 10 min). The amplified sample is purified one last 

time using 0.7× AMPure XP beads and then the DNA content is measured 

and the sample is sequenced.

Sequencing. We use Illumina HiSeq to sequence 2 × 60 bp paired end reads. 

The first 11 sequencing cycles are dark to prevent low complexity failure when 

reading the non-variable regions of the barcode adaptor.

Filtering single-cell reads. Barcodes are expected at the first 8 bp of the first 

read and bp #12–19 of the second read. Half of PacI recognition site “TTAA” will 

follow the barcode sequence, and the rest of the read is genomic. Since barcodes  

are symmetric, both ends may be sequenced, so several combinations for read 

#1 and read #2 are possible, all representing the same fragment, as shown in 

Supplementary Figure 2b. Reads with barcode sequences not matching any 

of the 1,152 barcodes were discarded. Remaining reads were aligned to mm9 

genome using Bowtie2 (ref. 43) in paired end mode, trimming the first 23 bp 

on each 5′ end and discarding multi-mapped reads and reads that are longer 

than 1 kb (syntax: “bowtie2 -X 1000 -- trim5 23 -x mm9 -1 [read#1.fastq] -2 

[read#2.fastq] --S [output.sam]”). Of the remaining distinct reads, only those 

reads with matching barcodes on both ends were saved, with the following 

exception: if two (and only two) barcodes happen to mutually label 10% or 

more of reads associated with either of the two barcodes, then those barcodes 

are treated as identical and all reads labeled by either or both barcodes are 

considered to have matching barcodes on both ends. This exception handles 

cases where two barcode drops fuse with one cell drop. Finally, to determine 

those barcodes that are associated with single cells, the numbers of reads per 

barcode were analyzed based on Poisson statistics (Supplementary Note 3). 

The reads associated with the chosen barcodes, along with their barcode of 

origin, were used in downstream analysis.

Visualizing and assessing precision and sensitivity of single-cell chromatin  

profiles. To visualize the information content attainable by Drop-ChIP (Fig. 4a),  

we selected 100 single-cell H3K4me3 profiles (50 ES cells and 50 MEFs). 

These examples were selected based on high read coverage over target regions.  

The reads from each single-cell profile were plotted across representative 

regions. Although these best case examples better illustrate the accuracy of 

the profiles, visualization of essentially any subset of single cells recapitulates 

similar enrichment over target regions. We calculated the precision of each 

single-cell profile from the fraction of reads overlapping known peaks, and 

sensitivity from the fraction of known peaks overlapping single-cell reads 

(peaks defined from corresponding bulk profiles).

Supervised classification of single-cell tracks into ES and MEF cell types. 

For 400 H3K4me3 tracks (200 ES cells and 200 MEFs), we calculated the frac-

tion of reads overlapping with peaks specific to either ES cells or MEFs (based 

on bulk H3K4me3 profiles). We plotted the ES cell score of each single-cell 

vs. its MEF specific score, with both scores normalized to a maximum of 1. 

A simple comparison between the two scores correctly classifies cells with 

>95% accuracy (Fig. 4c).

Clustering ES cells, MEFs and EMLs based on H3K4me3 single-cell profiles. 

We counted reads intersecting with 5-kb genomic bins to produce a vector  

of ~500,000 values for each of the cells. Next we binarized the data to reduce 

any possible bias that might originate from over-represented bins (for example, 

repetitive regions): 
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To reduce noise we filtered out low coverage cells and non-informative bins 

by selecting only single cells that occupy at least 250 bins, and restricting the 

set of bins to only those that were occupied by at least 2% but no more than 

50% of the single cells.

We divided each binary vector by the total number of nonzero bins to con-

trol for cell-coverage variability, and calculated pair-wise covariances: 
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where  and  are indices for individual cells.

Finally, we used a divisive clustering algorithm to cluster the columns of C 

by applying the function “diana” from the “cluster” R package.

Peak calling. We use Scripture44 with a segmentation length of 1,000–5,000 

bp to identify enriched regions in chromatin profiles.

Chromatin signatures collection and analysis. To build our signature library, 

we first collected 314 available ChIP-seq data sets from GEO and ENCODE, 

called peaks for each data set using Scripture, and defined the signature as 

the set of all 5-kb genomic bins overlapping the peaks of a data set. Pearson 

correlations ρij between signatures correspond to the degree of overlap of 

genomic regions between them, and we used the distance function dij = 1 − ρij 

to cluster the signatures by applying the R function hclust (using the complete 

linkage method). Finally, we set a threshold that cut the dendrogram into 91 

biologically meaningful clusters each consisting of highly overlapping maps 

and manually chose a representative signature from each cluster, taking into 

account quality of data and biological relevance. The correlation between the 

91 signatures is shown in Supplementary Figure 7 and the signature names 

and their public sources are listed in Supplementary Table 4.

Clustering H3K4me2 using chromatin signatures scores. To cluster 

H3K4me2 single-cell profiles, we first calculated the coverage, or score of 

cells in each of the chromatin signatures: we binned the reads of each single 

cell in 5-kb genomic bins and then calculated the number of bins that over-

lapped with each signature profile to produce a matrix of 10,128 cells (9,207 
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ES cells and 921 MEFs) over 91 signatures. We used two specific signatures, 

the H3K4me2 signature score of ES cells and MEFs, to filter out single-cell 

profiles with a low ChIP signal. For ES cells and MEFs separately, we com-

pared the single-cell scores for the respective H4K3me2 signature to a distri-

bution of signature scores obtained by randomly choosing reads from input 

ChIP-seq bulk experiments of the same cell type (Whole Cell Extract, WCE).  

We filtered out cells with H3K4me2 signature scores that are lower than the 95%  

percentile of the H3K4me2 signature score of WCE virtual single cells. 7,327 

cells (6,432 ES cells and 895 MEFs) satisfied this criterion and were retained 

for the next step (these were also retained for unsupervised clustering using 

DIANA, which classified the two cell types at >95% purity). We normalized 

each cell for coverage and standardized (subtracted the mean and divided by 

standard deviation) the distribution of each signature variable over the remain-

ing cells. We applied two distance metrics, Euclidean and Manhattan, to create 

two pairwise distance matrices and then separately applied the R agglomerative 

hierarchical clustering method hclust (using the complete linkage method) on 

each of the matrices. We found 4 to be the minimal number of clusters required 

to separate the ES cells and MEFs. Clustering using the two metrics agreed on 

84% of the cells. To make downstream results less dependent on the choice 

of metric, we decided to keep only those cells on which both metrics agreed. 

As a final step of cleaning up potentially noisy data, we noticed that when we 

partitioned the data to 5 clusters, 3 large (>1,400 cells) ES clusters are formed, 

one clear MEF cluster, and an additional smaller, somewhat more mixed cluster 

(360 cells, 26 of which are MEFs), and we have discarded the cells in the last 

cluster remaining with 4,643 ES cells and 762 MEFs. All subsequent analyses of 

population heterogeneity in H3K4me2 (Figs. 5 and 6) use these 5,405 cells.

Multidimensional scaling (MDS) plots. For these plots (Fig. 5b,c and 

Supplementary Fig. 8d), we used ρij, the Pearson correlation between sig-

nature-scores vectors of single cells, for the distance function: dij = 1 − ρij. 

The MDS was calculated from a matrix of these distances using the isoMDS 

function in the MASS R package45, which implements Kruskal’s non-metric 

multidimensional scaling.

Analysis code. Analysis and plots were performed using Matlab,  

R and ggplot.
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