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Abstract 42 

 43 

Genetic risk variants for complex, multifactorial diseases are enriched in cis-regulatory elements. 44 

Single cell epigenomic technologies create new opportunities to dissect cell type-specific 45 

mechanisms of risk variants, yet this approach has not been widely applied to disease-relevant 46 

tissues. Given the central role of pancreatic islets in type 2 diabetes (T2D) pathophysiology, we 47 

generated accessible chromatin profiles from 14.2k islet cells and identified 13 cell clusters 48 

including multiple alpha, beta and delta cell clusters which represented hormone-producing and 49 

signal-responsive cell states. We cataloged 244,236 islet cell type accessible chromatin sites and 50 

identified transcription factors (TFs) underlying both lineage- and state-specific regulation. We 51 

measured the enrichment of T2D and glycemic trait GWAS for the accessible chromatin profiles 52 

of single cells, which revealed heterogeneity in the effects of beta cell states and TFs on fasting 53 

glucose and T2D risk. We further used machine learning to predict the cell type-specific regulatory 54 

function of genetic variants, and single cell co-accessibility to link distal sites to putative cell type-55 

specific target genes. We localized 239 fine-mapped T2D risk signals to islet accessible 56 

chromatin, and further prioritized variants at these signals with predicted regulatory function and 57 

co-accessibility with target genes. At the KCNQ1 locus, the causal T2D variant rs231361 had 58 

predicted effects on an enhancer with beta cell-specific, long-range co-accessibility to the insulin 59 

promoter, and deletion of this enhancer reduced insulin gene and protein expression in human 60 

embryonic stem cell-derived beta cells. Our findings provide a cell type- and state-resolved map 61 

of gene regulation in human islets, illuminate likely mechanisms of T2D risk at hundreds of loci, 62 

and demonstrate the power of single cell epigenomics for interpreting complex disease genetics.  63 

 64 

 65 

 66 

 67 
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 3 

Introduction 72 
 73 

Gene regulatory programs are largely orchestrated by cis-regulatory elements that direct the 74 

expression of genes in response to specific developmental and environmental cues. Genetic 75 

variants associated with disease by genome-wide association studies (GWAS) are highly 76 

enriched within putative cis-regulatory elements1, highlighting the importance of regulatory 77 

sequence in mediating disease risk. The activity of regulatory elements is often restricted to 78 

specific cell types and/or cell states, limiting the ability of ATAC-seq and other “ensemble” (or 79 

“bulk”) epigenomic technologies to map regulatory elements in individual cell types within disease-80 

relevant tissues. To overcome this limitation, new approaches to obtain ATAC-seq profiles from 81 

single nuclei (snATAC-seq) allow for the disaggregation of open chromatin from heterogenous 82 

samples into component cell types and subtypes2–5. These developments create opportunities to 83 

dissect the molecular mechanisms that underlie genetic risk of disease. However, to date 84 

snATAC-seq data from disease-relevant human tissues are limited6–9. 85 

Type 2 diabetes (T2D) is a multifactorial disease with a highly polygenic inheritance10. Pancreatic 86 

islets are central to genetic risk of T2D, as evidenced by shared association between T2D risk 87 

and quantitative measures of islet function11–13 and enrichment of T2D risk variants in islet 88 

regulatory sites14–18. Islets are comprised of multiple endocrine cell types with distinct functions19–89 
21 and are heterogeneous22–24 in gene expression and other molecular signatures which likely 90 

reflect different functional cell states22,25,26. Heterogeneity in the epigenome of islet cell types has 91 

not been described, however, which is necessary to understand islet regulation and interpret the 92 

molecular mechanisms of non-coding T2D risk variants. In this study, we map accessible 93 

chromatin profiles of individual islet cells using snATAC-seq, define the regulatory programs of 94 

islet cell types and cell states, describe their relationship to T2D risk and fasting glycemia, and 95 

predict the molecular mechanisms of T2D risk variants.  96 

 97 

Results 98 
 99 

Islet snATAC-seq reveals 13 cell clusters with distinct regulatory landscapes  100 

To map the accessible chromatin landscape of single islet cells, we performed snATAC-seq on 101 

human pancreatic islets from three donors (Supplementary Table 1). We used a combinatorial 102 

barcoding snATAC-seq approach previously optimized by our group for use on tissues2,4 (see 103 

Methods). To confirm library quality, we first analyzed the data as ensemble ATAC-seq by 104 
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 4 

aggregating all high-quality mapped reads irrespective of barcode. Ensemble snATAC-seq from 105 

all three samples showed the expected insert size distribution (Supplementary Figure 1a), strong 106 

enrichment of signal at transcription start sites (TSS) (Supplementary Figure 1b), and high 107 

concordance of signal with published islet ATAC-seq data14,27–29 (Supplementary Figure 1c).  108 

To obtain a collection of high-quality single cell profiles, we first filtered out cells with less than 109 

1,000 reads (Supplementary Figure 1d), resulting in a total of 17,995 cells across the three 110 

samples. We then clustered accessible chromatin profiles from these cells, making key 111 

modifications to previous approaches (see Methods for details)4. First, as the inputs to clustering 112 

we used normalized read counts in 5 kb sliding windows genome-wide rather than read counts 113 

within ensemble peak calls, reasoning that ensemble peak calls could be biased towards more 114 

common cell types. Second, we performed an initial round of clustering and quality control on a 115 

per-sample basis, which removed 2,709 cells in low read depth clusters. Third, prior to clustering 116 

cells across samples, we used mutual nearest neighbors30 to correct for variability across donors. 117 

Finally, we clustered all cells together and performed additional quality control by removing one 118 

cluster without representation from all donors (694 cells), and one with aberrant read depth and 119 

low intra-cluster similarity (192 cells). After all clustering and filtering steps, we retained 14,239 120 

cells which mapped to 13 clusters, all of which had consistent representation across samples and 121 

read depth profiles (Figure 1a, Supplementary Figure 2a-c).  122 

To determine the cell type represented by each cluster, we examined chromatin accessibility at 123 

the promoter region of the cognate hormone genes for endocrine cells and known marker genes 124 

for non-endocrine cell types. Based on these marker gene promoters, we identified clusters 125 

representing beta (INS-IGF2/insulin), alpha (GCG/glucagon), delta (SST/somatostatin), gamma 126 

(PPY/pancreatic polypeptide) cells, exocrine acinar and ductal (labeled as ‘exocrine’; REG1A, 127 

S100A14)31,32, immune (PTPN22)32, stellate (PDGFRB)32, glial (CDH19)33, and endothelial 128 

(CD93)34 cells (Figure 1b-c, Supplementary Figure 2d). We defined a broader set of marker gene 129 

promoters for each cluster by identifying gene promoters with differential accessibility across 130 

clusters and retaining the top 100 differential promoters for each cluster (see Methods, 131 

Supplementary Table 2). To validate the cell type we assigned to each cluster, we derived gene 132 

expression marker genes from published islet scRNA-seq data23 and correlated t-statistics of 133 

snATAC-seq marker gene promoters with t-statistics of scRNA-seq marker genes (see Methods, 134 

Supplementary Figure 3a-e). We observed highly specific correlations between marker genes of 135 

endocrine and other pancreatic cell types in snATAC-seq and scRNA-seq (Figure 1d). Of note, 136 
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the multiple clusters of alpha, beta, and delta cells in snATAC-seq each had strongest correlation 137 

with their respective cell type.  138 

To characterize the regulatory programs of each cell type, we aggregated reads for cells within 139 

each cluster and identified accessible chromatin sites for the cluster using MACS2 (see Methods). 140 

In total we identified 244,236 accessible chromatin sites merged across the 13 clusters 141 

(Supplementary Data 1), which were concordant with sites identified in ensemble islets 142 

(Supplementary Figure 4a-b). Notably, accessible chromatin in alpha and beta cells was highly 143 

concordant with bulk ATAC-seq of corresponding FACS-sorted populations35,36, confirming that 144 

we identified cell type-specific islet chromatin (Supplementary Figure 4c). To next understand the 145 

regulatory logic underlying islet cell types, we used chromVAR37 to identify TF sequence motifs 146 

from JASPAR38 enriched within accessible chromatin of each cell. We focused on 111 TF motifs 147 

with evidence for variability across cells (see Methods, Supplementary Figure 4d, Supplementary 148 

Table 3). Analysis of motif enrichments averaged across cells for each cell type revealed distinct 149 

patterns of motif enrichment across cell types, many consistent with known functions in islet cells 150 

(Figure 1e, Supplementary Table 3). For example, the PDX1 motif was enriched in beta 151 

(normalized enrichment=0.93) and delta (1.0) cells39, and MAF motifs were enriched in alpha (1.0) 152 

and beta cells (0.93)40–42 (Figure 1e). We also identified motif enrichments shared across all 153 

endocrine cell types, such as FOXA, and in non-endocrine cell types, including IRF for immune43 154 

(1.0) and ETS for endothelial44 (1.0) cells (Figure 1e). Hierarchical clustering of cell types based 155 

on TF motif enrichment patterns further revealed that regulatory programs of beta and delta cells 156 

were closely related as were the programs of alpha and gamma cells (Figure 1e), consistent with 157 

single cell expression data31,32,45.  158 

 159 

Heterogeneity in islet endocrine cell accessible chromatin and regulatory programs 160 

A major strength of single cell approaches is the ability to reveal heterogeneity within a cell type. 161 

Indeed, our initial clustering showed that alpha, beta and delta cells segregated into sub-clusters. 162 

To characterize these sub-clusters, we determined gene promoter accessibility in each sub-163 

cluster and identified promoters with variable accessibility between sub-clusters (see Methods, 164 

Supplementary Data 2). We focused on alpha and beta cells, where cell numbers allowed for 165 

robust calculations. Notably, we found INS among genes with the most variable promoter 166 

accessibility between beta cell sub-clusters (INS-IGF2 beta OR=5.05, two-sided Fisher’s exact 167 

P=3.98x10-37), leading us to rename the beta 1 and beta 2 clusters as INShigh and INSlow beta 168 

cells, respectively (Figure 1b-c; Figure 2a). Similarly, GCG promoter accessibility was highly 169 
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variable between alpha cell sub-clusters (GCG alpha OR=3.30, P=4.68x10-25), and we renamed 170 

the alpha 1 and alpha 2 sub-clusters as GCGhigh and GCGlow alpha cells, respectively (Figure 1b-171 

c; Figure 2a). 172 

Apart from INS and GCG, we found significant overlap in the genes that distinguish hormone-high 173 

(INShigh, GCGhigh) from hormone-low (INSlow, GCGlow) alpha and beta cells by gene set enrichment 174 

analysis (GSEA) (Figure 2b). Genes with increased promoter accessibility in hormone-high states 175 

including GCK, ABCC8, G6PC2 and SLC30A8 were enriched for processes such as hormone 176 

secretion and glucose response (Figure 2a,c, Supplementary Table 4). In contrast, genes with 177 

increased promoter accessibility for hormone-low states including ATF3, FOSL1, and FOSL2 and 178 

were enriched for stress-induced signaling response46 (Figure 2a,c, Supplementary Table 4). 179 

Similar states were also evident in delta cells, although low cell numbers impede deeper analysis 180 

in our study (Supplementary Figure 5). We compared genes with significantly different promoter 181 

accessibility between states to gene sets describing beta cell heterogeneity (β-sub.1-4) from a 182 

previous scRNA-seq study23. Genes with increased promoter accessibility in hormone-low cells 183 

(INSlow, GCGlow) were enriched in a beta cell sub-cluster (β-sub.4) associated with ER stress and 184 

protein folding and with low INS expression, whereas genes with increased promoter accessibility 185 

in hormone-high cells (INShigh, GCGhigh) were enriched in the other beta cell sub-clusters (β-sub.1-186 

3) (Figure 2b). These data reveal epigenomic differences between endocrine cell states among 187 

genes involved in hormone production and stress-induced signaling responses, and point to an 188 

underlying commonality in the genes that govern state-specific functions across different 189 

endocrine cell types. 190 

The transcriptional regulatory programs driving functional heterogeneity in alpha and beta cells 191 

are unknown. Therefore, we determined TF sequence motifs differentially enriched across alpha 192 

and beta cell states. We focused on 111 TF motifs showing evidence for variable enrichment 193 

between alpha and beta cell states (see Methods, Supplementary Figure 6a, Supplementary 194 

Table 5) and observed clear patterns that distinguished different states within alpha and beta 195 

cells, again revealing commonalities across cell types (Figure 2d). For example, motifs for RFX 196 

family members were enriched in hormone-high states (GCGhigh, INShigh), but not in hormone-low 197 

states (GCGlow, INSlow) (RFX3 - mean INShigh enrich=.26, INSlow=-.62, P=3.5x10-158; GCGhigh=.29, 198 

GCGlow=-.56, P=7.3x10-91) (Figure 2d). In contrast, motifs for FOS and JUN family members were 199 

prominently enriched in hormone-low states, but not the hormone-high states (FOS::JUN - mean 200 

INShigh enrich=-1.45, INSlow=4.50, P=4.7x10-307; GCGhigh=-1.45, GCGlow=4.46, P=2.3x10-292) 201 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/693671doi: bioRxiv preprint 

https://doi.org/10.1101/693671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

(Figure 2d). Again, we also observed similar motif enrichment patterns between delta cell states 202 

(Supplementary Figure 6a-b).  203 

Analysis of single cells ordered along a trajectory has been used to examine gene regulatory 204 

programs as a continuum rather than as discrete or binary states6,23,47. To explore potential 205 

gradations among alpha and beta cells, we used Cicero6 to order alpha and beta cells along 206 

trajectories based on chromatin accessibility. We ordered cells using high promoter accessibility 207 

at INS (beta) or GCG (alpha) as the root states for each trajectory (see Methods). We refer to the 208 

axis of these trajectories as “pseudo-state” rather than the conventional “pseudo-time”, because 209 

the heterogeneity appears to be more related to cell state than to time. We observed cells on a 210 

gradient between hormone-high and hormone-low states of alpha and beta cells, and we noted a 211 

discernable transition point within the trajectory (Figure 2e, Supplementary Figure 7a-b). These 212 

trajectories allowed us to examine gene promoter accessibility and TF motif enrichment as a 213 

function of pseudo-state (Figure 2e, Supplementary Figure 7c). Consistent with the above results, 214 

lineage-specifying genes and enrichments for motifs in TF families such as RFX, Neurogenin-215 

ATO and NFAT decreased along the trajectory from hormone-high to -low cells, whereas 216 

enrichment for motifs in TF families such as FOS/JUN, XBP and CCAAT (NFYA) increased along 217 

the trajectory (Figure 2e).  218 

Structurally-related TFs often have similar motifs, and thus to assign motifs to specific TFs we 219 

correlated promoter-accessibility of TFs within the structural subfamily with motif enrichments 220 

across the state trajectory (see Methods)48. Motif enrichment for the FOS/JUN family correlated 221 

with the promoter accessibility of FOSL1, FOSL2 and JUND across cells (Figure 2f), supporting 222 

a role for these specific TFs in hormone-low cell regulation. Similarly, motif enrichment for the 223 

Neurogenin-ATO subfamily correlated with promoter accessibility of NEUROD1, supporting a role 224 

for this TF in hormone-high cell regulation (Supplementary Figure 8a). While we did not observe 225 

strong correlations between RFX motif enrichment and promoter accessibility of RFX genes, the 226 

overall high promoter accessibility of RFX6 and RFX3 and known function in endocrine cells49–51 227 

suggests they are TFs likely involved in hormone-high cell regulation (Supplementary Figure 8b). 228 

 229 

Enrichment of islet cell type- and state-specific regulatory sequences for diabetes- and 230 
fasting glycemia-associated genetic variants 231 

Variants associated with complex diseases and physiological traits are enriched within cis-232 

regulatory sequences1,52. More specifically, genetic variants influencing diabetes and fasting 233 
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 8 

glucose level are enriched in pancreatic islet regulatory elements15–17,53. However, these 234 

enrichments based on ensemble data obscure the potential role of islet cell type- and state-235 

specific regulation in these traits. Using our islet cell type- and state-resolved accessible 236 

chromatin profiles, we sought to determine the enrichment of genetic variants associated with 237 

type 1 and 2 diabetes10,54 and diabetes-related quantitative phenotypes13,55–59 as well as other 238 

complex traits and disease for calibration60–67. We first determined the enrichment of variants in 239 

accessible chromatin sites for each islet cell type and state using stratified LD score regression68,69 240 

(see Methods). We observed significant enrichment (FDR<.1) of fasting glucose (FG) level and 241 

T2D association for both INShigh and INSlow beta cell states (T2D INShigh Z=4.45 q-value=.001, 242 

INSlow Z=4.00 q=.004; FG INShigh Z=3.93 q=.004, INSlow Z=3.34 q=.027), as well as enrichment of 243 

body-mass index (BMI) for SSThigh delta cells (Z=3.50 q=.027) (Figure 3a). We also observed 244 

suggestive enrichment (P<.01) of 2hr glucose level adjusted for BMI for both alpha cell states 245 

(GCGhigh Z=2.45 P=.007, GCGlow Z=2.40 P=.008), and T2D and fasting proinsulin level for GCGlow 246 

alpha cells (PI: Z=2.64, P=.004; T2D: Z=2.40 P=.008), although these enrichments did not pass 247 

multiple test correction. 248 

In these analyses, we again noted evidence for differences in enrichments between the hormone-249 

high and -low states of endocrine cells (Figure 3a). To further resolve the heterogeneity of genetic 250 

association enrichment patterns, we used a novel framework to test the enrichment of genetic 251 

association signal genome-wide within accessible chromatin profiles of single cells (see 252 

Methods). We applied this approach to genetic association data for T2D and fasting glucose level, 253 

as well as negative control traits major depressive disorder and systemic lupus erythematosus 254 

(Figure 3b). We observed marked heterogeneity among beta cells in enrichment estimates for 255 

fasting glucose-associated variants, whereby cells in the INShigh state had significantly stronger 256 

enrichment than cells in the INSlow state (INShigh median Z=2.42, INSlow median Z=1.13, P<2.2x10-257 
16) (Figure 3b). We further examined heterogeneity by calculating the average enrichment 258 

estimates for cells binned across the ‘pseudo-state’ trajectory (see Figure 2), which revealed a 259 

clear pattern of decreasing enrichment for fasting glucose-associated variation across pseudo-260 

state moving from INShigh to INSlow beta cells (Figure 3b). Conversely, for T2D we observed 261 

enrichment for beta cells that was more consistent across INShigh and INSlow beta cells, as well as 262 

across the pseudo-state trajectory (INShigh median Z=0.48, INSlow median Z=0.51, P=0.84) (Figure 263 

3b). In comparison, major depressive disorder and lupus showed no evidence for enrichment for 264 

beta cells (all median Z<.001) (Figure 3b). Knowledge of state-specific effects of cell types on 265 

specific phenotypes can then inform interpretation of association signals for those phenotypes; 266 

for example, at the DGKB locus, variants associated with both fasting glucose level and T2D 267 
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overlapped a chromatin site with higher activity in INShigh beta cells, implicating this state-268 

dependent regulatory sequence in mediating the association signal (Figure 3c). 269 

Given our ability to map both complex trait and TF motif enrichments to single cells, we reasoned 270 

that joint analysis of these data could provide insights into TFs and regulatory networks through 271 

which genetic effects on these traits are mediated. We correlated single cell fasting glucose level 272 

and T2D enrichment z-scores with single cell TF motif enrichments from chromVAR37, both across 273 

all 14.2k islet cells as well as just the 7.2k beta cells (see Methods). Across all 14.2k cells, we 274 

observed strong positive correlation between fasting glucose level and T2D enrichment and beta 275 

cell lineage-specifying TF motifs (e.g. PDX1), and negative correlation with TF motifs regulating 276 

other islet cell types (Figure 3d, Supplementary Figure 9, Supplementary Table 6). When next 277 

considering only the 7.2k beta cells, we observed the strongest positive correlation between 278 

fasting glucose level and motifs in TF families enriched for INShigh beta cells (from Figure 2) such 279 

as RFX (ρ=.12, P=2.58x10-24), FOXA (ρ=.11, P=5.41x10-19), and MAF (ρ=.14, P=5.36x10-32), and 280 

negative correlation with INSlow beta cell TF motifs such as FOS/JUN and ATF (JUND ρ=-.23, 281 

P=1.23x10-85, ATF4 ρ=-.12, P=1.18x10-23) (Figure 3d, Supplementary Table 6). Interestingly, for 282 

T2D, both the strongest positive and negative correlations included motifs for TF families enriched 283 

in INSlow beta cell such as CCAAT and CREB (NFYA ρ=.073, P=1.72x10-9, CREB1 ρ=.053, 284 

P=7.44x10-6) and FOS/JUN (FOS::JUN ρ=-.06, P=2.45x10-6) (Supplementary Figure 9, 285 

Supplementary Table 6). Together these results provide state-resolved insight into the role of beta 286 

cells and beta cell TFs in T2D risk and fasting glucose level. 287 

 288 

Genome-wide predictions of variant effects on islet cell type- and state-specific regulatory 289 
sequence  290 

Predicting the effects of non-coding genetic variants on regulatory activity remains a major 291 

challenge, in large part because the sequence vocabularies that encode regulatory function differ 292 

between cell types and states. Our cell type- and state-resolved accessible chromatin profiles 293 

provided an ideal opportunity to apply machine learning to model these regulatory vocabularies 294 

and use these models to predict the effects of genetic variants on putative regulatory sequences. 295 

We therefore used deltaSVM70 to predict the effects of genetic variants from the Haplotype 296 

Reference Consortium panel71 on chromatin accessibility in each endocrine cell type and cell state 297 

(see Methods). We identified 543,537 variants genome-wide with predicted allelic effects 298 

(FDR<.1), encompassing between 128k-210k variants (9.1%-14.8% of tested variants) per cell 299 

type or state (Figure 4a, Supplementary Data 3).  300 
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To validate that our predictions captured true allelic effects on islet chromatin accessibility, we 301 

first compared alpha and beta cell predictions to allelic imbalance in chromatin accessibility 302 

measured directly from read count data at heterozygous variants in each sample (see Methods). 303 

We found significant correlations between predicted allelic effects and allelic imbalance estimates 304 

for all alpha and beta cell states (GCGhigh Spearman r=.261, P=3.27x10-46, GCGlow r=.225, 305 

P=4.38x10-10, INShigh r=.285, P=1.13x10-53, INSlow r=.297, P=2.28x10-40) (Figure 4b). We further 306 

validated five likely causal T2D variants identified in fine-mapping studies and predicted to have 307 

allelic effects on beta cell chromatin using gene reporter assays in the MIN6 beta cell line. In each 308 

case, reporter assays showed significant allelic effects on enhancer activity that were directionally 309 

consistent with predictions (Figure 4c). We also compared predictions to chromatin accessibility 310 

quantitative trait loci (caQTLs) previously identified in ensemble islet samples72. We observed 311 

highly significant enrichment of caQTLs among variants with predicted effects on alpha or beta 312 

cells (obs.=38.8%, exp.=23.6%, two-sided Fisher’s exact P=1.64x10-66) (Figure 4d). When sub-313 

dividing predictions based on those with shared, cell type-specific (alpha, beta) or state-specific 314 

(hormone-high, hormone-low) effects we observed significant enrichment of caQTLs only among 315 

shared effect variants (Figure 4d), suggesting that islet caQTLs may have lower sensitivity for 316 

variants with cell type- or state-specific effects.  317 

We thus sought to further characterize genetic variants predicted to have cell type- and state-318 

dependent effects on islet chromatin. For each category of variants, we performed motif 319 

enrichment comparing sequences around the effect allele to the non-effect allele (see Methods). 320 

Variants with state-specific effects tended to disrupt motifs for TF families such as NEUROD, 321 

FOXA, MAF and RFX for hormone-high states (-log10(P)=59.2, 56.0, 50.3, 20.6), and signaling-322 

responsive TF families such as JUN/FOS and CREB for hormone-low states (-log10(P)=107.6, 323 

46.8) (Figure 4e). Similarly, variants with alpha or beta cell-specific effects tended to disrupt motifs 324 

for lineage-defining TFs and TF families including GATA for alpha cells (-log10(P)=24.8), and 325 

NKX6 and PDX1 for beta cells (-log10(P)=17.0, 13.0) (Figure 4e). In order to assign motifs to 326 

specific TFs, we again examined promoter-accessibility of TFs within the structural TF subfamily48 327 

(see Methods). For example, among GATA subfamily members only GATA6 had high promoter 328 

accessibility in alpha cells (GCGhigh: 1.00, GCGlow: .97, INShigh: .21, INSlow: .13), suggesting that 329 

GATA6 binding is likely disrupted in alpha cells by variants affecting the GATA motif. Similarly, 330 

among NKX6 subfamily members, NKX6-1 and NKX6-3 had promoter accessibility in beta cells 331 

(NKX6-1 GCGhigh: .78, GCGlow: .80, INShigh: .98, INSlow: 1.00; NKX6-3 GCGhigh: 0, GCGlow: 0, 332 
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INShigh: .18, INSlow: .19), and among RFX family members RFX6 had promoter accessibility in 333 

hormone-high state cells (GCGhigh: .93, GCGlow: .68, INShigh: 0.88, INSlow: .85) (Figure 4e).  334 

Predictions of allelic effects are particularly important in interpreting the function of low frequency 335 

non-coding variants, which are impractical to assay by standard approaches such as QTL 336 

mapping without very large sample sizes. We thus evaluated whether our predictions could 337 

prioritize lower frequency (defined as minor allele frequency [MAF]<.05) functional variants 338 

involved in T2D risk. We compared T2D association at different p-value thresholds for lower 339 

frequency variants with significant effects for any endocrine cell type, as well as for each cell type 340 

individually, to background variants without predicted effects (see Methods). We observed 341 

enrichment of genome-wide significant T2D associations among lower frequency variants with 342 

predicted effects in any endocrine cell type compared to background (Figure 4f). When 343 

considering effects in each cell type, we observed enrichment of T2D association among variants 344 

with predicted effects in beta cells as well as delta cells, even down to sub-genome-wide 345 

significant p-values (Figure 4f). We next highlighted specific low frequency, T2D risk variants with 346 

predicted effects. At the IGF2BP3 locus, rs78840640 (MAF=.02) had allelic effects on beta cell 347 

chromatin (INShigh beta q=.0015; INSlow beta q=.041), and fine-mapping data supported a causal 348 

role in T2D (posterior probability [PPA]=.33) (Figure 4g). We confirmed in gene reporter assays 349 

that this variant affected enhancer activity where the alternate (and T2D risk) allele G had reduced 350 

activity (Figure 4c). We also observed predicted effects for rare T2D variants for example 351 

rs186384225 (MAF=.0037) at TCF7L2 and rs571342427 (MAF=.0015) at INS-IGF2 352 

(Supplementary Figure 10a-b). These results reveal that cell type-specific chromatin can provide 353 

accurate functional predictions of lower frequency variants, enabling more effective interpretation 354 

of genome sequence from patients and disease cohorts. 355 

 356 

Co-accessibility links distal regulatory variants to putative target genes in distinct islet cell 357 
types and states 358 

Defining the genes affected by regulatory element activity remains a major challenge, as 359 

enhancers can regulate gene activity over large, non-adjacent distances73. A number of 360 

approaches have been developed to link regulatory elements to target genes including 3D 361 

chromatin architecture assays and correlation of accessible chromatin activity across multiple 362 

samples74,75. While these approaches have different strengths, a common weakness is reliance 363 

on ensemble data and non-cell type-resolved information27,76. Recently, a new approach was 364 

developed to link regulatory elements based on co-accessibility across single cells6, which has 365 
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the potential to provide cell type-resolved enhancer-promoter relationships. We thus sought to 366 

leverage accessible chromatin profiles across thousands of islet cells to define co-accessibility 367 

between sites in specific cell types. For these analyses we again focused on alpha and beta cells 368 

where cell numbers (5,594 and 7,170 cells, respectively) gave us the most power to effectively 369 

derive co-accessibility maps. 370 

To calibrate the extent to which co-accessibility reflected physical interactions between regulatory 371 

elements, we first performed a distance-matched comparison between co-accessible sites 372 

stratified by co-accessibility threshold to chromatin loops identified from Hi-C and promoter 373 

capture Hi-C (pcHi-C) assays in primary islets27,76. We observed strong enrichment for pairs of 374 

sites with co-accessibility scores >.05 in both alpha and beta cells for islet chromatin loops 375 

identified from pcHi-C and Hi-C compared to sites that had no evidence for co-accessibility (Figure 376 

5a, Supplementary Figure 11a-c). We therefore used this threshold (.05) to define co-accessibility, 377 

through which we identified 593,769 co-accessible sites in alpha cells (Supplementary Data 4) 378 

and 487,549 co-accessible sites in beta cells (Supplementary Data 5). There were 64,045 (alpha) 379 

and 57,374 (beta) unique distal sites co-accessible with a gene promoter (median 2 promoters 380 

per site), and 19,872 (alpha) and 19,269 (beta) unique gene promoters co-accessible with a distal 381 

site (median 9 per gene in alpha, 6 in beta cells) (Supplementary Figure 11d-e).  382 

Among co-accessible links to gene promoters, the majority (71.9%) were alpha or beta cell-383 

specific, highlighting the value of single cell-resolved data for identifying putative cell type-specific 384 

regulatory interactions. As an example of cell type-specific co-accessibility, the PDX1 promoter 385 

had co-accessibility with 35 sites in beta cells, including a site over 500 kb distal that directly 386 

coincided with an islet pcHi-C loop, only 7 of which were also found in alpha cells (Figure 5b). In 387 

another example, at the ARX locus, 17 sites were co-accessible with the ARX promoter in alpha 388 

cells, none of which were co-accessible in beta cells (Supplementary Figure 11f). Conversely, as 389 

an example of shared co-accessibility across cell types, the NEUROD1 promoter was co-390 

accessible with 52 and 47 chromatin sites in alpha and beta cells, respectively, of which 26 were 391 

shared and several were over 500 kb distal (Supplementary Figure 11g). 392 

Given heterogeneity in alpha and beta cell regulatory programs, we next cataloged co-accessible 393 

links between distal alpha and beta cell sites and gene promoters that had differential activity 394 

across and hormone-high and -low states (see Methods). We observed 25,012 (alpha) and 9,641 395 

(beta) co-accessible links where both the distal site (unique distal sites: alpha=10,926, 396 

beta=7,958) and the gene promoter (unique promoters: alpha=1,951, beta=1,516) were 397 

differentially active between states in the same direction. State-dependent co-accessible links 398 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/693671doi: bioRxiv preprint 

https://doi.org/10.1101/693671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

included both gene promoters active in the hormone-high state such as INS, GCG, G6PC2, and 399 

NEUROD1, and gene promoters active in the hormone-low state such as FOSL1, FOSL2, 400 

CREB1, and CREB5. We also identified genes with different isoform promoters co-accessible 401 

with hormone-high and hormone-low dependent distal sites such as GLIS3 (Supplementary 402 

Figure 11h), suggesting these genes have distinct regulatory programs driving isoform-specific 403 

activity across different cell states.  404 

Distal sites with co-accessibility links to gene promoters harbored risk variants for T2D at many 405 

loci, suggesting this approach can prioritize target genes of T2D risk variants in islets. We 406 

observed one such example at the KCNQ1 locus, where an islet chromatin site located in intron 407 

3 of KCNQ1 had beta cell-specific co-accessibility with the INS promoter over 500 kb distal and 408 

harbored a causal T2D risk variant rs231361 (PPA=1)10. (Figure 5c). Published 4C data from the 409 

EndoC-βH1 human beta cell line77 anchored on the INS promoter supported the existence of 410 

physical interactions between this site and the INS promoter in beta cells (Supplementary Figure 411 

12a). Interestingly, the site was more accessible in INShigh beta cells compared to INSlow beta 412 

cells, and rs231361 was predicted to have state-specific effects on beta cell chromatin 413 

accessibility (INShigh beta FDR q=.060; INSlow beta FDR q=.40). Furthermore, rs231361 disrupted 414 

an RFX family sequence motif, which itself was enriched in the INShigh beta cell state (Figure 5c, 415 

also see Figure 2c). The KCNQ1 locus is also associated with quantitative measures of insulin 416 

secretion78–81 and fasting glucose level82, suggesting that the mechanism of action of this locus 417 

on T2D risk is likely mediated through beta cell function in a state-dependent manner.  418 

To validate the effects of the chromatin site containing rs231361 on distal regulation of INS in 419 

beta cells, we deleted a 2.6 kb region flanking the site in human embryonic stem cells (hESCs) 420 

by CRISPR/Cas9-mediated genome editing, generating three bi-allelic deletion clones 421 

(KCNQ1∆Enh) (Figure 5c, Supplementary Figure 12b-c). We then differentiated the three 422 

KCNQ1∆Enh clones as well as two unedited control clones into beta cells using an established 423 

protocol83 with minor modifications (see Methods). Analysis of cultures at the beta cell stage 424 

revealed similar numbers of INS+ cells in KCNQ1∆Enh and control clones (91.1±4.02% vs 425 

94.6±2.11%) (Supplementary Figure 12d), suggesting that the enhancer deletion had no effect 426 

on beta cell differentiation. Further supporting this conclusion, similar numbers of cells expressed 427 

the beta cell marker NKX6-1 in KCNQ1∆Enh and control cultures (Supplementary Figure 12e). 428 

Likewise, NKX6-1 mRNA levels were similar (FDR=0.98) (Supplementary Figure 12f). Next, we 429 

determined effects of the enhancer deletion on gene expression in cis, interrogating all genes 430 

within 2 Mb of the enhancer. We observed a significant decrease in the expression of INS 431 
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(P=3.02x10-4; FDR=0.066) and CDKN1C (P=1.96x10-4; FDR=0.059) in KCNQ1∆Enh compared to 432 

control cells, whereas other genes in the region showed no difference in expression (all P>.05; 433 

note KCNQ1 itself was not expressed) (Figure 5d). Analysis of INS protein by 434 

immunofluorescence staining, flow cytometry, and ELISA further revealed reduced INS protein 435 

abundance in KCNQ1∆Enh beta cells (Figure 5e-g). In contrast, beta cell NKX6-1 protein levels 436 

were not affected (Supplementary Figure 12e), confirming specific effects of the enhancer 437 

deletion on INS mRNA and protein expression in beta cells.  438 

 439 

A resource of islet cell type and state regulatory programs to annotate T2D risk variants 440 

Together our results provide a multi-tiered reference of islet cell type and cell state regulatory 441 

programs through which non-coding genetic variants can be comprehensively annotated. As most 442 

genetic risk variants for diabetes are non-coding, this resource can be used to interpret their 443 

molecular mechanisms. We therefore annotated the islet cell type-specific regulatory programs 444 

of T2D risk variants using fine-mapping ‘credible sets’ of 402 risk signals10,84. Fine-mapped 445 

credible set variants at 239 risk signals mapped within an islet cell type chromatin site and, at 97 446 

of these 239 risk signals, credible set variants also had both predicted allelic effects and co-447 

accessibility with a gene promoter (Supplementary Table 7).  448 

Genes co-accessible with fine-mapped credible set T2D variants in islet cell type chromatin were 449 

enriched for biological processes related to protein localization and transport, stress response, 450 

cell cycle, and signal transduction (Supplementary Table 8). Co-accessible genes also included 451 

numerous genes involved in monogenic diabetes such as INS, KCNJ11, ABCC8, HNF1A, 452 

HNF4A, GCK, and NKX2-2, as well as TFs in structural families with lineage- and state-specific 453 

motif enrichments (from Figures 1-2) such as NKX6-1, NFATC2 and RFX6. At 22 T2D loci, fine-454 

mapped variants at multiple independent risk signals were co-accessible with the same gene, 455 

providing independent support for the role of these genes in T2D. For example, at the KCNQ1 456 

locus (11p15), fine-mapped variants at four T2D risk signals (including rs231361 above) were in 457 

sites co-accessible with the INS promoter (Supplementary Figure 13a), and at the CDKN2A/B 458 

locus (9p21), fine-mapped variants at five T2D signals were in sites co-accessible with the 459 

CDKN2A, MTAP and DMRTA1 promoters (Supplementary Figure 13b). In other examples, at the 460 

DGKB locus (7p21), fine-mapped variants at two T2D signals were in sites co-accessible with the 461 

DGKB promoter (Supplementary Figure 13c), and at 7p13 fine-mapped variants at two T2D 462 

signals were in sites co-accessible with the GCK promoter (Supplementary Figure 13d).  463 
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In order to effectively provide these data to the community to facilitate hypothesis testing and 464 

mechanistic discovery, we developed a publicly-accessible web portal and database 465 

(https://www.t2depigenome.org) which contains processed data and islet cell type annotations 466 

generated in this study, as well as epigenomic data from islets and other diabetes-relevant tissues 467 

available in other published studies (Supplementary Figure 14a-f).  In addition, the portal enables 468 

the user to query genetic variants for their respective islet cell type annotations. 469 

 470 

Discussion 471 
 472 

Our findings provide a roadmap demonstrating how single cell accessible chromatin data derived 473 

from disease-relevant primary tissue can be utilized to define the cell types, cell states, cis 474 

regulatory elements and genes involved in the genetic basis of complex disease. Over 400 known 475 

risk signals for T2D have been identified, yet only a handful have been characterized 476 

molecularly16,18,27,85–91. Identifying the genes affected by non-coding risk variants is paramount for 477 

understanding the molecular pathways dysregulated in disease and can inform therapeutic target 478 

discovery. Candidate target genes of T2D risk signals derived using single cell co-accessibility 479 

were highly enriched for disease-relevant biological processes, and many of these genes serve 480 

as compelling targets for mechanistic study. At the KCNQ1 locus, co-accessibility data and hESC 481 

beta cell models revealed that a long-range enhancer harboring a causal T2D variant affects 482 

insulin expression and protein levels in beta cells. Mutations of INS cause monogenic diabetes 483 

and tandem repeats in INS affect T1D risk92,93, but to our knowledge INS has not been directly 484 

implicated in T2D risk. The KCNQ1 locus has a complex contribution to T2D with 10 signals in 485 

the region that each confer independent risk10, four of which had beta cell co-accessibility with the 486 

INS promoter. We therefore speculate that the KCNQ1 locus mediates T2D risk through multiple 487 

long-range regulatory effects on INS, in addition to CDKN1C and other genes.  488 

Single cell accessible chromatin uncovered heterogeneity in the regulatory programs of endocrine 489 

cell types, revealing cell type- and state-resolved effects of genetic variants on fasting glucose 490 

and T2D risk. Previous studies have characterized heterogeneity in beta cell physiological 491 

function, cell surface markers, and gene expression22,94,95. The heterogeneity we observed in the 492 

beta cell epigenome mapped to cellular states related to insulin production and stress-related 493 

signaling response23, and we identified TFs likely driving cell state-specific functions. Integrating 494 

single cell heterogeneity with large-scale genetic association data revealed that genetic variants 495 

modulating fasting glucose levels likely act through the insulin-producing beta cell state, whereas 496 
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genetic risk of T2D is mediated through both the insulin-producing state and other functional beta 497 

cell state(s). Moreover, given similar heterogeneity in the epigenomes of alpha and delta cells, 498 

our results reveal that endocrine cell regulation involves both lineage-specific programs as well 499 

as an additional layer of state-specific programs common across endocrine cell types.  500 

In summary, we present the most detailed characterization of islet cell type and state regulatory 501 

programs to date and a web resource to query these programs. When combined with genetic fine-502 

mapping and genome sequencing, this resource will greatly enhance efforts to define molecular 503 

mechanisms of T2D risk. More broadly, our study provides a framework for using single cell 504 

chromatin from disease-relevant tissues to interpret the genetics and biological mechanisms of 505 

complex disease.  506 

 507 

Methods 508 
 509 

Islet processing and nuclei isolation 510 

We obtained islet preparations from three donors for the Integrated Islet Distribution Program 511 

(IIDP) (Supplementary Table 1). Islet preparations were further enriched using zinc-dithizone 512 

staining followed by hand picking. Studies were given exempt status by the Institutional Review 513 

Board (IRB) of the University of California San Diego.  514 

 515 

Generation of snATAC-seq libraries 516 

Combinatorial barcoding single nuclear ATAC-seq was performed as described previously2,4 with 517 

several modifications as described below. For each donor (N=3), approximately 3,000 islet 518 

equivalents (IEQ, roughly 1,000 cells each) were resuspended in 1 ml nuclei permeabilization 519 

buffer (10mM Tris-HCL (pH 7.5), 10mM NaCl, 3mM MgCl2, 0.1% Tween-20 (Sigma), 0.1% 520 

IGEPAL-CA630 (Sigma) and 0.01% Digitonin (Promega) in water) and homogenized using 1ml 521 

glass dounce homogenizer with a tight-fitting pestle for 15 strokes. Homogenized islets were 522 

incubated for 10 min at 4°C and filtered with 30 µm filter (CellTrics). Nuclei were pelleted with a 523 

swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf) and resuspended in 500 µL 524 

high salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM potassium-acetate, 525 

11 mM Mg-acetate, 17.6% DMF) and counted using a hemocytometer. Concentration was 526 

adjusted to 4500 nuclei/9 µl, and 4,500 nuclei were dispensed into each well of a 96-well plate. 527 

Glycerol was added to the leftover nuclei suspension for a final concentration of 25 % and nuclei 528 

were stored at -80°C. For tagmentation, 1 µL barcoded Tn5 transposomes4,96 were added using 529 
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a BenchSmart™ 96 (Mettler Toledo), mixed five times and incubated for 60 min at 37 °C with 530 

shaking (500 rpm). To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA were added to each well 531 

with a BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C for 15 min with 532 

shaking (500 rpm). Next, 20 µL 2 x sort buffer (2 % BSA, 2 mM EDTA in PBS) were added using 533 

a BenchSmart™ 96 (Mettler Toledo). All wells were combined into a FACS tube and stained with 534 

3 µM Draq7 (Cell Signaling). Using a SH800 (Sony), 20 nuclei were sorted per well into eight 96-535 

well plates (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 pmol primer i5, 200 536 

ng BSA (Sigma), PMID: 29434377). Preparation of sort plates and all downstream pipetting steps 537 

were performed on a Biomek i7 Automated Workstation (Beckman Coulter). After addition of 1 µL 538 

0.2% SDS, samples were incubated at 55 °C for 7 min with shaking (500 rpm). We added 1 µL 539 

12.5% Triton-X to each well to quench the SDS and 12.5 µL NEBNext High-Fidelity 2× PCR 540 

Master Mix (NEB). Samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 541 

72 °C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were combined. Libraries were purified 542 

according to the MinElute PCR Purification Kit manual (Qiagen) using a vacuum manifold (QIAvac 543 

24 plus, Qiagen) and size selection was performed with SPRI Beads (Beckmann Coulter, 0.55x 544 

and 1.5x). Libraries were purified one more time with SPRI Beads (Beckmann Coulter, 1.5x). 545 

Libraries were quantified using a Qubit fluorimeter (Life technologies) and the nucleosomal 546 

pattern was verified using a Tapestation (High Sensitivity D1000, Agilent). The library was 547 

sequenced on a HiSeq2500 sequencer (Illumina) using custom sequencing primers, 25% spike-548 

in library and following read lengths: 50 + 43 + 40 + 50 (Read1 + Index1 + Index2 + Read2).  549 

 550 

Raw data processing and quality control 551 

For each read, we first appended the cell barcode metadata to the read name. The cell barcode 552 

consisted of four pieces (P7, I7, I5, P5) which were derived from the index read files. We first 553 

corrected for sequencing errors by calculating the Levenshtein distance between each of the four 554 

pieces and a whitelist of possible sequences. If the piece did not perfectly match a whitelisted 555 

sequence, we took the best matching sequence if it was within 2 edits and the next matching 556 

sequence was at least 2 additional edits away. If none of these conditions were met, we discarded 557 

the read from further analyses.  558 

We trimmed Nextera adapter sequences from sequence reads using trim_galore (v.0.4.4, 559 

https://github.com/FelixKrueger/TrimGalore) with default parameters. We used bwa mem97 560 

(v.0.7.17-r1188) to align reads to the hg19 reference genome with the options ‘-M -C’. We then 561 

used samtools98 to filter out reads that did not align to the autosomes or sex chromosomes and 562 
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low mapping quality reads (MAPQ<30). We used samtools fixmate (v.1.6) to perform additional 563 

checks for FR proper pairs and removed secondary or unmapped reads. We used the 564 

MarkDuplicates tool from picard (https://broadinstitute.github.io/picard/) to remove duplicates on 565 

a per-barcode basis with ‘BARCODE_TAG’ option. For each experiment, we used a Gaussian 566 

mixture model on log-transformed read depths to separate barcodes with a 99% probability of 567 

belonging to the high read distribution, likely representing real cells, from those in the low read 568 

distribution, likely representing background reads. We then set an additional threshold of 1000 569 

read depth, reasoning that low read cells would contribute additional noise to clustering.  570 

 571 

Cluster analysis for snATAC-seq 572 

We split the genome into 5 kb windows and removed windows overlapping blacklisted regions 573 

from ENCODE (https://sites.google.com/site/anshulkundaje/projects/blacklists). For each 574 

experiment, we then created a sparse m x n matrix containing read depth for m cells passing read 575 

depth thresholds at n windows. For further quality checks, we performed initial clustering for each 576 

experiment individually using scanpy99 (v.1.4). We extracted highly variable windows using mean 577 

read depths and normalized dispersion. After normalization to a uniform read depth and log-578 

transformation of read depth, we regressed out the log-transformed total read depth for each cell. 579 

We then performed PCA and extracted the top 50 principal components. We used these 580 

components to calculate the nearest 30 neighbors using the cosine metric, which were 581 

subsequently used for UMAP dimensionality reduction with the parameters ‘min_dist=0.3’ and 582 

Louvain clustering with the parameters ‘resolution=1.5’. For each experiment, we removed 2,709 583 

cells that were in clusters corresponding to low read depth.  584 

After removing these cells, we used similar methods to cluster cells from all experiments together 585 

with the following modifications. We extracted highly variable windows across cells from all 586 

experiments. Since read depth was a technical covariate specific to each experiment, we 587 

regressed this out on a per-experiment basis. We used mutual nearest neighbors correction30 588 

(mnnpy, v.0.1.9.4) to adjust for batch effects across experiments with the parameters ‘k=10’. We 589 

then performed clustering as described above. We used chromatin accessibility at windows 590 

overlapping promoters for marker hormones (GCG, INS-IGF2, SST, and PPY) to assign cell types 591 

for the endocrine islet cell types (alpha, beta, delta, and gamma). We performed re-clustering on 592 

non-endocrine islet clusters and used chromatin accessibility at windows around marker genes 593 

from single cell RNA-seq to assign cluster labels. In our clustering results, we identified a cluster 594 

of 694 alpha cells that were mostly derived from a single donor (96% of cells from Islet 1). Because 595 
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we were uncertain whether this represented technical or biological differences, we excluded this 596 

cluster from further analyses. We also excluded a cluster of 192 cells likely representing lower 597 

quality cells as it had low intra-cluster similarity and lower fraction of reads in peaks. 598 

 599 

Comparison to bulk and sorted islet ATAC-seq 600 

We obtained raw sequence data of ATAC-seq for 42 bulk islet samples from four prior 601 

studies14,27,28,72 and 4 bulk pancreas samples from ENCODE. We re-processed all samples with 602 

a uniform pipeline: we aligned all reads to hg19 with bwa mem, identified and removed duplicate 603 

reads with picard MarkDuplicates, and called peaks with MACS2 (v.2.1.2) with the parameters 604 

‘—shift -100 –extsize 200 –keep-dup all’. For the three islet snATAC-seq samples, we used 605 

aggregated per-barcode deduplicated reads to call peaks. We defined all possible accessibility 606 

peaks by filtering out ENCODE blacklisted regions and retaining merged peaks on autosomal 607 

chromosomes found in more than one sample. We then calculated the read coverage at all 608 

possible accessibility peaks and TPM-normalized the counts. We calculated the Spearman 609 

correlation between normalized read coverages and used hierarchical clustering to assess 610 

similarity between bulk islet samples. To check peak call overlap between aggregated single cell 611 

ATAC and bulk ATAC data, we split peaks based into promoter proximal (+/-500 bp from 612 

GENCODE transcript TSS) and distal peaks based on promoter overlap. For each cluster, we 613 

calculated the percentage of aggregate peaks that overlapped merged autosomal bulk peaks and 614 

individual sample-level autosomal bulk peaks. 615 

We also obtained raw sequence data of ATAC-seq from flow-sorted pancreatic cells (alpha, beta, 616 

acinar, ductal) from two prior studies35,36 and re-processed all samples with the uniform pipeline 617 

described above. For alpha, beta, and exocrine cells from islet snATAC-seq, we split reads on a 618 

per-donor and per-cluster basis to obtain read files. Because total read depth was highly variable 619 

across sorted samples, we merged autosomal peaks after filtering out ENCODE blacklist regions. 620 

We calculated read coverage in each sample for each merged peak and TPM normalized count 621 

values. We then calculated the Spearman correlation between normalized read coverages and 622 

used hierarchical clustering to assess similarity between sorted and snATAC-seq islet samples. 623 

 624 

Identifying marker peaks of chromatin accessibility 625 

To identify peaks for each cell type, we aggregated reads for all cells within a cluster or sub-626 

cluster. We shifted reads aligning to the positive strand by +4 bp and reads aligning to the negative 627 
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strand by -5 bp, extended reads to 200 bp, and centered reads. We used MACS2100 to call peaks 628 

of chromatin accessibility for each aggregated read file with the following settings ‘--nomodel --629 

keep-dup all’. We removed peaks that overlapped ENCODE blacklisted regions101. We then used 630 

bedtools102 to merge peaks from all clusters and sub-clusters to create a superset of islet 631 

regulatory peaks. 632 

We generated a sparse m x n binary matrix containing binary overlap between m peaks in the 633 

superset of islet regulatory peaks and n cells. We then calculated t-statistics of peak specificity 634 

for each cluster or sub-cluster through linear regression models. We used binary encodings to 635 

specify which donor a given cell came from as covariates in the model. For each peak and cluster, 636 

we used binary encoding of read overlap with the peak as the predictor and whether a cell was in 637 

the cluster (1 if yes, -1 if no) as the outcome.  638 

 639 

Matching islet snATAC-seq with scRNA-seq clusters 640 

To verify that clusters definitions and labels from single cell chromatin accessibility data matched 641 

those from single cell expression data, we obtained published single cell RNA-seq data from 12 642 

non-diabetic islet donors23. Because cluster definitions for all cell types were not available, we re-643 

analyzed the data and performed clustering analyses. Starting with the gene expression matrix, 644 

we first performed quality control steps to remove potential doublets. For each marker gene of 645 

different cell types GCG (alpha), INS (beta), SST (delta), PPY (gamma), CTRB2 (acinar), CFTR 646 

(ductal), PLVAP (endothelial), PDGFRB (stellate), and C1QC (immune) we used a Gaussian 647 

mixture model on log-transformed read depth to determine whether a cell expressed the gene 648 

(high distribution) or not (low distribution). We verified that cells expressing more than one marker 649 

gene had on average higher read depth and expressed more genes (Supplementary Figure 3a,b). 650 

We regressed out covariates including sex, BMI, and read depth, and separated cells by donor of 651 

origin. We then used MNN correction30 to adjust for batch effects. After scaling the data, we 652 

performed PCA and used the top 50 principal components to calculate the 10 nearest neighbors 653 

using the cosine metric. We used the nearest neighbor map for UMAP dimensionality reduction 654 

with the parameters ‘min_dist=0.3’ and to perform Louvain clustering with the parameters 655 

‘resolution=1’ (Supplementary Figure 3c). We used a similar regression framework as the 656 

chromatin accessibility marker peaks to calculate t-statistics for gene specificity for each cluster 657 

(Supplementary Figure 3d,e) with the following modifications: we included sex, BMI, and log-658 

transformed read coverage as covariates and used log2 read counts for each gene instead of 659 

binary peak coverage as the predictor. 660 
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 661 

We used the Spearman correlation between t-statistics from islet snATAC-seq and scRNA-seq 662 

data to match up clusters. Specifically, we took the top 100 (sorted by descending t-statistic) most 663 

specific promoter peaks for each cluster or sub-cluster to define a list of genes for comparison. 664 

To facilitate one-to-one comparisons between the two datasets, for this analysis only we defined 665 

promoter peaks as peaks within +/-500 bp of a GENCODE v19 gene TSS. This list contained 966 666 

genes, which is less than 100x13 (number of clusters) because 1) marker genes were sometimes 667 

shared between sub-clusters and 2) not all genes were present in the expression dataset. For 668 

each cluster from accessible chromatin data, we then compared t-statistics of genes in the list 669 

with t-statistics for all clusters from single cell expression using the Spearman correlation, which 670 

is robust to very specific marker genes such as insulin which could otherwise bias these 671 

comparisons. 672 

 673 

Motif enrichment with chromVAR 674 

We used chromVAR37 (v.1.5.0) to calculate TF motif-associated difference between cell 675 

populations. We first calculated counts per peak per cell matrix and then input it to chromVAR. 676 

We filtered cells with minimal reads less than 1500 (min_depth=1500) and peaks with fraction of 677 

reads less than 0.15 (min_in_peaks=0.15) by using ‘filterSamplesPlot’ function from chromVAR. 678 

We also corrected GC bias based on ‘BSgenome.Hsapiens.UCSC.hg19’ using ‘addGCBias’ 679 

function. Then we used the Jaspar motifs from ‘getJasparMotifs’ function with default parameter 680 

and calculated the deviation z-scores for each TF motif in each cell by using ‘computeDeviations’ 681 

function. High-variance TF motifs across all cell types were selected by ‘computeVariability’ 682 

function using cut-off 1.2 (N=111). For each of these variable motifs, we calculated the mean z-683 

score for each cell types and normalized the values to 0 (minimal) and 1 (maximal). 684 

 685 

Comparison of alpha and beta cell states 686 

To identify TF motifs variable between alpha or beta cell states, we performed two-sided Student’s 687 

T-test on motif z-scores between cells labeled as alpha 1 (GCGhigh) and alpha 2 (GCGlow) cells or 688 

beta 1 (INShigh) and beta 2 (INSlow). We adjusted raw p-values with the Benjamini-Hochberg 689 

procedure to obtain FDR. Motifs with FDR less than 0.05 and absolute difference (Δ) in z-score 690 

(between GCGhigh/GCGlow alpha or INShigh/INSlow beta) greater than 0.5 were defined as differential 691 

motifs (N=46 for beta cells, N=109 for alpha cells and N=111 motifs combined). For these 111 692 
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motifs that were variable between alpha or beta cell states, we summarized the mean z-scores 693 

over GCGhigh, GCGlow, INShigh and INSlow cells and plotted the normalized value. In order to check 694 

how motif usage changed along the trajectories, we smoothed motif z-scores along the trajectory 695 

for alpha and beta cells separately at step=0.05, using the shrinkage version of cubic regression 696 

spline (‘gam’ function from the R package ‘mgcv’ (v1.8.28) with parameter bs=’cs’). We then 697 

smoothed motif enrichment profiles and normalized values for visualization. We identified specific 698 

TFs likely driving enrichments for a given motif through high Spearman correlation (σ>.9) between 699 

motif enrichment and promoter accessibility across the trajectory. 700 

To analyze differential promoter accessibility between alpha and beta cell states, we first 701 

calculated the binary promoter by cell matrix containing information about read overlap per cell in 702 

a promoter peak. Based on this matrix and cell cluster labels, we performed two-sided Fisher’s 703 

exact tests between hormone-high and hormone-low states of alpha, beta, and delta cells for 704 

each promoter against the null hypothesis that the promoter had similar accessibility across 705 

states. We used Bonferroni adjusted p-values (adjusted p-value<0.01) for alpha and beta cells 706 

with the sign of the log2 transformed odds ratio to identify genes whose promoter had either 707 

increased or decreased accessibility across states. Differentially-accessible promoters were 708 

further input into Enrichr103 (v.1.0) to perform GO term enrichment analysis on biological 709 

processes terms (2018 version). To identify more specific processes, we filtered for gene ontology 710 

terms that contained less than 150 total genes.  711 

To plot the profile of each promoter across pseudo-state, we first binned alpha cells or beta cells 712 

to 100 bins along the state trajectory. For each bin, we calculated the fraction of cells had a peak 713 

in the promoter region for each promoter. Then we smoothed these 100 fractions using the ‘loess’ 714 

function from R. The smoothed data were then normalized and clustered using k-medoids 715 

clustering, with k determined by optimum average silhouette width using the ‘pamk’ function from 716 

the R ‘fpc’ package (v.2.1.11.1). Genes attributed to the promoters in each cluster were then used 717 

to perform GO term enrichment analysis.  718 

In order to compare with previous published data, we collected gene lists from Xin et al.23. We 719 

obtained four gene lists for Beta 1-4 subpopulations (Supplementary Table S3 in Xin et al.). For 720 

each gene list, we performed gene set enrichment analysis104 using significantly differential 721 

promoters (from Figure 2a) as the gene lists to assess whether alpha and beta cell states showed 722 

concordant differences (i.e. differential promoters for GCGlow and GCGhigh alpha to compare beta 723 

cell states and vice versa for alpha cells).  724 
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 725 

Ordering alpha and beta cells along a trajectory and finding dynamic peaks 726 

We used Cicero6 (v.1.1.5) to order all alpha and beta cells along separate trajectories. We started 727 

with a sparse binary matrix encoding overlap between the superset of islet regulatory peaks and 728 

cells. We extracted all cells belonging to alpha cell sub-clusters and filtered out peaks that were 729 

not present in alpha cells. We used the aggregate_nearby_peaks function from Cicero to find 730 

peaks within 10 kb and merging their counts to make an aggregate matrix. We then chose peaks 731 

to define progress with the aggregated matrix by using the differentialGeneTest function from 732 

monocle247 to search for peaks that were differentially accessible between the GCGhigh and 733 

GCGlow states (FDR<.1), while modeling total peaks in each cell as a covariate. We then used 734 

DDRTree to reduce dimensions and ordered cells along the trajectory, setting the root position as 735 

the state with the highest glucagon promoter accessibility. We grouped cells into 10 bins based 736 

on their trajectory values. Then we repeated the same procedure for beta cells, with the 737 

modification of setting the root position by insulin promoter accessibility. 738 

 739 

GWAS enrichment with aggregate peak annotations 740 

We used cell type specific (CTS) LD score regression69,105 (v.1.0.0) to calculate enrichment for 741 

GWAS traits. We obtained GWAS summary statistics for quantitative traits related to diabetes13,55–742 
59, diabetes10, and control traits including psychiatric and autoimmune diseases60–67. We prepared 743 

summary statistics to the standard format for LD score regression. We used peaks from 744 

aggregated reads for each cluster as a binary annotation, and the superset of islet regulatory 745 

peaks as the background control. For each trait, we then used CTS LD score regression to 746 

estimate the enrichment coefficient of each annotation jointly with the background control.  747 

 748 

GWAS enrichment with single cell annotations 749 

We determined genetic enrichment of accessible chromatin profiles in individual cells. We first 750 

split the genome into 5 kb windows and removed windows overlapping blacklisted regions from 751 

ENCODE. We created a sparse m x n matrix containing read depth for m cells passing read depth 752 

thresholds at n windows, and extracted highly variable (HV) windows using mean read depths 753 

and normalized dispersion. We then retained genetic variants mapping in HV windows with minor 754 

allele frequency [MAF]>.05 mapping outside of the major histocompatibility complex region (MHC, 755 

defined by chr6:25,000,000-35,000,000 in hg19 coordinates).  756 
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As the accessible chromatin profiles from an individual cell are sparse, we used the bagging 757 

algorithm in the make_cicero_cds function from Cicero6 to aggregate cells into groups of 10. For 758 

each aggregate cell group, we created a binary annotation based on mapped reads for cells in 759 

the aggregate. We also created baseline annotations consisting of pooled islet cell type 760 

accessible chromatin sites and the 53 baseline v1.1 annotations from LD score regression68. We 761 

then annotated all variants in HV windows with the aggregate cell and baseline annotations. We 762 

determined enrichment of HV variant annotations for fasting glucose level56, type 2 diabetes10, 763 

and two control traits, major depressive disorder66 and lupus63 GWAS data. In order to correct for 764 

the confounding effects of linkage disequilibrium (LD), we performed LD pruning of GWAS data 765 

for each trait by first sorting variants based on p-value and iteratively removing variants in LD 766 

(r2>.5, 1000 Genomes European subset) with a more significant variant. To then perform 767 

enrichment tests on pruned GWAS data we used a previously described method polyTest106 to 768 

jointly model the annotation for each aggregated cell group with the baseline pooled site and 53 769 

annotations from LD score baseline v1.1. We then calculated a z-score for each aggregate cell 770 

based on the effects and standard error from the resulting model. As the grouping method for 771 

Cicero uses bootstrap aggregation, a given cell was potentially assigned to multiple aggregates. 772 

We therefore calculated an enrichment z-score for each individual cell by averaging enrichment 773 

z-scores for each cell across its respective aggregates. 774 

To identify TFs correlated with trait enrichments, we calculated the Spearman correlation 775 

coefficient between fasting glucose or type 2 diabetes single cell GWAS enrichment z-scores and 776 

chromVAR motif enrichment z-scores using data from all cells or within beta cells. Within each 777 

trait, we used Bonferroni correction to adjust correlation p-values for multiple tests.  778 

 779 

Mapping allelic imbalance within clusters 780 

Genomic DNA for genotyping was extracted either from spare islet nuclei (donors 1 and 2), or 781 

acinar cells (donor 3). Genomic DNA was extracted using the DNeasy Blood & Tissue Kits 782 

(Qiagen) according to manufacturer’s protocol for purification of total DNA from animal blood or 783 

cells. Extracted genomic DNA was used for genotyping on the Illumina Infinium Omni2.5-8 v1.4 784 

genotyping array. For genotypes that passed quality filters (non-missing, MAF>.01 in European 785 

or African populations in 1KGP), we then imputed genotypes into the HRC reference panel r1.1107 786 

using the Michigan Imputation Server108. Post-imputation, we removed genotypes with low 787 

imputation quality (R2<.3). As an additional filter to remove potential false positive heterozygote 788 

genotype calls, we removed variants that had greater than 20 read coverage without reads for 789 
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both alleles. Using cluster assignments for each cell, we split mapped reads for each donor into 790 

cluster-specific reads. For cluster-specific reads, we used the WASP pipeline109 (v.0.3.0) to 791 

correct for reference mapping bias at heterozygous variants. We then used a two-sided binomial 792 

test to assess imbalance at heterozygous variants, assuming a null hypothesis where both alleles 793 

were equally likely to be observed. For each variant, we then calculated combined imbalance z-794 

scores across donors using Stouffer’s z-score method and used sequencing depth to weight 795 

statistics from each sample.  796 

 797 

Predicting genetic variant effects on chromatin accessibility 798 

We used deltaSVM70 to predict the effects of non-coding variants on chromatin accessibility in 799 

each cell type and cell state. We obtained sequences underlying promoter-distal (>+/-500 bp from 800 

GENCODEv19 transcript TSS for protein coding and long non-coding RNA genes) peaks for each 801 

cluster, used ‘genNullSeqs’ to generate background sequences, and then trained a model for 802 

each cluster with ‘gkmtrain’ with default settings. For all possible combinations of 11mers, we then 803 

used ‘gkmpredict’ to predict the effects of 11mers based on the trained model for the cluster. For 804 

each SNP in the HRC reference panel r1.1107 overlapping an islet cell type accessible chromatin 805 

site, we created 19 bp sequences around each allele (9 bp flanking either side of the variant 806 

base). We then used the ‘deltasvm.pl’ script to calculate deltaSVM scores for differential 807 

chromatin accessibility between variant alleles. We built a null distribution by randomly permuting 808 

the effects of 11mers and re-calculating deltaSVM scores and using the parameters of this null 809 

distribution, we calculated z-scores for each variant. From variant z-scores we calculated p-values 810 

and then q-values and considered variants significant at FDR<.1.  811 

For variants with predicted effects on chromatin accessibility in alpha or beta cells, we categorized 812 

them based on their effects across cell type and states. Variants with significant effects in both 813 

alpha cell states but neither beta cell state were classified as “alpha” (n=10,564) and vice versa 814 

for “beta” (n=12,833). Variants with significant effects in GCGhigh alpha and INShigh beta states but 815 

not GCGlow alpha and INSlow beta states were classified as “hormone-high” (n=15,769), and vice 816 

versa for “hormone-low” (n=12,471). Variants with significant effects in all four alpha and beta cell 817 

states were classified as “shared” (n=31,331). We also determined the concordance in the 818 

direction of effect for variants across alpha and beta cell states. For the set of variants with 819 

significant effects in each state, we calculated the fraction of variants where the allele with the 820 

higher predicted effect had a higher predicted effect in other states. We determined significance 821 

using a two-sided binomial test assuming an expected fraction of 50%. We assessed enrichment 822 
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of predicted effect variants in alpha or beta cell states for islet caQTLs72 compared to any islet 823 

caQTL in alpha or beta cell sites using two-sided Fisher’s exact tests. We then stratified variants 824 

with predicted effects by category (hormone-high, hormone-low, alpha, or beta) and assessed 825 

enrichment of caQTLs with predicted effects within each category with two-sided Fisher’s exact 826 

tests. 827 

 828 

Luciferase gene reporter assays 829 

We selected fine-mapped T2D risk variants with deltaSVM predictions (rs7482891, rs34584161, 830 

rs17712208, rs78840640, rs4679370) to test for allelic differences in enhancer activity in MIN6 831 

beta cells using luciferase reporter assays. We cloned sequences containing reference alleles in 832 

the forward orientation upstream of the minimal promoter of firefly luciferase vector pGL4.23 833 

(Promega) using KpnI and SacI restriction sites. For rs7482891 (TH) and rs34584161 (RNF6), 834 

we cloned alternative alleles in the forward direction in the same manner as the reference alleles. 835 

For rs17712208 (PROX-AS1), rs78840640 (IGF2BP3), and rs4679370 (SLC12A8), we 836 

introduced the alternative alleles via site-directed mutagenesis (SDM) using the NEB Q5 Site-837 

Directed Mutagenesis kit (New England Biolabs). We designed primers using NEBaseChanger 838 

(v.1.2.8), and we used 10ng of the reporter plasmid containing the reference allele as a template 839 

in site-directed mutagenesis using Q5 Hot Start High-Fidelity master mix (New England Biolabs). 840 

4uL of the SMD PCR product was treated with KLD mix (New England Biolabs) and transformed 841 

into DH5a E. coli. We miniprepped plasmids using the Qiaprep Spin Mini kit (Qiagen) and verified 842 

plasmid sequences through Sanger sequencing with the RV3 primer.  843 

 844 

SDM primers: 845 

 846 

rs17712208 (PROX-AS1) 847 

SDM primer (left): GGAGCTATGGaTAATTATTGACTG 848 

SDM primer (right): ATTAACGATCCAGTCAGC 849 

 850 

rs78840640 (IGF2BP3) 851 

SDM primer (left): ATCAGATTTGgTGAGAAAGAAGAAC 852 

SDM primer (right): GCCCATCAATTCTGAGCATG 853 

 854 

rs4679370 (SLC12A8) 855 
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SDM primer (left): ATCAGTAAGCcCCTAAAGCCTG 856 

SDM primer (right): TAACTTGAGGCAATGGTG 857 

 858 

Construct primers: 859 

 860 

rs7482891 (TH) 861 

construct primer (left): AGAGGTCTGAGGAGCCCTTG 862 

construct primer (right): TAGACCCTGCAGAGCCACAG 863 

  864 

rs34584161 (RNF6) 865 

construct primer (left): AAGCTGACAGACAGAGGGTCA 866 

construct primer (right): GGGCTTCATAAACATCAGCA 867 

  868 

rs17712208 (PROX-AS1) 869 

construct primer (left): AAGCCCACCTTCGTAAACAT 870 

construct primer (right): TGAAGTAGCTCCCAGTGAAGG 871 

  872 

rs78840640 (IGF2BP3) 873 

construct primer (left): CACAATGAAGCCATGTCCTTT 874 

construct primer (right): TCAGCTTTCTATTTTGGGGAAA 875 

  876 

rs4679370 (SLC12A8) 877 

construct primer (left): TCAATGTCTACCTCAAAATTCTTTGT 878 

construct primer (right): CACTGCAGCCTTAAACTCCTG 879 

 880 

We seeded MIN6 cells into 6 (or 12)-well trays at 1 million cells per well. At 80% confluency, we 881 

co-transfected cells with 500ng of the experimental firefly luciferase vector pGL4.23 containing 882 

the alternative allele, reference allele, or an empty vector and 50ng of the vector pRL-SV40 883 

(Promega) using the Lipofectamine 3000 reagent (Thermo Fisher). We performed all transfections 884 

were performed in triplicate. Six hours after transfection, we replaced MIN6 growth media 885 

consisting of modified DMEM containing 1.5g/L sodium bicarbonate supplemented with 4% heat 886 

inactivated FBS, gentamicin, and 50uM beta-mercaptoethanol. We lysed cells 48 hours after 887 
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transfection and assayed for Firefly and Renilla luciferase activities using the Dual-Luciferase 888 

Reporter system (Promega). We normalized Firefly activity to Renilla activity and compared it to 889 

the empty vector, and normalized results were expressed as fold change compared to empty 890 

vector control per allele. We used a two-sided Student’s T-test to compare the luciferase activity 891 

between the two alleles. 892 

 893 

TF motif enrichment within predicted effect variant categories 894 

For each cell- or state-resolved category (hormone-high, hormone-low, alpha, beta) of variants 895 

with predicted effects, we extracted 29 bp sequences (+/-14 bp around each SNP) corresponding 896 

to the higher or lower predicted effect allele. Here, we reasoned that extracting sequences for a 897 

larger window around SNPs would alleviate bias for the analysis against motifs with longer PWMs. 898 

We then used AME from the MEME suite110 (v.4.12.0) to predict motif enrichment, using position 899 

weight matrices from the latest non-redundant motif library JASPAR 201838. We used sequences 900 

from the higher effect allele as the test set and sequences from the lower effect allele as the 901 

background set. Because motif for TFs within the same structural family can potentially show 902 

similar enrichment, we used the TFClass database (http://tfclass.bioinf.med.uni-goettingen.de/) 903 

to group motifs by TF family. To determine which TF was most likely driving the enrichment, we 904 

used min-max normalized promoter accessibility within TF family members with a promoter peak 905 

in alpha or beta cells and highlighted corresponding cell type patterns of promoter accessibility.  906 

 907 

Enrichment of predicted variants for lower frequency variants 908 

We obtained genome-wide summary statistics of T2D from the DIAMANTE consortium10. We 909 

estimated LD patterns for variants with MAF<.05 using HRC imputed genotype data from samples 910 

in the UK Biobank (UKB, March 2018 release). We randomly selected 10,000 non-related UKB 911 

samples of European ancestry and calculated LD between lower frequency variants using PLINK 912 

(v.1.90b6.7). We then LD-pruned variants with MAF<.05 in DIAMANTE T2D data by first sorting 913 

variants based on their p-values and then removed variants in r2>.5 with a more significant variant. 914 

Using the LD-pruned results, we then determined enrichment of variants with predicted effects on 915 

endocrine cell types. We created sets of variants that had significant effects (FDR<.1) in any 916 

endocrine cell type, as well as variants with FDR<.1 for each cell type. For alpha, beta and delta 917 

cells, we considered variants with effects in either cell state. We then created a background set 918 

of variants as those without significant effects in any endocrine cell type (all FDR>.1). We set a 919 

series of p-value thresholds (5x10-8, 1x10-7, 1x10-6, 1x10-5, 1x10-4, 1x10-3), and at each threshold 920 
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determined the fraction of variants in each category as well as background variants reaching that 921 

p-value threshold to calculate a fold-enrichment based on these fractions compared to 922 

background. We determined significance of the enrichments by using a two-sided binomial test 923 

of the counts for each category using the background fraction as the expected count. 924 

 925 

Chromatin co-accessibility with Cicero 926 

We used Cicero6 to calculate peak-peak co-accessibility scores for alpha and beta cells. Like the 927 

trajectory analysis, we started with a sparse binary matrix encoding overlap between the superset 928 

of islet regulatory peaks and cells. We extracted all cells belonging to alpha cell sub-clusters and 929 

filtered out peaks that were not present in alpha cells. We then used the make_cicero_cds function 930 

to aggregate cells based on the 50 nearest neighbors from the UMAP reduced dimensions. We 931 

then used Cicero to calculate co-accessibility scores using a window size of 1 Mb and a distance 932 

constraint of 500 kb, leaving other parameters at the default setting. We then repeated the same 933 

procedure for beta cells. We used two-sided Fisher’s exact tests to assess whether distal co-934 

accessible sites had higher accessibility in either hormone-high or -low states, and defined 935 

significance at FDR<.1. To compare promoter-distal co-accessibility links that had higher 936 

accessibility in the same direction (either both hormone-high or hormone-low), we used differential 937 

promoters between states (from the previous analysis in Figure 2). 938 

 939 

Enrichment of islet Hi-C and pcHi-C loops in co-accessible peaks 940 

We obtained sets of merged Hi-C loops27 and high-confidence promoter capture Hi-C (pcHi-C) 941 

loops76 from public datasets. For Hi-C loops, we used anchors directly from the loops. For pcHi-942 

C loops, we used a 5 kb window centered on the interaction point as the anchor. To compare 943 

alpha and beta cell co-accessibility with Hi-C, we then used direct overlap of alpha or beta cell 944 

peaks with anchors. For different binned thresholds of co-accessibility in .05 increments, we then 945 

calculated distance-matched odds ratios for co-accessible peaks containing Hi-C loops versus 946 

non-co-accessible peaks (co-accessibility<0). We then used two-sided Fisher’s exact tests to 947 

assess significance. We repeated the procedure for high confidence pcHi-C loops for both cell 948 

types.  949 

 950 
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Annotating fine-mapped diabetes risk variants 951 

We annotated risk signals in compiled fine-mapping data for type 2 diabetes from the DIAMANTE 952 

consortium and Biobank Japan studies. For the Biobank Japan T2D GWAS, we constructed LD-953 

based 99% genetic credible sets for main signals at 22 novel loci that were distinct from the 954 

DIAMANTE study. We used the East Asian subset of the 1000 Genomes Project to define credible 955 

set variants by taking all variants in at least low LD (r2>.1) with the index variant in a 5 Mb window. 956 

We used effect size and standard error estimates to calculate Bayes factors for each variant. For 957 

each signal, we then calculated the posterior probability causal probability (PPA) that each variant 958 

drives the association by dividing its Bayes factor by the sum of Bayes factors for all variants in 959 

the signal’s credible set. We then sorted each signal by descending PPA and retained variants 960 

that added up to a cumulative probability of .99 to derive 99% credible sets. 961 

For each signal, we identified candidate casual variants that were both in the 99% credible set 962 

and had a posterior causal probability greater than .01. We intersected these candidate variants 963 

with accessible chromatin sites for each islet cell type and cell state, and then identified variants 964 

with predicted effects on the overlapping cell types/states. We finally annotated variants based 965 

on overlap with sites co-accessible to gene promoters. For target genes linked to diabetes risk 966 

variants we determined enriched gene sets using GSEA.  967 

 968 

Analysis of INS promoter 4C data 969 

We downloaded and re-analyzed published 4C data of the INS promoter for the beta cell line 970 

EndoC-βH177 with 4C-ker111. We first created a reduced genome using 25 bp flanking sequences 971 

of BglII cutting sites. For each of the 3 replicates, we then aligned reads to this reduced genome 972 

using bowtie2112 (v.2.2.9) with the parameter “-N 0 -5 20”. We then extracted counts for each 973 

fragment from the SAM file after removing self-ligated and undigested fragments, and we used 974 

the bedGraph files as input to the R.4Cker package. We generated normalized counts and called 975 

high interaction regions using the ‘nearBaitAnalysis’ function with the parameter ‘k=10’. 976 

 977 

CRISPR/Cas9-mediated enhancer deletion 978 

H1 hESCs (WA01; purchased from WiCell; NIH registration number: 0043) were seeded onto 979 

Matrigel®-coated six-well plates at a density of 50,000 cells/cm2 and maintained in mTeSR1 980 

media (StemCell Technologies) for 3-4 days with media changed daily. hESC research was 981 
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approved by the University of California, San Diego, Institutional Review Board and Embryonic 982 

Stem Cell Research Oversight Committee. 983 

To generate clonal homozygous KCNQ1 enhancer deletion hESC lines, two sgRNAs targeting 984 

the enhancer were designed and cloned into Px333-GFP, a modified version of Px333 (#64073, 985 

Addgene). The plasmid was transfected into H1 hESCs with XtremeGene 9 (Roche). 24 hours 986 

later, 5000 GFP+ cells were sorted into a well of six-well plate. Individual colonies that emerged 987 

within 5-7 days after transfection were subsequently transferred manually into 48-well plates for 988 

expansion, genomic DNA extraction, PCR genotyping, and Sanger sequencing. sgRNA oligos 989 

and genotyping primers are listed below. For control clones, we transfected the Px333-GFP 990 

plasmid into H1 hESCs and subjected the cells to the same workflow as H1 hESCs transfected 991 

with sgRNAs. 992 

sgRNA oligos: 993 

KCNQ1_sgRNA1-s: ACTGTCGGGCCCATCTGCCA 994 

KCNQ1_sgRNA1-as: TGGTTGGATCTGTTGCGGGG 995 

Genotyping primers: 996 

Span-F: AGTGGGGCCATGAACAATAA 997 

Span-R: GCCTGAGTTTCCGTGACTGT 998 

 999 

Pancreatic differentiation of enhancer-deleted hESCs clones 1000 

hESCs were differentiated in a suspension-based format using rotational culture with some 1001 

modifications to a published protocol83. Undifferentiated hESCs were aggregated by preparing a 1002 

single cell suspension in mTeSR media (STEMCELL Technologies) at 1x106 cells/mL and 1003 

overnight culture in six-well ultra-low attachment plates (Costar) with 5.5ml per well on an orbital 1004 

rotator (Innova2000, New Brunswick Scientific) at 100 rpm. The following day, undifferentiated 1005 

aggregates were washed in DMEM/F12 (VWR) and differentiated using a multistep protocol with 1006 

daily media changes and continued orbital rotation at either 100 rpm or at 108 rpm from days 8 1007 

to 28. In addition to 1% GlutaMAX™ (Gibco) and 15 mM (days 0-10) or 20 mM (days 11-28) 1008 

glucose, MCDB 131 media (Life Technologies) was supplemented with 0.5% (days 0-5) or 2% 1009 

(days 6-14) fatty acid-free BSA (Proliant), 1.5 g/L (days 0-5 and days 11-28) or 2.5 g/L (days 6-1010 

10) NaHCO3 (Sigma-Aldrich), and 0.25 mM (days 3-10) ascorbic acid (Sigma-Aldrich).  1011 
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Human Activin A, mouse Wnt3a, and human KGF were purchased from R&D Systems. Other 1012 

media components included ascorbic acid (Sigma-Aldrich), Insulin-Transferrin-Selenium-1013 

Ethanolamine (ITS-X; Thermo Fisher Scientific), ZnSO4 (Sigma-Aldrich), heparin (Sigma-Aldrich), 1014 

retinoic acid (RA) (Sigma-Aldrich), SANT-1 (Sigma-Aldrich), 3,3′,5-Triiodo-L-thyronine (T3) 1015 

(Sigma-Aldrich), the protein kinase C activator TPB (EMD Chemicals), the BMP type 1 receptor 1016 

inhibitor LDN-193189 (Stemgent), the TGFβ type 1 activin like kinase receptor ALK5 inhibitor, 1017 

ALK5 inhibitor II (Enzo Life Sciences), N-Acetyl-L-cysteine (Sigma), R428 (SelleckChem), Trolox 1018 

(EMD Millipore), g-secretase inhibitor XX (Calbiochem).  1019 

 1020 

Day 0:   MCDB 131, 100ng/mL Activin, 25ng/mL mouse Wnt3a  1021 

Day 1 – Day 2: MCDB 131, 100ng/mL Activin A  1022 

Day 3 – Day 5: MCDB 131, 50ng/mL KGF  1023 

Day 6 – Day 7: MCDB 131, 50ng/mL KGF, 0.25 µM SANT-1, 1 µM RA 100 nM LDN-193189, 200 1024 

nM TPB, 0.5% ITS-X 1025 

Day 8 – Day 10: MCDB 131, 2ng/mL KGF, 0.25 µM SANT-1, 0.1 µM RA, 200 nM LDN-193189, 1026 

100 nM TPB, 0.5% ITS-X 1027 

Day 11 – Day 13: MCDB 131, 0.25 µM SANT-1, 0.05 µM RA, 100 nM LDN-193189, 1 µM T3, 10 1028 

µM ALK5i II, 10 µM ZnSO4, 10 µg/mL heparin, 0.5% ITS-X 1029 

Day 14 – Day 21: MCDB 131, 100 nM LDN-193189, 1 µM T3, 10 µM ALK5i II, 10 µM ZnSO4, 10 1030 

µg/mL heparin, 100nM g-secretase inhibitor XX, 0.5% ITS-X 1031 

Day 21 – Day 28: MCDB 131, 100 nM LDN-193189, 1 µM T3, 10 µM ALK5i II, 10 µM ZnSO4, 10 1032 

µg/mL heparin, 1mM N-Acetyl-L-cysteine, 10µM Trolox, 2µM R428 , 0.5% ITS-X 1033 

 1034 

Characterization of hESC-derived cultures at beta cell stage (day 28)  1035 

Flow cytometry analysis 1036 

hESC-derived cell aggregates were dissociated into a single-cell suspension with Accutase™ 1037 

(Innovative Cell Technologies) at 37 °C for 5 min. Accutase™ was quenched with FACS buffer 1038 

(0.2% (w/v) BSA in PBS). Cells were then pelleted, fixed, and permeabilized with 1039 

Cytofix/Cytoperm Fixation/Permeabilization Solution (BD Biosciences) for 20 min at 4 °C, and 1040 
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washed twice in BD Perm/Wash™ Buffer. We incubated cells with AF647-conjugated mouse anti-1041 

Nkx6.1 (BD Biosciences) and PE-conjugated rabbit anti-INS (Cell Signaling Technology) antibody 1042 

in 50 µl BD Perm/Wash™ Buffer for 1 hour at 4 °C. Following three washes in BD Perm/Wash™ 1043 

Buffer, cells were analyzed on a FACSCanto II (BD Biosciences) cytometer. 1044 

Immunofluorescence staining and quantification of immunofluorescence signal 1045 

hESC-derived cell aggregates were washed twice with PBS and then fixed with 4% 1046 

paraformaldehyde in PBS for 30 min at room temperature. Following three washes in PBS, 1047 

aggregates were incubated in 30% sucrose at 4 °C overnight, frozen in Optimal Cutting 1048 

Temperature Compound (Sakura Finetek USA), and sectioned at 10 µm with a CM3050S cryostat 1049 

(Leica). Sections were washed with PBS, permeabilized, and blocked with 1050 

Permeabilization/Blocking Buffer for 1 h at room temperature. Primary and secondary antibodies 1051 

were diluted in Permeabilization/Blocking Buffer. We incubated sections overnight at 4°C with 1052 

primary antibodies, and then secondary antibodies for 30 min at room temperature. The following 1053 

primary antibodies were used: mouse anti-NKX6-1 (LifeSpan BioSciences, 1:250), guinea pig 1054 

anti-INS (Dako, 1:1000). Secondary antibodies (1:1000) were Cy3-, Alexafluor488-conjugated 1055 

antibodies raised in donkey against mouse and guinea pig (Jackson Immuno Research 1056 

Laboratories). We acquired images on a Zeiss Axio-Observer-Z1 microscope with a Zeiss 1057 

AxioCam digital camera.  1058 

mRNA sequencing 1059 

For each clone, we collected aggregates from two independent batches of differentiation and 1060 

lysed them in RLT Buffer. We then extracted total RNA using the RNeasy Micro Kit (QIAGEN) 1061 

following the manufacturer’s instructions. mRNA libraries were prepared using KAPA mRNA 1062 

Hyper Prep kit (KAPA) and single-end 75 bp reads were sequenced using HiSeq4000 (Illumina). 1063 

We used STAR (v2.5.3a) to map reads to the hg19 genome, allowing for up to 10 mismatches. 1064 

We retained reads aligned uniquely to one genomic location for subsequent analysis. We then 1065 

created input count files for DESeq2 with htseq-count from the HTSeq python package (v.0.9.0) 1066 

and tested for differential gene expression using DESeq2 (v1.10.1) with default parameters, using 1067 

differentiation batch as a technical covariate in our analysis. We considered genes with an 1068 

FDR<.1 as significantly differentially expressed. 1069 

Insulin content measurement 1070 

We washed hESC-derived cell aggregates with PBS, resuspended in 50µl of 0.1% SDS TE buffer 1071 

and sonicated for 3 cycles of 30 sec on/ 30 sec off each using a Bioruptor on the high setting. We 1072 
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then immersed the lysate in a solution of 2% HCl and 80% ethanol overnight at 4°C and 1073 

centrifuged at max speed for 10 min at 4°C. We collected the supernatant and measured insulin 1074 

content using a human insulin ELISA kit (ALPCO). We resuspended the pellets in 50µl TE buffer 1075 

and measured DNA content with Nanodrop, and normalized insulin content to DNA content. 1076 

  1077 

Figure Legends 1078 
 1079 

Main Figures 1080 

 1081 

Figure 1. Pancreatic islet cell type accessible chromatin defined using snATAC-seq. (a) 1082 

Clustering of accessible chromatin profiles from 14,239 pancreatic islet cells identifies 13 distinct 1083 

clusters. Cells are plotted using the first two UMAP components, and clusters are assigned cell 1084 

type identities based on promoter accessibility of known marker genes for each cell type. (b) 1085 

Promoter accessibility in a 1 kb window around the TSS for selected endocrine and non-endocrine 1086 

marker genes for each profiled cell. A cell is colored if it had promoter accessibility for the marker 1087 

gene listed in the bottom right corner of each subplot, and otherwise is grey. (c) Genome browser 1088 

plots showing aggregate read density (scaled to uniform 1x105 read depth, range: 1-10) for cells 1089 

within each cell type cluster at hormone gene loci for endocrine islet cell types: GCG (alpha), INS-1090 

IGF2 (beta), SST (delta), and PPY (gamma). The promoter region for each gene is highlighted, 1091 

and the number of cells for each cell type cluster is listed in parenthesis. (d) Spearman correlation 1092 

between t-statistics of marker genes based on promoter accessibility (snATAC-seq) or gene 1093 

expression (scRNA-seq) using the top 100 most specific gene promoters from each islet snATAC-1094 

seq cluster. (e) Normalized chromVAR motif enrichment values for 111 TF sequence motifs that 1095 

have variable activity across clusters. We collapsed multiple clusters for each cell type into a 1096 

single cluster (e.g. combining beta 1 and beta 2 into a single beta cell cluster). Subtype-specific 1097 

motif enrichment is presented in Figure 2. Position weight matrices and names are shown for 1098 

sequence motifs for TF families enriched across different endocrine and non-endocrine cell types. 1099 

Enrichment z-scores for FOXA1 and PDX1 motifs in each cell are projected onto UMAP 1100 

coordinates to the right of the main heatmap. 1101 

 1102 

Figure 2. Heterogeneity in alpha and beta cell accessible chromatin and regulatory 1103 

programs. (a) Gene promoters with significantly differential chromatin accessibility between sub-1104 
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clusters of alpha cells (left) and beta cells (right). Genes with increased promoter accessibility in 1105 

alpha 1 (GCGhigh) and beta 1 (INShigh) sub-clusters include GCG (glucagon) for alpha cells and 1106 

INS (insulin) for beta cells, as well as genes such as ABCC8, G6PC2, GCK and SLC30A8. 1107 

Conversely, genes with increased promoter accessibility in alpha 2 (GCGlow) and beta 2 (INSlow) 1108 

sub-clusters include genes such as FOSL1, FOSL2, and ATF3. (b) Genes with increased 1109 

promoter accessibility in the hormone-high (INShigh, GCGhigh) or hormone-low (INSlow, GCGlow) 1110 

state of one cell type were significantly enriched for genes with increased hormone-high or 1111 

hormone-low activity in the other cell type, respectively (left); Genes with differential promoter 1112 

accessibility across alpha and beta cell states were enriched for genes in beta cell subsets (b sub. 1113 

1-4) previously identified in an islet single cell gene expression study. (right) **FDR<.01, 1114 

*FDR<.10. (c) Gene ontology terms for biological processes related to glucose response and 1115 

hormone secretion were enriched in genes with higher promoter accessibility in INShigh and 1116 

GCGhigh cells, whereas terms for stress response, insulin signaling and cell cycle were enriched 1117 

in genes with higher promoter accessibility in INSlow and GCGlow cells. (d) Row-normalized 1118 

chromVAR enrichments for 111 TF motifs showing variable enrichment across alpha or beta cells. 1119 

We observed motifs enriched for different sub-clusters including RFX family members (RFX2-5) 1120 

for GCGhigh alpha and INShigh beta cells, and FOS/JUN family members for GCGlow alpha and 1121 

INSlow beta cells. Individual cell enrichment z-scores of a representative RFX (RFX3) and 1122 

FOS/JUN (FOS::JUN) motif are plotted on UMAP coordinates, and the violin plots below each 1123 

UMAP plot show enrichment values (median: center line, boxplot limits: quartiles) within each 1124 

alpha and beta state. (e) Ordering of alpha and beta cells on a trajectory using high GCG/INS-1125 

IGF2 promoter accessibility as the anchor point with Cicero. Plots show cells binned across this 1126 

trajectory from left to right, where the top shows the percentage of cells in the hormone-high state 1127 

in a given bin, colored bars above the heatmap represent individual cells with their binary clusters 1128 

in their positions across each trajectory, and the heatmap shows chromVAR enrichments for 1129 

motifs in bins across each trajectory. (f) Motifs in the FOS/JUN family show increasing enrichment 1130 

across the alpha and beta cell trajectory. Genes in the FOS/JUN family with promoter accessibility 1131 

patterns that match the motif enrichment patterns (Spearman correlation>.9) are highlighted (in 1132 

blue and starred). 1133 

 1134 

Figure 3. Enrichment of islet single cell accessible chromatin for diabetes and related trait 1135 

genetic association data. (a) Cell type specific LD score regression enrichment z-scores for 1136 

diabetes-related quantitative endophenotypes (top), type 1 and 2 diabetes (middle), and control 1137 
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traits (bottom) for islet snATAC-seq clusters. **FDR<.01 *FDR<.1. (b) Single cell enrichment z-1138 

scores for fasting glucose level, type 2 diabetes, major depressive disorder, and lupus projected 1139 

onto UMAP coordinates (left panels), boxplot showing z-score enrichment distribution per cell 1140 

type and state (middle panels), and z-score enrichment distribution split into 10 bins based on 1141 

beta cell trajectory value (right panels). All boxplots show median (center line) and upper and 1142 

lower quartiles (box limits). (c) Genome browser shot of the DGKB locus which is associated with 1143 

both type 2 diabetes and fasting glucose level. Candidate causal variants fall in an enhancer with 1144 

higher accessibility in INShigh beta cells and with dynamic chromatin accessibility decreasing 1145 

across the beta cell trajectory, consistent with the beta cell enrichment patterns for fasting glucose 1146 

level. (d) Correlation between single cell fasting glucose (FG) level enrichments and TF motif 1147 

enrichments from chromVAR across all 14.2k cells (left) and 7.2k beta cells (right). Across all 1148 

cells, FG level is positively correlated with beta cell TF motifs such as PDX1 and NKX6-1 and 1149 

negatively correlated with alpha cell TF motifs such as GATA. Within beta cells, FG level is 1150 

positively correlated with TF motifs enriched in the INShigh state such as RFX, NRL/MAF, and 1151 

FOXA, and negatively correlated with TF motifs enriched in the INSlow state such as JUND and 1152 

NFE2.  1153 

 1154 

Figure 4. Genetic variants with islet cell type- and state-specific effects on chromatin 1155 

accessibility. (a) Percentage of HRC reference panel r1.1 variants in any endocrine cell type 1156 

peak (n=1,411,387 total) that had significant deltaSVM predictions at FDR<.1 for the reference 1157 

(ref) or alternate (alt) allele in different endocrine cell types and states. (b) Spearman correlation 1158 

comparing deltaSVM score to chromatin accessibility allelic imbalance z-scores using variants 1159 

with significant deltaSVM predictions for alpha and beta states. (c) Luciferase gene reporter 1160 

assays of five fine-mapped T2D variants with predicted beta cell effects in MIN6 cells. All tested 1161 

variants (n=3) had significant effects in gene reporter assays and were directionally consistent 1162 

with deltaSVM effects (highlighted with a circle around the allele with higher predicted effect). 1163 

Data shown are mean ± 95% confidence interval. Two-sided Student’s T-test *P<.05 **P<.01 1164 

***P<.001. (d) Enrichment of ensemble islet caQTLs for SNPs with significant deltaSVM effects 1165 

in alpha and beta cells (left) and categorized based on shared, cell type- and state-specific 1166 

deltaSVM effects on alpha and beta cells (right). Two-sided Fisher’s exact test. ns, not significant. 1167 

(e) Variants with predicted cell type- and state-specific effects on alpha and beta cells, where size 1168 

indicates magnitude of the deltaSVM z-score and color indicates the effect allele. Ref=blue, 1169 

alt=red (left). TF motif families enriched in sequences surrounding the effect allele compared to 1170 
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the non-effect allele for each variant category (middle). Promoter accessibility patterns of genes 1171 

in in enriched TF motif families. TFs with promoter accessibility patterns that match TF motif 1172 

enrichment patterns are highlighted in blue and starred (right). (f) Enrichment of low frequency 1173 

and rare variants with significant effects on islet chromatin for T2D association at different p-value 1174 

thresholds. Data shown are enrichment ± 95% confidence interval. Two-sided binomial test 1175 

*P<.05. (g) Low-frequency T2D-associated variant rs78840640 at the IGF2BP3 signal has a high 1176 

causal probability (PPA=0.33), overlaps peaks in both beta cell states, and is predicted to have 1177 

allelic effects in beta cells.  1178 

Figure 5. Chromatin co-accessibility links cell type enhancers and diabetes risk variants 1179 

to target genes. (a) Distance-matched odds that beta cell co-accessibility links overlap islet pcHi-1180 

C chromatin loops at different co-accessibility threshold bins. (b) Beta cell (top) and alpha cell 1181 

(middle) co-accessibility between pairs of accessible chromatin sites and high-confidence 1182 

promoter capture Hi-C interactions from bulk islets (bottom) anchored at the PDX1 promoter. (c) 1183 

Beta cell co-accessibility anchored on an enhancer within KCNQ1 harboring causal T2D variant 1184 

rs231361 (PPA=1) shows distal links to the INS promoter as well as other non-promoter sites. 1185 

This enhancer has an accessible peak call in the INShigh beta cell state but not the INSlow state 1186 

and has dynamic accessibility across the beta cell state trajectory. rs231361 disrupts a sequence 1187 

motif for RFX, which itself is enriched in INShigh beta cells, has dynamic enrichment across the 1188 

beta cell trajectory, and is predicted to have allelic effects on INShigh beta cells (deltaSVM z-score 1189 

*FDR<.1). We performed CRISPR/Cas9-mediated deletion of the 2.6 kb genomic region flanking 1190 

this enhancer (highlighted in grey) in hESCs (KCNQ1∆Enh). (d) Differential expression analysis of 1191 

genes within 2 Mb of the KCNQ1 enhancer in beta cell stage cultures (day 28) from KCNQ1∆Enh 1192 

(n=6; 3 clones each differentiated two times) and control (n=2; 1 clone differentiated two times) 1193 

hESC clones. INS and CDKN1C mRNA levels are significantly reduced in KCNQ1∆Enh compared 1194 

to control cells, while other genes in the region show no significant difference in expression. Data 1195 

are shown as transcripts per million (TPM). (e) Representative immunofluorescence staining for 1196 

INS (green) and NKX6-1 (red) with DAPI staining (blue) on beta cell stage KCNQ1∆Enh and control 1197 

aggregates. Scale bar, 50µm. (f) Histogram showing INS fluorescence intensity by flow cytometry 1198 

(left panel) and quantification of INS median fluorescence intensity (MFI, right panel) in beta cell 1199 

stage cultures from KCNQ1∆Enh (n=9; 3 clones each differentiated three times) and control (n=6; 1200 

2 clones each differentiated three times) cells. (g) Insulin content in beta cell stage cultures from 1201 

KCNQ1∆Enh (n=9; 3 clones each differentiated three times) and control (n=6; 2 clones 1202 
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differentiated three times) clones. Data are shown as mean ± SEM. * p < 0.05, *** p<0.001, ns, 1203 

not significant by two-sided Student’s T-test.  1204 
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