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Abstract 

Background: Simple translocations and complex rearrangements are formed through 
illegitimate ligations of double-strand breaks of fusion partners and lead to generation 
of oncogenic fusion genes that affect cellular function. The contact first hypothesis 
states that fusion partners tend to colocalize prior to fusion in normal cells. Here we 
test this hypothesis at the single-cell level and explore the underlying mechanism.

Results: By analyzing published single-cell diploid Hi-C datasets, we find partner 
genes fused in leukemia exhibit smaller spatial distances than those fused in solid 
tumor and control gene pairs. Intriguingly, multiple partners tend to colocalize with 
KMT2A in the same cell. 3D genome architecture has little association with lineage 
decision of KMT2A fusion types in leukemia. Besides simple translocations, complex 
rearrangement-related KMT2A fusion genes (CRGs) also show closer proximity and 
belong to a genome-wide mutual proximity network. We find CRGs are co-expressed, 
co-localized, and enriched in the targets of the transcriptional factor RUNX1, suggest-
ing they may be involved in RUNX1-mediated transcription factories. Knockdown 
of RUNX1 leads to significantly fewer contacts among CRGs. We also find CRGs are 
enriched in active transcriptional regions and loop anchors, and exhibit high levels 
of TOP2-mediated DNA breakages. Inhibition of transcription leads to reduced DNA 
breakages of CRGs.

Conclusions: Our results demonstrate KMT2A partners and CRGs may form dynamic 
and multipartite spatial clusters in individual cells that may be involved in RUNX1-
mediated transcription factories, wherein massive DNA damages and illegitimate 
ligations of genes may occur, leading to complex rearrangements and KMT2A fusions 
in leukemia.

Keywords: Single-cell Hi-C, Fusions, Leukemia, Genomic rearrangements, Complex 
rearrangements
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Introduction
Genomic rearrangements (structural variations) have been discovered to play a role 
in tumors [1, 2], which can affect cellular functions by generating abnormal fusion 
genes. Genomic rearrangements can be classified into simple rearrangements (includ-
ing translocations, inversions, deletions, and duplications) and complex rearrange-
ments (CRs) (including chromoplexy and chromothripsis). CRs have been recently 
found in 5–9% of tumor genomes and implicated in tumorigenesis [1, 3]. In leuke-
mia, more than 10.5% of KMT2A (MLL) fusions result from CRs [4]. Fusion occurs 
when two previously independent genes are placed side by side, which usually orig-
inate from translocations [5]. Gene fusions are frequently associated with carcino-
genic properties and are driver mutations in various cancers [6, 7]. More than 300 
frequent fusions have been identified in hematological disorders and malignant solid 
tumors. However, the molecular process of generating oncogenic fusions, especially 
CRs, remains poorly understood [8].

The formation of fusions is a multistep process, including DNA double-strand breaks 
(DSBs), spatial proximity, and illegitimate DNA ligation. NHEJ is reported to be respon-
sible for generations of fusions in multiple cancers [9]. Since illegitimate DNA ligation of 
two DSBs requires spatial proximity, the “contact first” hypothesis was proposed, which 
states that in normal cells, genomic fusion partners tend to colocalize prior to fusion 
[10]. However, it remains unclear to what extent three-dimensional (3D) spatial organi-
zation contributes to fusions in human hematologic malignancies [10].

Recent developments of 3C techniques such as bulk Hi-C have substantially advanced 
the studies of fusions. Hi-C sequences experimentally ligated proximate DNA fragments 
in 3D space and can detect 3D chromatin structures at the genome-wide level [11, 12]. 
This technique is superior to FISH (Fluorescence in situ hybridization) in terms of reso-
lution and throughput [13]. With Hi-C, it was revealed that the frequencies of fusions 
in mouse pro-B cell line were proportional to the spatial distances of the fusion partner 
genes (measured with the number of Hi-C contacts) in normal cells [14], which provided 
the first genome-wide evidence that 3D chromatin structures may influence the genomic 
fragments subject to translocation in tumors. Further, applying the Hi-C approach on 
human cell lines demonstrated that 3D chromatin structures could shape the landscapes 
of translocations which often result in oncogenic fusions [15]. Nevertheless, bulk Hi-C 
presents an average ensemble of all 3D chromatin structures in a cell pool [12], so it 
is hard to provide the chromatin organizations in a single cell. Possibly, a tumor may 
originate from a single mutated cell, so to capture the chromatin organization of a tumor 
precursor cell can provide clues on the process of oncogenic fusions. Excitingly, single-
cell Hi-C was developed and solves this problem [16]. With single-cell Hi-C, one can 
measure the dynamic spatial locations of many genes in a single cell. Single-cell Hi-C has 
been applied in both haploid mouse cells [17] and diploid human cells [18], providing 
great insights into the chromatin organizations.

In this study, we take advantage of the recently published single-cell Hi-C data that 
consist of 29 blood cells to explore the formation mechanism of oncogenic fusions in 
leukemia. The 29 cells comprise several types of blood cells, such as lymphocytes and 
myelocytes, providing an opportunity to investigate tumor precursor cells of different 
leukemia subtypes.
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Results
Single‑cell diploid Hi‑C data reveals that leukemia fusion partner genes are spatially closer 

than expected in normal human blood cells

To start with, we collected 297 oncogenic fusions from the COSMIC database [19], of 
which 92 are intra-chromosomal fusions and 205 are inter-chromosomal ones (Addi-
tional file 2: Table S1). Here we restrict our following analyses into inter-chromosomal 
fusions only for the following reasons: (1) many intra-chromosomal fusions involve 
genes in close linear genomic distance, and the Hi-C accuracy of such close gene pairs 
is low [12], and (2) most of the leukemia fusions (the focus of this study) are inter-
chromosomal, so our results should be representative. In this way, a total of 58 leuke-
mia inter-chromosomal fusions were obtained (Additional file 2: Table S1), of which 45 
(78%) involve partner gene KMT2A. In addition, four fusions are associated with ETV6, 
namely ETV6-ABL1, ETV6-JAK2, ETV6-NTRK3, and ETV6-RUNX1. Most fusion part-
ners seem to be evenly distributed on each chromosome (Additional file  1: Fig. S1A). 
And the number of fusion genes on a chromosome positively correlates with the total 
number of genes on the chromosome (Additional file 1: Fig. S1B), suggesting that inter-
chromosomal fusions are largely random.

With the single-cell diploid Hi-C data, we first observed that the spatial distances of 
the leukemia fusion partner genes vary among cells and that the cells of the same type 
tend to cluster together (Fig. 1A). Here, the distance of a gene pair is defined as the mini-
mum of two alleles (one from each gene), regardless of parental origins. Based on the 
contact first hypothesis, we hypothesize that the genes involved in oncogenic fusions 
may be close in space before the actual fusions occur. To test this hypothesis, we clas-
sified genes into three groups according to their tumor status in the COSMIC database 
[19]: genes involved in leukemia fusions, genes involved in solid tumor fusions, and 
other genes as control (see the “Methods” section). Then for each fusion gene pair, using 
the single-cell blood Hi-C data, we calculated the average and minimum EuD values over 
all single cells. As expected, we found that leukemia fusion genes exhibit significantly 
higher proximities than the solid tumor fusion genes, and the latter show higher prox-
imities than the controls, in both GM12878 and PBMC cell lines (Fig. 1B). These results 
are consistent with the prediction of the contact first hypothesis. Since the Hi-C data are 
derived from blood cells, they may represent the precursor cells of leukemia better than 
the precursors of solid tumors, so leukemia fusion genes show higher proximities than 
solid tumor fusion genes in the data, and we expect the relationship reverses if Hi-C data 
from tissues related to solid tumor are used. Figure 1B illustrates that the average EuD 
values of more than 75% of fusion partner genes are less than 35 (around 3.5μm), con-
sistent with previous reports based on FISH [20].

Alternatively, we defined co-localization ratio as the ratio of the count of single cells 
in which two genes are co-localized to the count of all single cells. Comparing the ratios 
among the gene groups, leukemia fusion partners have significantly higher colocalization 
ratios than solid tumor fusion partners and controls (Fig. 1C). Philadelphia chromosome 
(Ph) fusion BCR-ABL1 (colocalization ratio=34.9%) and KMT2A-ELL (colocalization 
ratio=27.6%) are the top 2 fusions with the highest colocalization ratios (Fig. 1C). As an 
example, the BCR and ABL1 locations in the nuclei of GM12878 cell 15 and PBMC cell 
18 are shown in Fig. 1D and E.
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As a supplementary analysis, we also used the gene fusions from the database Tumor-
Fusions [21], from which we obtained 62 leukemia gene fusions. Thirty-four of the 
fusions are inter-chromosomal and used here (Additional file  2: Table  S1). Consistent 
with the above observation, we found that leukemia fusion gene pairs exhibit higher 
proximities than the control gene pairs (Additional file 1: Fig. S2).

KMT2A fusion partner genes are spatially proximate to the gene KMT2A

KMT2A fusions account for 78% of fusions in leukemia and the frequencies of differ-
ent forms vary from 0.05 to 35% (Additional file 2: Table S1), suggesting that KMT2A 
fusions may be an important driver of leukemia. A previous study of the frequent 
KMT2A fusion partner genes based on the FISH technique revealed that the spatial dis-
tance of MLLT1 to KMT2A is much closer than the distances of the other three partner 
genes to KMT2A: AFF1, MLLT4, and MLLT3 [20]. Using the Hi-C data, we confirmed 
the finding (Additional file 1: Fig. S3A-B, ANOVA test: P=0.0107; Fig. 2A), suggesting 
that the Hi-C data are of pretty high quality.

Based on the spatial distances between KMT2A and fusion partner genes, we identi-
fied top 14 partners with the smallest median distances (Fig. 2A). Using the FISH tech-
nique, we verified that the gene pair KMT2A-ELL indeed has closer spatial distance than 
KMT2A-MLLT3 (Additional file 1: Fig. S3C-D), suggesting that the Hi-C results are reli-
able. Next, we present the fusion partner genes colocalized with KMT2A in each cell, as 
shown in Fig. 2B and C. Despite high heterogeneities across 29 single cells, more than 
one gene may colocalize with KMT2A simultaneously in a single cell, such as MLLT3 
(chr9) and MLLT10 (chr10) in PBMC cell 10 (Fig. 2B, C). Genes on the same chromo-
somes may show different colocalization patterns (Fig. 2B).

Next, we test whether the spatial distances of the partner genes to KMT2A are smaller 
than those of the other genes to KMT2A in each single cell. Using the GSEA enrichment 
strategy (see the “Methods” section), we found no difference between the partner genes 
and the other genes (Fig.  2D–G). However, we see the partner genes are significantly 
closer to KMT2A when the average or minimum distance over all single cells is used 
(Fig. 2D–G). The disparity between the bulk and single-cell levels has been seen before: 
for example, few Nanog-partner interactions identified using bulk 4C can be confirmed 
in single cells [16]. The disparity may be explained by the heterogeneity of the colocali-
zations of partner genes (Fig.  2B): in a single cell, only a few of all the partner genes 
colocalize with KMT2A, so one may not see a closer distance to KMT2A when all the 
partner genes are considered.

Next, we ask whether the KMT2A partner genes are enriched in the targets of some 
transcriptional factors. To do so, we constructed a colocalization network by choos-
ing partners whose distances to KMT2A are EuD<15 in at least three single cells, and 
then selected the top 30 partner genes with the most connections (Fig. 2H). Using Enri-
chr tool and the datasets CHEA and ENCODE [22], we found that these partner genes 
are significantly enriched in the targets of transcriptional factors CEBPD and RUNX1 
(Fig. 2I, J).

Our results are further confirmed by using the SPRITE dataset [23]. SPRITE was simi-
lar to Hi-C, but it bypasses the step of ligation and can detect farther inter-chromosomal 
contacts [23]. Also, partner genes in closer proximity show more SPRITE contacts. First, 
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we see a negative correlation between the average EuD values from the single-cell Hi-C 
and the number of SPRITE contacts for all leukemia fusion partner genes, though not 
significant when minimum EuD values were used (Fig. 3A). With the SPRITE data, we 
confirmed that fusion partner gene pairs are spatially closer than control gene pairs 
(Fig.  3B, Mann-Whitney U test, P=1.807e-5) and that partner genes are significantly 
closer to KMT2A overall (Fig. 3C, P=0.009). These results further support that the spa-
tial proximity may play an important role in forming fusion genes.

Fig. 2 The 3D spatial structures between KMT2A and fusion partners. A The boxplots of Euclidean distances 
among single cells between KMT2A and its 14 closest fusion partners. B The co-localizations of KMT2A and 
different fusion partners in each cell. C The colocalization correlations across cells between different KMT2A 
partners. D The P-values computed from the comparisons of the distances to KMT2A between partner genes 
and the other genes in a single cell as well as the average and minimum distances among the groups. E–G 
GSEA results of GM12878 Cell 2 and average, minimum of all single-cells. H The colocalization network of 
the top 30 KMT2A fusion partners which have the largest numbers of colocalized partners. A darker color 
for a node (except KMT2A gene, which is highlighted by green) means more connections in the network. I 
Transcriptional enrichments of the top 30 KMT2A fusion partners using Enrichr. J Most of the top 30 partners 
are the targets of transcription factors RUNX1 and CEBPD
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3D genome structure has no association with the gene fusions specific to the subtypes 

of leukemia

We next examined whether 3D genome structures contribute to the cell-type specific 
fusions and in turn the tumor types. First, using the KMT2A-partner distances in each 
cell as variables, the cells under study appear clustered based on cell types: B lymph-
oblastoid cells, T lymphocytes, and myelocytes (Fig. 4A). Next, we compared the spa-
tial distances of the KMT2A-partner gene pairs between lymphocytes and myelocytes. 
Assuming that lymphocytes and myelocytes are similar to the precursors of acute 
lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), respectively, we 
might expect that ALL-specific fusion gene pairs have smaller distances in lymphocytes 
than in myelocytes, and vice versa for AML-specific fusion gene pairs. To test this, we 
grouped the fusion gene pairs based on their tumor sources: ALL-specific, AML-spe-
cific, and common to ALL and AML, and then for each group, we compared their spatial 
distances of partner gene pairs between in lymphocytes and in myelocytes. Overall, we 
found no significant difference for any group of gene pairs (Fig. 4B). We also found no 
differences for gene pairs involved in AML or ALL most prevent gene fusions (Addi-
tional file  1: Fig. S4A). However, we found three fusion gene pairs exhibited closer 
distances in myelocytes than in lymphocytes (Fig.  4C): KMT2A-ABI1 (P=0.0399), 
KMT2A-MLLT4 (P=0.00837), and KMT2A-SORBS2 (P=0.0172). Intriguingly, all these 
three fusions are exclusively found in AML [4].

Further, we examined this issue in the ALL subtypes: T-cell ALL (T-ALL) and B-cell 
ALL (B-ALL). The most frequent KMT2A partners for B-ALL are AF4 (57%) and ENL 
(~18%), while the ones for T-ALL are MLLT4 (39%) and MLLT1 (37%) [4]. Again, we do 
not see any significant difference for these frequent fusions when comparing the spatial 
distances between T and B lymphocytes (Additional file 1: Fig. S4B). These results sug-
gest that the cell-type specific 3D genome structures have no association with the leuke-
mia subtype specific fusions.

Here we also measure the prevalence of each KMT2A fusion using a dataset of 2345 
leukemia patients [4] and test whether the gene pairs of more prevalent fusions are in 
closer proximity than the pairs of less prevalent fusions. With the dataset, each fusion’s 
occurrence was counted over all the patient genomes, with prevalent fusions having 
larger counts. As shown in Fig. 4D, we do not see significant correlation between fusion 
prevalence and the spatial distance of partner genes (R=0.046, P=0.73). One caveat of 
our analysis here is that certain fusions may be favored in tumors because of their func-
tions. Therefore, as a control, we consider only genes of the SEC complex components 
(AFF1, AFF2, AFF4, MLLT3, MLLT1, MLLT10, MLLT6, and ELL), assuming the fusions 
formed between each of these genes and KMT2A have similar functions. Again, no cor-
relation is observed between the fusion prevalence and the spatial distance of partner 
genes (Fig. 4E, R=0.17, P=0.69). These results suggest that the prevalence of fusions in 
leukemia is not associated with the spatial distance of partner genes in precursor cells.

Complex rearrangement‑related genes (CRGs) from KMT2A fusions colocalize with KMT2A 

and partner genes

In addition to the simple fusions involving two genes, KMT2A fusions can arise from 
complex rearrangements (CRs), which involve other passenger genes besides KMT2A 
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and fusion partners [3] (such as PDE6C in Fig. 5A). We call these passenger genes com-
plex rearrangement-related genes (CRGs). Single-cell Hi-C is a powerful tool to study 
CRs involving multiple chromosomal loci. First, we obtain KMT2A fusion-related 
CRGs from a previous study [4]. Most of them are related to the fusions KMT2A-AFF1, 
KMT2A-MLLT3, or KMT2A-MLLT10 [4]. We defined a quantity termed “CR tightness” 
to measure to what extent CRGs are tightly located with KMT2A and partner genes 
in 3D nuclei (see the “Methods” section). The smaller the “CR tightness,” the closer to 
KMT2A and partners the CRG is. Despite high cellular heterogeneity, we found that 
CRGs exhibited smaller CR tightness and preferably colocalized with KMT2A and part-
ners (Fig.  5B). Moreover, counting the colocalization of each gene pair over all single 
cells, the percentage of CRGs colocalized with both KMT2A and partners is nearly twice 
that of controls (Fig. 5C, chi-squared test, P<0.001).

CRGs may be involved in the RUNX1‑mediated transcription factories

We identified 147 CRGs from 153 leukemia samples with only five observed in more 
than one sample (CEP164, DSCAML1, FXYD2, SIK3, and GRIA4). Four of these reap-
pearing genes are within a 1.68Mb region on chromosome 11. Moreover, DSCAML1, 
FXYD2, and SIK3 are target genes of transcription factor RUNX1. CRGs form clusters 
on chromosomes (Fig.  6A). For example, for four fusion partner genes, MLLT3(chr9), 
MLLT1(chr19), VAL1(chr19), and EPS15(chr1), they all have CRGs located in 6p21 and 
6p22 regions (Fig. 6A). Further, different CRGs seem to colocalize in single cells (Fig. 6B). 
These results suggest that the genomic distribution of CRGs is not random and their 
involvement in complex rearrangements may be triggered by some common processes.

It was reported that transcription factories (distinct nuclear regions for nascent RNA 
productions by assembling critical regulatory factors [24, 25]) may contribute to the 
gene fusions in leukemia [26]. For example, MLLT3 (AF9) and MLLT10 (AF10) shared 
the same transcription factory with KMT2A [26]. Therefore, we suspect that CRGs 
get involved into complex rearrangements via transcription factories. In line with this 
speculation, we found that CRGs are more often located in active A1 and A2 sub-com-
partments (Fig.  7A, P=9.29e−11) and in the interior region of the nucleus (Fig.  7B, 
P=2.86e−13). Moreover, CRGs form co-expressions clusters (Fig.  7C), suggesting the 
clusters may be transcribed together.

Next, we try to examine whether CRGs are regulated by common transcriptional fac-
tors. To do so, we first chose CRG pairs having EuD<=15 in at least three single-cell 
Hi-C samples and then constructed a network with these pairs. We obtained 126 such 
genes. We performed enrichment analysis using Enrichr [22] to find enriched transcrip-
tional factors based on three regulation databases [27–29] (see the “Methods” section). 
Each database provides several enriched transcription factors (Fig.  7D), and RUNX1 
(AML1) is the only one provided by all the three (Fig.  7D, E). These results suggest 
that RUNX1 may be an important factor to form transcription factory and bring CRGs 
together. In line with this idea, RUNX1 knockdown resulted in significantly fewer con-
tacts among CRGs in MCF7 cell lines (Fig. 7F, P=2.519e−06).
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Chromatin loop structures and active transcriptions may drive DNA breakages in CRGs

If transcription factories bring CRGs and other fusion genes closer, the next question is 
how DNA breakages occur to form fusions. It was reported that simultaneous breakage 
and erroneous DNA repair of several genes within the same transcription factory could 
generate canonical fusions, such as RUNX1-ETO [30]. Moreover, breakages of KMT2A 
and partners were associated with transcription and chromatin loop structures [20]. 
Therefore, we hypothesize that breakages and illegitimate ligations of multiple genes in 
the same transcription factories may underlie CRs and fusions. We tested this hypoth-
esis by examining the relationships between ETO-treated DNA breakages, distances to 
loop anchors, and transcriptions of CRGs in three hematopoietic cell lines (TK6 cells, 
K562 cells, and CD34 + cells) using public datasets [20]. Like KMT2A fusion partner 
genes [20], most CRGs, such as SRSF4, SEC14L1, and FGF7, are subject to high lev-
els of ETO-induced DSBs, high expressions, and adjacent loop anchors in all three cell 
lines (Fig. 8A–C). CRGs are significantly closer to the loop anchors (Fig. 8D) and among 
the top highly expressed genes (Fig.  8E). Moreover, ETO-treated K562 cells showed 

Fig. 8 CRGs show active transcriptions, proximity to loop anchors, and high levels DSBs. A–C The relationship 
between DBS frequency in a gene and distance to chromosomal loop anchors. In each plot, the expression 
level is denoted with colors, and CRGs are marked using dark green circles. D Comparison of the distances 
to nearest loop anchors among KMT2A partners, CRGs, and other genes. E The heatmap of CRG expression 
in blood cells, and the gene expression is normalized as percentile in each single cell. F CTCF enrichment, 
transcriptional activity, and ETO-treated breakages in genomic regions around SRSF4 gene in K562 cells. 
G Genome-wide ETO-treated DSB profiles of the SEC14L1 gene in TK6 cells treated with or without DRB (a 
transcription inhibitor)
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increased sBLISS signals (indicating the levels of DSBs) at the promoter-proximal 
regions of active CRGs with nascent RNA expressions such as SRSF4 (Fig. 8F), SEC14L1, 
and PARP14. These genes also were occupied by CTCF and RAD21 and had increased 
Pol II occupancy at the promoter-proximal regions (Fig.  8F). Disruption of transcrip-
tions by DRB in TK6 cells resulted in decreased DSBs in CRGs with high expressions, 
such as PARP14 genes (Fig. 8G), SRSF4, and SEC14L1 (Additional file 1: Fig. S5), further 
supporting that ETO-induced DSBs depend on transcriptions.

Discussion
In this study, we employed single-cell Hi-C data to investigate the 3D genome structure 
in blood cells. Compared to the traditional method FISH, Hi-C provides both higher res-
olution and throughput in evaluating 3D structures. Also, the Hi-C data are highly con-
sistent with the results from FISH. For example, a recent FISH-based study revealed the 
spatial distances between KMT2A and four partner genes: MLLT1, AFF1, MLLT4, and 
MLLT3 [20]. Our Hi-C results match the results very well. In addition, single-cell Hi-C 
can evaluate the spatial locations of many genes simultaneously, providing an opportu-
nity to study all KMT2A partners and CRGs at the same time. To our knowledge, our 
study is among the first to report how interactions between multiple CRGs and KMT2A 
fusions are spatially organized in a diploid single cell [14, 15]. Although well consistent 
with bulk Hi-C (Additional file 1: Fig. S6), single-cell Hi-C can provide a picture of 3D 
genome structure of each cell, allowing one to see spatial locations of multiple genes. For 
example, in PBMC cell 18, seven fusion partner genes are colocalized with KMT2A, and 
in PBMC cell 10, MLLT3 and MLLT10 are colocalized with KMT2A.

Using the single-cell Hi-C data and classifying genes based on their statuses in the 
COSMIC database, we found that leukemia fusion genes tended to colocalize in normal 
blood cells, with most fusions incorporating KMT2A. The result was further confirmed 
by using the SPRITE data. These results support the contact first model, which states 
that fusion partners tend to colocalize in normal precursor cells before translocation 
[10]. Interestingly, the colocalizations of leukemia fusion partners are stronger than that 
of solid tumor fusion partners. This is expected because the Hi-C data are from blood 
cells, which resemble better the precursor cells of leukemia. This implies that the Hi-C 
data from precursor cells of solid tumors will reveal a reverse pattern. This explanation 
is consistent with previous reports that 3D genome structure may contribute to various 
fusion types in different cancer types [15, 31, 32].

By studying the genes related to complex rearrangements (CRGs), which account for a 
significant fraction of KMT2A rearrangements [33], we found that the spatial locations 
of CRGs also support the contact first model. Further, CRGs are enriched in actively 
transcribed regions, tend to be co-expressed, and are enriched in the targets of transcrip-
tional factors such as RUNX1. These observations made us to suspect that transcription 
may have brought CRGs together, facilitating their fusions. The suspicion is consistent 
with the knowledge that transcriptions are highly coordinated and often co-regulated 
by the same TFs [34], and also consistent with reported associations between KMT2A 
fusion formations and transcriptions [20]. It was also reported that 2–3% of KMT2A 
alleles undergoing transcription are spatially close to MLLT3 (AF9) or AFF1 (AF4) and 
shared transcription factories (specific regions in the nucleus with a microenvironment 
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for active transcription [35]) [26]. Among all significant transcriptional factors, RUNX1 
stands out, supported by multiple datasets. The transcriptional factor RUNX1 (AML1) 
is a master hematopoietic transcription factor and binds to the core element of many 
enhancers and promoters. The protein encoded by RUNX1 gene represents the alpha 
subunit of CBF and is thought to be involved in the development of normal hematopoie-
sis [36]. Therefore, the active transcription of many genes by RUNX1 may increase the 
chances of fusion of its target genes in blood cells, consistent with that top 30 KMT2A 
partners were enriched in the targets of RUNX1. Further, transcription factories are 
dynamic as genes getting in or out of them [37], which may create opportunities to fuse 
different genes, consistent with the observation of cellular heterogeneity of 3D genome 
structures among single cells. RUNX1 foci in living cells can exist for more than 30 min 
and are spatially constrained, but their components are dynamic [24], which may partly 
explain the big variety of KMT2A fusion partners and CRGs.

The formation of complex rearrangement is a multistep process and starts with the 
simultaneous occurrence of DSBs in multiple chromosomal regions [8]. Cleavage of 
hotspots in KMT2A and fusion partners by TOP2 was proposed to trigger the molec-
ular events leading to KMT2A translocations and fusions [33, 38]. Besides spatial 
colocalizations, most CRGs showed high levels of ETO-induced DSBs, high expres-
sions, and adjacent loop anchors in blood cell lines. These results support the hypoth-
esis that complex rearrangements may be associated with the collapse of transcription 
factories, including co-regulated genes [1, 39]. The breakages of a transcription fac-
tory with dynamic components [24] might partially account for the high heterogene-
ity of CRGs observed in different leukemia genomes.

Conclusion
Using the single-cell Hi-C and other data, we demonstrated that the leukemia fusion 
partner genes tend to be in close proximity in normal blood cells. Our results also 
suggest that complex rearrangement-associated genes (CRGs) are near transcription 
factories and their breakages depend on transcription. These results together propose 
a model that spatial proximity of partner genes and transcription factories may have 
contributed significantly to leukemia complex rearrangements and oncogenic fusions. 
Given that the mechanisms underlying complex rearrangements and fusions for dif-
ferent cancer types seem to be tissue specific [3, 30], it is interesting to see how robust 
this model is for other tumor types.

Methods
Single‑cell diploid Hi‑C datasets

We used public diploid single-cell Hi-C data [18] from the GEO database (accession 
number GSE117876), which includes 17 single cells from GM12878 (a female human 
lymphoblastoid cell line) and 18 PBMC cells (several different cell types). There is a 
median of 1.04 million contacts per single cell. Most cells were in the G1 or G0 phase 
of the cell cycle.
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To ensure the quality of the data used in our analyses, we excluded six GM12878 
samples, which contain large chromosomal regions (>10Mb) without any contacts 
(possibly technical artifacts) (see Table  S1 in reference [18]). Finally, the Hi-C data 
from 11 GM12878 and 18 PBMC single cells were used in our study. The cells include 
14 T-lymphocytes, 12 B-lymphocytes, and 3 myeloid cells, providing the opportunity 
to examine different 3D genome structures among different cell types.

The single-cell Hi-C data were analyzed using the Dip-C algorithm by the original 
study [18] to construct the diploid genomes at the 20-kb resolution, assuming that 
two alleles would typically contact different partners and unknown haplotypes can 
be inferred from neighboring contacts. We adopted the final version of 3D structure 
models, with the suffix “impute3.round4.clean.3dg,” which contain the 3D localization 
(x, y, z) of each 20kb bin in the nucleus. The particle model was used to build the sin-
gle-cell diploid 3D genomes, and each particle represented 20 kb of chromatin with 
a radius of ~100 nm [18]. The upper axis limit was about 50~60 Euclidean distances 
(50~60 *100 nm=5~6μm) [18], which agrees with previous reports that the human 
cell nucleus encloses 46 chromosomes is ~5μm in radius (10 μm in diameter) [40, 41].

Mapping genes involved in oncogenic fusions to 20kb bins

A list of 297 curated oncogenic fusions was downloaded from the COSMIC database 
(cancer.sanger.ac.uk) [19]. KMT2A-related complex rearrangements were extracted 
from a previous study [4]. To get the 3D locations, we mapped each gene to the 20kb 
bins based on the gene’s genomic coordinates and use the location of the associated 
bin to represent the 3D location of that gene. When computing the distance between 
two genes in each cell, we took the minimum distance between any two alleles (pater-
nal or maternal) of the two genes. When applicable, the average or minimum distance 
over the 29 single-cell samples was computed for each gene pair.

Control gene pairs

To assess the statistical significance of the distances of fusion gene pairs, we gener-
ated control gene pairs as follows: for each fusion gene, we randomly picked genes on 
different chromosomes to generate control gene pairs, so each control gene pair con-
tains one fusion gene and a random gene from a different chromosome.

Complex rearrangements (CRs) and complex rearrangement‑related genes (CRGs)

The complex rearrangements (CRs) of KMT2A fusions (in 232 patients) were 
obtained from a previous report (Table S12 in reference [4]). In total, there are 19 dif-
ferent fusion partner genes in these CRs, with the following three genes being most 
frequent, MLLT10 (62), AFF1 (62), and MLLT3 (32). Besides KMT2A and partners, 
each complex rearrangement also involves one extra gene, and these extra genes are 
termed complex rearrangement-related genes (CRGs). Only CRGs located on differ-
ent chromosomes from KMT2A and corresponding partners are used in our analyses.
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Calculating CR tightness

Similar to a previous study [42], we used the CR tightness score to quantify the spatial 
tightness among CRG, KMT2A, and partner gene in each complex rearrangement in 
the cell nucleus. The closer these genes are, the smaller the CR tightness score. Math-
ematically, the CR tightness of a complex rearrangement is calculated using the fol-
lowing formula:

where  EuDk-p,  EuDk-c, and  EuDp-c denote the spatial distances for gene pairs 
KMT2A-partner, KMT2A-CRG, and partner-CRG, respectively. Since each gene has 
both maternal and paternal alleles, the considered distances include all combinations 
of maternal and paternal alleles.

To measure the statistical significance of  TG, for each complex rearrangement, we 
generated control set as follows: keep the gene KMT2A and partner gene, and choose 
a random gene from a different chromosome to replace CRG. Comparisons between 
CRGs and corresponding control genes are computed by using Wilcoxon rank-sum 
test in R.

Transcriptional regulation enrichments

To test enrichment of gene set in the targets of transcriptional factors, we used the Enri-
chr Transcription module [22], which integrates several common databases, including 
CHEA and ENCODE ARCHS4 TFs Coexp, and TF Perturbations Followed by Expres-
sion [27–29]. Adjusted P-value was set at 0.05 as the significant level. The target genes 
of RUNX1 were obtained from Harmonizome [43]. RNA-seq datasets of peripheral 
blood mononuclear cells (PBMCs) from 13 individuals were downloaded from the GEO 
database (accession number GSE107011) and used for gene co-expression analysis [44].

Hi‑C of RUNX1 knockdown MCF cells

The Hi-C normalized data with RUNX1 knockdown in MCF7 cell lines were down-
loaded from the GEO database (GSE75070) [45].

Datasets of ChIP‑seq, GRO‑seq, sBLISS and chromosomal loops

Processed ChIP-seq datasets (in bigwig format) for CTCF, Rad21, and Pol2 of K562 were 
downloaded from ENCODE [46]. Processed K562 GRO-seq data (bigwig) were down-
loaded from GEO (GSM1480325). Suspension-cell BLISS (sBLISS) can identify DSBs at 
nucleotide resolution across the genome. Processed sBLISS data (bigwig and bed formats) 
for K562, TK6, and CD34+ were downloaded from GEO (GSE121742). The above data-
sets were visualized with the WashU EpiGenome Browser [47]. Sub-compartment anno-
tations of GM12878 and chromatin loops of K562 were downloaded from GSE63525.

FISH and quantification of FISH images

GM12878 cell line was purchased from the Shanghai Bluefcell company. FISH probes of 
KMT2A-ELL and KMT2A-MLLT3 were purchased from the Shanghai Long Island Anti-
body company. The FISH probes of BCR-ABL1 were purchased from the Guangzhou 

TG = min EuDk−p, EuDk−c, EuDp−c k , p, c over maternal allele, paternal allele
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Anbiping Medical Company. FISH experiments were also performed by Guangzhou 
Anbiping Medical Company according to the manufacturers’ protocols. The slides were 
imaged with oil immersion objective on LEICA DMi8 (Leica Camera Company, Ger-
many). The spatial distances between every two signals and the volumes of nuclei were 
measured with the help of the software Fiji (a distribution of ImageJ) [48].

Statistical tests

We calculated p-values by comparing different groups using Wilcoxon rank-sum test 
or Student’s t-test in R language. The effect size is measured by cohensD function in 
lsr package. ANOVA is performed by aov function in R language. Bartlett’s test (bart-
lett.test function in R) is used to test if k samples have equal variances and Anderson–
Darling test R (ad.test function in R) was used for testing for normality.

Gene aliases of common KMT2A fusion genes

HUGO gene nomenclature have changed over the past years and we use the lat-
est gene nomenclature throughout the text, and these genes with their aliases are 
listed below: KMT2A (MLL); AFF1 (AF4); AFF3(LAF4); AFF4 (AF5); MLLT1 (ENL); 
MLLT3 (AF9); MLLT4 (AF6); MLLT6 (AF17); MLLT10 (AF10); and MLLT11 (AF1Q).
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