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Cytosine DNA methylation is essential in brain development and has been implicated in various 
neurological disorders. A comprehensive understanding of DNA methylation diversity across the 
entire brain in the context of the brain's 3D spatial organization is essential for building a complete 
molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this 
end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-
seq1) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin 
conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse 
brain. Using iterative clustering and integrating with companion whole-brain transcriptome and 
chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that 
contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions 
of differentially methylated regions (DMRs) across the genome, representing potential gene 
regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes 
and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed 
error-robust fluorescence in situ hybridization (MERFISH2) data validated the association of this 
spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation 
and topology information into anatomical structures more precisely than our dissections. 
Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes, 
highly associated with DNA methylation and transcription changes. Brain-wide cell type 
comparison allowed us to build a regulatory model for each gene, linking transcription factors, 
DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally, 
intragenic DNA methylation and chromatin conformation patterns predicted alternative gene 
isoform expression observed in a companion whole-brain SMART-seq3 dataset. Our study 
establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas, 
providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and 
regulatory genome diversity. 
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Introduction 

The mouse brain is a complex organ composed of 
millions of cells forming hundreds of anatomical 
structures that exhibit diverse cell types4–9. This 
cellular and spatial diversity is stringently controlled 
by epigenetic mechanisms10–12. Cytosine DNA 
methylation (5mC) is a stable covalent modification 
that endures in post-mitotic cells for their entire 
lifespan13. This modification is associated with 
neuronal function, behavior, and various diseases14. 
In mammalian genomes, 5mC occurs 
predominantly at CpG sites (mCG). However, in 
neurons, non-CpG cytosine methylation (mCH, H 
denotes A, C, or T) is also abundant13,15. Both 
methylation forms directly influence the DNA-
binding of methyl CpG binding protein 2 (MeCP2)16–
19, a critical 5mC reader and the cause of Rett 
syndrome20. Methylation of CpG and CpH 
dynamically occurs at regulatory elements and 
gene bodies with cellular and spatial diversity, 
modulating transcription factor binding affinity and 
controlling gene transcription21. Genome-wide 
differential methylation analysis can predict millions 
of regulatory elements10,22, yielding a cellular 
taxonomy and a base-resolution genome atlas. 
Furthermore, chromatin conformation connects 
these regulatory elements to their target genes, 
providing a comprehensive view of the gene’s 
regulatory environment23. Intragenic DNA 
methylation displays hundred-kilobase-level 
patterns that coincide with genome topological 
features, indicating that both epigenetic modalities 
collaboratively regulate precise gene expression24. 
 
This study uses an optimized version of single-
nucleus methylation sequencing (snmC-seq3) to 
analyze the DNA methylome at single-cell 
resolution25,26, and single-nucleus methylation and 
chromatin conformation capture sequencing 
(snm3C-seq)1 to jointly investigate the two 
modalities. Alongside the previous study10, we 
collect 301,626 methylomes and 176,003 m3C joint 
profiles from the entire mouse brain. This ultra-deep 
base-resolution dataset of the mouse regulatory 
genome comprises 786 billion final methylation 
reads (snmC-seq3 + snm3C-seq) and 33 billion cis-
long-range chromatin contacts (snm3C-seq), with 

each sequencing fragment assigned to individual 
cells. We define the cell type taxonomy of the whole 
mouse brain based on DNA methylome, providing 
4,673 cell clusters/spatial groups. Subsequently, we 
demonstrate that methylome taxonomy accurately 
aligns with other molecular modalities from the 
BRAIN Initiative Cell Census Network (BICCN) at 
the cluster level7,12. Through integration analysis, 
we annotate the methylome clusters using 
nomenclature from the transcriptomic studies, 
offering a comprehensive multi-omic resource for 
the field. 
 
Additionally, we observe the prevalence of spatial 
information in the epigenome, which was validated 
with a MERFISH dataset generated with spatial 
methyl-diverse genes. Integration with spatial 
transcriptomics allows us to map the DNA 
methylome and chromatin conformation data onto 
fine anatomical structures, confirming that the 
epigenetic spatial pattern corresponds with 
transcription differences in vivo. 
 
We also investigate the regulatory landscapes of 
individual genes by comparing thousands of cluster-
aggregated epigenetic profiles. We observe 
chromatin compartment diversity across brain cell 
types in brain development-related gene bodies, 
and the compartment score is negatively correlated 
with methylation fraction. Furthermore, in the long 
genes with critical neuronal and synaptic functions, 
we observe elevated domain boundary formation 
that correlates with gene body methylation, 
indicating a gene-activity-related chromatin 
conformation change potentially cooperating with 
DNA methylation and transcription machinery. 
Finally, we provide a chromatin conformation 
landscape for individual genes through unbiased 
variance and correlation analysis of the chromatin 
interaction. Intersecting this landscape with 
correlation-based analysis, we build gene 
regulatory networks linking transcription factors, 
DMRs, and target genes. We also identify 
numerous validated and novel regulatory 
relationships of critical neuronal TFs, including 
many immediate early genes (IEGs). 
 
Finally, base-resolution DNA methylation profiles in 
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many long genes reveal multiple cell-type-specific 
patterns corresponding to the heterogeneity of 
alternative gene transcription start sites (TSS) and 
exon usage within the same gene. We 
systematically investigate this phenomenon by 
integrating single nucleus methylation data with a 
companion whole-brain full-length single-cell RNA-
seq (SMART-seq v43) dataset generated by Allen 
Institute for Brain Science (AIBS)7. By quantifying 
the gene expression at the transcript level27, we 
observe cell-type-specific alternative TSS and exon 
usage in many long neuronal and synaptic genes, 
whose gene body methylation and chromatin 
conformation patterns can predict isoform diversity. 

Results 

Single-cell DNA methylome and chromatin 
conformation atlas of the entire mouse brain 

We developed snmC-seq3, an optimized single-
nucleus methylome sequencing method 
(Supplementary Information 1), to profile genome-
wide 5mC at base resolution (Fig. 1a) across 117 
dissection regions in the whole brain from adult 
male C57BL/6 mice (Fig. 1b, Extended Data Fig. 1a, 
Supplementary Table 1). Additionally, we employed 
snm3C-seq, a multi-omic technology1, to profile the 
DNA methylome and chromatin conformation jointly 
from 33 dissection regions (Extended Data Fig. 1b), 
thus adding the 3D genome context across all brain 
cell types (Fig. 1a). Each dissected region is 
represented by 2-3 replicates, obtained from 
pooling the same region from at least six animals. 
Single nuclei were captured through fluorescence-
activated nuclei sorting (FANS), enriching NeuN-
antibody positively labeled neurons (NeuN+ 
comprised 92% of snmC and 78% of snm3C, with 
remaining data being NeuN- or non-neurons, 
Methods). Collectively, including previous 
research10, we obtained 324,687 (301,626 passed 
QC) DNA methylome profiles. On average, the 
snmC-seq dataset had 1.44±0.50 million 
(mean±s.d.) final reads, covering 72±24 million 
(6.5%±2.2%) of cytosine bases in the mouse 
genome. We also obtained 196,172 (176,003 
passed QC) joint methylome and chromatin 
conformation capture (3C) profiles, with each cell 

having 1.99±0.57 million final reads, covering 
72±20 million (6.5%±1.8%) of cytosine bases. The 
3C modality of each cell had 188±81 thousand 
(18.3%±5.7% of the total fragments) cis-long-range 
contacts and 108±41 (10.4%±2.3%) thousand 
trans-contacts (Extended Data Fig. 2, Methods, 
Supplementary Table 2, 3). 
 
After quality control and preprocessing, we 
analyzed the data in cellular and genomic contexts 
(Fig. 1c, d). During the cellular analysis, we 
conducted iterative clustering of the mCH and mCG 
profiles in 100-Kb bins throughout the genome to 
establish a methylome-based whole-brain cell type 
taxonomy. At the highest level of granularity, we 
obtained a total of 4,376 cell clusters-by-spatial 
groups (Methods). To validate and annotate the 
dataset, we integrated the methylome data with 
other brain-wide chromatin accessibility12 and 
transcriptome datasets7, resulting in cluster-level 
mapping across modalities and annotations of 
these clusters into 261 subclass labels shared with 
companion transcriptome studies (Supplementary 
Table 4 and later sections). 
 
Based on the clustering and integrative annotations, 
we produced pseudo-bulk profiles of five modalities 
(gene mCH, DMR mCG, chromatin conformation, 
accessibility, and gene expression) for each cell 
group, providing a cell-type-specific, multi-omic 
atlas for the mouse genome (Fig. 1d). With more 
details covered in later sections, we use the TLE 
family member 4 (Tle4) gene, a marker for the “L6 
CT CTX Glut” subclass, as an example to illustrate 
the power of this comprehensive dataset. In this 
instance, cells with a low mCH fraction in the Tle4 
gene body exhibit high RNA expression levels (Fig. 
1d, left), achieving a strong negative correlation 
across 4,673 cell groups (Pearson correlation 
coefficient, PCC. -0.86, p-value < 10-15). Similarly, 
the mCG fraction of an example DMR located in the 
Tle4-upstream region is also negatively correlated 
with chromatin accessibility signals (PCC. -0.73, p-
value < 10-15, Fig. 1d, right). Furthermore, the m3C 
dataset provides chromatin contact information, 
indicating physical proximity between DMRs and 
Tle4 gene in the “L6 CT CTX Glut” compared to the 
“Pvalb Gaba” subclass, where Tle4 expression is 
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low (Fig. 1d, middle). The base-resolution 
methylation profiles further reveal intricate cell-type 
specific epigenomic patterns, which offer rich 
information about the precise control of gene 
expression and transcript isoforms (Fig. 1d, bottom, 
and later section). 
  
Overall, our study utilizes brain-wide single-cell mC 
and m3C datasets to (1) define cellular taxonomy 
based on the DNA methylome; (2) integrate with 
other atlas-level datasets from the BICCN, and (3) 
generate a multi-omic cell-type-specific genome 
atlas for the mouse brain. This unique resource 
allowed us to conduct several unprecedented 
analyses and make various discoveries, as we will 
describe in the upcoming sections. 

A methylome-based cell-type taxonomy 

Following stringent quality control during 
preprocessing steps (Methods), we employed 

iterative clustering to classify methylome-based cell 
populations in the snmC-seq and snm3C-seq 
datasets, utilizing mCH and mCG profiles in 100-kb 
bins across the genome10,25. In the final iteration, we 
identified 2,573 clusters and further separated the 
clusters based on brain dissection region into 4,673 
cluster-by-spatial groups, which we used as the 
finest level of granularity for subsequent analyses 
(Fig. 2a, Extended Data Fig. 3). To establish a 
hierarchical structure for whole-brain cell types and 
support multi-omic data analysis, we iteratively 
integrated the methylome datasets with a 
companion brain-wide single-cell transcriptome 
dataset (see next section). After the integration, we 
annotated the mC-based cell groups in agreement 
with 261 RNA-based subclasses7 (Supplementary 
Table 4). The subsequent analyses rely on both the 
cluster-by-spatial group and subclass levels of cell 
classifications (Fig. 2a, Extended Data Fig. 3a,d). 
 

Figure 1 | Single-cell DNA methylome and multi-omic atlas chart the cellular and genomic diversity of 
the whole mouse brain. a, The workflow of dissection, nuclei, and library preparation for snmC-seq3 and 
snm3C-seq. b, The 117 dissection regions from eighteen 600-μm coronal slices are grouped into ten major 
brain regions (see Supplementary Table 9 for abbreviations). Each dissection region is registered to the 3D 
common coordinate framework (CCF)4. c, The cell atlas: methylome-based iterative clustering on snmC and 
snm3C datasets. The left t-SNE plot is colored by modality; the middle plot is aggregated into 4,673 cell group 
centroids and colored by 261 cell subclasses; The right part demonstrates cross-modality integration of brain-
wide datasets from BICCN, details in Figure 2. d, The genome atlas: the Tle4 gene exemplifies pseudo-bulk 
profiles of five modalities across the whole brain, with genome browser view of the “L6 CT CTX Glut” and 
“Pvalb Gaba” subclasses in the bottom. 
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We organized our dissections into ten major brain 
regions (Fig. 2b, c, Extended Data Fig. 4) according 
to their unique cell type composition and neuronal 
functionality (Fig. 2d): isocortex (CTX), olfactory 
areas (OLF, including the olfactory bulb and piriform 
cortex), amygdala areas (AMY, including cortical 

subplate, CTXsp, and striatum-like amygdalar 
nuclei, sAMY), cerebral nuclei (CNU, including the 
striatum and pallidum, but excluding sAMY), 
hippocampal formation (HPF, including the 
hippocampus and parahippocampal cortex), 
thalamus (TH), hypothalamus (HY), midbrain (MB), 

Figure 2 | Consensus cell type taxonomy across molecular modalities. a, Cell-group-centroids t-SNE 
color by cell subclass (see Extended Data Fig. 3 for number legends’ abbreviations). b, Cell-level t-SNE color 
by 117 dissection regions. c, 3D CCF registration and cell t-SNE of each major region. d, Cell subclass (upper 
row) and neurotransmitter composition (bottom row) of each brain dissection region (each upper dot), grouped 
by major region. e, Integration t-SNE of all neurons from the snmC-seq, snm3C-seq, snATAC-seq, and scRNA-
seq datasets, colored by matched cell subclasses. f, Brain-wide cluster map between the snmC-seq and 
scRNA-seq datasets (Supplementary Table 4) based on iterative integration. Each dot, colored by subclasses, 
on the diagonal represents a link between the mC clusters (x-axis) and RNA clusters (y-axis). Two examples 
in floating panels demonstrate highly granular correspondence of cell clusters in the final integration round: 
Box 1 presents the integration t-SNE colored by intra-modality clusters and confusion matrix of overlap score 
between "MB-MY Glut-Sero" clusters; Box 2 displays the same information for "L5 ET CTX Glut" clusters. See 
Extended Data Fig. 5 for more gene details. g, Dot plots of mCG fraction (left) and chromatin accessibility 
(right) of cell-type-specific CG-DMRs (columns) in each cell subclass (row). The size and color of each dot 
represent an aggregated epigenetic profile of 1,000 DMRs in a cell subclass; larger dot size and deeper color 
indicate these DMRs are more hypo-methylated or accessible in a subclass. See Extended Data Fig. 6 for 
more mC-ATAC integration details. 
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hindbrain (HB, including pons and medulla), and 
cerebellum (CB). Most neuronal subclasses (218) 
are each derived from a single major region. 
Eighteen neuronal subclasses are situated across 
two adjacent regions, which could be due to 
imprecise dissections but may also represent 
neuronal types shared between neighboring brain 
regions (Supplementary Table 5). In addition, 
remarkable cellular diversity is observed in non-
telencephalic regions (TH, HY, MB, HB, Fig 2d, e, 
Extended Data Fig. 5), a common feature observed 
in other single-cell brain atlases that investigate 
various molecular modalities7–9,12. 
 
Notably, the global methylation level changes 
dramatically across cells and dissection regions 
(Extended Data Fig. 3g-h). The global mCG 
fractions for all cell groups span from 66.3%-85.3% 
(29.0-37.3 million CpG sites), while mCH fractions 
range between 0.6%-5.6% (6.9-59.2 million CpH 
sites). Many subcortical neuronal subclasses 
exhibit substantially elevated mCH levels compared 
to excitatory neurons in cortical regions (Extended 
Data Fig. 3i-j). Examples include "AD Serpinb7 
Glut" (from TH, mCH level 5.6%), "PG-TRN-LRN 
Fat2 Glut" (HB, 5.4%), "CBN Glut" (CB, 5.4%), 
"SNr-VTA-PPN Pax5 Npas1 Gaba" (MB, 5.2%), 
“PM-TM-PVp Tbx3 Hist-Gaba” (HY, 4.5%). Since 
CpH sites (1.1×109) are more abundant than CpG 
sites (4.3×107) in the mouse genome, the mCH 
sites in these cells surpass the total number of CpG 
sites, highlighting the functional significance of this 
unique neuronal epigenetic modality15,28. 
 
Lastly, our dataset extensively profiles non-
neuronal cells and adult immature neurons (IMN) 
throughout the brain (Extended Data Fig. 4, 
Supplementary Table 4, 5). Consistent with other 
modalities7,12, we detected spatial differences in 
astrocyte methylomes, particularly between 
telencephalic and non-telencephalic regions. IMNs 
clustered with astrocytes in the first round, with later 
iteration resolving one population in the dentate 
gyrus' subgranular zone and another found in areas 
overlapping the rostral migratory stream29. 
Furthermore, the oligodendrocyte lineage 
demonstrates spatial distinctions between 
telencephalic and non-telencephalic regions at the 

cluster level (Extended Data Fig. 4). Our dataset 
also encompasses other immune and vascular cell 
types, such as microglia, pericytes, endothelial cells, 
arachnoid barrier cells, and vascular 
leptomeningeal cells. 

Consensus cell type taxonomy across modalities 

Developing a brain cell type taxonomy requires 
integrating various molecular modalities, verifying 
cell clusters based on multiple molecular 
information, and applying a uniform nomenclature30. 
We began this endeavor by performing an 
integrative analysis with a brain-wide transcriptome 
dataset from the BICCN consortium created by Yao 
et al.7. After strict quality control, this single-cell 
RNA-seq (scRNA-seq) dataset established a cell 
type taxonomy that categorized 4.3 million cells into 
5,200 cell clusters, 1,045 supertypes, 306 
subclasses, 32 classes, and 7 divisions. Brain-wide 
MERFISH datasets7,8 were utilized to incorporate 
various aspects into the cluster annotation, 
including spatial distribution, neurotransmitter 
identity, marker genes, and existing cell-type 
knowledge30. 
 
We employed an efficient framework (adapted from 
the Seurat package31, Methods) for iterative cross-
modality integration to leverage this substantial 
effort. The initial integration effectively matched 
neuronal spatial distribution and high-level 
annotations (Fig. 2e), while subsequent iterations 
refined cluster matching within subclasses to 
greater detail (Fig. 2f). We utilized integration 
overlap scores to map methylome cell groups to 
transcriptome clusters and annotate methylome 
datasets into subclasses using consistent 
nomenclatures (Supplementary Table 4). In 
summary, we matched all methylome cell groups 
with 4,669 (90%) transcriptomic clusters, 
encompassing 4.19 million (97.4%) cells 
corresponding to 261 subclasses (Fig. 2f). The 531 
unassigned transcriptomic clusters represent only 
2.6% of cells, which are primarily rare populations 
(<0.03% of total RNA dataset) that are insufficiently 
represented in the methylome dataset. Based on 
these integration results, we calculated the 
transcriptome profile for each cell group (Methods). 
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The final iteration's overlap score within each 
subclass reveals a high-granularity correspondence 
between methylome and transcriptome clusters (Fig. 
2f, boxes). We further examined vital neural 
functional genes to demonstrate this accurate 
match between mC and RNA. For instance, 
neurotransmitter-related genes provide crucial 
information about cell type identities and display a 
highly similar specificity between gene body mCH 
fractions and mRNA expression. Examples include 
Slc17a7 and Slc17a6 for glutamatergic, Gad1 for 
GABAergic, Slc6a5 for glycinergic, Slc6a2 for 
noradrenergic, Th for dopaminergic, Chat for 
cholinergic, Slc6a4 for serotonergic, and Hdc for 
histaminergic (Extended Data Fig. 5a-b). In addition, 
numerous immediate early genes (e.g., Fos, Egr1, 
Arc, Bdnf, Nr4a2) are also expressed in many adult 
brain cell types7,9. Their expression levels are anti-
correlated with mCH fractions (Extended Data Fig. 
5c). Another gene category includes neuropeptides 
(e.g., Npy, Vip, Sst, Penk, Pdyn, Grp, Tac2, Cck, 
Crh), many of which are canonical cell type markers 
with vital signaling functions32. Their specificity is 
detectable in the gene body mCH that aligns with 
transcription (Extended Data Fig. 5d). Overall, this 
high-resolution cross-modality integration offers 
multi-omic evidence for identifying thousands of cell 
clusters in the adult mouse brain, laying the 
groundwork for subsequent genomic and 
epigenomic analyses. 

Multi-omic evidence for cell-type-specific cis-
regulatory elements 

Having established a consensus cell taxonomy 
across the entire mouse brain, we further identified 
2.56 million non-overlapping CpG DMRs between 
the subclasses of the whole brain or the clusters of 
each major brain region (Methods). These DMRs 
involve 44% of the total CpG sites in the genome, 
with an average length of 189±356 (mean±s.d.) and 
containing 3.9±6.0 CpG pairs (each containing two 
bases). The CpG DMRs provide predictions about 
cell-type-specific cis-regulatory elements, and 
hypo-methylation in the DMR region usually 
indicates the active regulatory status in adult brain 
tissue10,22 (Fig. 2g). To annotate the accessibility 
status of the DMRs systematically, we performed 

iterative integration between the methylome and 
chromatin accessibility dataset from Zu et al.12, 
using non-overlapping chromosome 5kb bins 
(Methods). This dataset, generated by snATAC-seq 
without NeuN enrichment by FANS, contains 
1,372,646 neurons and 939,760 non-neuronal cells. 
As this dataset shares the same dissection samples 
with the snmC-seq dataset, we used this ground 
truth information to assess the integration alignment 
score31 between mC and ATAC neurons. 
Remarkably, the dissected regions are precisely 
aligned (score 0.89±0.11), indicating extensive 
concordance in the cellular diversity of both 
epigenomic modalities (Extended Data. Fig. 6a, b). 
After integration, we also calculated the chromatin 
accessibility profile for each cell group using their 
matched ATAC clusters. The resulting mCG 
fractions and chromatin accessibility levels at DMR 
regions show similar cell-type-specificity across 
brain cell subclasses, confirming the correct match 
of cell-type identities. (Fig. 2g, Extended Data Fig. 
6c, d). By integrating the methylome and chromatin 
accessibility datasets, we achieved remarkable 
concordance in cellular diversity across both 
epigenomic modalities, further validating the 
accuracy of our approach in determining cell-type-
specific regulatory elements and their activities. 

Coherent spatial epigenomic and 
transcriptomic diversity in the brain 

Tens of millions of cells in the mouse brain 
accurately form complex anatomical structures 
controlled by their diverse gene expression and 
epigenetic regulation. Our clustering analysis has 
demonstrated cell type composition differences 
across brain regions (Fig. 2). To explore the spatial 
information further in the DNA methylome, we 
performed differentially methylated gene (DMG) 
and DMR analyses across anterior-to-posterior, 
dorsal-to-ventral, and medial-to-lateral axes in the 
brain using representative dissection regions (Fig. 
3a-c). In all three axes, we identified hundreds or 
thousands of DMGs related to various neuronal 
functions and DMRs associated with these genes, 
highlighting the remarkable spatial diversity 
encoded in the methylome. 
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To increase spatial resolution and investigate 
whether the observed methylation spatial pattern 
corresponds to actual transcriptomic diversity, we 

employed the MERFISH technology, which enables 
in situ profiling of hundreds of genes' expression in 
brain sections2,8,33. We designed a 500-gene panel 

(Legend on next page) 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.16.536509doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.16.536509
http://creativecommons.org/licenses/by/4.0/


Liu et al., Single-cell DNA methylome and 3D Multi-omic Atlas of the Adult Mouse Brain. 9 

(Supplementary Table 6) selected based on cell 
type and spatial diversity in gene body 
hypomethylation across the brain (Methods) and 
profiled six coronal sections corresponding to our 
mC and m3C brain slices (Extended Data Fig. 7a). 
After quality control, we obtained 266,903 
MERFISH cells and annotated their cell types by 
integrating with the scRNA-seq dataset (Extended 
Data Fig. 7b-d, Supplementary Table 7)7. We then 
performed cross-modality integration between the 
neurons in the methylome and MERFISH datasets, 
imputing the spatial location of each methylation 
nucleus (Fig. 3d, Supplementary Table 8). 
Interestingly, the predicted spatial coordinates of 
the methylation nuclei closely matched the 
dissected regions (Fig. 3e). For example, 
glutamatergic cells show arealization among 
cortical areas within each slice; dorsal-ventral 
separation is observed among medium spiny 
neurons dissected from the Caudoputamen (CP) 
and Nucleus Accumbens (ACB) regions; many 
subcortical dissection borders are faithfully 
preserved in the imputed spatial embedding. 
Furthermore, the spatial location imputation also 
assigned many cell types to fine anatomical 
structures, which were considerably smaller than 
our dissection regions (Fig. 3f, Extended Data Fig. 
8). For instance, laminar layer information was 
mapped among cortical excitatory cells. In addition, 
many subcortical neurons were allocated to specific 
brain nuclei (e.g., “STN-PSTN Pitx2 Glut”, “LGv 
Otx2 Gaba”, “ZI Pax6 Gaba”), highlighting the 
correspondence between the cell-type identity and 
anatomical structure in the subcortical areas. 
 
The high spatial resolution in the imputation was 
attributed to the strong association between cell 

location and DNA methylation of critical genes and 
regulatory elements. For example, the Elavl2 gene, 
an RNA-binding protein involved in post-
transcriptional regulation functions in neurons34, 
exhibited a dorsal-ventral increased expression 
pattern in subcortical neurons in Slice 10, which was 
also observed as the decrease of gene body mCH 
methylation of Elavl2 and a nearby DMR's mCG 
methylation (Fig. 3g). Notably, the chromatin 
interactions between the DMR and Elavl2 gene 
showed stronger contacts in regions where Elavl2 
was highly expressed. Likewise, Rasgrf2, a 
guanosine nucleotide exchange factor for Ras 
GTPases, displayed differential expression and 
methylation across cortical layers. DMRs near 
Rasgrf2 were highly correlated, with chromatin 
conformation data supporting physical proximity 
when both the DMR and Rasgrf2 were active (Fig. 
3h). Negr1 also shows similar correspondence 
among modalities in cortical dissected regions 
(Extended Data Fig. 7e). These findings 
demonstrate a clear spatial pattern in DNA 
methylation that aligns with the spatial 
transcriptome, implying that epigenetic regulation 
exerts precise control over the cellular spatial 
location across the entire brain. 

Chromosomal conformation dynamics across 
brain cells 

The annotated multi-omic datasets enabled us to 
leverage the cell-type diversity across the entire 
brain to understand the chromatin conformation 
landscape of individual genes at multiple genomic 
scales. Here, we systematically evaluated the 
variability of different 3D genome features 
(chromatin compartment, topologically associated 

Figure 3 | Coherent spatial epigenomic and transcriptomic diversity in the brain. a-c, Spatial methylation 
patterns of DMGs and DMRs across three brain axes (anterior to posterior (a), dorsal to ventral (b), medial to 
lateral (c). d, Workflow of mC-MERFISH integration and spatial embedding of methylome cells. e, Spatially 
mapped methylation cell atlas. The first row displays CCF-registered brain dissection regions. The second and 
third rows show imputed spatial locations for glutamatergic and other neurons colored by dissection regions. 
f, Spatial distribution of cell subclasses for glutamatergic neurons and other neurons on slice 10. g, Spatial 
epigenetic pattern of neuronal genes and their associated DMRs. The Elval2 gene represents spatial pattern 
among subcortical regions; the left column shows gene body mCH fraction, DMR (chr13:91,164,342-
91,165,792) mCG fraction, and RNA expression. The right column displays the normalized contacts heatmap 
between the DMR and gene. h, The Rasgrf2 gene and associated DMR (chr13:92,027,775-92,028,983) exhibit 
cortical layer differences in the same layout as (g). 
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domain (TAD), and highly variable interactions) 
across cell subclasses and associated them with 
gene activity by correlating chromatin contact 
strengths with methylation fractions. 
 
We initiated this effort by examining the chromatin 
compartment, a genome topology feature bringing 
together the genomic regions tens to hundreds of 
megabases away35. The genomes are organized in 
two major compartments, A and B, corresponding 
to the active and silent chromatin35,36. After 
calculating the compartment score of cell 
subclasses at the 100-Kb resolution, we observed 
numerous A/B compartment switches in megabase-
long regions (Fig. 4a). For instance, the 
chromosome 2 region spanning 3.5M to 10.6M 
exhibited a strong negative compartment score (B 
compartment) in mature oligodendrocytes ("Oligo 
NN"), but positive scores (A compartment) in 
cortical excitatory neurons, such as "L2/3 IT CTX 
Glut" (Fig. 4b). Notably, this compartment-switching 
region overlaps with the Celf2 gene, a vital RNA-
binding protein that modulates alternative splicing in 
neurons37. 
 
Given these observations, we sought to determine 
if compartment switching correlated with DNA 
methylation changes within the same regions. Upon 
calculating the PCC across cell subclasses, we 
found a negative correlation between the 
compartment score and mCG or mCH fraction of 
100Kb chromatin bins, with mCG exhibiting a 
stronger correlation than mCH (Extended Data Fig. 
9a). Additionally, we observed that the 
compartment score of negatively correlated bins 
demonstrated greater variability across cell 
subclasses (Fig. 4c, Extended Data Fig. 9b, c), 
suggesting that these negatively correlated bins 
exhibit dramatic activity change across a wide 
range of cell types. 
 
We then discovered that genes overlapping with the 
negatively correlated bins were enriched38 in 
numerous critical neuronal-related functions, 
including nervous system development (Fig. 4d). To 
explore this further, we examined another mouse 
developing brain scRNA-seq atlas39 and found that 
the negatively correlated bins overlapped with 

genes displaying a dramatic increase in expression 
during prenatal brain development. In contrast, 
uncorrelated or positively correlated bins 
demonstrated no such trend (Extended Data Fig. 
9d). These results suggest that dramatic 
chromosomal conformation changes might be 
established during early development and 
subsequently maintain cellular specificity in adult 
brain nuclei. 

TAD boundaries associated with long gene body 
regions 

We also investigated the TADs40 and their 
boundaries at a 25-Kb resolution (Methods). By first 
identifying boundaries in individual cells and 
subsequently using the domain boundary 
probability at the cell subclass level, we were able 
to represent the strength of domain boundaries at 
each 25Kb bin (Extended Data Fig. 9e). To evaluate 
the variability of boundary probabilities across the 
genome, we performed a Chi-square test on each 
bin and identified 83,518 bins with significant 
variability across subclasses (false discovery rate, 
FDR < 1e-3, Methods). For example, we observed 
that at the Lingo2 locus, an “L2/3 IT CTX Glut” hypo-
methylated gene linked to essential tremor and 
Parkinson's disease41, the TAD boundaries align 
with the gene's TSS and transcription termination 
site (TTS) (Fig. 4e). Across all the neuronal 
subclasses, the boundary probability of the 25Kb 
bin at the Lingo2 TSS exhibits a negative correlation 
with the transcript body mCH fraction (Fig. 4f, 
PCC=-0.65, FDR < 0.001, permutation-based test, 
Methods). 
 
To generalize this observation, we calculated the 
average boundary probability at all gene TSSs and 
TTSs in the genome, separating them by transcript 
length (< 100Kb as short, > 100Kb as long17,42). 
Long genes displayed elevated levels of boundary 
probability at the TSSs and TTSs (Fig. 4g), 
suggesting that TADs are more likely to form around 
the gene body (i.e., gene body domains). Our 
analysis then focused on the relationship between 
variable domain boundaries and gene bodies, 
particularly long genes (> 100Kb) implicated in 
neuronal pathogenicity and potentially regulated by 
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mCH and MeCP217. We next calculated the PCC of 
gene transcript body mCH or mCG fractions with the 
boundary probabilities of all 25Kb bins within 
transcript ± 2Mb distances (Extended Data Fig. 9f). 
The top negatively correlated boundaries were 
predominantly located at the TSSs and TTSs of the 
corresponding gene transcripts (Fig. 4h, Extended 
Data Fig. 9f, g). Additionally, we observed a few 
significantly positively correlated boundaries to the 
transcript body mCH or mCG, although they lacked 
clear TSS/TTS colocalization (Extended Data Fig. 
9f, g). Functional enrichment analysis38 revealed 
that genes with strongly negatively correlated gene 
body domains were significantly enriched for critical 
neuronal and synaptic functions. In contrast, 
positively correlated TAD boundaries were not 
associated with genes enriched for specific 
functions (Extended Data Fig. 9h). Together, these 
results indicate that TAD boundaries are closely 
associated with the transcription start and 
termination sites of long genes implicated in 
neuronal pathogenicity and critical functions. 

Diverse neuronal gene chromatin conformation 
landscapes 

In order to thoroughly profile the chromatin 
conformation diversity at high resolution and link 
genes to their potential regulatory elements, we 
analyzed chromatin interactions at the 10-Kb 
resolution (Extended Data Fig. 10a). We first 
performed a one-way analysis of variance (ANOVA) 
across cell subclasses and used the F statistics to 
summarize the variability of all interactions. Highly 
variable interactions correspond to dot or strip-like 
patterns around genes (Fig. 4i). 
 
Subsequently, we calculated the PCC between 
transcript body mCH fraction and the contact 
strength of highly variable interactions within ± 5 Mb 
of the transcript body (Fig. 4j). Highly variable and 
gene-correlated interactions were assigned to a 
gene if any anchors of the interaction overlapped 
with the gene body. Through this assignment, the 
majority (95%) of gene-associated interactions are 
located within 1.2 Mb of the gene's TSS (Extended 
Data Fig. 10b). Genes with numerous correlated 

(Legend on next page) 
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interactions exhibit crucial neuronal and synaptic 
functions, overlapping with those genes that 
displayed a negatively correlated gene body 
domain boundary in the previous section (Extended 
Data Fig. 10c, d). For instance, in the Lingo2 locus, 
highly variable interactions were identified within the 
gene body, at gene body domain boundaries, or 
corresponding to distal loop structures36 (Fig. 4j, 
circles). The correlation analysis further stratified 
interactions positively or negatively correlated with 
the gene's methylation change. Notably, the 
correlated interaction anchors can be up to 1.6 Mb 
downstream (interaction 1) or 3.2 Mb upstream of 
the Lingo2 TSS (interaction 2) while associating 
with strips along the entire gene body (Fig. 4j, k). 
 
We then summarized the distribution of significantly 
correlated interactions surrounding all long genes 
by categorizing them into six groups based on their 
relative location to the gene: intragenic (I), upstream 
(U), downstream (D), upstream-intragenic (U-I), 
downstream-intragenic (D-I), and upstream-
downstream (U-D) (Fig. 4l). Our results revealed 
that the contact strength of intragenic, upstream, 

and downstream interactions are mostly negatively 
correlated with gene body methylation (% negative 
PCC, I: 88%, U: 71%, D: 67%), consistent with the 
observation that the gene body domain forms 
between the TSS and TTS, insulating the 
interactions between I, U, and D while increasing 
their interaction within each group. Moreover, the U-
I and D-I interactions are primarily positively 
correlated with gene body methylation (% positive 
PCC, U-I: 63%, D-I: 77%). However, the negatively 
correlated interactions likely remain critical as they 
potentially link distal regulatory elements to 
intragenic regions (Fig. 4j). U-D interactions exhibit 
the least negative correlations (% negative PCC, U-
D: 15%) and do not directly interact with the gene 
body, potentially relating to higher-level chromatin 
conformation regulation.  
 
Despite these general trends, the specific chromatin 
conformation landscapes of individual genes are 
remarkably diverse (Fig. 4m). In addition to the 
intriguing U-I and D-I interactions observed in the 
Lingo2 gene, many megabase-long genes display 
complex intragenic subdomain patterns (e.g., Ptprd, 

Figure 4 | Highly dynamic chromatin conformation features correlate with DNA methylation around 
neuronal genes. This figure displays chromatin conformation diversity at three levels: chromatin 
compartments (a-d), gene body domains (e-h), and highly variable contacts (i-m). a, Top heatmaps are the 
Pearson-correlation matrices of chr2. Middle plots show the compartment score across chr2 (red and blue 
indicate A and B compartments, respectively); the bottom row shows the zoom-in view of the Celf2 gene locus. 
Three columns from left to right are “L2/3 IT CTX Glut” (C1), “Oligo NN” (C2), and (C1 - C2) delta values. b, 
Cell-group-centroids t-SNE colored by compartment score and mCG fraction. c, Scatterplot of chrom100k bins, 
showing PCC between compartment score and chrom100k mCG fraction (x-axis) and compartment score 
standard deviation (STD) across cell subclasses (y-axis). The blue contours indicate the dots’ kernel density. 
d, Functional enrichment for genes intersected with negatively correlated chrom100kb bins (boxed in c). e, 
Top heatmaps are normalized chromatin contact matrices around the Lingo2 gene from “L2/3 IT CTX Glut” 
(C1) and “MSN D2 Gaba” (C3). The bottom genome tracks are the corresponding pseudo-bulk ATAC and 
methylome profiles. f, t-SNE colored by the Lingo2 TSS boundary probability and Lingo2 mCH fraction. g, 
Average boundary probabilities of 25kb bins around long and short genes. h, The scatterplot shows the location 
of each long gene transcript’s most negatively correlated boundary. The y-axis is the PCC between the 25Kb 
bin boundary probabilities and transcript body mCH fractions; the x-axis is the relative genome location to the 
transcripts. i,j, Heatmap of F statistics from one-way ANOVA analysis measuring the variance of contact 
strength across cell subclasses (i) and PCC between the Lingo2 mCH fraction and highly variable interactions’ 
contact strengths around the Lingo2 gene (j). The white circles are two loop-like highly variable interactions. 
Arrows point to strips between interactions and gene bodies. k, t-SNE colored by normalized contact strengths 
for interactions 1 and 2 in (j). l, Pileup view of the relative genome location of correlated interactions from all 
genes. The colors in the upper triangle are average PCCs. Location categories include intragenic (I), upstream 
(U), downstream (D), upstream-intragenic (U-I), downstream-intragenic (D-I), and upstream-downstream (U-
D). m, Heatmap showing chromatin landscape of megabase-long genes, green rectangles indicate the location 
of gene body, the lower triangle is F statistics similar to (i), and the upper triangle is PCC values similar to (j). 
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Nrxn3, Lsamp, Dlg2, Celf2, Sox5 in Fig. 4m and 
Extended Data 10e-j). These patterns may 
correspond to more subtle gene activity regulation, 
including alternative TSS and exon usage, which 
will be explored later. 

The multi-omic analysis unveils gene regulatory 
networks 

Numerous critical transcription factors orchestrate 
the intricate spatial and cell-type-specific gene 
expression patterns within Gene Regulatory 
Networks (GRNs), which can be elucidated using 
multi-omic information43,44. Here, we present a 
framework that connects transcription factors (TFs) 
with DMRs and their potential downstream target 
genes, leveraging DNA methylome and chromatin 
conformation signals to construct GRNs for whole-
brain neurons (Fig. 5a, left part, Methods). Our 
approach employs mCH fractions as proxies for 

gene status and mCG fractions as indicators of 
regulatory element activity. To further support our 
findings, we incorporate integrated transcriptome 
and accessibility profiles as complementary 
evidence due to their strong negative correlation 
with gene mCH and DMR mCG fractions, 
respectively (Fig. 5a, right part). 
 
We built connections between (1) DMRs and their 
potential target genes (DMR-Target edge); (2) TFs 
and their potential target genes (TF-Target edge); 
(3) TFs and their potential binding DMRs (TF-DMR 
edge). We established DMR-Target edges by 
accounting for the correlation of methylation 
fractions between the DMR and surrounding genes, 
as well as the gene's chromatin conformation 
landscape discussed earlier (Fig. 5b, Methods). 
This approach intersected the diversity of both 
modalities measured in our snm3C-seq assay by 
limiting correlation-based edges to genome regions 

(Legend on next page) 
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displaying pronounced chromatin conformation 
changes. This step generated 1.2×106 edges 
between 5.7×105 DMRs and 2.1×104 genes (Fig. 
5c), with 27% of edges connecting intragenic DMRs 
to genes and 73% linking distal DMRs. For instance, 
the edges of the Psd2 and Celf2 genes demonstrate 
highly concordant cell-type-specificity of DNA 
methylation and chromatin interaction between 
gene bodies and their associated DMRs (Fig. 5d). 
We proceeded to connect TF-Target edges based 
on their correlated methylation fractions (Fig. 5e). 
We identified a total of 4.6×106 edges between 
1,705 TFs and 2.6×104 genes. Since the TF-Target 
edge alone is insufficient to discern gene regulation 
relationships44,45, we also quantified the TF-DMR 
edges, which indicate potential regulatory elements 
that the TF used to control target gene expression. 
 
We established the TF-DMR edge by considering 
the correlation of methylation fractions between the 
DMR and TF gene body and the enrichment of TF 
binding motifs in the correlated DMR sets 
(Extended Data 11a, Methods). In the motif 
enrichment analysis, we discovered that many TFs 
have their motifs solely enriched in the DMRs that 
positively correlated with TF gene body methylation, 

such as the Nfia, Onecut2, and Rfx1 (Fig. 5f, 
Extended Data Fig. 11b). This finding implies that 
the binding of these TFs potentially activates the 
underlying regulatory elements. Intriguingly, we 
also observed some TFs with motifs enriched in 
negatively correlated DMRs, such as the Foxp2 and 
Foxa1 genes (Extended Data Fig. 11c). Both TF 
genes were reported to have transcription 
repression functions46,47, potentially achieved by 
repressing active enhancers. We identified 1.2×107 
edges between 843 TFs and 4.6×105 DMRs 
(Extended Data Fig. 11d). 
 
We combined all three types of edges (DMR-Target, 
TF-Target, TF-DMR) to construct the final GRN with 
TF-DMR-Target triples. Each triple is assigned a 
final score representing the overall correlation of 
cell-type specificity between the three components 
(Fig. 5g, Methods). The resulting network 
comprises 1.04×107 triples, involving 830 TFs, 
20,101 genes, and 291,752 non-overlapping DMRs 
(Fig. 5h). The different combination of correlations 
in a triple provides insights into regulatory 
relationships between the TF, DMR, and target 
gene (Extended Data Fig. 11e). We summarized 
eight possible combinations into four models and 

Figure 5 | Gene regulatory networks predict binding elements, downstream targets, and cell-type 
importance of transcription factors. a, Schematic depicting the three components of the GRN with two 
density plots display the PCC between the gene’s mCH fractions and RNA expressions (right top) and the PCC 
between DMR’s mCG fractions and chromatin accessibilities (right bottom). b, the density plot shows the PCC 
between each DMR’s mCG fractions and the target gene’s mCH fractions. Gray represents the null distribution; 
shallow blue represents all correlations; blue represents correlations between DMRs overlapping with the 
target gene’s correlated interaction anchors. c, The scatter plot displays the DMR location and PCC between 
DMR mCG and gene mCH. Each gray dot represents a DMR-target edge. The blue line represents the moving 
quantile of PCC. d, Schematic of the DMR-Target edge for Psd2 (top row) and Celf2 (bottom row). From left 
to right, the t-SNE plot is colored by gene mCH fraction, gene-DMR contacts, and DMR mCG fraction. e, the 
density plot shows PCC between the mCH fraction of TF and the target gene. f, Top, PCC between Nfia mCH 
fraction and DMRs mCG fraction. Bottom, cisTarget65 motif enrichment score in 50 DMR groups ordered and 
grouped by the Nfia-DMR PCC value above. The example t-SNE plots are colored by the Nfia mCH fraction 
and mCG fraction of a positively correlated DMR. g, Schematic shows the TF-DMR-Target triple and the final 
score. h, Distribution of all triples’ final scores (from g) in the final network. Histograms show the number of 
triples that each TF, gene, and DMR is involved in. i, An example triple of Egr1 (TF), Nab2 (target), and DMR. 
t-SNE plot color by the gene’s mCH fraction or RNA level; DMR’s mCG fraction, chromatin accessibility; and 
gene-DMR contact score. j, Left, schematic shows the calculation for PageRange score (methods). Right, dot 
plots represent TF's normalized PageRank Score and RNA expression for cell subclasses in the hindbrain 
(HB). Red dots are colored and sized by PageRank Score. Purple dots are colored by RNA CPM, sized by the 
percentage of cells in that subclass expressing this gene. k, Left, schematic of RFX family sub-networks. Right, 
t-SNE plot color by normalized PageRank Score (top) and cell subclasses where normalized PageRank 
score > 0. 
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one unknown category (Extended Data Fig. 11f). 
The most frequent model (39.8%) represents all-
positive correlations, indicating that both the TF and 
DMR have an active effect on the gene (Model 1). 
The second most frequent model (30.5%) is 
negative for TF-Target and TF-DMR edges and 
positive for DMR-Target edges, suggesting that the 
TF plays a repressive role by repressing active 
DMRs. These two models account for most (70.3%) 
of the edges, indicating that intersected DMRs 
predominantly activate target genes. The third 
(Model 3, 11.1%) and fourth (Model 4, 11.1%) most 
popular models are negative or repressive for DMR-
Target edges, with Model 3 suggesting that active 
TFs turn off repressive DMRs to activate genes and 
Model 4 indicating that repressive TFs turn on 
repressive DMRs to deactivate genes. The 
remaining edges are assigned to the "Unknown" 
group (Extended Data Fig. 11e), likely intersected 
by chance or representing indirect relationships 
involving additional regulatory factors. Models 1 to 
4 cover 92.5% of the edges, demonstrating a 
remarkable correspondence between these three 
genomic elements among the brain-wide cell types. 
 
In addition, the individual TF-DMR-Gene triples 
predict numerous TF and gene relationships, 
pinpointing their intermediate regulatory elements. 
These relationships are supported by the DNA 
methylome and chromatin conformation, as well as 
the integrated transcriptome and chromatin 
accessibility. For example, one high-scoring triple 
(0.74) links the critical neuronal TF Egr1 to its 
downstream target gene Nab2 through a distal 
DMR (chr10:127,578,032-127,578,186, Fig. 5i). 
The Nab2 gene expression is known to be induced 
by Egr1, and the NAB2 protein then represses Egr1 
activation function, forming a negative feedback 
loop48. Moreover, the Egr1 cofactor Erf49 is also 
connected to Nab2 through another DMR 
(Extended Data Fig. 12a, b). In addition to these 
known examples, another interesting edge 
connects Egr1 with the Synpo gene, which encodes 
an actin-associated postsynaptic protein, with a 
DMR located in its upstream correlated regions 
(Extended Data Fig. 12c, d). A second example is 
the link between the subcortical expressing TF 
Stat5b and the Cacna2d2 gene, which encodes a 

calcium voltage-gated channel auxiliary subunit, 
connected by an intragenic DMR located in the 
highly correlated gene body domain (Extended 
Data Fig. 12e, f). These intriguing examples 
demonstrate the power of our approach in 
identifying novel and biologically relevant gene 
regulatory relationships by leveraging multi-omic 
data. 

Weighted GRNs identify key transcription 
factors 

Transcription factors play a crucial role in regulating 
cell identity50. In order to demonstrate the 
importance and specificity of transcription factors 
within each cell subclass, we utilized the 
comprehensive GRN combined with the Taiji 
framework51,52. Using the PageRank algorithm, this 
framework identifies key transcription factors by 
propagating gene and regulatory element 
information on the GRN with node and edge weights 
specific to each cell subclass. 
 
Focusing on the hindbrain (Fig. 5j) and midbrain 
(Extended Data Fig. 12g) as examples, we 
discovered key transcription factors that exhibit 
highly specific PageRank scores among cell 
subclasses within these complex brain regions. The 
combination of transcription factor PageRank 
scores uniquely identifies each cell subclass in 
these regions, aligning with their respective 
transcription specificities. Notably, the PageRank 
score can capture the specificity of even extremely 
lowly expressed transcription factors (Fig. 5j), likely 
due to gene body methylation measurements. 
Additionally, we observed numerous transcription 
factors within the same family exhibit distinct cell-
type-specificity (Fig. 5k). For example, the Rfx gene 
family53 has six members variably expressed in 
adult mouse brains. Their connectivity on the GRN 
and subclass-specific PageRank scores reveal that 
these members could play distinct regulatory roles 
that partially overlap. For example, Rfx2 is predicted 
to be critical in HY and MB cell types. Rfx3 has high 
PageRank scores in cell types overlapping with 
Rfx2 in subcortical areas but is also inferred as an 
important regulator broadly in cortical excitatory 
neurons. Rfx5 is predicted to be important in a wider 
range of cell types, including the majority of 
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subcortical neurons, cortical inhibitory neurons, 
astrocytes, and oligodendrocyte progenitors. The 

comprehensive GRN and the PageRank algorithm 
effectively identify key transcription factors with high 

(Legend on next page) 
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cell-type specificity in diverse brain regions. This 
approach generates numerous predictions about 
transcription factor functions in determining cell 
identity, paving the way for future perturbation 
experiments54. 

Intragenic epigenetic heterogeneity predicts 
isoform diversity 

Alternative splicing leads to the production of 
different isoforms from the same gene, and its 
dysfunction in the brain has been associated with 
various neurodevelopmental disorders55. It is 
regulated by various RNA-binding proteins and has 
recently been associated with DNA methylation56,57. 
The diversity of isoform expression has been 
reported in several cortical cell types27,58. However, 
their diversity in a considerably wider range of cell 
types across the whole mouse brain and their 
relationship with the epigenome remains to be 
elucidated. To investigate these questions, we 
integrated the snmC and snm3C-seq datasets with 
a companion full-length single-cell RNA-seq 
(SMART-seq v4) dataset from AIBS, which contains 
195,680 cells covering the entire adult mouse brain7 
(Methods). This integration allowed us to explore 
the intragenic diversity of DNA modification and 
topology in conjunction with RNA transcript/exon 

level measurement at cell-group resolution (Fig. 6a, 
Methods). 
 
To exemplify this framework, we first examined the 
methylation pattern of the neurexin 3 (Nrxn3) gene, 
a critical presynaptic gene known to express 
thousands of alternative isoforms59. Within the 
Nrxn3 gene body, we observed multiple 
comethylated CpG clusters grouped by their 
methylation patterns across cell subclasses (Fig. 6b, 
box I, II). Note that these CpG clusters are different 
from traditionally described CpG islands, by 
grouping together the distal CpGs showing similar 
methylation specificities across cell types. 
Intriguingly, many of these CpG clusters showed 
similar cell-subclass-specificity to the alternative 
usage of certain Nrxn3 transcripts and exons (Fig. 
6b, box III-V). For instance, the functional isoform of 
the truncated beta-neurexin59 was predominantly 
active in inhibitory and a few excitatory cell 
subclasses, corresponding with a CpG cluster 
hypomethylated in the same populations (Fig. 6b, 
arrows). Similarly, the neuron-specific antioxidant 
gene Oxr1 exhibited intragenic methylation 
heterogeneity that matched the diversity of several 
transcripts and exons (Extended Data Fig. 13a). 
 
To systematically analyze this phenomenon, we 
conducted a machine-learning-based analysis to 

Figure 6 | Epigenetic heterogeneity predicts gene isoform diversity. a, Workflow for the integrative 
analysis between epigenome and transcriptome datasets. b, Compound heatmaps illustrate the similarity 
between the Nrxn3 intragenic methylation heterogeneity and alternative isoform expression patterns. Rows 
are neuron cell subclasses. I, mCG fraction of all 6,138 CpG sites of Nrxn3 gene with columns ordered by 
original genome coordinates (bottom colors are CpG clusters from heatmap ll). ll, mCG fraction of CpG sites 
re-ordered by their CpG clusters (bottom colors) based on subclasses methylation pattern. Heatmap lll and 
Heatmap lV show the TPM of 14 highly variable transcripts and PSI of 38 highly variable exons of Nrxn3, 
quantified with the SMART-seq dataset. All values are z-score normalized across cell subclasses. The Nrxn3 
transcript structures and exon locations are indicated at the bottom plots. Red arrows point to beta-Nrxn3 
transcripts and one associated CpG cluster. Heatmap V shows the Nrxn3 gene log(CPM) in scRNA-seq (10X) 
data. c, Schematic illustrates the process for constructing the prediction model. d, Scatterplot shows the PCC 
between predicted TPM and true TPM for each highly-variable transcript (dot), using methylation features (left) 
and chromatin contact interactions (right) to predict. e, Scatterplot shows the delta PCC in mC models (x-axis) 
and m3C models (y-axis) for highly-variable transcripts (dot). Top transcripts with large delta PCC are listed 
by their corresponding gene names. f. Genome browser view of intragenic epigenetic and isoform diversity of 
the Nrxn3 gene in five cell subclasses (rows). The middle heatmaps are normalized contact strengths of the 
Nrxn3 gene locus, with arrows pointing to strips over the beta-Nrxn3 transcript body. The zoom-in panels show 
alpha-Nrxn3’s (left) and beta-Nrxn3's (right) TSS region, with mCG fraction (green), mCH fraction (blue), and 
SMART RNA (bottom) expression tracks. g, Similar to f, showing the corresponding intragenic epigenetic and 
isoform diversity in the Oxr1 gene. 
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quantify the predictability of alternative splicing 
using intragenic DNA methylome or chromatin 
conformation features in each cell group (Methods). 
Specifically, asking how much improvement we can 
obtain by incorporating high-resolution intragenic 
features to predict isoform expression levels, 
compared to using whole gene body measurements 
as a proximate averaged activity of isoforms. 
 
To assess this, we trained two models for each 
gene (Fig. 6c): one with the true intragenic features, 
and another using within-sample shuffled features 
that disrupted intragenic correspondence but still 
preserved the sample-level information for each 
gene. We calculated PCC between the predicted 
and true values across cell groups for both models. 
The delta PCC value between the true and shuffled 
models represented the gain in predictability 
through adding intragenic features (Fig. 6d, 
Extended Data Fig. 13b). Many crucial neuronal 
and synaptic genes known for functional alternative 
isoform expressions exhibited a large delta PCC in 
their highly-variable transcripts and exons (e.g., 
Nrxn1-359, Ntrk260, Dnm361, Oxr162, Fig. 6e, 
Extended Data Fig. 13c). Interestingly, chromatin 
conformation features demonstrated better overall 
prediction accuracy than DNA methylation in these 
alternatively spliced genes (Fig. 6d, Extended Data 
Fig. 13b), possibly because these features account 
for genome 3D interaction, while methylation 
features only consider 1D. This observation aligns 
with the understanding that many alternative 
splicing events involve nuclear 
compartmentalization and long-range genome 
interactions63. 
 
Finally, the prediction models prioritize specific 
transcripts and exons whose alternative usage is 
more likely under epigenetic regulation. We 
evaluated several representative examples in the 
genome browser, such as the alpha and beta-Nrxn3 
promoters. The canonical alpha promoter has a low 
expression in the "TH Prkcd Grin2c Glut" subclass, 
evidenced by high mCG and mCH fractions 
downstream of the promoter. In contrast, the beta-
promoter shows the highest expression level in the 
"TH Prkcd Grin2c Glut" subclass, with depleted 
surrounding methylation. Intriguingly, the transcript 

body domain of beta-Nrxn3 exhibits associated 
interaction changes among cell types with different 
beta-Nrxn3 expression (Fig. 6f). Similarly, the first 
exon (ENSMUSE00000683442) of the longest Oxr1 
transcript displays increased usage (Percent 
Spliced In, PSI) among representative cell 
subclasses, accompanied by corresponding 
methylation and chromatin conformation changes in 
the surrounding regions (Fig. 6g). Together, these 
results highlight the complex interplay between 
epigenetic regulation and alternative splicing, 
unveiling potential cell-type-specific regulatory 
mechanisms contributing to the brain's post-
transcriptional diversity of neuronal and synaptic 
genes. 

Discussion 

This study presents a single-cell DNA methylation 
and 3D multi-omic atlas of the entire mouse brain. 
By employing methylome-based clustering and 
cross-modality integration with additional BICCN 
companion datasets7,12, we established a cell type 
taxonomy consisting of 4,673 cell groups and 261 
subclasses. Our integrative approach combines five 
molecular modalities—gene mCH, DMR mCG, 
chromatin conformation, accessibility, and gene 
expression—to create a multi-omic genome atlas 
featuring thousands of cell-type-specific profiles. 
Furthermore, we identified 2.6 million DMRs at two 
clustering granularities, offering a vast pool of 
candidate regulatory elements for various analyses. 
Impressively, the intricate cellular diversity within 
the mouse brain exhibits extensive concordance 
across all molecular modalities, as evidenced by the 
aligned cell-type-specific patterns observed in 
numerous essential neuronal genes (Extended 
Data Fig. 5) and groups of regulatory elements 
(Extended Data Fig. 6). These findings underscore 
the fundamental interplay between epigenetics and 
transcriptomics in shaping the brain's cellular 
diversity and serve as a foundation for incorporating 
additional complementary molecular modalities 
(such as histone modification, 5hmC, translatome, 
and proteome) in future efforts to construct a holistic 
molecular representation of the brain. 
 
Notably, we also observed extensive spatial 
diversity encoded within the DNA methylome 
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across the entire mouse brain. This epigenetic 
spatial pattern demonstrates a high concordance 
with spatial transcriptional diversity, as evidenced 
through integration with a MERFISH dataset 
generated from spatially diverse methylated genes. 
By leveraging these datasets, we achieved a 
detailed spatial map of DNA methylation and 
chromatin conformation profiles within delicate 
brain structures. The results offer a valuable 
anatomical context for methylation and 3D multi-
omic cell data and emphasize the considerable 
influence of epigenetic regulation on spatial cell 
organization within the brain. 
 
Building on the foundation of our high-resolution, 
spatially annotated multi-omic brain cell atlas, we 
expanded our investigation to the mouse genome to 
explore the underlying gene regulatory diversity 
across multiple scales. At the whole chromosome 
level, the chromatin compartment identity of 
megabase-long regions can undergo significant 
alterations among different brain cell types. These 
changes negatively correlate with DNA methylation, 
particularly at mCG sites. Genes within these 
regions play critical roles in neuronal functions, 
especially in neurodevelopment. Additionally, we 
observed that TAD boundaries tend to form around 
neuronal long genes, with a negative correlation 
identified between boundary probability and the 
transcript body mCH fraction. A recent discovery of 
a similar gene boundary feature termed the 
transcription elongation loop offers a potential 
explanation for the higher gene domain boundary 
probability observed64. However, the mechanism by 
which the diversity of this feature arises across 
various cell types within the brain remains to be 
elucidated. Moreover, we conducted an unbiased 
investigation of the chromatin conformation context 
surrounding individual genes by performing ANOVA 
and correlation analyses using whole-brain 
populations. This approach yields unprecedented 
gene chromatin conformation landscapes that 
reveal general rules governing the relationship 
between chromatin interaction and gene body 
methylation and offer gene-specific predictions on 
the importance of individual chromatin interaction 
pixels at a 10-kb resolution. 
 

Integrating the extensive gene, DMR, and 
chromatin conformation data enables us to 
construct a comprehensive GRN for gene 
regulation in the mouse brain. This network predicts 
regulatory relationships between TFs and their 
target genes through the precise DMRs containing 
TF binding motifs. Furthermore, numerous TF 
motifs are strongly enriched in DMRs where mCG 
fractions correlate positively or negatively with the 
TF mCH fraction, suggesting dominant activation or 
repression roles for the corresponding TFs. 
Personalized PageRank analysis of the GRN 
identifies the most influential TFs for each cell 
subclass in subcortical regions characterized by 
vast cellular diversity. The GRN also reveals 
diverse cell-type-specific patterns among members 
of the same TF family. Finally, the high-resolution 
methylome and chromatin conformation data 
enable us to examine the relationship between 
epigenetic modalities and alternative isoforms. Our 
findings suggest that extensive intragenic 
epigenetic heterogeneity may contribute to 
regulating alternative promoter and exon splicing in 
these genes. The predictive model identifies top 
candidates for further investigation into their causal 
relationships. 
 
In summary, our analysis underscores the potential 
of this whole-brain dataset to characterize cellular, 
spatial, and epigenomic diversity at unprecedented 
resolution. Furthermore, this resource offers 
valuable insights into the fundamental gene 
regulation principles that shape the remarkable 
complexity of the mammalian brain, laying the 
groundwork for a deeper understanding of the 
molecular underpinnings of the human brain. 
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Methods 

Mouse brain tissues 

All experimental procedures using live animals were 
approved by the Salk Institute Animal Care and Use 
Committee under protocol number 18-00006. Adult 
(P56) C57BL/6J male mice were purchased from 
Jackson Laboratories at seven weeks of age and 
maintained in the Salk animal barrier facility on 12-
hour dark-light cycles with food ad-libitum for up to 
10 days. Brains were extracted (between P56-P63), 
sliced, and dissected in an ice-cold dissection buffer 
as previously described10. For snmC-seq3 samples, 
brains were sliced coronally at 600 μm intervals 
from the frontal pole across the whole brain, yielding 
18 slices, and dissected brain regions were 
obtained according to the Allen Brain Reference 
Atlas Common Coordinate Framework version 366 
(CCFv3, Extended Data Fig. 1a) For all the snm3C-
seq samples, brains were sliced coronally at 1,200 
μm, resulting in a total of 9 slices, and dissected 2-
6 combined brain regions according to the CCFv3 
(Extended Data Fig. 1b). For nuclei isolation, each 
dissected region was pooled from 3-30 animals, 
and 2-3 biological replicas were processed per 
region. Comprehensive brain dissection metadata 
can be found in Supplementary Table 1. 
Additionally, all dissected regions were digitally 
registered into CCFv3 using ITK-SNAP67 (v4.0.0) at 
a 25 μm resolution (Annotated voxel file available in 
the “Data Availability” section). 

Nuclei isolation and Fluorescence Activated 
Nuclei Sorting (FANS) 

For snmC-seq3 samples, the nuclei were isolated 
and sorted into 384-well plates using previous 
methods10 with modifications described in 
Supplementary Information 1 (Section I, III). Briefly, 
single-nuclei were stained with AlexaFluor488-
conjugated anti-NeuN antibody (MAB377X, 
Millipore) and Hoechst 33342 (62249, 
ThermoFisher) followed by FANS using a BD Influx 
sorter in single-cell (1 drop single) mode. For each 
384-well plate, NeuN+ (488+) nuclei were sorted 
into columns 1-22, while NeuN- (488-) nuclei were 

sorted into columns 23-24, achieving an 11:1 ratio 
of NeuN+ to NeuN- nuclei (Supplementary 
Information 2). The snm3C-seq included additional 
in-situ 3C treatment steps during the nuclei 
preparation, allowing the chromatin conformation 
modality to be captured. These steps were 
performed using the Arima-3C BETA Kit (Arima 
Genomics), with a detailed protocol provided in 
Supplementary Information 1 (Section II). 

Library preparation and Illumina sequencing 

Both snmC-seq3 and snm3C-seq samples followed 
the same library preparation protocol detailed in 
Supplementary Information 1. This protocol was 
automated using the Beckman Biomek i7 
instrument to facilitate large-scale applications. The 
snmC-seq3 and snm3C-seq libraries were 
sequenced on an Illumina NovaSeq 6000 
instrument, using one S4 flow cell per 16 384-well 
plates and employing a 150 bp paired-end mode. 

Mapping and primary quality control 

The snmC-seq3 and snm3C-seq mapping was 
conducted using the YAP pipeline (cemba-data 
package, v1.6.8), as previously described10. 
Specifically, the main mapping steps included (1) 
demultiplexing FASTQ files into single cells 
(cutadapt68, v2.10); (2) read level quality control 
(QC); (3) mapping (one-pass mapping for snmC, 
two-pass mapping for snm3C) (bismark69, v0.20, 
bowtie270, v2.3); (4) BAM file processing and QC 
(samtools71, v1.9, Picard, v3.0.0); and (5) 
methylome profile generation (allcools, v1.0.8); (6) 
chromatin contact calling (snm3C-seq only). 
Snakemake72 pipeline files with detailed mapping 
steps are provided in the “Code availability” section. 
All reads were mapped to the mouse mm10 
genome. The gene/transcript annotation used in 
this study was based on a modified version of the 
GENCODE vm23 GTF file generated by the BICCN 
consortium, in accordance with Yao et al.7 
 
Primary quality control for DNA methylome cells 
was (1) overall mCCC level < 0.05; (2) overall mCH 
level < 0.2; (3) overall mCG level < 0.5; (4) total final 
reads > 500,000 and < 10,000,000; and (5) 
Bismarck mapping rate > 0.5. Note that the mCCC 
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level estimates the upper bound of the cell-level 
bisulfite non-conversion rate. Additionally, we 
calculated lambda DNA spike-in methylation levels 
to estimate each sample's non-conversion rate. All 
samples demonstrated a low non-conversion rate (< 
0.01, Extended Data Fig 2i). We chose loose cutoffs 
for the primary filtering to prevent potential cell or 
cluster loss. The clustering-based quality control 
described below accessed potential doublets and 
low-quality cells. For the 3C modality in snm3C-seq 
cells, we also required cis-long-range contacts (two 
anchors > 2500 bp apart) > 50,000. 

Analysis infrastructures 

The whole-brain dataset comprised nearly 0.5 
million single-cell or 5,000 pseudo-bulk mC profiles 
and 0.2 million single-cell or 2,500 pseudo-bulk 3C 
profiles. The dataset size was much larger than 
previous bulk and single-cell studies on mC or 
3C1,10. To enable efficient whole-brain data analysis, 
we formatted the entire multidimensional 
epigenomic data into three primary tensor datasets 
and used them as inputs for analysis at two different 
stages. 
 
The first stage was cellular analysis. We employed 
a cell-by-feature tensor called "Methylome Cell 
DataSet" (MCDS) to carry out methylome-based 
clustering and cross-modality integration, as 
illustrated in Figures 2-3. Here, we focused on 
individual cells with aggregated genomic features, 
such as kilobase chromosome bins and gene 
bodies. This analysis allowed us to aggregate 
single-cell profiles into pseudo-bulk levels by 
clustering and annotation. The pseudo-bulk merge 
increased genome coverage while eliminating the 
need to frequently access hundreds of terabytes of 
single-cell files in the subsequent analysis stage. 
 
The second stage was genomic analysis, where we 
used a pseudo-bulk-by-base tensor for mC, called 
"Base-resolution DataSet" (BaseDS), and a 
pseudo-bulk-by-2D-genome tensor for 3C, termed 
"Cooler dataset" (CoolDS), to perform methylome 
and chromatin conformation analysis at flexible 
genomic resolutions, as depicted in Figures 4-6. 
These pseudo-bulk tensors were generated at cell-
group (1000s profiles) and subclass (100s profiles) 

levels to support multiple cellular granularities 
required by different analyses. 
 
The large tensor datasets were stored using the 
chunked and compressed Zarr format73, hosted 
within the object storage of the Google Cloud 
Platform. Data analysis was conducted using 
ALLCools10, Xarray74, and dask75 packages. To 
facilitate large-scale computation, the Snakemake 
package72 was employed to construct pipelines, 
while the SkyPilot package76 was utilized to set up 
cloud environments. Additionally, the ALLCools 
package (v1.0.8) was updated to perform 
methylation-based cellular and genomic analyses, 
and the scHiCluster77 package (v1.3.2) was 
updated for chromatin conformation analyses. In 
the data and code availability section, we provided 
these tensor storages and reproducibility-related 
details (package version, analysis notebook, and 
pipeline files). For simplicity, the description below 
focused mainly on key analysis steps and 
parameters. 

Methylome clustering analysis 

After mapping, single-cell DNA methylome profiles 
of the snmC-seq and snm3C-seq datasets were 
stored in the “All Cytosine” (ALLC) format, a tab-
separated table compressed and indexed by 
bgzip/tabix78. The “generate-dataset” command in 
the ALLCools package helped generate a 
methylome cell-by-feature tensor dataset (MCDS). 
We used non-overlapping chromosome 100Kb 
(chrom100k) bins of the mm10 genome to perform 
clustering analysis; gene body regions ±2 kb for 
clustering annotation and integration with the 
companion transcriptome dataset; non-overlapping 
chromosome 5Kb (chrom5k) bins for integration 
with the chromatin accessibility dataset. Details 
about the integration analysis are described in the 
following section. 
 
Pre-clustering. We performed two iterative 
clustering analyses for both the snmC and snm3C 
datasets. The first was a four-round pre-clustering 
for quality control purposes. The pre-clusters 
defined in this round contained potential doublets or 
low-quality cells (corresponding to debris or debris 
clumps in sorting). We started with all cells passing 
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the primary quality control filters and used the 
“plate-normalized cell coverage” (PNCC) metric to 
mark problematic pre-clusters. This metric was 
calculated using the final mC reads of each cell 
divided by the average final reads of cells from the 
same 384-well plate. We reasoned that cells at the 
same plate underwent all the library preparation 
steps inside the same PCR machine, sharing the 
closest batch conditions. We observed some pre-
clusters aggregating cells mostly showing extreme 
PNCC value (<0.5 or >2 fold) compared to most 
other clusters, which is a hallmark of problematic 
cells (Extended Data Fig. 2i). For each pre-cluster, 
we performed a permutation-based statistical test to 
call this abnormality. First, we randomly sampled 
null population cells with the cluster size, stratified 
on sample composition 10,000 times. We then 
calculated p-values for the observed PNCC mean 
(two-tailed test, larger or smaller) and standard 
deviation (std, one-tailed test, larger) comparing to 
null PNCC mean and std distribution. After 
calculating the false-discovery rate by the 
Benjamini-Hochberg procedure79 (FDR for short), 
we marked pre-clusters as low-quality with (1) 
abs(log2(PNCC)) > 0.8 and (2) FDR < 0.01 (for 
mean or std). In total, 8,979 (2.77%) snmC and 737 
(0.38%) snm3C cells were removed from further 
analysis. 
 
Methylome clustering. We then performed 
iterative clustering using the DNA methylome to 
determine whole-brain cell clusters. For both the 
snmC and snm3C datasets, we performed four 
rounds of iteration with the mCH and mCG fractions 
of chrom100k matrices. The clustering analysis 
within each iteration was described in a previous 
study10. We also provided annotated Jupyter 
notebooks in the “Code availability section,” 
detailing the functions and parameters used in each 
step. Most functions were derived from the 
allcools10, scanpy80, and scikit-learn81 packages. In 
summary, a single iteration consisted of the 
following main steps: 
(1) Basic feature filtering based on coverage and 
ENCODE blacklist82. 
(2) Highly Variable Feature (HVF) selection. 

(3) Generation of posterior chrom100k mCH and 
mCG fraction matrices, as used in the previous 
study and initially introduced by Smallwood et al.83 
(4) Clustering with HVF and calculating Cluster 
Enriched Features (CEF) of the HVF clusters. This 
framework was adapted from the cytograph239 
package. We first performed clustering based on 
variable features and then used these clusters to 
select CEFs with stronger marker gene signatures 
of potential clusters. The concept of CEF was 
introduced by Zeisel et al.84. The CEF calling and 
permutation-based statistical tests were 
implemented in 
“ALLCools.clustering.cluster_enriched_features”, 
where we selected for hypo-methylated genes 
(corresponding to highly-expressed genes) in 
methylome clustering. 
(5) Calculate principal components (PC) in the 
selected cell-by-CEF matrices and generate the t-
SNE85 and UMAP86 embeddings for visualization. t-
SNE was performed using the openTSNE87 
package with procedures described in Kobak and 
Berens 201988. 
(6) Consensus clustering. We first performed 
Leiden clustering89 200 times, using different 
random seeds. We then combined these result 
labels to establish preliminary cluster labels, 
typically larger than those derived from a single 
Leiden clustering due to its inherent randomness89. 
Following this, we trained predictive models in the 
principal component (PC) space to predict labels 
and compute the confusion matrix. Finally, we 
merged clusters with high similarity to minimize 
confusion. The cluster selection was guided by the 
R1 and R2 normalization applied to the confusion 
matrix, as outlined in the SCCAF package90. 
 
The iterative process of training and merging 
continued until the model's performance on withheld 
test data achieved a specified accuracy (0.95 for the 
first round, >0.9 for all subsequent rounds). The 
Leiden algorithm's resolution parameter 
significantly influenced cluster number and 
randomness (i.e., variation in cluster membership 
as random seeds changed), so we employed 
relatively small resolution values during each 
clustering stage (0.25 for the first iteration, 0.2-0.5 
for the remaining iterations; the Scanpy default is 1). 
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This approach substantially reduced randomness 
while also underestimating cluster numbers. 
However, during the four rounds of iteration, any 
under-split clusters were further delineated in 
subsequent rounds. This framework was 
incorporated in 
"ALLCools.clustering.ConsensusClustering". 
 
For each clustering round, we assessed whether a 
cluster required additional clustering in the next 
iteration based on two criteria: (1) the final 
prediction model accuracy exceeded 0.9, and (2) 
the cluster size surpassed 20. In total, we executed 
four iterative clustering rounds, yielding the 
following cluster numbers: 61 (L1), 411 (L2), 1,346 
(L3), and 2,573 (L4). We further separated cells 
within L4 clusters in the final round by considering 
their brain dissection region metadata. We first 
divided all dissection regions with more than 20 
cells in an L4 cluster while combining other regions 
with fewer than 20 cells with their nearest regions 
based on average Euclidean distance in the PC 
space of L4 clustering. The final 4,673 cell groups 
combined L4 clusters and dissection regions. 
Incorporating dissection region data, which offered 
insights into a cell's physical location, enhanced the 
analysis's flexibility, such as enabling spatial region 
comparisons. Furthermore, we acknowledged that 
generating pseudo-bulk profiles from cell-level data 
demanded substantial computational resources. 
Aggregating cells at a higher granularity initially 
facilitated more straightforward merging later, such 
as combining them at the subclass level during 
subsequent analyses. 

Cluster-level DNA methylome analysis 

After clustering analysis, we merged the single-cell 
ALLC files into pseudo-bulk level using the “allcools 
merge-allc” command. Next, we used the “allcools 
generate-base-ds” to generate the BaseDS from 
multiple ALLC files. The BaseDS was a Zarr dataset 
storing sample-by-base tensors for the entire 
dataset and allowed querying cytosines by genome 
position and methylation context (CpG, CpH). Next, 
we performed DMR calling as previously 
described10,22,91 using the 
“ALLCools.dmr.call_dms_from_base_ds” and 
“ALLCools.dmr.DMSAggregate” function that was 

reimplemented for BaseDS. In brief, we first 
calculated CpG differential methylated sites (DMS) 
using a permutation-based root mean square test91. 
The base calls of each pair of CpG sites were 
combined before analysis. We then merged the 
DMS into DMR if they were (1) within 250 bp and (2) 
having PCC > 0.3 across samples. Because the 
genome coverage was unbalanced between 
samples, we proportionally downsampled the 
coverage at each base in each sample to base call 
coverage (cov) of 50 and a total cov across samples 
of 3,000. 
 
We applied the DMR calling framework across 
subclasses of the whole mouse brain and cell 
clusters within each major region. The two sources 
of DMRs were combined to capture the CpG 
fraction diversity in different cell-type granularities. 
There were around 10 million unique yet 
overlapping DMRs after the combination. We then 
merged the DMRs to get a final non-overlapping 
DMR list (“bedtools merge -d 0”), which included 
2.56 million DMRs. We reported all the overlapping 
DMRs and non-overlapping DMRs in the “Data 
Availability” section. In the following analysis, when 
DMR was used to calculate correlation or scan motif 
occurrence, we started with the 10M overlapping 
DMRs. We selected the DMR with the strongest 
value (i.e., most significant PCC or highest motif 
score) among the overlapping ones. The DMRs in 
the final results were nonoverlapping. 

Atlas-level data integration and cluster 
annotation 

We established a highly efficient framework based 
on the Seurat R package31 integration algorithm to 
perform atlas-level data integration with millions of 
cells. The integration framework consisted of 3 
major steps to align two datasets onto the same 
space: (1) Using dimension reduction to derive 
embedding of the two datasets in the same space; 
(2) using canonical correlation analysis (CCA) to 
capture the shared variance across cells between 
datasets and find anchors as five mutual nearest 
neighbors (MNN) between the two datasets; (3) 
aligning the low-dimensional representation of the 
two datasets together with the anchors. We used 
genes to integrate methylome and transcriptome; 
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chrom5k bins to integrate methylome and chromatin 
accessibility profiles. 
 
Integrate methylome and transcriptome. To 
integrate our snmC-seq dataset with scRNA-seq 
data7, the gene expression levels of RNA cells were 
normalized by dividing the total UMI count of the cell 
and multiplying the average total UMI count of all 
cells and then log-transformed. For mC cells, the 
posterior gene-body mC level was used. The 
cluster-enriched genes (CEGs, similar to CEF 
described above) were identified in each cell 
subclass and cluster using mC data. We checked 
the variance of the mC CEGs among the mC cells 
and RNA cells and only used the CEGs with mC 
variance > 0.05 and expression variation > 0.005 for 
the analyses. We reversed the sign of mC levels 
before integration due to the negative correlation 
between gene body DNA methylation and gene 
expression (Fig. 1d). We fit a PCA model with the 
mC cells and transformed the RNA cells with the 
model. The PCs were normalized by the singular 
value of each dimension to avoid the embedding 
being driven by the first few PCs. 
 
To find anchors between mC and RNA cells, we first 
Z-score scaled the mC matrix and expression 
matrix of CEGs across cells, and the resulting 
matrices were represented as 𝑋 (mC: cell-by-CEG) 
and 𝑌 (RNA: cell-by-CEG), respectively. CCA was 
used to find the shared low dimensional embedding 
of the two datasets, solved by singular value 
decomposition (SVD) of their dot product 𝑈𝑆𝑉! =
𝑋𝑌!. 𝑈 and 𝑉 were normalized by dividing the L2-
norm of each row, and were used to find five MNNs 
as anchors and scored anchors using the same 
method as Seurat31. 
 
The original CCA framework of Seurat (v4) is hard 
to scale up to millions of cells due to the memory 
bottleneck, where the mC cell-by-RNA matrix was 
used as the input to CCA. To handle this limitation, 
we randomly selected 100,000 cells from each 
dataset (𝑋"#$ and 𝑌"#$) as a reference to fit the CCA 
and transformed the other cells (𝑋%"& and 𝑌%"&) onto 
the same CC space. Specifically, the canonical 
correlation vectors (CCV) of 𝑋"#$ and 𝑌"#$ (denoted 
as 𝑈"#$  and 𝑉"#$ ) were computed by 𝑈"#$𝑆𝑉"#$! =

𝑋"#$𝑌"#$! , where 𝑈"#$! 𝑈"#$ = 𝐼  and 𝑉"#$! 𝑉"#$ = 𝐼 . 
Then the CCV of 𝑋%"&  and 𝑌%"&  (denoted as 𝑈%"& 
and 𝑉%"&) were computed by 𝑈%"& = 𝑋%"&(𝑌"#$! 𝑉"#$)/
𝑆  and 𝑉%"& = 𝑌%"&(𝑋"#$! 𝑈"#$)/𝑆 . The embeddings 
from the reference and query cells were 
concatenated for anchor identification. 
 
The PCs derived from the first step were then 
integrated using the same method as Seurat31 
through these anchors. Rather than working on the 
raw feature space in Seurat, our integration step 
projected the PCs of scRNA-seq (query, denoted as 
𝑈𝑟) to the PCs of the snmC-seq (reference, denoted 
as 𝑈𝑚 ) while keeping the PCs of the reference 
dataset unchanged. This approximation 
considerably reduced the time and memory 
consumption for computing the corrected high-
dimensional matrix and redoing the dimension 
reduction. For anchor 𝑘  pairing mC cell 𝑘𝑚  and 
RNA cell 𝑘𝑟 , 𝐵' = 𝑈𝑚'( − 𝑈𝑟'"  was considered 
the bias vector between mC and RNA. Then for 
each RNA cell as a query, we used its 100 nearest 
anchors to compute a weighted average bias vector 
representing the distance to move an RNA cell into 
the mC space. The distance between the query 
RNA cell and an anchor was defined as the 
Euclidean distance on the RNA dimension 
reduction space between the query RNA cell and 
the RNA cell of the anchor. The weights for the 
average bias vector depended on the distances 
between the query RNA cell and the anchors, where 
close anchors received high weights. 
 
Integrate methylome and chromatin 
accessibility profiles. PCA on gene body signals 
was insufficient to capture the open chromatin 
heterogeneity in snATAC-seq data11,31. Latent 
Semantic Indexing (LSI) applied to binarized cell-
by-5kb bin matrices had demonstrated promising 
results for snATAC-seq data embedding and 
clustering31. Therefore, to align snATAC-seq data 
with snmC-seq data at a high resolution, we 
developed an extended framework based on the 
previously described approach to utilize binary 
sparse cell-by-5kb bin matrices as input. 
 
We first derived a cell-by-5kb bin matrix to represent 
the snmC-seq data. In a single cell 𝑖, we modeled 
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its mCG base call 𝑀)*  for a 5 kb bin 𝑗  using a 
binomial distribution 𝑀)* 	~	𝐵𝑖(𝑐𝑜𝑣)* , 𝑝)) , where 𝑝 
represented the global mCG level of the cell. We 
then computed 𝑃(𝑀)* > 𝑚𝑐)*)  as the 
hypomethylation score of cell 𝑖  at bin 𝑗. The less 
likely to observe smaller or equal methylated base 
calls, the more hypomethylated the bin was. We 
next binarized the hypomethylation score matrix by 
setting the values greater than 0.95 as 1, otherwise 
0, to generate a sparse binary matrix 𝐴 . We 
selected the columns with more than five non-zero 
values, then computed the column sum of the matrix 
(𝑐𝑜𝑙𝑠𝑢𝑚* = ∑#,#--)./ 𝐴)*) and kept only the bins with 
Z-scored 𝑙𝑜𝑔0𝑐𝑜𝑙𝑠𝑢𝑚  between -2 and 2. The 
snATAC-seq data was also represented in a binary 
cell-by-5kb bin matrix, where 1 represented at least 
one read detected in a 5 kb bin in a cell. The 
features were filtered in the same way as the mC 
matrix, and the bins remaining in both datasets were 
used for further analysis. 
 
LSI with log term frequency was used to compute 
the embedding. Term Frequency-Inverse 
Document frequency (TF-IDF) transformation was 
applied to convert the filtered matrix 𝐵  to 𝑋 . 
Specifically, 𝐵 was normalized by dividing the row 
sum of the matrix to generate the term frequency 
matrix 𝑇𝐹, and further converted to 𝑋 by multiply the 
inverse document frequency vector 𝐼𝐷𝐹. 

𝑋)* = 𝑙𝑜𝑔(𝑇𝐹)* × 100000 + 1) × 𝐼𝐷𝐹* 
, where 𝑇𝐹)* = 𝐵)*/∑#1)23*4./ 𝐵)*4 and 𝐼𝐷𝐹* =
𝑙𝑜𝑔(1 + #𝑐𝑒𝑙𝑙/∑#,#--)4./ 𝐵)4*). The embedding of 
single cells 𝑈 was then computed by SVD of 𝑋, 
where 𝑋 = 𝑈𝑆𝑉!. We fit the LSI model with mCG 
data 𝐵𝑚 to derive 𝑈𝑚. The intermediate matrices 𝑆 
and 𝑉 and vector 𝐼𝐷𝐹 were used to transform the 
ATAC data 𝐵𝑎 to 𝑈𝑎, by 

𝑇𝐹𝑎)* =
𝐵𝑎)*

∑#1)23*4./ 𝐵𝑎)*4
 

𝑋𝑎)* = 𝑙𝑜𝑔(𝑇𝐹𝑎)* × 100000 + 1) × 𝐼𝐷𝐹* 
𝑈𝑎 = 𝑋𝑎𝑉/𝑆 

CCA was also performed with the downsampling 
framework using 100,000 cells from each dataset 
as reference and the others as query, but taking the 
TF-IDF transformed matrices as input. The query 
cells were projected to the same space using the 
IDF and CCV of the reference cells. Specifically, 

𝐵𝑚"#$  and 𝐵𝑎"#$  were converted to 𝑋𝑚"#$  and 
𝑋𝑎"#$ with TF-IDF, and the CCVs (denoted as 𝑈"#$ 
and 𝑉"#$ ) were computed by 𝑈"#$𝑆𝑉"#$! =
𝑋𝑚"#$𝑋𝑎"#$! . Then 𝐵𝑚%"&  and 𝐵𝑎%"&  were 
converted to 𝑋𝑚%"&  and 𝑋𝑎%"&  with TF-IDF using 
the IDF of reference cells, and the CCVs (denoted 
as 𝑈%"&  and 𝑉%"& ) were computed by 𝑈%"& =
𝑋𝑚%"&(𝑋𝑎"#$! 𝑉"#$)/𝑆 and 𝑉%"& = 𝑋𝑎%"&(𝑋𝑚"#$

! 𝑈"#$)/
𝑆. The following steps to find anchors and align 𝑈𝑚 
and 𝑈𝑎 were the same as integrating the mC and 
RNA data. 
 
Iterative integration group design. Like clustering 
analysis, we integrated two datasets iteratively to 
match cell or cell clusters at the highest granularity. 
We first separated the pass-QC datasets into 
integration groups based on independent cell type 
annotation (described above or provided by data 
generators) and dissection information. For 
instance, non-neuronal cells, IMN, and granule cells 
(“DG Glut” and “CB Granule Glut”) were separated 
from neurons because they were (1) showing large 
global methylation differences from other neurons 
and (2) unbalanced in cell numbers across datasets 
due to different sampling and sorting strategies. 
Within each integration group, we performed the 
integration iteratively. We used the co-clustering 
from the integrated low-dimensional space to match 
cells or clusters between the two datasets (see 
below). We then performed the next round of 
integration until the matched cells or clusters 
fulfilled the stopping criteria. We listed details about 
each pair of iterative integration below. The 
resulting cluster map between datasets and 
mC/m3C cluster annotation was provided in 
Supplementary Table 4. A set of Jupyter Notebooks 
for a single integration process between each pair 
was provided in the “Code Availability” section. 
 
Integration between snmC-seq and scRNA-seq 
or SMART-seq dataset. We used the gene body ± 
2kb as features to integrate mC and RNA datasets7, 
mapping the RNA clusters to mC cell groups. We 
used the mCG fraction of the gene bodies for non-
neuronal cells, IMN, and granule cells and the mCH 
fraction of the gene bodies for other neurons. In 
each iteration, we calculated a confusion matrix 
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between 4,673 mC cell groups and 5,200 RNA 
clusters (provided by data generators) using the 
overlap score as previously described10,92. We then 
built a weighted graph using the confusion matrix as 
the adjacency matrix and performed a Leiden 
clustering (resolution=1) to bicluster mC and RNA 
clusters. This step puts similar mC and RNA 
clusters into integration groups based on their 
overlap score. The RNA and mC clusters in the 
same integration group were further integrated to 
match at finer granularity in the next iteration unless 
any stop criteria were met: (1) there was only one 
integration group from this round; (2) there was only 
one mC or RNA cluster in the integration group; (3) 
the mC cell number < 30; (4) RNA cell number < 
100 for the scRNA-seq dataset or < 30 for the 
SMART-seq dataset. After integration, we obtained 
an mC to RNA cluster map for each mC cell group, 
which we used as the reference to annotate cell 
subclasses and remaining hierarchies in the 
transcriptomic taxonomy. We also evaluated the 
spatial location and marker genes 
(neurotransmitter-related genes or other markers 
provided in the transcriptome annotation). We 
resolved conflicts manually when the RNA clusters 
corresponded to more than one subclass by 
checking the dissection metadata and marker 
genes. We combined all RNA cells assigned to each 
mC cell group to generate the matched 
transcriptome profile. 
 
Integration between snmC-seq and snATAC-seq 
dataset. The snmC-seq dataset and snATAC 
dataset12 shared the same dissection tissues. We 
utilized this experiment design to integrate mC and 
ATAC cells within each major region. Besides, the 
snmC-seq data was enriched for NeuN+ by FANS, 
while the snATAC data unbiasedly profiled all cells. 
Therefore, we also separated neurons with non-
neuronal cells and IMN to balance the integration, 
especially in the first round. We used the mCG 
hypo-methylation score of chromosome non-
overlapping 5kb bins to perform the integration. The 
cluster assignment and stop criteria were similar to 
the mC-RNA integration. The alignment score 
(Extended Data Fig. 6a) is calculated as previously 
described93, using K=1% cells of the dissection 
region or k=20, whichever is larger. We combined 

all ATAC cells assigned to each mC cell group to 
generate the matched chromatin accessibility 
profile. 
 
Integration between snmC-seq and snm3C-seq 
dataset. We used the non-overlapping 
chromosome 100kb bin as features to integrate 
snmC-seq and snm3C-seq datasets. The cluster 
assignment and stop criteria were similar to the mC-
RNA integration. After integration, we also 
annotated the snm3C cell groups with the 
transcriptomic taxonomy. 

MERFISH Experiment 

MERFISH gene panel design. The genes in the 
GTF file were first filtered based on length > 1kb. 
We then selected genes based on the Zhang et al.33 
methods but used the snmC-seq dataset and gene 
body mCH fraction to perform the calculation. In 
brief, there are two approaches to prioritizing genes. 
The first approach was to use mutual information 
between gene body mCH fraction, and neuron 
subclasses labels, which aims to select genes 
differentially methylated between groups of cell 
subclasses. The second approach was to perform 
pairwise differentially methylated gene analysis 
(ALLCools.clustering.PairwiseDMG) among 
clusters within the same major region and select 
genes being identified as DMGs in most cluster 
pairs. For the first approach, we selected the top 
100 genes. We selected the top 50 genes from each 
major region for the second approach. Due to the 
overlaps, there were 325 genes after this selection. 
In addition to the cell-type markers, we also 
selected spatial markers by calculating the mutual 
information between the cell's major region label 
and mCH fraction across the brain; or between the 
dissection region label and mCH fraction within 
each major region. We added another 175 non-
overlapping genes to a total of 550 genes. We then 
performed the same analysis using the scRNA-seq 
dataset from Yao et al.7 to get the RNA-based 
prioritization lists. We selected 500 final genes as 
the gene panel based on rank in the RNA list to 
ensure these genes are also expressed and highly 
diverse in the transcriptome. Encoding probes for 
these genes were designed and synthesized by the 
Vizgen company (Supplementary Table 6). 
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MERFISH tissue preparation and imaging. Fresh 
P56-63 whole mouse brains were sliced coronally 
at 1,200 μm intervals, and each slice was then 
embedded in OCT, rapidly frozen in isopentane/dry 
ice, and stored at -80 ̊C until ready for slicing. 12-
μm-thick coronal sections were obtained from each 
OCT-blocked tissue using a Leica CM1950 cryostat, 
immediately fixed in 4% formalin (warmed to 37 ̊C) 
for 30 min, and permeabilized in 70% ethanol 
following manufacturer procedures. Sample 
preparation, including probe hybridization and gel 
embedding, was performed using Vizgen’s sample 
preparation kit (Vizgen:10400012) following the 
manufacturer’s protocol. Each section was imaged 
using MERSCOPE 500 Gene Imaging Kit 
(Vizgen:10400006) on a MERSCOPE (Vizgen). 
 
MERFISH data preprocessing and annotation. 
MERFISH data analysis, including imaging, spot 
detection, cell segmentation, and cell-by-gene 
matrix generation, was conducted by the 
MERSCOPE Instrument Software. We removed 
abnormal cells (artificial segmentation, doublets) 
from the cell-by-gene matrix in each experiment: (1) 
Cell volume < 30μm3 or > 2000μm3; (2) total RNA 
counts < 10 or > 4000; (3) total RNA counts 
normalized by cell volume < 0.05 or > 5; (6) total 
gene detected < 3; (5) cells with > 5 blank probes 
detected (negative control probe included in the 
gene panel). We then integrated the pass-QC 
MERFISH cells with the scRNA-seq datasets7 to 
annotate the MERFISH cells with transcriptome 
nomenclatures using the ALLCools integration 
functions described above. 
 
Integration between MERFISH and snmC and 
snm3C dataset. We integrated the snmC and 
snm3C datasets with the MERFISH dataset to 
evaluate whether the spatial pattern observed in the 
DNA methylome matched the spatial diversity 
observed in the gene expression data. Integration 
was similar to the mC-RNA integration described 
above. To utilize the dissection region metadata, we 
grouped the snmC-seq and snm3C-seq data by the 
slice and integrated them with a matched MERFISH 
slice. We also separated neurons and other cells, 
similar to the mC-RNA integration above. We used 

the 500 genes in the MERFISH gene panel to 
perform the integration. After integration, we 
imputed the spatial location of each methylation 
nucleus on the integrated low-dimensional space. 
We calculated the ten nearest MERFISH neighbors 
for each mC nucleus in each integration group. We 
assigned the coordinate of these MERFISH cells' 
centroids as the mC nucleus's spatial location. 

Cell and cluster-level chromatin conformation 
analysis 

Generate chromatin contact matrix and 
imputation. After snm3C-seq mapping, we used 
the cis-long range contacts (contact anchors 
distance > 2,500 bp) and trans contacts to generate 
single-cell raw chromatin contact matrices at three 
genome resolutions: chromosome 100-Kb 
resolution for the chromatin compartment analysis; 
25-Kb bin resolution for the chromatin domain 
boundary analysis; 10-Kb resolution for the 
chromatin interaction analysis. The raw cell-level 
contact matrices were saved in the scool format94. 
We then used the scHiCluster package (v1.3.2) to 
perform contact matrix imputation as described 
previously77. In brief, the scHiCluster imputed the 
sparse single-cell matrix by first performing a 
Gaussian convolution (pad=1) followed by using a 
random work with restart algorithm on the 
convoluted matrix. For 100-Kb matrices, the whole 
chromosome was imputed; for 25-Kb matrices, we 
imputed contacts within 10.05Mb; for 10-Kb 
matrices, we imputed contacts with 5.05Mb. The 
imputed matrices for each cell were stored in cool 
format94. The cell matrices were aggregated into 
cell groups or subclass levels identified in the 
previous section. These pseudo-bulk matrices were 
concatenated into a tensor called CoolDS and 
stored in Zarr format for brain-wide analysis. 
 
Compartment analysis. We used the imputed 
subclass-level contact matrices at the 100-Kb 
resolution to analyze the compartment. We first 
filtered out the 100kb bins that overlapped with 
ENCODE blacklist v282 or showed abnormal 
coverage. Specifically, the coverage of bin i on 
chromosome c (denoted as Rc,i) was defined as the 
sum of the i-th row of the contact matrix of 
chromosome c. We only kept the bins with coverage 
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between the 99th percentile of Rc and twice the 
median of Rc minus the 99th percentile of Rc. 
Contact matrices were normalized by distance, and 
the PCC of the normalized matrices was used to 
perform the Principal Component Analysis (PCA) 
(Aiden 2009 Science). The IncrementalPCA class 
from the sklearn package81, which allows fitting the 
model incrementally, was used to fit a single PCA 
model incrementally for each chromosome using all 
the cell subclass matrices. We then transformed all 
the cell subclasses with the fitted model, so the PCs 
for each subclass were transformed from the same 
loading and eased the cross-sample correlation 
analysis. We also calculated the correlation 
between PC1 or PC2 and 100-Kb bin CpG or gene 
density. We use the component with higher 
absolute correlation as the compartment score and 
assign the compartment with higher CpG density 
with positive scores (A compartment). 
 
Compartment score and mC fraction correlation. 
We first performed quantile normalization along 
subclasses using the Python package qnorm 
(v0.8.0)95 to normalize the mC fractions and 
compartment scores. We then calculated the PCC 
between the compartment scores of non-
overlapping chromosome 100Kb bins with the 
corresponding bin’s mCH or mCG fractions across 
cell subclasses. Because the negatively correlated 
bins’ compartment score had a much higher 
standard deviation among cell types (Fig. 4c), we 
selected the 300 most negatively correlated 
chrom100k bins and used their overlapped genes to 
perform gene ontology (GO) enrichment analysis 
(Fig. 4d) using Enrichr38. We randomly selected 
gene-length matched background genes to adjust 
the long-gene bias in all the GO enrichment 
analyses38. To investigate the developmental 
relevance indicated by the GO enrichment result, 
we used the developmental mouse brain scRNA-
seq atlas39 at the subtype level (approximate 
granularity of subclass in this study). Genes 
overlapping 300 most negatively correlated bins, 
300 mostly positively correlated bins, and 300 low 
correlation bins were used to plot Extended Data 
Fig. 9d. 
 

Domain boundary analysis. We used the imputed 
cell-level contact matrices at the 25-Kb resolution to 
identify the domain boundaries within each cell 
using the TopDom algorithm96. We first filtered out 
the boundaries that overlap with ENCODE blacklist 
v282. The boundary probability of a bin was defined 
as the proportion of cells having the bin called a 
domain boundary among the total number of cells 
from the group/subclass. To identify differential 
domain boundaries between “n” cell subclasses, we 
derived an nx2 contingency table for each 25kb bin. 
The values in each row represent the number of 
cells from the group that has the bin called a 
boundary or not as a boundary. We computed each 
bin's Chi-square statistic and p-value and used FDR 
<1e-3 as the cutoff for calling 25kb bins with 
differential boundary probability. 
 
Domain boundary probability and transcript 
body mC fraction correlation. We first performed 
quantile normalization along subclasses using the 
Python package qnorm (v0.8.0)95 to normalize the 
transcript body mC fractions and chromosome 
25Kb bin boundary probabilities. We then 
calculated the PCC between the differential 
boundary probabilities of 25Kb bins with the 
transcript body mCH and mCG fractions. We 
grouped transcripts with >90% overlap within a 
gene and used their longest range. We calculated 
the transcript-body mCH and mCG fraction at the 
subclass level for each transcript. We then 
calculated the PCC between the mC fractions and 
boundary probabilities of bins overlapping the 
transcript body ± 2 Mb. We used a permutation-
based test to estimate the statistical significance of 
the correlation97. Specifically, we shuffled the 
boundary probability and mC fraction values within 
each sample (subclass), disrupting the genome 
relationship between the bins while preserving the 
sample-level global difference. We calculated the 
PCC using the shuffled matrices 100,000 times and 
used a normal distribution to approximate the null 
distribution for more precise p-value estimation in 
FDR correction. We then used FDR < 1e-3 as the 
significance cutoff for each PCC between a 
transcript and a 25Kb bin. In Fig. 2g, we used 
deeptools98 (v3.5.1) to profile the boundary 
probability at transcript ± 2 Mb 25Kb bins. In Fig. 2h 
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and Extended Data Fig. 2f-h, we selected the top 
positively correlated bin and top negatively 
correlated bin for each long gene (transcript body 
length > 100Kb) and performed the GO analysis 
using length-matched background genes, as 
described above (Extended Data Fig. 2h). 
 
Highly variable interaction analysis. We used the 
imputed cell-level contact at the 10-Kb resolution to 
perform the highly variable interaction analysis, 
where the interaction represented one 10Kb-by-
10Kb pixel in the conformation matrix. We filtered 
out any interactions that had one of the anchors 
overlapping with ENCODE blacklist v282. We then 
performed a one-way analysis of variance (ANOVA) 
for each interaction to test whether the single-cell 
contact strength of that interaction displayed 
significant variance across subclasses. The F 
statistics of ANOVA represented an overall 
variability of the interaction across the brain. To 
select highly variable contacts, we used F > 3 as the 
cutoff, which was decided by visually inspecting the 
contact maps as well as fulfilling the FDR < 0.001 
criteria. The ANOVA analysis was only performed 
on interactions whose anchor distance was 
between 50 Kb and 5 Mb, given that increasing the 
distance only led to a limited increase in the number 
of significantly variable and gene-correlated 
interactions (Extended Data Fig. 10b). 
 
Interaction strength and mC fraction correlation. 
To investigate the relationship between gene status 
and the surrounding chromatin conformation 
diversity, we first performed quantile normalization 
along subclasses using the Python package qnorm 
(v0.8.0)95 to normalize the transcript body mCH 
fractions and contact strengths of highly variable 
interactions. We then calculated PCC between the 
transcript body mCH fraction and the highly variable 
interactions if any anchor of the interactions had 
overlapped with the gene body. Similar to the 
domain boundary correlation analysis, we shuffled 
the contact strengths and mCH fractions within 
each sample and used the shuffled matrix to 
calculate null distribution and estimate FDR. We 
select FDR < 0.001 as a significant correlation. 

Gene Regulatory Network (GRN) analysis 

We presented a framework for building GRN based 
on the DNA methylome and chromatin conformation 
profiles at the cell subclass level. We used 212 
neuronal cell subclasses requiring them to have> 
100 cells in both snmC and snm3C datasets. 
Notably, the same framework can be applied to 
other brain cell types or a subset of cells (such as 
certain brain regions or cell classes based on 
specific questions). The GRN was composed of 
relationships between TFs, their potential binding 
elements (represented by DMRs), and downstream 
target genes. Pairwise edges were constructed 
between DMRs and target genes (DMR-Target), 
TFs and target genes (TF-Target), and TFs and 
DMRs (TF-DMR). The basis of each pairwise edge 
was the correlation between the methylation 
fractions of the two genome elements across cell 
subclasses. We performed quantile normalization 
along subclasses using the Python package qnorm 
(v0.8.0)95 to normalize the two matrices involved in 
calculating the correlation. Gene body mCH fraction 
was used as a proxy for TF and target gene activity, 
and mCG fractions were used to represent DMR 
status. Variable genes and TFs were selected if 
they were identified as CEFs (described in the 
clustering steps) in any subclass. 
 
For the DMR-Target edges, we selected the highly 
variable and positively correlated chromatin contact 
interactions of the gene based on the results in the 
previous section and included DMRs situated in any 
anchor regions of the interactions. We then 
calculated the PCC between DMR mCG and gene 
mCH fraction. For a group of overlapping DMRs, we 
selected the one with the highest absolute PCC 
value to represent that group, making the edges’ 
DMRs non-overlap. Similar to the domain boundary 
and interaction correlation analysis, we shuffled the 
DMRs and genes within each sample to calculate 
null PCC and estimate FDR. We filtered DMR-
Target edges with FDR < 0.001. For the TF-Target 
and TF-DMR edges, we calculated the PCC 
between TF and all CEF genes or between TF and 
all DMRs, respectively, and applied the same FDR 
< 0.001 cutoff to filter edges. For the TF-DMR edge, 
we further performed motif enrichment analysis on 
the significantly correlated DMRs (explained in the 
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next section). We only keep TF-DMR edges when 
the TF has any motif significantly enriched in the 
correlated DMR set, and the particular DMR has 
that motif occurrence. 
 
After getting the three pairwise edges, we 
intersected the edges together into triples based on 
shared genes (including TFs and targets) and DMR 
ids. We calculated a final edge score 𝑆5-- =
L|𝑆5𝑆1𝑆,𝑆6|
!  for each triple by taking the geometric 
mean of the absolute values of four correlations, 
where 𝑆5 was the correlation of DMR-Target edge, 
𝑆1 was the correlation of TF-DMR edge, 𝑆, was the 
TF-Target edge, and 𝑆6  was the correlation 
between target gene mCH fraction and gene-DMR 
contact strength. If multiple gene-correlated 
interactions have anchors overlapping with DMR 
and gene body, we select the one with the lowest 
negative correlation.  
 
DMR motif scan and TF motif enrichment 
analysis. We used an ensemble motif database 
from SCENIC+44, which contained 49,504 motif 
position weight matrices (PWM) collected from 29 
sources. Redundant motifs (highly similar PWMs) 
were combined into 8,045 motif clusters through 
clustering based on PWM distances calculated by 
TOMTOM99 by the SCENIC+ authors44. Each motif 
cluster was annotated with one or more mouse TF 
genes. To calculate motif occurrence on DMR 
regions, we used the Cluster-Buster100 
implementation in SCENIC+, which scanned motifs 
in the same cluster together with Hidden Markov 
Models. 
 
To perform motif enrichment analysis in the “TF-
DMR edge” analysis, we used the recovery-curve-
based cisTarget algorithm44,65. In brief, the 
cisTarget algorithm performed motif enrichment on 
a set of DMRs by calculating a Normalized 
Enrichment Score (NES) for each motif based on all 
other motifs in the collection. For each TF gene, we 
applied the cisTarget algorithm to positively 
correlated or negatively correlated DMRs 
separately. We used the package default cutoff 
(NES > 3) to select enriched motifs for a DMR set. 
A leading-edge analysis was performed by 
cisTarget to assign motif occurrence in DMRs with 

Cluster-Buster scores passing a cutoff in enriched 
cases44. 
 
PageRank analysis on weighted networks. We 
adopted the Taiji framework51 to perform TF 
analysis on weighted GRN for each cell subclass. 
This framework employed the personalized 
PageRank algorithm101 to propagate node and edge 
weight information across the network, calculating 
the importance of each TF. To add subclass 
information as network weights, we simplified the 
network by only including TF and target gene nodes, 
and weighing the gene node by inverted gene body 
mCH value in the subclass. Specifically, we first 
performed quantile normalization across all 
subclasses. We then performed a robust scale of 
the matrix using 
“sklearn.preprocessing.RobustScaler” with 
quantile_range=(0.1, 0.9). We then inverted the 
scaled mCH fraction by 
𝑊) = (𝑚𝑎𝑥(𝐶𝐻)) 	−	𝐶𝐻))	/	(𝑚𝑎𝑥(𝐶𝐻)) 	−
	𝑚𝑖𝑛(𝐶𝐻))),  
where 𝐶𝐻)  and 𝑊)  denoted the scaled gene mCH 
fractions and inverted values for subclass 𝑖 , 
respectively.  
We also added DMR mCG fraction into the edge 
weights. Specifically, we performed the same 
quantile normalization and robust scale on all the 
DMRs’ mCG fractions involved in the network and 
calculated the inverted DMR mCG value by 
𝑉) = (𝑚𝑎𝑥(𝐶𝐺)) 	−	𝐶𝐺))	/	(𝑚𝑎𝑥(𝐶𝐺)) 	− 	𝑚𝑖𝑛(𝐶𝐺))),  
where 𝐶𝐺)  and 𝑉)  denoted the scaled DMR mCG 
fractions and inverted values for subclass 𝑖 , 
respectively. The edge weight between a TF and a 
target gene in subclass 𝑖  was calculated as 𝑒 =
/
2
∑27.8 𝑆),7 × 𝑉),7, where 𝑛 denoted the number of 

DMRs that connecting the TF to target gene, 𝑆),7 
was the final score of one TF-DMR-Target triple, 𝑉),7 
was the inverted DMR mCG value. 

Intragenic epigenetic and transcriptomic 
Isoform Analysis 

Integration and isoform quantification of the 
SMART-seq dataset. Preprocessing and gene 
level quantification via STAR102 (v2.7.10) was 
performed by AIBS data generators as previously 
described6. We used gene-level counts to perform 
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cross-modality integration iteratively as described in 
previous sections. We used kallisto103 with steps 
described in a previous study27 to quantify the 
SMART-seq at the isoform level with the same GTF 
file used in transcriptome and methylome analysis 
above. We calculated cell-group-level transcript per 
million (TPM) based on the integration result. We 
also calculated the exon Percent Spliced In (PSI) 
from the transcript counts in each gene. The 
SMART-seq browser tracks (Fig. 6f, g) were 
constructed from STAR-aligned BAM files. 
 
Prediction model training. First, we quantified mC 
and m3C intragenic features for predicting the 
alternative isoform and exon usage. We used the 
exon, exon-flanking region, and intragenic DMRs as 
the mC features of each gene. The exon flanking 
region was defined as upstream or downstream 300 
bp of each exon. We removed features with 
variance < 0.01, and combined features with > 90% 
overlap in their genome coordinates. For 3C 
features, we used all the intragenic highly variable 
interactions (f statistics > 3)  from the above section 
as features. 
 
After collecting all the features, we selected genes 
with highly variable transcripts and exons among 
cell groups for model training. Highly variable 
transcripts were selected based on: (1) mean TPM 
across cell groups > 0.2; (2) TPM standard 
deviation > 0.3; (3) transcript body (TSS to TTS) 
length > 30Kb. Highly variable exons were selected 
based on: (1) PSI standard deviation > 0.02; (2) PSI 
90% quantile and 10% quantile difference > 0.05. 
We trained four models for each gene including 
predicting transcripts TPMs using mC or 3C 
features and predicting exon PSIs using mC or 3C 
features. The training contains two steps: first, we 
used “sklearn.feature_selection.SelectKBest” with 
the score function “f_regression” to select the top 
100 features for each transcript or exon. We then 

used all features that had been selected at least 
once. We performed five-fold cross-validation to 
train random forest models using selected features 
and “sklearn.ensemble.RandomForestRegressor”. 
In each cross-validation run, we calculated the PCC 
between predicted values and true values as the 
model performance. We also shuffled the selected 
features within each sample (Fig. 6c) to train the 
model and calculate PCC again as the shuffled 
model performance. 

Data Availability 

The snmC-seq2/3 single-cell sequencing data are 
accessible through Neuroscience Multi-omic Data 
(NeMO) Archive https://tinyurl.com/cembanemo. 
The snm3C-seq single-cell sequencing data will be 
accessible through NeMO and GEO. The MERFISH 
dataset will be accessible through GEO. The whole-
brain snATAC-seq dataset is shared by Zu et al12. 
The whole-brain scRNA-seq and SMART-seq 
dataset is shared by Yao et al7. All the processed 
data related to results and method sections are 
shared in this GitHub repository: 
https://github.com/lhqing/wmb2023. 

Code Availability 

Mapping pipeline for snmC-seq3 and snm3C-seq is 
available at https://hq-1.gitbook.io/mc/. Single-cell 
DNA methylome data analysis tools are available at 
ALLCools (v1.0.8) python package, 
https://lhqing.github.io/ALLCools/intro.html; Single-
cell chromatin conformation data analysis tools are 
available at the scHiCluster (v1.3.2) python 
package, 
https://github.com/zhoujt1994/scHiCluster. Other 
codes and Jupyter Notebooks related to results and 
method sections are shared in this GitHub 
repository: https://github.com/lhqing/wmb2023. 
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Extended Data Figure 1｜Brain dissection regions. Schematic of brain dissection steps. Each male C57BL/6 mouse 
brain (age P56) was dissected into 600-μm slices for snmC-seq3 (a) and 1,200-μm slices for snm3C-seq3 (b). We then 
dissected brain regions from both hemispheres within a specific slice. 
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Extended Data Figure 2 | Quality Control for snmC and snm3C dataset. a-b, The number of input reads and final 
pass QC reads in snmC-seq3 and snm3C-seq shown by t-SNE (a) and violin plot (b) c, The percentage of chrom100k 
bins or genes detected per cell in snmC-seq3 and snm3C-seq. Gray lines from top to bottom indicate the 75%, 50%, 
and 25% quantiles. d-e, The number and ratio of cis-long and trans contacts in snm3C-seq, depicted by t-SNE (d) and 
violin plot (e). f, Heatmap of PCC between the average methylome profiles (mean mCH and mCG fraction of all 
chromosome 100-kb bins across all cells belonging to a replicate sample). The violin plot below summarizes the values 
between replicates within the same brain region or between different brain regions. g-h, Pairwise overlap score 
(measuring co-clustering of two replicates) of neuronal subtypes and (g) non-neuronal subtypes (h). The violin plots 
summarize the subtype overlap score between replicates within the same brain region or between different brain 
regions. i, Distribution of the mCG, mCH, mCCC, and Lambda DNA fraction (non-conversion rate) at sample level in 
snmC-seq3 and snm3C-seq. j, Pre-clustering t-SNE of snmC and snm3C dataset colored by final mC reads and plate-
normalized cell coverage. Arrows indicate typical low-quality clusters filtered out from the further analysis. 
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Extended Data Figure 3 | Metadata of snmC-seq and snm3C-seq dataset. a-c, t-SNE of snmC-seq color by cell 
subclass (a), major regions (b), and dissection regions (c). d-f, t-SNE of snm3C-seq color by cell subclass (d), major 
regions (e), and dissection regions (f). g,h, Cell-level t-SNE of snmC-seq and snm3C-seq color by global  mCG (g) and 
global mCH (h) fraction. i, The average global mCG and mCH fractions for neurons in different dissection regions. 
Regions are ordered by the global mCH fractions, and only the top and bottom 20 regions are shown. j, The average 
global mCG and mCH fractions for all cell subclasses. Subclasses are ordered by the global mCH level, and only the 
top and bottom 20 subclasses are shown. 
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Extended Data Figure 4 | t-SNE embedding by major regions. This figure groups cells by major regions (first five 
rows), including isocortex (CTX), olfactory bulb (OLF), amygdala (AMY), cerebral nuclei (CNU), hippocampus (HPF), 
thalamus (TH), hypothalamus (HY), midbrain (MB), hindbrain (HB), and cerebellum (CB). Each section comprises three 
columns. The left column displays the CCF-registered 3D brain dissection regions and the corresponding cell on the 
whole brain t-SNE. The middle and right columns show the t-SNE embedded by cells from this major region, colored 
by cell subclasses and dissection regions, respectively. The numbers on the t-SNE plot indicate the cell subclass ID, 
which refers to in Supplementary Table 4. The final row groups non-neuron cells into two sections based on 
telencephalon and non-telencephalon dissection regions. 
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Extended Data Figure 5｜Example genes illustrating high-granularity correspondence between methylome and 
transcriptome. a, Schematic representation of the normalized gene body mCH fraction (left panel) and RNA CPM 
value (right panel) at the cell-group-centroids t-SNE plot for each gene. b-d, Example gene groups: neurotransmitter-
related genes (b), immediate early genes (c), and neuropeptide genes (d).  
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Extended Data Figure 6 | Integration of snATAC-seq and snmC-seq3 data. a, Barplot displays the alignment scores 
of each dissection region calculated the low dimensional space of snATAC-seq and snmC-seq integration. b, t-SNE 
shows the co-embedding of snmC-seq and snATAC-seq data, grouped by major regions and colored by dissection 
regions. c-d, Heatmap visualization of 15 x 15 small heatmaps. Each small heatmap represents the mCG fractions 
(green) and the corresponding accessibility level of 1,000 cell-type-specific CG-DMRs. Cell subclasses from isocortex 
(c) and midbrain (d) are shown as examples. 
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Extended Data Figure 7 | MERFISH data processing and annotation. a, Workflow illustrating the generation of 
MERFISH data, including sample preparation, imaging, and data analysis steps. b, Quality control assessment for each 
MERFISH sample, where the red lines represent the filtering cutoff for various quality metrics, including RNA total 
counts, RNA feature counts, blank gene number, cell volume (μm3), and RNA counts per volume. c, Integration t-SNE 
plot of MERFISH and scRNA dataset7 color by cell subclasses. d, MERFISH cells colored by cell subclasses, with 
labels obtained from the integration with the RNA dataset. From top to bottom, the cells are displayed by glutamatergic 
neurons, other neurons, and non-neurons. e, Spatial epigenetic patterns of Negr1 and its associated DMRs. Brain 
slices in the left column are color-coded by normalized gene body mCH fraction, mCG fraction of the DMR 
(chr3:154,927,600-154,929,099), and RNA expression. The right column displays the normalized contacts heatmap 
between the DMR and gene. 
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Extended Data Figure 8 | Distribution of snmC-seq cells subclasses on MERFISH slices. MERFISH plot depicting 
the spatial distribution of snmC-seq cells colored by cell subclass on imputed MERFISH locations (Methods). Each row 
represents a different MERFISH slice. The left column shows glutamatergic neurons and the right column shows other 
neurons. Centroids of each cell subclass are indicated by arrows, with the numbers indicating their cell proportion on 
that slice. 
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Extended Data Figure 9 | Chromatin conformation analysis at compartment and domain level. a, PCC between 
compartment score and mCG (orange)/mCH (blue) fractions of all 100kb bins on each chromosome (left panel) or 
whole genome (right panel). The dot lines inside each violin plot are 75%, 50%, and 25% quantiles from top to bottom. 
b-c, chromosome 1-D heatmaps show PCC between compartment score and mCG fraction (b) and the compartment 
score STD across cell subclasses (c) for each chromosome at a 100-Kb resolution. Arrows indicate the location of the 
Celf2 gene used as an example in Fig. 4a, b. d, The line plot (mean±s.d.) shows the developmental gene expression 
level among subtypes defined in La Manno et al.39 across embryonic days. The genes in each subpanel are selected 
by overlapping with top negatively correlated (left), positively correlated (right), or uncorrelated (middle) chrom100k 
bins in (a). e, Workflow for gene body domain boundary analysis. f, The scatter plots of the most negatively (top) or 
positively (bottom) correlated boundary to each long gene transcript. Both the x and y axis is the PCC between 25Kb 
bin boundary probability and transcript body mCH (x-axis) or mCG (y-axis) fractions. g, The scatterplot shows the 
location of each long gene transcript’s most negatively (top) or positively (bottom) correlated boundary. The y-axis is 
the PCC between the 25Kb bin boundary probabilities and transcript body mCH fractions; the x-axis is the relative 
genome location to the transcripts. h, Functional enrichment for genes associated with negatively correlated domain 
boundaries (upper) or positively correlated boundaries (lower).  
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Extended Data Figure 10 | Correlation between gene expression and chromatin contacts. a, Workflow for highly 
variable and gene correlated interaction analysis. b, The distribution of the distance between the furthest correlated 
interaction and gene TSS. Q95 and Q99 stand for the quantile of all interactions ordered by the distance to TSS.c, 
Distribution of the number of highly variable and correlated interactions per gene; top 30 gene names are listed. d, 
Scatterplot shows each gene’s number of correlated interactions (y-axis) and TSS boundary probability correlation (x-
axis, PCC between mCH and TSS boundary probability, from Extended Data Fig. 9e). e-j, Compound heatmaps display 
the chromatin conformation landscape of megabase-long genes, including Ptprd (e), Nrxn3 (f), Lsamp (g), Dlg2 (h), 
Celf2 (i), and Sox5 (j). For each panel, green rectangles indicate the location of the gene body, the lower triangle shows 
the F statistics from ANOVA analysis analyzing the variance of contact strength across all cell subclasses (similar to 
Fig. 4i), and the upper triangle shows the PCC between contact strength and mCH fraction (similar to Fig. 4j). 
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Extended Data Figure 11 | Construction of TF-DMRs-Target regulatory networks. a, Scatterplot shows the motif 
enrichment scores in negatively correlated DMRs (x-axis) and positively correlated DMRs (y-axis) for each TF. The top 
TFs with the highest motif enrichment scores are listed. Blue contours are the kernel density of the dots. b-c, Example 
TFs with motifs enriched in positively correlated DMRs or negatively correlated DMRs are shown in more detail (similar 
to Fig. 5f). The Onecut2 and Rfx1 gene (b) are examples of having motifs enriched in positively correlated DMRs, the 
Foxp2 and Foxa1 gene (c) are examples of having motif enriched in negatively correlated DMRs. d, The top histogram 
shows the distribution of the number of DMRs each motif is enriched in. The bottom histogram shows the distribution 
of the number of motif occurrences each DMR has. e, The TF-DMR-Target triples are separated into eight categories 
(columns) based on their PCC sign between Gene-DMR, TF-DMR, and TF-Gene. The top barplot is the triple 
distribution in each category. The middle violin plot is the triple final score distribution within each category. Lines inside 
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the violin plot are 25%, 50%, and 75% quantiles, respectively. The bottom dots show the correlation sign combination 
of each category. Column colors match the schematic in (f). f, The schematic displays the potential regulatory model 
for the four most common (based on e) TF-DMR-Target triple categories. 
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Extended Data Figure 12 | TF-DMR-Gene triple predict TF and gene relationships. a-f, Example TF-DMR-Target 
triple, including 1: Erf (TF), Nab2 (target) and DMR (Chr10:127,595,357-127,595,787) (a-b); 2: Egr1 (TF), Synpo (target) 
and DMR (Chr18:60,762,310-60,763,534) (c-d); 3: Cacna2d2 (TF), Stat5b (target) and DMR (Chr9:107,462,798- 
107,463,968) (e-f); For each example, left are t-SNE plot colored by the mCH fraction (blue) or RNA level (purple) for 
target and TF; mCG fraction (green) and chromatin accessibility (orange) for DMR; and gene-DMR contact score (red) 
(a,c,e). The compound heatmaps on the right show the chromatin landscape of target genes, including Nab2 (b), Synpo 
(d), and Cacna2d2 (f); the layout is similar to Exnteded Data Fig. 10e-j. g, The dot plots represent TF's normalized 
PageRank Score and RNA expression for cell subclasses in the hindbrain (MB). Red dots are colored and sized by 
PageRank Score. Purple dots are colored by RNA CPM, sized by the percentage of cells in that subclass expressing 
this gene. Right, the t-SNE plot of snmC-seq cells from MB colored by dissection region and the CCF-registered 3D 
brain dissection regions. 
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Extended Data Figure 13 | Epigenetic heterogeneity and gene exon usage. a, Compound heatmaps illustrate the 
similarity between the Oxr1 intragenic methylation heterogeneity and alternative isoform expression patterns. Rows are 
neuron cell subclasses. I, mCG fraction of all 1,797 CpG sites of Oxr1 gene with columns ordered by original genome 
coordinates (bottom colors are CpG clusters from heatmap ll). ll, mCG fraction of CpG sites re-ordered by their CpG 
clusters (bottom colors) based on subclasses methylation pattern. Heatmap lll and Heatmap lV show the TPM of 11 
highly variable transcripts and PSI of 24 highly variable exons of Oxr1, quantified with the SMART-seq dataset. All 
values are z-score normalized across cell subclasses. The Oxr1 transcript structures and exon locations are indicated 
at the bottom plots. Heatmap V shows the Oxr1 gene log(CPM) in scRNA-seq (10X) data. b, Scatterplot shows the 
PCC between predicted PSI and true PSI for each highly-variable exon (dot), using methylation features (left) and 
chromatin contact interactions (right) to predict. c, Scatterplot shows the delta PCC in mC models (x-axis) and m3C 
models (y-axis) for highly-variable exons (dot). Top exons with large delta PCC are listed by their corresponding gene 
names. 
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Supplementary Information Guide 

Supplementary Tables 

Supplementary Table 1. snmC/snm3C sample brain dissection region metadata. 
Supplementary Table 2. snmC-seq dataset cell metadata. 
Supplementary Table 3. snm3C-seq dataset cell metadata. 
Supplementary Table 4. snmC and snm3C cluster annotation and cross-modality cluster mapping. 
Supplementary Table 5. Cell subclass brain region distribution. 
Supplementary Table 6. List of 500 genes included in the MERFISH gene panel.  
Supplementary Table 7. MERFISH dataset cell metadata. 
Supplementary Table 8. snmC and snm3C spatial embedding based on integration with MERFISH 
data. 
Supplementary Table 9. Glossary and abbreviations. 

Supplementary Information 

Supplementary Information 1. snmC-seq3/snm3C-seq Library Preparation Protocol. 
Supplementary Information 2. FANS gating examples for snmC and snm3C samples. 
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