
Single-cell DNA sequencing reveals a late-
dissemination model in metastatic colorectal cancer

Marco L. Leung,1,2,6 Alexander Davis,1,2,6 Ruli Gao,1 Anna Casasent,1,2 Yong Wang,1

Emi Sei,1 Eduardo Vilar,3 Dipen Maru,3 Scott Kopetz,4 and Nicholas E. Navin1,2,5
1Department of Genetics, The University of TexasMD Anderson Cancer Center, Houston, Texas 77030, USA; 2The University of Texas
MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA; 3Department
of Pathology, 4Department of Gastrointestinal Medical Oncology, 5Department of Bioinformatics and Computational Biology,
The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

Metastasis is a complex biological process that has been difficult to delineate in human colorectal cancer (CRC) patients.

Amajorobstacle in understandingmetastatic lineages is the extensive intra-tumor heterogeneity at the primary andmetastat-

ic tumor sites. To address this problem, we developed a highlymultiplexed single-cell DNA sequencing approach to trace the

metastatic lineages of two CRC patients with matched liver metastases. Single-cell copy number or mutational profiling was

performed, in addition to bulk exome and targeted deep-sequencing. In the first patient, we observedmonoclonal seeding, in

whicha single cloneevolveda largenumberofmutationsprior tomigrating to the liver toestablish themetastatic tumor. In the

second patient, weobserved polyclonal seeding, inwhich two independent clones seeded themetastatic liver tumor after hav-

ing diverged at different time points from the primary tumor lineage. The single-cell data also revealed an unexpected inde-

pendent tumor lineage that did not metastasize, and early progenitor clones with the “first hit” mutation in APC that

subsequently gave rise to both the primary andmetastatic tumors. Collectively, these data reveal a late-disseminationmodel

of metastasis in two CRC patients and provide an unprecedented view of metastasis at single-cell genomic resolution.

[Supplemental material is available for this article.]

Metastasis is the primary cause of death in most human cancer
patients (Mehlen and Puisieux 2006). Colorectal cancer (CRC)
patients with primary tumors detected during colonoscopy often
have good survival rates, but patients with late-stage (IV) disease
have poor 5-yr survival rates of only 11% (American Cancer
Society 2015). Large-scale cancer genome sequencing efforts have
identified genes that are frequently mutated in primary CRC tu-
mors, including APC, KRAS, NRAS, and TP53 (The Cancer
GenomeAtlas Network 2012). In addition to these commonmuta-
tions, many low-frequency mutations have also been identified,
suggesting extensive inter-patient heterogeneity (The Cancer
Genome Atlas Network 2012). Further work has begun to investi-
gate the mutational concordance of matched primary and meta-
static tumors in CRC patients by next-generation sequencing. In
a study that profiled microsatellite-stable (MSS) CRC patients, a
large number of mutations were reported as being concordant be-
tween the primary and metastatic tumors, in addition to a small
number of metastasis-specific mutations (Brannon et al. 2014;
Tan et al. 2015).

The metastatic cascade is a complex biological process in
which tumor cells escape the primary organ site, intravasate the
circulation, and disseminate to distant organs (Valastyan and
Weinberg 2011). Several competing models of metastasis have
been proposed: (1) late dissemination; (2) early dissemination;
and (3) self-seeding (Supplemental Fig. S1). The late-dissemination
model is a unidirectionalmodel, inwhich tumor cells evolve for an
extended period of time at the primary tumor site, before acquiring

specific mutations that enable the clones to disseminate. The early
disseminationmodel posits that tumor cells disseminate at the ear-
liest stages of primary tumor growth and that primary and meta-
static tumors evolve in parallel (Klein 2009). An alternative
model is self-seeding, which posits that tumor cells disseminate
from the primary tumor, establish distant metastatic tumor sites,
and then travel bidirectionally back to the primary tumor to pro-
mote its growth (Norton and Massague 2006).

Single-cell DNA sequencingmethods have emerged as power-
ful new tools for resolving intra-tumor heterogeneity and tracing
clonal lineages during tumorigenesis (Navin 2015; Wang and
Navin 2015). Our group reported the development of the first sin-
gle-cell DNA sequencing method (single-nucleus sequencing) and
used this method to delineate aneuploidy evolution in breast tu-
mors (Navin et al. 2011). Subsequent work from our group and
others has led to the development of high-coverage single-cell se-
quencing methods to detect genome-wide mutations at base-pair
resolution (Xu et al. 2012; Zong et al. 2012; Wang et al. 2014;
Leung et al. 2015, 2016; Wang and Navin 2015; Gawad et al.
2016). Computational methods can be used to infer phylogenetic
trees from single-cell sequencing data (Davis andNavin 2016; Jahn
et al. 2016; Ross andMarkowetz 2016). However, amajor challenge
is that current single-cell DNA sequencing methods are low-
throughput and expensive. To address this challenge, we devel-
oped a high-throughput single-cell DNA sequencing method
that utilizes library barcoding and a 1000 cancer gene panel to
study clonal evolution during metastasis in two CRC patients.
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Results

Experimental approach

We selected frozen primary colon cancer and matched liver sam-
ples from two CRC patients with metastatic disease (Fig. 1A).
Both patients were classified as microsatellite-stable with invasive
adenocarcinomas and late-stage (IV) disease (Methods). Nuclear
suspensions were prepared and stained with DAPI for flow-sorting
by ploidy. Cellular fractions were isolated by gating diploid (D) or
aneuploid (A) distributions. In patient CRC1, the cell count histo-
gram revealed a diploid (2N) and aneuploid (2.6N) distribution in
the primary tumor and a diploid (2N) and aneuploid (2.9N) distri-
bution in the liver metastasis (Fig. 1B). In patient CRC2, we iden-
tified a diploid (2N) and aneuploid (3.3N) distribution in the
primary tumor and a diploid (2N) and aneuploid (3N) distribution
in the liver metastasis (Fig. 1B). Millions of cells from the D and A
peaks were gated and flow-sorted for exome and targeted cancer
gene panel sequencing in CRC1 and CRC2. Single nuclei were iso-
lated by FACS for single-cell copy number profiling or single-cell
mutational profiling (Fig. 1C). Single-cell libraries were barcoded
and pooled together (48 cells) for copy number profiling using
single-nucleus sequencing (SNS) (Navin et al. 2011) or barcoded
(96 cells) for highly multiplexed targeted sequencing using a
1000 cancer gene panel (T1000) that captures 12,500 exons and
promoter regions (Leung et al. 2016). The exome capture platform
and the T1000 cancer gene panel only overlap within the exonic
regions. The resulting libraries were used for sequencing on the
Illumina platform (Methods), and somatic variants were detected
(Supplemental Fig. S2).

Bulk primary and metastatic mutations are concordant

To investigate mutational concordance between the primary and
metastatic liver tumors, we performed deep-exome sequencing
ofmillions of flow-sorted diploid or aneuploid cells. To distinguish
germline from somatic mutations, we also sequenced matched
normal tissue (Methods). The exome libraries were sequenced at

high coverage depth (75.5×) and breadth (97.33%), where breadth
is defined as the percentage of the targeted region with physical
coverage of 1× or higher read depth (Supplemental Table S1). We
detected 127mutations in patient CRC1, of which 90 were nonsy-
nonymous, and 80 of the nonsynonymousmutations were shared
between the primary and metastatic tumors (Fig. 2A). Shared mu-
tations included APC and KRAS, while metastasis-specific muta-
tions included BOD1, TRRAP, GSTCD, and SNX19 (Supplemental
Table S2). In patient CRC2, we identified 131 mutations, of which
107 were nonsynonymous, and 68 of the nonsynonymous muta-
tions were shared between the primary and metastasis (Fig. 2B).
Shared mutations in CRC2 included mutations in APC, TP53,
CDK4, TOX, NRAS, and MYH11, while metastasis-specific muta-
tions included FUS, SPEN, DAPK1, and FBN (Supplemental Table
S2). Our data also identified a number of nonsynonymous muta-
tions that changed VAF between the primary and metastatic sites
(Fig. 2C,D). These mutations may reflect clonal selection during
metastatic dissemination or may be due to differences in copy
number. To distinguish between these two possibilities, we applied
PyClone to normalize the VAFs by copy number events and calcu-
lated clonal frequencies. The resulting data suggest that a number
of SNVs changed in frequency during metastatic dissemination,
possibly due to selection at the metastatic tumor site (Supplemen-
tal Fig. S3).

Metastasis-specific mutations were acquired after dissemination

Themetastasis-specific mutationsmay have occurred in a rare sub-
clone of the primary tumor prior to dissemination, or alternative-
ly, after dissemination to the liver. To address this question, we
performed ultradeep targeted sequencing on a subset of metasta-
sis-specific mutations in the primary tumor. From these data, we
investigated whether the metastasis-specific mutations existed at
low frequencies in the primary tumor mass. Targeted amplicon se-
quencing was performed at 1,368,403× mean coverage depth for
three metastasis-specific mutations in CRC1 and 18 metastasis-
specific mutations in CRC2 (Fig. 2E). Bayesian hypothesis testing
and deepSNV were used independently to determine the

Figure 1. Single-cell and bulk population experimental workflow. (A) The frozen primary tumors and liver metastases from two CRC patients were disso-
ciated into nuclear suspensions and stained with DAPI. (B) Single nuclei and populations of cells were gated and flow-sorted by ploidy distribution. (C) To
detect mutations, single nuclei were amplified by multiple-displacement-amplification (MDA), and libraries were captured using the T1000 cancer gene
panel, while copy number detection was performed on single nuclei using DOP-PCR. Millions of cells were isolated in parallel for standard exome sequenc-
ing. Barcoded librarieswere constructed and captured for targeted cancer gene panels or exomepanels. Librarieswere pooled for next-generation sequenc-
ing on the Illumina platform.
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significance of each mutation frequency, relative to the back-
ground noise in the matched normal samples (Methods;
Gerstung et al. 2012). This analysis identified no significant in-
creases in the variant read counts in the primary tumors relative
to the matched normal tissue sample, with the exception of
GREB1, in which deepSNV reported a significant P-value (Fig. 2E;
Supplemental Table S3). In contrast, all of VAFs between the me-
tastasis and primary tumor were found to be significant (P <
0.05). These data suggest that most of the metastasis-specific mu-
tations evolved after disseminating to the metastatic liver site.
However, we cannot exclude the possibility that some of thesemu-
tations exist at frequencies below our detection sensitivity (1 ×
10−3) in the primary tumor.

Mutational substructure of primary and metastatic tumors

To resolve the clonal substructure of the primary andmetastatic tu-
mors, we applied highly multiplexed single-cell DNA sequencing
(Leung et al. 2016) to profile pointmutations in 372 single cells us-
ing a 1000 cancer gene (T1000) panel. The single-cell sequencing
data resulted in a mean coverage depth of 137× and average cover-
age breadth of 0.92 (Supplemental Table S4). In parallel, we se-
quenced millions of flow-sorted aneuploid tumor and normal
cells using the T1000 cancer gene panel. To ensure the quality of
single-cell analysis, we filtered single-cell data with low coverage
depth and annotated variants based onvariant/reference genotype
read ratios (Methods; Supplemental Fig. S2). In total, we analyzed

Figure 2. Concordance of mutations in bulk primary and metastatic tumors. (A,B) Scaled Venn diagrams reflect the total number of mutations (synon-
ymous and nonsynonymous) identified by exome sequencing of the bulk flow-sorted tumor cells from the primary and metastatic tumors. (C,D) Dot plots
showing the variant allele frequencies of the nonsynonymous mutations in the primary and metastatic tumors. (E) Targeted deep amplicon sequencing of
the metastasis-specific mutations in the primary tumor and matched normal tissue. Significance of the mutations based on the variant read counts was
determined using deepSNV and a Bayesian hypothesis test (Methods).
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178 and 182 single cells for CRC1 and
CRC2, respectively. We first compared
the single-cell mutation data on the
T1000 platform to the bulk exome data
(V2 exome capture platform) and found
100% concordance for mutations in the
exonic regions (Supplemental Table S5).

To broadly identify subpopulations
of cells that shared common mutations,
we performed multidimensional-scaling
(MDS) analysis using the cells sequenced
with the T1000 platform (Fig. 3A,B).
In both patients, we identified three ma-
jor clusters of cells that corresponded to
normal cells (N), primary tumor cells
(P), and metastatic tumor cells (M). The
normal cell clusters included diploid
cells from both the primary colon and
liver metastasis. The P clusters consisted
mainly of aneuploid cells from the pri-
mary tumor, while the M cluster consist-
ed of aneuploid tumor cells from the
liver. However, a few cells sorted from
the diploid fractions clustered with the
primary aneuploid tumor cells in both
patients, suggesting that they may have
been missorted during FACS.

Tomore carefullydelineate the clon-
al architecture, we used two-dimensional
hierarchical clustering to identify groups
of single cells with similar mutational
profiles (Fig. 3C,D; Supplemental Fig.
4A). Consistent with the MDS analysis,
hierarchical clustering identified three
major clusters of tumor cells in CRC1:
the normal diploid cells (N), the primary
aneuploid cells (P), and themetastatic an-
euploid cells (M). Additionally,we identi-
fied a small subcluster of diploid cells (E)
thatwere not evident in theMDSanalysis
(Fig. 3C). The aneuploid tumor cells from
the primary and metastatic sites shared
10 common mutations, including driver
mutations in APC, TP53, and KRAS.
These data also identified five metastat-
ic-specific mutations (ZNF521, RBFOX1,
TRRAP, GATA1, EYS) and one primary-
specific mutation (TPM4). Most of the
diploid cells did not have mutations,
suggesting that they are normal stromal
cells. However, we did identify a rare sub-
cluster (E) that consisted of three diploid
cells with a single heterozygous nonsense mutation in APC
(c.4012C>T).

In patient CRC2, the clustered heat map identified six major
subpopulations: normal diploid cells (N), primary aneuploid cells
(P), and three metastatic subpopulations (MP1, M2, M3), in addi-
tion to a minor independent subpopulation (I) (Fig. 3D;
Supplemental Fig. 4B). In total, we identified 14 common muta-
tions thatwere shared between the primary andmetastatic tumors,
including driver mutations in NRAS, APC, TP53, FHIT, and CDK4.
We also identified two primary-specific mutations (LINGO2,

LRP1B) and 14 metastasis-specific mutations (including SPEN,
PIK2CG, FUS, and HELZ). Multiple mutations were detected in
LINGO2, whichmade us suspect that they might be technical arti-
facts from PCR or sequencing; however, we found no evidence of
this by analysis of strand bias, low coverage depth, or coinciding
with regions of poor mappability. In CRC2, the metastatic tumor
was composed of three major subpopulations (MP1, M2, and
M3). The MP1 subpopulation consisted of both primary tumor
cells and metastatic tumor cells, while M2 andM3 were composed
of only metastatic tumor cells.

Figure 3. Single-cell mutational profiling of matched primary and metastatic tumors. Targeted can-
cer gene panel (T1000) sequencing data of point mutations in 372 single cells from the primary colon
and liver metastatic tumors from patients CRC1 and CRC2. (A,B) Multidimensional scaling analysis, in
which each dot represents a single cell. Cells are colored by the flow-sorting distribution from which
they were isolated. (C,D) Two-dimensional clustered heat maps of the single-cell mutation data
(T1000), with clusters labeled by color above. Nonsynonymous mutations are labeled in bold, while
synonymous mutations are labeled in regular text. Populations of flow-sorted aneuploid tumor cells
that were sequenced on the T1000 panel from the primary and metastatic tumors are shown on
the right-hand side and labeled as “pop.” Blue bars represent mutations, light gray bars represent ref-
erence alleles, dark gray bars represent false-positives, and white bars represent sites with low or no
coverage (NA).
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Identification of a rare APC progenitor subclone

Unexpectedly, the single-cell mutational data in CRC1 identified a
rare subpopulation of three tumor cells (PD16, PD41, PDD93) that
had diploid copy number and contained a single heterozygous
mutation in APC (c.4012C>T, p.Gln1338Ter). This mutation was
present in all of the subsequent primary andmetastatic tumor cells
(Fig. 3C). The three early tumor cells did not show evidence of har-
boring any of the other point mutations (e.g., KRAS, TP53, TCFL2)
that were present in the major primary and metastatic tumor cells
(Fig. 4). Interestingly, the heterozygous APC mutation was found
to be homozygous in the aneuploid tumor cells, likely due to a
hemizygous copy number loss that occurred in the later stages of
tumorigenesis. These data suggest that APC was likely the first
“hit” that initiated the colorectal tumor in this patient. The ances-
tral clones subsequently underwent genome-wide aneuploidy and
expanded to form both the primary and metastatic tumors.

Copy number substructure of primary and metastatic tumors

To investigate the copy number substructure of the primary and
metastatic tumors, we performed SNS (Navin et al. 2011). In total,
32 single nuclei were analyzed from CRC1 and 42 single nuclei
from CRC2. Single-cell copy number profiles were calculated
from read depth at 220-kb resolution (Methods). To identify clus-
ters of cells that shared similar profiles, we appliedMDS, which re-
vealed three major clusters, representing normal diploid cells (N),

primary tumor cells (P), andmetastatic tumor cells (M) in both pa-
tients (Fig. 5A,B). InCRC1, theprimaryandmetastatic clusterswere
discrete, suggestingonlyminor genomic variation.However, in pa-
tient CRC2, the metastatic cluster showed considerable cell-to-cell
variation (ρ = 0.80, mean Spearman correlation) compared to the
primary tumor cell cluster (ρ = 0.88, mean Spearman correlation),
indicating a significant amount of intra-tumor heterogeneity in
the metastasis.

We performed a more detailed analysis of the copy number
substructure using one-dimensional hierarchical clustering
(Methods). In patient CRC1, the primary and metastatic cells
shared highly similar profiles, including amplifications of several
known oncogenes (EGFR, MET, CDK6, CDX2, WNT2, CDK8,
ZNF217) and deletions of tumor suppressors (CTNNB1, APC,
TP53, SMAD4, TP53) that have previously been reported in colon
cancer (Fig. 5C; Xie et al. 2012). However, the primary tumor cells
in CRC1 also contained an additional amplification of
Chromosome 17q (ERBB2) and a 1.4-Mb homozygous deletion
on Chromosome 4q32.3 that were not present in the metastasis.
Similarly, the metastatic tumor cells showed an additional 47-Mb
amplification on the X Chromosome that included the androgen
receptor.

In patient CRC2, we identified a single cluster of normal dip-
loid cells (N), a single cluster of major clones in the primary tumor
(P), and twomajor clones (M1,M2) in the liver metastasis. The pri-
mary andmetastatic tumor cells shared a large number of common

Figure 4. Early APC progenitor cells detected in CRC1. Raw sequencing reads and variant alleles are plotted for three diploid APC progenitor cells (PD16,
PD41, PDD93) and one representative primary tumor cell (PA74) from the major tumor population at genomic regions where mutations were detected in
APC, KRAS, TP53, and TCF7L2. Plots and read counts were generated using the Integrative Genomics Viewer (IGV).
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CNAs, including amplification of oncogenes including CDX2,
CDK8, JAK3, and ZNF217 (Fig. 5D). The CNAs distinguishing the
primary and metastatic tumor cells included an additional ampli-
fication of Chromosome 9 (JAK2, CDKN2A) in the primary cells
and amplifications of Chromosomes 3q, 8q, and 13p. While the
primary tumor cells were highly clonal, the metastatic tumor cells
clustered into two major subpopulations (M1, M2) that were dis-
tinguished by an amplification on 3q (ETV5, PIK3CA, BCL6) in
M1 and amplification of Chr 8 inM2. To further investigate the ge-
netic relationship between single-cell copy number profiles, we
constructed phylogenetic trees using FastME (Nilsen et al. 2012;

Lefort et al. 2015), which were highly consistent with the topolo-
gies of the hierarchical trees. (Supplemental Fig. S5).

Phylogenetic analysis reveals late dissemination

and polyclonal seeding

To reconstruct clonal lineages duringmetastatic dissemination, we
computed phylogenetic mutation trees using SCITE (Jahn et al.
2016). SCITE uses a Markov chain Monte Carlo (MCMC) algo-
rithm to construct optimalmutation trees and then reattaches sin-
gle cells at the nodes (seeMethods). In patient CRC1, themutation

Figure 5. Single-cell copy number profiling of primary and metastatic tumors. (A,B) MDS plots of single-cell copy number profiles from patients CRC1
and CRC2. (C,D) Hierarchical one-dimensional clustered heat maps of single-cell integer copy number profiles from patients CRC1 and CRC2. Heat map
colors correspond to the integer copy number values in the single cells. Clusters of cells with similar profiles are labeled in colored bars on the left-hand side,
and cancer genes are annotated on the x-axis.
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tree shows a linear series of mutations that occurred as the primary
tumormass evolved and seeded themetastatic tumor (Fig. 6A). The
tumor initiated through a first “hit” in APC and subsequently
evolvedmutations in the KRAS oncogene, TP53 tumor suppressor,
and CCNE1 oncogene, as well as six additional somatic mutations,
and expanded to form the primary tumormass. In the late stages of
the primary tumor lineage, monoclonal seeding occurred, in
which a single clone diverged and migrated to the liver, where it
established the metastatic tumor. The point of metastatic diver-
gence occurred after the acquisition of POU2AF1 mutation in the
primary tumor lineage.

In patient CRC2, we observed a more complex metastatic lin-
eage in which late dissemination occurred as well as polyclonal
seeding of two independent clones that established the metastatic
liver tumor (Fig. 6B). The primary tumor initiated from the nor-
mal cells via mutations in TP53, APC, NRAS, and CDK4. These ear-
ly truncal mutations (and others—e.g., TOX, MYH11) lead to the
expansion of the primary tumor mass. Data from the bulk exome
sequencing also support that these heterozygous mutations are
truncal and occurred early in the lineage, with mutation frequen-
cies of approximately 0.5. The first clone disseminated after ac-

quiring a mutation in MN1 in the primary tumor and seeded
the metastatic liver tumor, where the tumor cells continued to
evolve a number of metastasis-specific mutations (e.g., IL7R,
PIK3CG, SPEN and F8, PTPRD). During this time, the primary tu-
mor cells continued to evolve in parallel with the first metastasis
and acquired additional mutations in CHN1, FHIT, ATP7B and a
second nonsense mutation in the APC tumor suppressor. The
advanced primary tumor cells subsequently underwent a second
seeding event after acquiring the ATP7B mutation. The second
clone evolved in parallel to the first clone in the metastatic
liver site and acquired additional mutations in NR4A3, FUS,
PRKCB, HELZ, and TSHZ3 leading to further expansion of the liv-
er tumor mass.

To more rigorously evaluate the accuracy of the SCITE tree
and evidence for polyclonal seeding in CRC2, we performed a stat-
istical analysis of the four “bridge mutations” in the primary tu-
mor (CHN1, FHIT, APC, and ATP7B) that occurred between the
first and second metastatic seeding events (Supplemental Fig.
S6). We performed a mixture-model Bayesian binomial test
(Methods) of the reference and variant read counts to determine
if the bridge mutations were present in the primary tumor and

Figure 6. Mutational lineage trees of single cells duringmetastasis.Mutational trees calculated from single-cell mutation data using SCITE showing clonal
lineages during tumor progression andmetastasis. (A) Mutational lineage tree from patient CRC1 with amonoclonal seeding event. (B) Mutational lineage
tree from patient CRC2 with polyclonal seeding events and an independent tumor lineage. Gray circles represent single cells, while blue boxes represent
mutations.
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the second metastasis but absent in the first metastasis, as indicat-
ed by the SCITE tree. The resulting probability heat map and read
count data suggest that all four mutations were present in the pri-
mary tumor and provided strong evidence that FHIT and ATP7B
were present in 10/13 and 13/13 tumor cells in the second metas-
tasis and absent in the firstmetastasis (detected in only 1/15 and 1/
15 cells), supporting two independent seeding events. However,
this analysis also showed some uncertainty regarding the place-
ment of the APC and CHN1 in the SCITE tree lineages, which
may have not occurred between the first and second metastatic
seeding events. We also investigated whether the four bridge mu-
tations may have been lost in the second metastasis due to chro-
mosomal deletions or LOH. Our data show that the copy
number states did not change in the first and second metastasis
(APC, CN = 3; ATP7B, CN = 4; CHN1, CN = 3; FHIT, CN = 2) and
that the B-allele frequencies did not support copy-neutral LOH
for these mutations in metastasis 1 (CHN1 = 0.279, FHIT = 0.245,
APC = 0.268, ATP7B = 0.33), suggesting that their absence is un-
likely to be explained by chromosomal loss.

To better understand the potential error rates based on the or-
dering of the SCITE tree, we calculated genotype matrices
(Supplemental Fig. S7; Methods). Our data suggest that the false
negative error rate for CRC1 is 7.89%, while the false positive
rate is 1.52%. In CRC2, these data suggested a false negative error
rate of 12.56% and a false positive error rate of 1.74%. These error
rates are low for single-cell DNA sequencing data and suggest that
the technical noise does not greatly confound the inference of the
tree topologies.

Integrated phylogenetic trees

To better understand the timing of the CNA events relative to the
mutational lineages, we integrated the two phylogenetic trees
(Supplemental Fig. S8). In CRC1, these data suggest that themajor-
ity of CNA events were acquired early in the tumor lineage, after
the APCmutations occurred. However, to integrate the copy num-
ber and mutation data in CRC2, we first needed to determine
which copy number subpopulations (M1 and M2) matched the
two mutation subpopulations (first, second). To address this ques-
tion, we performed a statistical analysis of the sequence read den-
sity data for a marker (Chr 3q) in the single-cell mutation data that
distinguished the CNAprofiles. Our data showed that the coverage
depth was significantly increased on Chr 3q (P = 0.006081) in the
tumor cells from the first metastasis relative to the secondmetasta-
sis, suggesting that it corresponded to theM1 copy number subpo-
pulation (Supplemental Fig. S9). After integrating the two trees,
the inferred copy number and mutation tree in CRC2 suggested
that at least two major genomic instability events occurred: one
event occurred at the earliest stages of tumor evolution, while
the other event occurred in the primary tumor, after both meta-
static seeding events.

Evolution of an independent primary tumor lineage

In patient CRC2, the single-cell mutation trees revealed an unex-
pected lineage that evolved independently and in parallel to the
main tumor lineages (Fig. 6B). This rare subpopulation consisted
of nine diploid tumor cells that evolved mutations in ALK, ATR,
EPHB6, NR3C2, and SPEN and did not share any mutations with
the major primary or metastatic aneuploid tumor cells (e.g., APC,
NRAS, or TP53). These diploid tumor cells did not achieve preva-
lence in the primary tumor mass, nor did they metastasize to the
liver. In summary, these data suggest that eight tumor cells repre-

sent a completely independent lineage that can be traced back to a
different initiating cell in the normal colon tissue and evolved in
parallel to the main tumor lineage.

Discussion

In this study, we applied single-cell DNA sequencing, exome se-
quencing, and targeted deep-sequencing to study clonal evolution
during metastatic dissemination in two colon cancer patients. In
both patients, our data support a late-dissemination model of me-
tastasis, in which the primary tumor cells evolved for an extended
period of time and acquired many mutations (e.g., KRAS, NRAS,
APC, and TP53) and CNAs prior to disseminating to distant organ
sites. The late-dissemination model is consistent with genomic
data from pancreatic cancers (Yachida et al. 2010) and prostate
cancers (Gundem et al. 2015) that report metastatic clones emerg-
ing in the later stages of primary tumor growth. In contrast to bulk
sequencing methods, our single-cell data were able to distinguish
between the self-seeding (bidirectional migration) and early-dis-
seminationmodels ofmetastasis, for whichwe found no empirical
evidence.

Amajor question in the field is whethermetastatic tumors are
seeded from a single clone (monoclonal seeding) or frommultiple
clones (polyclonal seeding) over the course of the disease. The data
fromCRC1were consistent withmonoclonal seeding; however, in
CRC2, we observed polyclonal seeding of two independent clones
that established the metastatic liver tumor. The first clone dissem-
inated after acquiring many of the salient driver mutations (APC,
NRAS, TP53, CDK4) in the middle of the primary tumor lineage,
while the second clone evolved additional mutations prior to
disseminating to the liver. These data are consistent with a multi-
region sequencing study inwhich bothmonoclonal and polyclon-
al seeding were observed in different prostate cancer patients
during metastasis (Gundem et al. 2015).

Our single-cell sequencing data revealed several unexpected
findings. In CRC1, we identified a rare subpopulation of diploid
cells (3/112) that carried a heterozygous nonsense mutation in
APC but showed no evidence of any other somatic mutations.
This APC mutation represents the “first hit” that initiated tumor-
igenesis in the colon epithelium and subsequently gave rise to the
primary tumor and liver metastasis. Interestingly, these cells were
diploid, suggesting that they had not yet undergone the complex
aneuploid rearrangements observed in tumor cells. These data
are consistent with the original model of colon cancer progres-
sion proposed over two decades ago, which posited that APC
was the first hit that initiated colon cancer, prior to KRAS and
TP53 mutations (Fearon and Vogelstein 1990). What is surprising
is that these progenitor subclones remained in the advanced car-
cinoma at a relatively high frequency (2.6%) and were not out-
competed by other tumor clones, suggesting that they had a
high fitness.

Another unexpected observation was an independent tumor
lineage in CRC2. In the primary tumor, we observed a small
subpopulation of diploid tumor cells that harbored a completely
different set of mutations than the main tumor lineage. This inde-
pendent subpopulation did not achieve prevalence in the primary
tumor mass and did not metastasize to the liver. Phylogenetic
analysis suggests that the tumor cells can be traced back to a differ-
ent initiating normal cell in the colon tissue. These data are in con-
trast to the vast majority of tumor lineage studies published to
date, which frequently (98.4% in 312 patients) report a set of trun-
cal mutations that can be traced back to a single initiating normal
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cell (Gerlinger et al. 2012; Yates and Campbell 2012; Newburger
et al. 2013; Wang et al. 2014; Zhang et al. 2014; McPherson et al.
2016). However, our independent lineages data are consistent
with a few uncommon reports (∼1.6% of 312 patients) on tumor
lineages, including deep-sequencing data of eyelid skin
(Martincorena et al. 2015) and multiregion sequencing data from
a single patient with lung cancer (de Bruin et al. 2014), a single pa-
tient with prostate cancer (Boutros et al. 2015), and two patients
with multifocal prostate cancer (Cooper et al. 2015).

A late-disseminationmodel has several important clinical im-
plications. This model is consistent with the clinical observation
that treatment and surgical excision of local disease (even when
the primary tumor is very advanced) can prevent the development
of metastatic disease. Such intervention would not be possible in
the context of an early-disseminationmodel, in which tumor cells
would have already disseminated to distant organ sites at the ear-
liest stages of the local disease. Another important clinical implica-
tion is that late dissemination implies that the primary and
metastatic tumors share the majority of clinically relevant muta-
tions. This is an important feature, since it means that a diagnostic
biopsy of the primary tumor will be representative of themetastat-
ic sites. Indeed, this was the case in bothCRCpatients inwhich the
driver mutations (APC, KRAS, TP53, NRAS, CDK4) were found in
both the primary and metastatic organ sites. These data are also
consistent with previous NGS data that have reported a high con-
cordance of primary and metastatic tumor mutations (Brannon
et al. 2014; Tan et al. 2015).

While pioneering, our study also has several limitations. One
notable limitation is that we analyzed only two CRC patients, and
therefore our study represents a proof-of-concept that late-dissem-
ination models of metastasis can occur in colon cancer but should
not be interpreted as a common model in all CRC patients yet.
Second, our studies examined only a single metastatic site (in
the liver), and therefore we did not investigate seeding events to
other common organ sites, such as the lung, brain, bones, or peri-
toneum. This will require samples collected from a warm autopsy
program (Lindell et al. 2006).

In closing, this study provides an unprecedented view of me-
tastasis in colon cancer patients at single-cell genomic resolution.
Our study provides a comprehensive framework for studying the
complexities of metastatic lineages that can be extended to
many human cancer types. Such studies will soon become feasible
as the cost and time for analyzing the genomes of thousands of sin-
gle cells in parallel is realized through the development of new
high-throughput technologies (Baslan et al. 2015; Leung et al.
2016; Zahn et al. 2017; Vitak et al. 2017). In the near future, the
translation of these technologies into clinical practice will un-
doubtedly have a profound impact on reducing morbidity in can-
cer patients with metastatic disease.

Methods

Patient samples

Frozen tumor samples from two CRC patients (CRC1 and CRC2)
were obtained from the MD Anderson Tumor Bank. CRC1 is a
77-yr-old CRC patient with invasive, moderately-to-poorly differ-
entiated adenocarcinoma with liver metastasis. CRC2 is a 64-yr-
old CRC patient with invasive, moderately differentiated adeno-
carcinoma with liver and lung metastasis. Both patients had met-
astatic disease diagnosed synchronously with the primary tumor.
Neither patient received chemotherapy until after resection of
both the primary and metastatic tumors.

Single-cell isolation

Nuclear suspensions were prepared from frozen tumors using an
NST/DAPI buffer (800 mL of NST [146 mM NaCl, 10 mM Tris
base at pH 7.8, 1 mM CaCl2, 0.05% BSA, 0.2% Nonidet P-40, and
21 mM MgCl2]), 200 mL of 106 mM MgCl2 and 10 mg DAPI.
Sectioned tumors were cut and minced using surgical blades in a
Petri dish in NST/DAPI buffer in the dark. Samples were filtered
through a 36-µm plastic mesh to a 5-mL polystyrene tube.
Nuclei were then sorted using FACSAria II (BD Biosciences), and
single nuclei were deposited into individual wells on a 96-well
plate for whole-genome amplification.

Single-cell genome amplification

For copy number profiling, single cells were amplified using DOP-
PCR following the SNS protocol as previously described (Navin
et al. 2011; Baslan et al. 2012). For mutational profiling, single-
cell multiple-displacement-amplification (MDA) was performed
using a 2:3 ratio of lysis buffer (200 mM KOH, 50 mM
DTT):1× PBS solution. Each well of a 96-well plate was loaded
with 3.5 µL of solution. After flow-sorting, the plate was centri-
fuged at 130g for 1 min at room temperature, after which 1.5 µL
of neutralization buffer (900 mM Tris-HCl, 300 mM KCl, 200
mMHCl) was added into each well, and the plate was centrifuged.
MDAwas performed usingΦ29 polymerase (NEB, M0269L) with 1
mM hexamers (with phosphorothioate modification at the last 2
bases) and 1 mM dNTP (NEB, N0446S). The final reaction volume
was 50 µL per well. TheMDA incubationwas time-limited to 3 h at
30°C and 65°C for 3 min. A detailed description of the protocol
and buffers was published by Leung et al. (2016).

Library construction

Whole-genome amplified DNA was fragmented using the Covaris
Sonicator to 250 bp and purified using a Zymo DNA Clean &
Concentrator Column kit (Zymo, D4004) according to the manu-
facturer’s instructions. Barcoded next-generation sequencing li-
braries were constructed using the NEBNext end repair model
(NEB, E6050L), dA-tailing module (NEB, E6053L), and quick liga-
tionmodule (NEB, E6056L). Libraries were amplified via PCR using
NEBNext HiFi2x PCRmix (NEB,M0541L). Targeted capture for sin-
gle cells was performed using Nimblegen SeqCap EZ Choice
Library, according to Leung et al. (2016). Exome capture for
CRC1 population was performed on single-cell sequencing librar-
ies using the TruSeq Exome Enrichment kit (Illumina, 15013230)
following the manufacturer’s instructions. Exome capture for
CRC2 population was performed using a Nimblegen SeqCap EZ
Exome V2 kit (Roche, 05860482001). For exome or targeted-cap-
ture sequencing, samples were sequenced on a 100 pair-end
flow-cell on the Illumina HiSeq 4000 system. For copy number
profiling, barcoded libraries were pooled using equimolar concen-
trations and sequenced at 76 single-read flow-cell on the Illumina
HiSeq 2000 system.

Sequencing data alignment and processing

The FASTQ file was de-multiplexed for each single-cell library us-
ing our custom software (deplexer.pl). Individual FASTQ files
were aligned to the human genome reference assembly (HG19) us-
ing Bowtie 2 (Langmead and Salzberg 2012) and converted to BAM
files using SAMtools (Li et al. 2009). BAM files were processed by
Picard to remove PCR duplicates. Realignment was performed
around indel regions using the Genome Analysis Toolkit (GATK)
(McKenna et al. 2010). Sequencing reads with mapping quality
lower than 40 were removed. To calculate coverage metrics, we
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used a custom Perl script (cal-coverage_metrics.pl), which uses
BEDTools (Quinlan and Hall 2010) to calculate coverage depth
and breadth. Coverage breadth is defined as the percent of the ge-
nome or targeted regions with at least 1× depth. The aforemen-
tioned scripts can be downloaded from the Leung et al. paper
published in Nature Protocols (Leung et al. 2016).

Variant detection and filtering

GATKwas used to detect variants and generate amulticell VCF file.
GATK was also used to recalibrate variant quality scores. We
ran GATK with default parameters for depth (maximum read cov-
erage = 250×). Mutations were filtered out and removed from anal-
ysis by consensus filtering (mutation must occur in at least four
cells) and clustered regions (multiple mutations are detected with-
in a 10-bp window). Variant annotation was performed on the
VCF4 file using ANNOVAR (Wang et al. 2010). For matched
normal bulk sample sequencing, each site with less than or equal
to 100× was required to have at least 6× coverage, in which at least
three reads were required to have variants. For sites with more
than 100× coverage depth, at least 3% of reads were required to
have variants. For single-cell samples, sites were required to
have a minimum of 10× coverage. For 10–20× coverage, we re-
quired at least 10 variant reads. For 20–100× coverage depth, at
least 30% of reads were required to have variants. For sites with
100–250×, at least 20% of reads were required to have variants.
Sites excluded due to low (<10×) coverage were labeled as missing
values (NA), whereas other nonvariant sites were labeled as refer-
ence. Please see Supplemental Figure S2 for a detailed flow chart of
these steps.

Clustered mutation heat maps

Single-cell mutation heat maps were constructed using two-di-
mensional hierarchical clustering, using the heatmap.2 function
from the “gplots” package available on CRAN (R Core Team
2013) (www.cran.r-project.org). The row and column distance
was calculated by using dist(method = “Euclidean”) function and
clustering was performed using hclust(method = “ward”). A pass-
code was assigned, with trinary values (0,1,2, representing homo-
zygous reference, heterozygous, and homozygous variant,
respectively) to generate a genotype matrix from the VCF file.
The single-cell genotype matrix was filtered to reduce technical
errors.

First, variants were removed if they appeared three times or
less across all single cells. Second, a variant was retained only if it
has coverage in at least 75% of cells in the heat map. Variants
were then filtered if they occurred four times or less across all cells.
For the remaining variant sites, we recovered true mutations at
low-coverage regions, requiring a minimum of at least three vari-
ant reads to call the mutation. For sites with more than 100×, at
least 3% of reads were required to be variant reads. Finally, false-
positive errors in regions of poormappability were annotated as er-
rors (dark gray) in the final heat map.

Single-cell integer copy number calculation

Single-cell copy number profiles were calculated from sequence
read depth as previously described using a “variable bin” method
(Navin et al. 2011; Baslan et al. 2012). The variable binning inter-
vals reduce mappability bias and false detection of CNA events
when compared to scaffolds using fixed length-fixed bins. Theme-
dian genomic length spanned by each bin is 220 kb. A blacklist of
systematic aberrant bins was filtered to remove false-positive am-
plifications near the centromeric and telomeric regions. Absolute
ratios were calculated as read counts per bin divided by themedian

read counts across all genomic bins, followed by Loess normaliza-
tion to correct for GC bias (Baslan et al. 2012). For population seg-
mentation, bincounts were divided by themean bincount for each
cell, and log2 was taken, to produce log-ratio values. For each pa-
tient, all log-ratio profiles were segmented by estimating shared
changepoints using the R “copynumber” package, version 1.10.0
with regularization parameter γ = 40 (Nilsen et al. 2012). Copy
number profiles were scaled to have a mean equal to the ploidy
of the originating tumor, as estimated by flow cytometry.
Profiles that lacked CNAs were assumed to be tumor stroma and
were scaled to have ploidy 2. Scaled values were rounded to the
nearest integer to yield integer copy numbers using custom R
scripts (Supplemental Scripts).

Single-cell copy number clustering

Pairwise Euclidean distances were calculated from the single-cell
copy number data matrix (log2[ratio + 0.1]) and then used for hier-
archical clustering using ward-linkage in R using the heatmap.3
function from the “gplots” package available on CRAN (www.
cran.r-project.org; www.r-project.org).

Balanced minimum evolution copy number tree

To normalize segment size and prevent large segments from con-
tributing too much weight, the vector of segment means was
used to construct an event matrix for phylogenetic inference.
Pairwise distances were calculated using Manhattan distance rath-
er than Euclidean distance to avoid large contributions frommea-
surement error in small segments. Phylogenetic inference was
performed using the balanced minimum evolution algorithm
(Lefort et al. 2015), implemented in the R package “ape,” version
3.5 (Paradis et al. 2004).

Multidimensional-scaling analysis

MDSplotswere constructing in R using the single-cell genotype bi-
nary matrix with columns as single cells and rows as mutations.
Classicalmultidimensional scalingwas performedwith the follow-
ing command: cmdscale(x, eig = TRUE, k = 2).

Inference of single-cell mutation trees

Mutational trees of single cells were calculated using SCITE and re-
drawn using Cytoscape (Shannon et al. 2003; Cline et al. 2007;
Jahn et al. 2016). The binary genotype matrix of single cells and
point mutations with missing values was used for tree inference.
SCITE was run using a false-positive rate of 10%, a prior for allelic
dropout ratewithmean 30%and standard deviation 10%, one rep-
etition, a chain length of 500,000, a 10% chance of proposing a
new allelic dropout rate in each MCMC step, and a seed of 225
for the random number generator. Cells were attached to the re-
sulting mutation tree in their maximum likelihood positions,
breaking ties by placing them closer to the root, using a modified
version of SCITE’s output code and a custom R script
(Supplemental Scripts). The resulting phylogenetic tree was plot-
ted using Cytoscape.

Bayesian probabilities for deep-sequencing variants

The significance of differences in amplicon deep-sequencing of
the normal and primary was determined using Bayesian hypothe-
sis testing. Variant read counts were modeled using the beta-bino-
mial distribution:

VN,i � Beta-Binomial a = t pN,i,b = t (1− pN,i),n = nN,i
( )

,

VP,i � Beta-Binomial a = t pP,i,b = t (1− pP,i),n = nP,i
( )

,
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where i is the index of a mutation, VN,i and VP,i are the number of
variant reads observed in the normal and primary, respectively,
nN,i and nP,i are the total number of reads sequenced, pP,i and pN,i
are the unknown true variant read frequencies, and τ is an un-
known shared overdispersion parameter. If neither the normal
nor the primary have the variant, then pP,i and pN,i are expected
to be equal and represent the false-positive rate of the sequencing
experiment.

For Bayesian hypothesis testing, the prior distribution used
was

Ii = Bernoulli
1
2

( )
,

pN,i � Uniform(0,1)
if Ii = 1 : pP,i = pN,i

if Ii = 0 : pP,i � Uniform(0,1)
t � Exponential(l = 0.01),

where Ii is the indicator function of pP,i = pN,i. τhas a vague prior ap-
propriate without prior information about its likely values. The
probability that there is no true difference is P(Ii = 1). P(Ii = 1) was
calculated jointly for all mutations i with an MCMC algorithm.
The MCMC was computed with rJAGS (https://cran.r-project.
org/web/packages/rjags/index.html) (Supplemental Scripts). One
chain was used, with 1000 adaption iterations, and a chain length
of 1000. Significant difference was defined as P(Ii = 1)≤ 0.05.
For comparing amplicon deep-sequencing of the normal to
exome sequencing of the metastasis, the same method was used
to determine significance but with separate overdispersion param-
eters for the two samples to reflect the difference between the
experiments.

deepSNV for deep-sequencing variants

Statistical significance of observed variants was calculated using
deepSNV version 1.16.0, which detects variants assuming a beta-
binomialmodel (Gerstung et al. 2012). To estimate the overdisper-
sion parameter of the model, data from the targeted sites plus
flanking regions of 20 bp on either side were used. deepSNV was
used to calculate P values for the null hypothesis that the
targeted variant was equally frequent in primary tumor and con-
trol using separate one-tailed likelihood ratio tests for each
strand orientation and combining the P-values using Fisher’s
method. The code applying deepSNV is included in Supplemental
Scripts.

Posterior probability for bridge mutations

“Bridge mutations” were defined as those mutations occurring
between the two metastatic seeding events in CRC2 and estimat-
ed as the mutations between the two branchpoints in the muta-
tion tree. Cells sequenced with the T1000 panel were used for
the analysis. Cells sorted from the aneuploid peak were grouped
into categories of “primary,” “first metastasic seeding,” and “sec-
ond metastasic seeding” on the basis of their attachment posi-
tions in the mutation tree. Reference and variant read counts
were retrieved for these mutations. For ease of visualization, cells
in the matrix of read counts were colored according to an esti-
mate of posterior probability that a variant is present. Posterior
probabilities were calculated using the following statistical mix-
ture model:

Vij �
Beta-Binomial a = tfj,b = t(1− fj),n = nij

( )
if Iij = 0

Beta-Binomial a = tcj,b = t(1− cj),n = nij

( )
if Iij = 1

⎧⎨
⎩

where i is the index of a cell, j is the index of a mutation, Vij is
the number of variant reads in cell i at mutation j, τ is an over-
dispersion parameter, φj is the false-positive rate (probability that
a read carries mutation j given that it is from a reference site), ψj

is the true variant allele frequency of mutation j in individual
cells (assumed to be the same for each cell carrying the muta-
tion), nij the total number of reads sequenced at a site, and Iij
the indicator of cell i carrying mutation j.

The prior was as follows:

fj � Beta(1,7),
cj � Beta(4,4),

t � Exponential(l = 0.01),
Iij = 0 if cell i is from the diploid FACS peak,

Iij � Bernoulli
1
2

( )
if cell i is from the aneuploid FACS peak.

For each mutation j, P(Iij = 1|data) was calculated jointly for all
cells i with an MCMC algorithm. The MCMC was computed
with rJAGS (https://cran.r-project.org/web/packages/rjags/index.
html) (Supplemental Scripts). One chain was used, with a chain
length of 10,000. These posterior probabilities were used to deter-
mine colors of sites in visualizing bridge mutation variant read
counts in the heat map.

Inference of errors in single-cell genotypes

Theoretical single-cell genotypematrices were constructed by con-
sidering a cell to have amutation if the cell node is a descendant of
themutation node on the single-cell mutation tree. A site was con-
sidered to be a false-negative if it is marked as mutated in the the-
oretical genotype matrix but as not mutated in the observed
genotype matrix inferred from the data. A site was considered to
be a false-positive if it is marked as not mutated in the theoretical
genotype matrix but as mutated in the observed genotype matrix.
The matrix of errors was plotted using ggplot2 (Wickham 2009).
The R code for inferring errors is provided in the Supplemental
Scripts.

Copy number and LOH analysis of T1000 cells in CRC2

Classification of cells in the first or second metastasis was defined
by the SCITE lineage tree. To determine which metastatic sub-
clone carried a 3q amplification, ratio values for each exon
were calculated (read depth divided by average read depth of ex-
ons in cell), median ratio values within the 3q amplification re-
gion (defined as segments 30 and 31 detected from the copy
number profiles) were calculated for each cell, and the difference
between cells in the first and second metastasis was tested using a
Wilcoxon rank-sum test. Calculation of read depths was per-
formed using GNU Parallel (Tange 2011) and BEDTools
(Quinlan and Hall 2010). Heterozygous SNPs were defined as
those with at least 10 reads supporting both variant and reference
in combined bulk exome from matched normal samples. For
each bridge mutation, B-allele frequency in the first metastasis
was calculated as the average of minimum (p,1−p) across first
metastasis cells for each heterozygous SNP site on the same
copy number segment, where p is the variant allele frequency
of the SNP.

Data access

The sequencing data from this study have been submitted to the
NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.
gov/sra) under accession number SRP074289.
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