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Drug-seeking in opioid dependence is due in part to the severe negative emotion

associated with the withdrawal syndrome. It is well-established that negative emotional

states emerge from activity in the amygdala. More recently, gut microflora have been

shown to contribute substantially to such emotions. We measured gene expression in

single glia and neurons gathered from the amygdala using laser capture microdissection

and simultaneously measured gut microflora in morphine-dependent and withdrawn

rats to investigate drivers of negative emotion in opioid withdrawal. We found that

neuroinflammatory genes, notably Tnf, were upregulated in the withdrawal condition and

that astrocytes, in particular, were highly active. We also observe a decreased Firmicutes

to Bacteroides ratio in opioid withdrawal indicating gut dysbiosis. We speculate that

these inflammatory and gut microflora changes contribute to the negative emotion

experienced in opioid withdrawal that motivates dependence.

Keywords: opioid dependence, addiction, withdrawal, inflammation, amygdala, single-cell gene expression,

microflora

INTRODUCTION

Opioid dependence has grown at an alarming rate over the past decade. Rehabilitation services are
overwhelmed (Sigmon, 2014) and maintenance therapies have proven their value and limitations
(Stotts et al., 2009). These circumstances motivate investigation into non-canonical mechanisms of
addiction pathophysiology to identify novel treatment targets.

Inflammation has been shown to play a role in drug dependence (Coller and Hutchinson,
2012). Recently, opioids have been shown to increase central cytokine and chemokine
production, and the mechanisms explaining this phenomenon are coming to light (Peterson
et al., 1998; Wang et al., 2012; Jacobsen et al., 2016). Moreover, human trials suggest
that anti-inflammatory pharmacotherapies may be efficacious in treating opioid withdrawal
symptoms (Cooper et al., 2016). Opioid-induced neuroinflammation may contribute to
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analgesic tolerance (Watkins et al., 2009) and dependence (Evans
and Cahill, 2016). These findings have spurred investigation into
the effect of opioids on microglia and astrocytes: the principle
neuroimmune regulators in the central nervous system (CNS).

Areas of the CNS involved in addiction have demonstrated
differing immunologic responses to both opioid exposure and
withdrawal (Hutchinson et al., 2009). Herein, we focus on
the central nucleus of the amygdala (CeA) building on our
previous work demonstrating inflammation in the CeA in alcohol
withdrawal (Freeman et al., 2012a,b, 2013). The amygdala, and
CeA in particular, is strongly implicated in opioid dependence
(Koob, 2009a; Upadhyay et al., 2010; Lyons et al., 2013)
and is thought to be principally responsible for the negative
emotion experienced in opioid withdrawal (Koob, 2009b).
Inflammation in the amygdala has been shown to cause anxiety-
like behavior (Yang et al., 2016). The negative reinforcement
theory of addiction postulates that avoidance of these negative
emotions, and corresponding physical symptoms, motivates
opioid dependence (Baker et al., 2004; Koob, 2009a; Evans
and Cahill, 2016). Additionally, the amygdala is a hub in the
interoceptive vagal circuit (Figure 9) that responds to peripheral
inflammation and gut dysbiosis—both of which have been linked
to anxiety (Critchley and Harrison, 2013; Holzer et al., 2015;
Maniscalco and Rinaman, 2018).

We gathered single neurons, microglia, and astrocytes
from the CeA of control, opioid-dependent, and naltrexone-
induced withdrawn rats using laser-capture microdissection
(LCM) (Espina et al., 2006). We measured a subset of the
transcriptional profiles of these single cells in 10-cell pools
with a microfluidic quantitative (q)PCR platform Biomark
(FluidigmTM). Transcriptional profiles from morphine-
dependent animals did not differ substantially from control
animals, but withdrawn animals differed from both. Astrocytes
demonstrated the most profound changes with many of the genes
assayed upregulated and strongly correlated in the withdrawal
condition. Strikingly, tumor necrosis factor-alpha (Tnf ) was
significantly upregulated in each cell type in withdrawal
consistent with neuroinflammation (p < 0.05 nested ANOVA).
Increased TNF-α protein was found with Western blot and
immunofluorescence. Additionally, we assayed gut microflora
in opioid dependence, naltrexone vehicle, and withdrawal and
observed a lowered Firmicutes to Bacteroides ratio in withdrawal
indicating dysbiosis.

MATERIALS AND METHODS

Animals
Two cohorts of adult male Sprague-Dawley rats (230–250 g),
n = 12 and 16, respectively, ordered from Harlan Laboratories
(Indianapolis, IN) were housed in 12 h light, 12 h dark
cycles at 20 C◦ and given free access to food. Animals were
randomly divided into three or four treatments: (1) Placebo,
(2) Morphine, (3) Naltrexone, and (4) Withdrawal. All animals
underwent subcutaneous placement of two slow-release
pellets at hour 0. Pellets in Placebo and Naltrexone animals
contained no drug. Morphine and Withdrawal animals received

insertion of two slow-release pellets containing 75 mg each
of morphine base (National Institute of Drug Abuse). Placebo
and Morphine animals were sacrificed by rapid decapitation
at 144 h (6 d) following pellet insertion producing moderate
morphine dependence (Koob et al., 1992). Naltrexone and
Withdrawal animals were given an intraperitoneal injection
of naltrexone (100 mg/Kg) at hour 144 (6 d) and sacrificed
24 h later (hour 168; 7 d). Timing and dosage were chosen
based on previous experiments demonstrating morphine
dependence and withdrawal following similar protocols
(Rasmussen et al., 1990; Scavone and Van Bockstaele, 2009).
Cohort 1 (12 animals) was used for single-cell gene expression,
Western blot, and first cecal sample analysis and did not
include Naltrexone treatment. Cohort 2 (16 animals) was
used for immunofluorescence imaging and second cecal
sample analysis.

Rapid Decapitation, Fast Staining
Protocol, LCM
Brief isofluorane anesthesia was followed by rapid decapitation
and immediate collection of brain and cecal samples. Forebrains
were frozen into Optimal Cutting Temperature (O.C.T.) for
cryostat sectioning while cecal samples were placed in conical
tubes. All samples were frozen at −80◦C to preserve nucleic
acid integrity. A rapid immunofluorescent staining protocol
developed in-house to reduce nucleic acid degradation was used
to label cell types for single-cell laser capture microdissection
(LCM) selection as explained elsewhere (Park et al., 2016).
Briefly, 10 µm thick sections were thaw-mounted onto glass
slides and exposed to 30 s of 75% ethanol to fix sliced tissue
followed by 30 s of 2% BSA (Sigma-Aldrich) in phosphate-
buffered saline (PBS) for blocking. Fixed tissue was stained
with 3% of anti-NeuN antibody (EMD Millipore, MAB377),
anti-Cd11β antibody (Genway Biotech, CCEC48), or anti-GFAP
antibody (Thermo Fischer, A-21294) as a primary stain to label
cell types. Slices were then washed with PBS containing 2%
BSA and incubated with secondary antibody Alexa-488 anti-
mouse (1:200 ratio) and DAPI (1:10000). Following a final
PBS wash, slides underwent a standard alcohol dehydration
protocol (30 s 75% ethanol, 30 s 95% ethanol, 30 s 100%
ethanol, 30 s 100% ethanol, 60 s xylenes, 4 m xylenes) and were
transferred to a desiccator for 5 m before LCM was employed
(Espina et al., 2006).

Cecal Material Collection and Analysis
Two cohorts of 12 and 16 rats were studied for these experiments.
As a pilot, the first cohort of 12—from which single brain cells
were collected—had their cecal material analyzed by microfluidic
qPCR with the aid of the Microbial DNA qPCR Array Intestinal
Infections kit (Catalog#: 330261). DNA was extracted with the
QIAamp Fast DNA Stool Mini Kit (Catalog#: 51604). The same
kit was used for DNA extraction of cecal samples from the 16
rat cohort. qPCR primers to measure cecal bacterial abundance
in second cohort were designed in-house based on literature
(Supplementary Table S7).
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Single Cell Sampling and
High-Throughput qRT-PCT
Single brain cells, 1060 neurons, 1070 microglia, and 1060
astrocytes, were collected from the central nucleus of the
amygdala using LCM as 10-cell pooled samples. Reverse
transcription generated cDNA from mRNA transcripts
(SuperScriptTM VILOTM cDNA Synthesis Kit; ThermoFisher).
cDNA was then pre-amplified (22 cycles) with 96 pairs (forward
and reverse) of PCR primers using TaqMan PreAmp Master
Mix. Expression levels of 96 genes were measured using a high-
throughput quantitative PCR platform (Biomark, Fluidigm©).
Probe-based qPCR measured the levels of the previously
amplified 96 cDNA primer. 96.96 dynamic gene expression
arrays were employed. A list of probe and primer sets is included
in Supplementary Table S1. Agarose gel electrophoresis was
used to validate primer amplicons.

Data Normalization and Analysis
We normalized expression levels using a two-step −11Ct

method (Spurgeon et al., 2008). Briefly, expression of a gene
within a single sample was measured as a raw CT value.
These values were normalized to the geometric mean of the
most stable housekeeping genes (Ldha and Actb for brain and
Pan Bacteria or Universal primer controls for gut) within that
sample. Housekeeping gene stability was determined by both
expression variance and geNorm (Vandesompele et al., 2002).
This yields−1Ct values which were thenmedian-centered across
all samples for that gene providing a −11Ct value for each
sample allowing comparison of relative gene expression values
across treatment groups and batches. All data normalization
and analysis was performed using the R (v3.2.3) programming
language. Differential expression statistics were calculated using
nested ANOVA (n = 4 animals for each treatment). Differential
abundance of microflora statistics were calculated using two-
way ANOVA. Pearson correlation coefficients were calculated
with the Harrell Miscellaneous (Hmisc) R package. Correlations
meeting a q < 0.001 are displayed as edges and thickness is based
on absolute value of the Pearson correlation coefficient (strength
of correlation). Gene correlation networks were constructed
using Cytoscape R© version 3.7.1.

Western Blot
200 µm punches from the CeA were removed from flash-frozen
forebrain hemisections (Left). Tissue homogenization occurred
in RIPA lysis buffer (1% phenylmethylsulfonyl fluoride (PMSF),
1% sodium orthovanadate and 2% protease inhibitor). Pierce
BCA Protein Assay Kit (23227, Life Technologies, Carlsbad)
was used for protein estimation of lysate. An equal amount
of protein was run on 12% SDS-PAGE (Mini-protean, Bio-
Rad, Richmond, CA, United States), blocked with 5% Blotting-
Grade Blocker (1706404, Bio-Rad, Richmond, CA, United States)
and incubated with anti-TNF-α antibody (Abcam, ab9755;
1:500) overnight at 4◦C. TBST [25 mM Tris (pH 7.60), 137
mMNaCl, and 0.1% Tween 20] was used to wash the membrane.
HRP-conjugated secondary antibody was used to probe the
membrane. Immunoreactive bands were visualized on Kodak

Image Station 440CF by chemiluminescent Clarity (TM)Western
ECL Substrate (1705060, Bio-Rad, Richmond, CA, United States).

Immunofluorescence Staining and
Confocal Microscopy
Frozen forebrains sectioned at 20 µm thickness with cryostat
were thaw mounted on glass slides. CeA and occipital lobe
regions were fixed in 4% paraformaldehyde (ElectronMicroscopy
Sciences, Hatfield, PA, United States) and rinsed in PBS three
times, 5 min each. Sections were permeabilized with 0.02%
Triton X-100 (LabChem, Zelienople, PA, United States) for
15 min. Following two 5 min PBS washes, sections were blocked
with 5% bovine serum albumin (ab7481, Cambridge, MA,
United States) (BSA) PBS for 1 hour. Overnight incubation with
primary antibody occurred at 4◦C. Primary antibody included
anti-NeuN antibody (EMD Millipore, MAB377), anti-Cd11β
antibody (Genway Biotech, CCEC48), or anti-GFAP antibody
(Thermo Fischer, A-21294) (1:100), and anti-TNF-α (Abcam,
ab9755; 1:100). Afterward, slides were washed 3 times for 5 min
each and incubated in the dark with the secondary antibody
(Goat anti-mouse IgG Alexa Fluor 488; 1:500) for 1 h and
45 min at room temperature. Following three 5 min PBS washes,
DAPI (D9542, Sigma) was applied and allowed to incubate for
15 min. Lastly, slides were washed 3 times for 5 min, mounted
with ProLong Diamond Antifade (Life Technologies, Carlsbad,
CA, United States), and stored in darkness at 4◦C. Negative
controls were imaged in absence of the primary antibody
(data not shown).

Confocal microscopy using Zeiss LSM 780mounted on a Zeiss
axio observer inverted microscope was performed with the Zeiss
ZEN 2011 software. We used lasers 405 nm (DAPI), 488 nm (cell
type), 555 nm (TNF-α), and for image acquisition. Images were
acquired at 1024 × 1024 pixel resolution, 8-bit color depth, and
an average intensity of 4 line scans of the same area.

RESULTS

We gathered 1060 neurons, 1070 microglia, and 1060 astrocytes
from the CeA of rats that were either given placebo pellets
(Placebo, n = 4), morphine pellets (Morphine, n = 4), or
experienced 24 h of acute naltrexone-precipitated morphine
withdrawal (Withdrawal, n = 4) (Figure 1A). 33,088 individual
PCR reactions occurred using the microfluidic BioMarkTM

platform (Fluidigm©) (Figures 1A,B). Strict quality control was
employed to limit inaccuracies producing a dataset containing
13,650 individual data points. In total, the expression of 46 gene
transcripts across 930 neurons, 950 microglia, and 840 astrocytes
were analyzed (Figure 1C). Transcripts of proteins involved in
inter and intracellular signaling, metabolism, oxidative stress, and
inflammation were measured. Expression levels were corrected
for differences in RNA input using the geometric mean of
Actb and Ldha: the most stable and least variable housekeeping
genes assayed (geNorm). Gapdh expression levels served as an
independent control. Transcript measures that failed in any
one batch due to poor signal quality or assay contamination
were excluded from the entire dataset to ensure robust analysis
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FIGURE 1 | Single-cell RT-qPCR workflow and transcriptional heterogeneity. (A) Experimental protocol (n = 4 for each condition). (B) Single-cell transcriptome data

generation. (C) Heat map shows expression of all samples across 40 assayed genes (see Supplementary Table S1 for gene primers). Rows are samples (10-cell

pools; numbers denote sample clusters) and columns are genes (letters are gene clusters for that cell type; see Supplementary Table S2). Color denotes z-score

of −11Ct expression value representing relative gene expression. (D) Linear discriminate analysis (LDA) of all samples. Circles are 10-cell pooled samples and

diamonds are centroids. A distance of 0.533 was found between Placebo and Morphine centroid points, 2.22 between Placebo and Withdrawal centroid points, and

2.12 between Morphine and Withdrawal centroid points (see Supplementary Table S3 for centroid analysis). (E) LDA of specific cell types, circles are 10-cell

pooled and diamonds are centroids. In neurons, a distance of 0.594 was found between Placebo and Morphine centroids, 1.97 between Placebo and Withdrawal

centroids, and 1.89 between Morphine and Withdrawal centroids. In microglia, a distance of 1.20 was found between Placebo and Morphine centroids, 3.01

between Placebo and Withdrawal centroids, and 2.65 between Morphine and Withdrawal centroids. In astrocytes, a distance of 0.485 was found between Placebo

and Morphine centroids, 2.31 between Placebo and Withdrawal centroids, and 2.23 between Morphine and Withdrawal centroids.

of every gene included. Single-cell collection was validated
by expression of the cell type markers NeuN, Maf, and Gfap
(Supplementary Figure S1).

Dimension reduction analyses of this dataset were used to
determine overall shifts in gene expression between treatments.

This subset of the transcriptome was not markedly altered
following 6 days of moderate morphine exposure. Linear
discriminate analysis (LDA) yielded a distance of 0.533 between
Placebo and Morphine centroid points (Supplementary Table

S3 and Figure 1D). However, global expression was altered in
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the Withdrawal condition (LDA returned a distance of 2.22
and 2.12 between centroid points of Placebo and Withdrawal
samples and Morphine and Withdrawal samples, respectively;
Supplementary Table S3 and Figure 1D). This pattern persisted
when samples were grouped by cell type (Supplementary

Table S3 and Figure 1E). Astrocytes demonstrated the
largest relative alteration of expression in opioid withdrawal
(Supplementary Table S3).

Principle components (PC) 2 and 3 showed the clearest
clustering of the data by treatments (Supplementary

Figures S2A–C). A composite weight score for each

gene (Composite Weight =

√

(

PC22 + PC32
)

) is listed in

Supplementary Table S4. Notably, Tnf and Gfap were among
the most heavily weighted genes for each cell type and in

Withdrawal. The endogenous opioid precursor gene Pdyn also
contributed substantially to the observed separations.

Cell diagrams (Figure 2) display relative gene expression
(median of −11Ct values) denoted by color organized by gene

function or protein location across the three treatments within
each cell type. Neurons increased expression of transcriptional
regulators and inflammatory receptors in Withdrawal while
microglia decreased expression of antioxidant genes. Genes

assayed in astrocytes mostly demonstrated increased expression
in Withdrawal. Interestingly, Mapk1, an important regulator of
substance dependence physiology (Reyes-Gibby et al., 2015), had
decreased expression in withdrawal in all three cell types.

The Figure 3 heatmap also plots relative expression bymedian
−11Ct values within a gene with genes clustered by expression

patterns. Generally, Placebo and Morphine samples had similar
median expression values and genes were either induced or
suppressed in Withdrawal. Of note, Tnf, cFos, and Nos3 were

upregulated in Withdrawal in all three cell types. Strikingly,
astrocytes markedly upregulated most genes assayed suggesting
that astroglia play a principle role in the neurochemical processes
of opioid withdrawal in the CeA. We also note that expression
of a group genes in microglia, including the inflammatory
receptors Cxcr1, Tlr2, and Tnfrsf1a, was induced in Morphine
but not Withdrawal. Similarly, Tnf expression in microglia was
induced inMorphine and thenmore so byWithdrawal. Microglia
are thought to be the only cell type in the CNS that express
the opioid-responsive toll-like receptor 4 (TLR4) (Wang et al.,
2012). This may explain why morphine-induced gene expression
was only observed in microglia. This finding was unexpected
and further suggests that astroglia drive the neuroinflammation
observed in opioid withdrawal.

A Pearson correlation coefficient analysis was used to
construct gene expression correlation networks to visualize
gene expression correlation (Figure 4). Edge numbers and
differences in edge numbers are listed in Supplementary

Table S5. Nos1, Ptges3, and Tnf have zero correlations with
the other genes assayed in the neuronal Morphine network.
In the neuronal Withdrawal network, these genes are highly
connected suggesting their expression is dysregulated in opioid
withdrawal syndrome (Supplementary Table S5). In microglia,
Tnf also demonstrated an increase in edge number from
Morphine to Withdrawal conditions further implicating TNF-
α signaling in the CeA in opioid withdrawal syndrome. In
neurons and microglia, we also observe a general inversion
of expression from Placebo and Morphine to Withdrawal
in the two gene clusters (top vs. bottom) apparent in the
Placebo and Morphine networks. This dichotomy suggests that
the regulation of gene expression in Withdrawal is under a
substantially different set of constraints than the homeostatic

FIGURE 2 | Cell diagram of gene expression changes across treatments and cell types. Colored squares represent relative gene expression (median −11Ct value

for gene denoted in panel (A). Location of squares represents cellular localization or function of the corresponding protein. (A) Legend. (B) Panels display relative

gene expression represented by color across treatments and cell types. Yellow is high expression, blue is low expression, white is neutral expression.
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FIGURE 3 | Heat map. Color represents relative gene expression (median −11Ct values) for labeled gene. Genes are clustered based on expression behavior

across treatments. Gene clusters are denoted on the left as lower-case letters [(A) withdrawal induced; (B) withdrawal suppressed; (C) withdrawal rebound; (D)

morphine induced; and (E) no change).

state in Placebo or allostatic state of Morphine. This may
be an indicator of the importance of the withdrawal process
itself in driving a pathologic state in the amygdala and
contributing to dependence.

Astrocyte networks tell a different story. The total number of
gene correlations (edges) increased substantially in Withdrawal
(Supplementary Table S5). This is consistent with the above
findings suggesting CeA astrocytes are highly active in opioid
withdrawal. Further investigation into the role of astroglial in
the CeA in opioid dependence and withdrawal is required, but
based on these findings, we conclude that astrocytes are central to
altered glial-neuronal signaling and inflammation in this process.

Differential gene expression statistics (nested ANOVA) can
be found in Supplementary Table S6. Boxplots of expression

levels of cFos, Tnf, Ptges3, and Mapk1 are displayed in Figure 5

(see Supplementary Figure S3 for plot with data points).
Astrocytes have a significant increase in cFos expression in
Withdrawal (nested ANOVA, n = 4 animals, ∗p < 0.05) further
supporting their activation in opioid withdrawal. Increased
cFos expression was found in withdrawal neurons as well, but
not significant (p = 0.09). Every cell type had a significant
increase in Tnf expression inWithdrawal withmicroglia showing
an almost significant increase (p = 0.07) from Placebo to
Morphine. Increased CeA TNF-α protein in Withdrawal was
validated by Western blot analysis and immunofluorescence (IF)
(Supplementary Figures S4–S6). Western blot and IF imaging
confirmed that TNF-α was present at low levels in Morphine and
higher levels in Withdrawal. IF imaging showed TNF-α signal
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FIGURE 4 | Gene correlation networks. Pearson correlation was performed on the −11Ct values within a treatment and cell type. Nodes denote genes and their

color signifies relative expression levels (median −11Ct value for each gene). Edges denote expression correlations; thickness signifies strength of correlation (the

absolute value of the Pearson correlation coefficient). Correlations that met a q < 0.001 cut off are displayed. Black edges are positive correlations and green edges

are negative correlations. Gene correlation networks were constructed using Cytoscape R© version 3.7.1.

in the extended amygdala region only. Surrounding regions
and the occipital lobe which was assayed as a negative control
(not shown) did not show TNF-α IF. Cell-type staining did not
strongly implicate a specific cell type responsible for TNF-α but
TNF-α staining was mostly concentrated around neurons.

Ptges3 demonstrated the strongest differential expression
of all genes assayed. This transcript codes for the p23 protein
which acts a cochaperone protein with heat shock protein
90 (Hsp90) (Felts and Toft, 2003), is a prostaglandin E2
synthesis enzyme (Tanioka et al., 2000), and functions as an
RNA binding protein in macrophages (Liepelt et al., 2016).

We found it substantially downregulated in neurons and
microglia in opioid Withdrawal. Heat shock proteins are
known to be differentially expressed in opioid dependence
and withdrawal but the functional significance of low Ptges3
expression is unknown (Ammon et al., 2003; Rodriguez
Parkitna et al., 2004). Mapk1 (Erk2) expression was also
decreased in Withdrawal in neurons (p = 0.06) and microglia
but not significantly. We show Mapk1 here as the best
example of a gene that demonstrated bimodal expression
by astrocyte subphenotypes in Withdrawal as seen in
Figure 6A density plots.
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FIGURE 5 | Boxplots of select genes demonstrating significant differential gene expression. Statistics were calculated using nested ANOVA (∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.0001, n = 4 animals for all treatments). See Supplementary Figure S3 for bar plots showing individual samples. See Supplementary Table S6 for all

nested ANOVA p-values.

FIGURE 6 | Density plots and subphenotype heat maps. Color denotes relative expression and is derived from −1Ctt values normalized to the mean of Placebo

expression. (A) Density plots show bimodal expression distribution among withdrawal samples for some genes in some cell types. (B) Heat maps comparing

subphenotypes of Withdrawal neurons. (C) Heat map comparing subphenotype of Withdrawal microglia. (D) Heat maps comparing subphenotypes of Withdrawal

astrocytes.
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FIGURE 7 | Relative abundance of gut microflora from rat cohort 1. Heat map

displays relative abundance of bacterial species (−11Ct values). Rows are

bacterial species and columns are samples from different rats. ∗p < 0.05

Withdrawal compared to Morphine, #p < 0.05 Withdrawal compared to

Placebo; two-way ANOVA n = 4 animals for each treatment.

Density plots forMapk1 expression in neurons and astrocytes
reveal that Mapk1 expression segregates into two groups
of Withdrawal samples: high and low expressing groups
(Figures 6B,D). We observe the same phenomenon in cFos
expression in neurons and astrocytes and in Ptges3 expression
in microglia (Figures 6B–D). Figures 6B–D compares a
subset of the expression profile of high-cFos expressing
Withdrawal neurons to low cFos-expressing Withdrawal
neurons. Notably, low-expressing cFos Withdrawal neurons
had very low Oprm1 expression which may account for
their non-reactivity in opioid withdrawal indicated by low
cFos. In astrocytes, high cFos-expressing Withdrawal samples
demonstrate a phenotype characterized by a general increase
in expression of the genes displayed (Figure 6B) further
suggesting these astrocytes in particular are highly active. This
subphenotype analysis illuminates the importance of singe-cell
studies and the cellular subphenotypes that may be missed by
tissue-level sampling.

Based on the emerging evidence of the influence of
gut microflora on emotions and behavior, we measured the
relative abundance (qPCR) of gut microbiota in both rat
cohorts. The first set of rats showed significant upregulation
of species Bacteroides thetaiotaomicron, Enterococcus faecalis,
Enterococcus gallinarum, and Bacteroides vulgatus species in
opioid withdrawal (Figure 7). Interestingly, E. faecalis and
B. vulgatus are associated with inflammatory bowel disease
while B. thetaiotaomicron is thought to be anti-inflammatory
(Kelly et al., 2004; Scott et al., 2013). We confirmed these
preliminary findings with the second cohort of rats and
further identified bacterial phyla, class, genii, and species that
were induced or suppressed by opioid withdrawal (Figure 8

and Supplementary Table S8). The two major phyla that
comprise mammalian gut microflora, Firmicutes and Bacteroides,
shifted in opposite directions lowering the Firmicutes to
Bacteroides ratio (Placebo = 1:0.75, Morphine = 1:1.03,
Naltrexone = 1:0.42,Withdrawal = 1:4.67;Table 1) inWithdrawal
which is an established marker of inflammation and dysbiosis

(Tamboli et al., 2004; Collins, 2014; Sampson et al., 2016;
Rowin et al., 2017). The subgroups of these phyla shifted
in the same direction as the phyla validating this finding.
The Bifidobacterium genus and Faecalibacterium prausnitzii,
which also have established anti-inflammatory properties, were
also suppressed in Withdrawal (Figure 8; Sokol et al., 2008;
O’Callaghan and van Sinderen, 2016). These alterations in
gut microfloral abundance may influence the observed gene
expression and inflammatory changes in the amygdala via the
interoceptive vagal circuit (Figure 9).

DISCUSSION

The central nucleus of the amygdala (CeA) is a limbic hub
involved in autonomic regulation, emotion, and motivated
behavior, and has been strongly implicated in opioid dependence
(Koob, 2009a; Upadhyay et al., 2010). We found that 6 days
of chronic moderate morphine exposure does not substantially
influence the transcriptional state of single neurons, microglia,
and astrocytes in the CeA but that morphine withdrawal does.
Strikingly, astrocytes demonstrated the most profound shift
in the measured subset of the transcriptome. In addition,
significant upregulation of the proinflammatory cytokine Tnf
was observed in opioid withdrawal in all three cell types
assayed suggesting local paracrine signaling in the CeA during
opioid withdrawal is shifted toward a neuroinflammatory
state. Increased TNF-α protein was confirmed with Western
blot and immunofluorescence.

Inflammation, and TNF-α in particular, causes cellular
hyperexcitability by increasing resting membrane potential
(Schäfers and Sorkin, 2008). We also find decreased expression of
the Kv4 potassium channel subunit Kcnip2 and GABAA receptor
subunit Gabrb1 in neurons supporting this development.
Taken together, along with the decreased expression seen in
antioxidant genes Cat and Gpx3, and increased expression
of cFos and proinflammatory Il6st, these findings indicate
that the CeA experiences deleterious glial-neuronal signaling
during opioid withdrawal that may lead to increased and
dysregulated neuronal firing. Moreover, these findings
are consistent with our previous work on the effects of
alcohol withdrawal on gene expression in the amygdala
(Freeman et al., 2012a,b, 2013).

Unexpectedly, astrocytes demonstrated the most altered
expression profiles and strongest gene expression correlation
in opioid withdrawal. This is compelling in light of the
finding that anxiety-like behavior elicited by microinjection
of chemokines into the amygdala is mediated by astrocyte
activation (Yang et al., 2016). Anxiety-like behavior in
rodents and reports of severe anxiety, fear, and drug cravings
in humans during opioid withdrawal is well-established
(Swift and Stout, 1992; Harris and Aston-Jones, 1993).
We speculate that these observations are linked—that the
negative emotion experienced in opioid withdrawal is driven,
in part, by neuroinflammatory glial-neuronal signaling in
the CeA. Our findings, in context with the work of others,
support this conjecture. For example, astrocyte TNF-α has
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FIGURE 8 | Relative abundance of gut microflora from rat cohort 2. Barplots display relative abundance of bacterial species (−11Ct values). Error bars are standard

error. #p < 0.1, ∗p < 0.05, ∗∗p < 0.008, ∗∗∗p = 0.0009; two-way ANOVA n = 4 animals for each treatment. (A) Withdrawal induced microbes. (B) Withdrawal

suppressed microbes.

TABLE 1 | Firmicutes to Bacteroides ratio across all treatments.

Placebo Morphine Naltrexone Withdrawal

Firmicutes (F) median −11Ct value −0.487 0.359 0.151 −0.726

Bacteroides (B) median −11Ct value −0.741 0.391 −0.424 2.943

Normalization factor (NF) 1.487 0.641 0.849 1.726

(F+NF) : (B+NF) 1 : 0.75 1 : 1.03 1 : 0.42 1 : 4.67

Frontiers in Neuroscience | www.frontiersin.org 10 July 2019 | Volume 13 | Article 665

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


O’Sullivan et al. CeA Gene Expression in Opioid Withdrawal

FIGURE 9 | Interoceptive vagal circuit and visceral-emotional neuraxis. (A) Interoceptive vagal afferents relay the state of the gut to the nucleus tractus solitarius

(NTS). This information is subsequently relayed to the amygdala and influences emotional states. Gut-derived blood-borne factors are shown as another important

aspect of the gut-brain connection. (B) A simplified cartoon representation showing the integrative roles of the nucleus tractus solitarius (NTS) and the central

nucleus of the amygdala (CeA) in emotion, stress, and autonomic regulation. Many anatomical and functional connections are omitted for clarity (HPA axis,

hypothalamic-pituitary-adrenal axis).

been shown to increase AMPA receptor trafficking to the
plasma membrane in neurons which may serve to strengthen
anxiogenic synapses in the amygdala (Beattie et al., 2002;
Coller and Hutchinson, 2012). Likewise, magnetic resonance
imagining indicates anisotropy in amygdalar-specific pathways
in opioid-dependent patients (Upadhyay et al., 2010). Prevalent
use of anxiolytic benzodiazepine drugs in opioid dependence
further implicates negative emotion in opioid withdrawal
(Jones et al., 2012). We suggest astrocyte activation in
the CeA during opioid withdrawal may be a key driver of
these observations.

In addition, we assayed gut bacteria for all four treatments
and found large differences in the relative abundance of assayed
microflora in Withdrawal. The Firmicutes phyla, one of two
major phyla that comprise the mammalian gut microbiota
and an established anti-inflammatory marker, and its two
major subgroups—Clostridium coccoides and Clostridium
leptum had decreased abundance in Withdrawal (Figure 8).
The Butyricicoccus genus and Butyricicoccus pullicaecorum
also part of the Firmicutes phyla and anti-inflammatory, were
suppressed in Withdrawal as well (Eeckhaut et al., 2013).
Thus, suppression of Firmicutes in opioid withdrawal is
observed at the phylum, subgroup, and species level. The
anti-inflammatory Bifidobacterium genus and F. prausnitzii
were also suppressed in Withdrawal (Sokol et al., 2008;
O’Callaghan and van Sinderen, 2016). Bacteroides, the
second major phyla of the human gut microbiota along

with Firmicutes, and its major subgroups—Bacteroides fragilis,
B. vulgatus, and B. thetaiotaomicron—were significantly
increased in opioid withdrawal (Figure 8). Thus we present
here for the first time to our knowledge evidence that
opioid withdrawal decreases the Firmicutes to Bacteroides
ratio: an established marker of gut microflora dysbiosis
(Tamboli et al., 2004; Collins, 2014; Sampson et al., 2016;
Rowin et al., 2017).

It is unclear how the gut microflora changes observed here
influence opioid withdrawal syndrome or vice versa. Opioid
withdrawal syndrome involves severe nausea and diarrhea, and
the withdrawn rats had diarrhea and decreased food intake
likely altering gut microflora. Moreover, an interoceptive circuit
connecting the gut to the nucleus tractus solitarius (NTS)
via the vagus nerve has been demonstrated to convey the
state of the gut to the limbic system (Figure 9; Maniscalco
and Rinaman, 2018). Afferents are the focus here though
top-down efferents are likely involved. The NTS has strong
bidirectional connections to the CeA, and we speculate that
these simultaneous observations may be linked. That is, the
effect exogenous opioids have on the gut via endogenous
gut opioid receptors shifts gut microflora, especially in opioid
withdrawal, such that the negative emotion experienced in
opioid withdrawal syndrome is compounded. We are not the
first to suggest gut dysbiosis may be contributing to negative
reinforcement in substance dependence (de Timary et al., 2015;
Skosnik and Cortes-Briones, 2016).
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Negative reinforcement models posit that avoidance of
unpleasant physical and emotional withdrawal symptoms
motivates substance dependence. Our findings are consistent
with this model. Increased activity in the amygdala can lead to
negative emotion and autonomic dysregulation—both of which
are associated with opioid and alcohol withdrawal and may drive
drug-seeking (Tovote et al., 2015).
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FIGURE S1 | Cell type marker expression is increased in samples of that cell type.

Bar plot displays median −11Ct expression values. Neurons are purple, microglia

are yellow, astrocytes are green. Error bars show standard error. ∗p < 0.05,
∗∗∗p < 0.0003. Tukey’s honest significance test.

FIGURE S2 | Principle Component Analyses. All plots show principle component

(PC) 2 on the x-axis and PC 3 on the y-axis. Circles are 10-cell pooled samples

and diamonds are centroids. See Supplementary Table S3 for centroid analysis.

(A) All samples. A distance of 1.65 was found between Placebo and Morphine

centroid points, 6.90 between Placebo and Withdrawal centroid points, and 5.50

between Morphine and Withdrawal centroid points. (B) Plots are grouped by cell

type. In neurons, a distance of 1.00 was found between Placebo and Morphine

centroids, 6.40 between Placebo and Withdrawal centroids, and 5.42 between

Morphine and Withdrawal centroids. In microglia, a distance 2.43 was found

between Placebo and Morphine centroids, 8.76 between Placebo and Withdrawal

centroids, and 7.72 between Morphine and Withdrawal centroids. In astrocytes, a

distance of 1.25 was found between Placebo and Morphine centroids, 4.48

between Placebo and Withdrawal centroids, and 3.30 between Moiphine and

Withdrawal centroids. (C) Plots are grouped by treatment. No centroid analysis

performed.

FIGURE S3 | Bar plots of select genes demonstrating significant differential gene

expression. Error bars are standard error. Statistics were calculated using nested

ANOVA (#p < 0.1, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.0001 n = 4 animals for all

treatments).

FIGURE S4 | TNF-α Western blot. Western blot of central nucleus of the

amygdala tissue shows increased TNF-α protein in Withdrawal treatment.

FIGURE S5 | Immunofluorenscent evaluation of opiold withdrawal-induced

Inflammatory response 20x. Representative images of TNF-α reactivity in the CeA

(n = 4 each condition and cell type). Red scale in lower right comer is 20 µm

4′-6-diamidino-2-phenylindole (DAPI) stained nuclei blue. TNF-α stained in red. (A

to D) Neurons are stained green with neuronal nuclear antigen (NenN). (E to H)

Microglia are stained green with CD11β). Panel (F) displays moderate TNF-α

staining in the CeA and outside of the CeA in the lower right corner are microglia

outside of the amygdala that were not surrounded by TNF-α staining. (I to L)

Astrocytes ate stained green with glial fibrillary acidic protein (GFAP).

FIGURE S6 | Immunofluorenscent evaluation of opioicl withdrawal-induced

inflammatory response zoom-in. Representative images of TNF-α reactivity in the

CeA (n = 4 each condition and cell type). 4′-6-diamidino-2-pheuylindole (DAPI)

stained nuclei blue. TNF-α stained in red (A to D) Neurons are stained green with

neuronal nuclear antigen (NeuN). (E to H) Microglia ate stauied green with CD

11β). (I to L) Astrocytes are stained green with glial fibiillary acidic

protein (GFAP).

TABLE S1 | Gene transcript primers.

TABLE S2 | Heat map gene clusters.

TABLE S3 | PCA and LDA centroids and distances.

TABLE S4 | Principle component composite scores.

TABLE S5 | Gene network edge comparisons.

TABLE S6 | Nested ANOVA p-values.

TABLE S7 | Gut microbe primers.

TABLE S8 | Microbe abundance p-values.

TABLE S9 | Raw Ct brain cell expression data.

TABLE S10 | Normalized brain cell gene expression data.
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