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Single-cell lineage tracing by integrating CRISPR-
Cas9 mutations with transcriptomic data
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Recent studies combine two novel technologies, single-cell RNA-sequencing and CRISPR-

Cas9 barcode editing for elucidating developmental lineages at the whole organism level.

While these studies provided several insights, they face several computational challenges.

First, lineages are reconstructed based on noisy and often saturated random mutation data.

Additionally, due to the randomness of the mutations, lineages from multiple experiments

cannot be combined to reconstruct a species-invariant lineage tree. To address these issues

we developed a statistical method, LinTIMaT, which reconstructs cell lineages using a

maximum-likelihood framework by integrating mutation and expression data. Our analysis

shows that expression data helps resolve the ambiguities arising in when lineages are inferred

based on mutations alone, while also enabling the integration of different individual lineages

for the reconstruction of an invariant lineage tree. LinTIMaT lineages have better cell type

coherence, improve the functional significance of gene sets and provide new insights on

progenitors and differentiation pathways.
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R
econstructing cell lineages that lead to the formation of
tissues, organs, and complete organisms is of crucial
importance in developmental biology. Elucidating the

lineage relationships among the diverse cell types can provide key
insights into the fundamental processes underlying normal tissue
development as well as valuable information on what goes wrong
in developmental diseases1–3. Traditionally, heritable markers
have been utilized for prospective lineage tracing by first intro-
ducing them in a cell and then using them to track its descen-
dants3. Such studies leveraged diverse markers, such as viral DNA
barcodes4, fluorescent proteins5, mobile transposable elements6,
Cre-mediated tissue-specific recombination7, and more. Other
methods relied on retrospective lineage tracing by using naturally
occurring somatic mutations8,9, microsatellite repeats10 or epi-
genetic markers11. While these approaches provided valuable
insights, they are often limited to a small number of markers and
cells and due to the lack of coupled gene expression information,
they cannot characterize the diverse cellular identities of the
tracked cells and their relation to the lineage branching1.

Recent advances in single-cell transcriptomics (scRNA-seq)
allow the profiling of thousands of individual cells and the
identification of cell types at an unprecedented resolution12–14.
Cost-efficient and scalable technologies provide large-scale
scRNA-seq datasets that can be used to identify gene expres-
sion signatures of diverse cell types and to curate catalogs of
cellular identities across tissues13,15,16. While some of these
datasets have been used to infer developmental lineages17,
methods for such inference rely heavily on strong assumptions
regarding expression coherence between developmental stages,
which may not hold in all cases17,18. Moreover, these approaches
alone are unable to recover intermediate cell types and states
making it difficult to reconstruct the early developmental lineages
in an adult organism18,19.

Very recently, new experimental techniques that simulta-
neously recover transcriptomic profiles and genetic lineage mar-
kers from the same cell have been introduced20–22. One of the
earliest methods using such approach is scGESTALT20, which
combines the CRISPR-Cas9-based lineage tracing method termed
GESTALT23 with droplet-based single-cell transcriptomic pro-
filing. scGESTALT inserts Cas9-induced stochastic (random)
mutations to a genomic CRISPR barcode array at multiple time
points. The edited barcodes are then sequenced and used for
reconstructing a lineage tree based on Maximum Parsimony
(MP) criterion24. Cell types are independently inferred based on
scRNA-seq data. Another method is ScarTrace22, which utilizes
identical target sites located on separate transgenes for introdu-
cing CRISPR-Cas9 mutations followed by SORT-seq sequencing
to capture the transcriptome. Lineage trees are then reconstructed
by using the MP principle on the mutation data.

While these and similar methods have been successfully
applied to a number of organisms20,21, they encompass several
computational challenges. First, the random mutation data used
for reconstructing the MP lineage is noisy and often saturated
making it difficult to separate different cell types, especially
at later stages. Even though expression information is collected
for all genes in each cell, to date the reconstruction of the lineage
tree solely depends on the stochastic Cas9-induced mutations. As
a result, the resulting lineage tree sometimes fails to separate
different types of cells and places similar cell types on
distant branches. Further, multiple tree topologies can have the
same parsimony score based on mutations making the recon-
struction more challenging. In addition, the random nature of the
induced mutations restricts the lineage reconstruction to each
individual and mutation data from multiple individuals cannot be
combined for inferring a single lineage tree based on multiple
experiments.

To improve the reconstruction of lineages from CRISPR-Cas9
mutations and scRNA-seq data, we developed a statistical
method, Lineage Tracing by Integrating Mutation and Tran-
scriptomic data (LinTIMaT) that integrates mutational and
transcriptomic data for reconstructing lineage trees in a
maximum-likelihood framework. LinTiMaT employs a likelihood
function for evaluating different tree structures based on muta-
tion information. It then defines a likelihood optimization pro-
blem which combines the likelihood score for the mutation data
with Bayesian hierarchical clustering25, which evaluates the
coherence of the expression information such that the resulting
tree concurrently maximizes agreement for both transcriptomic
data and genetic markers from the same cell. The tree space is
explored by a heuristic search algorithm that first infers a lineage
tree based on mutation information and further refines it based
on both mutation and expression information. Finally, LinTiMaT
also employs an algorithm for integrating lineages reconstructed
for different individuals of the same species for inferring an
invariant lineage tree. We applied LinTIMaT to both, simulated
mutation data where ground truth is known and to zebrafish
datasets generated using two different technologies20,22. As we
show, by integrating transcriptomic and mutational data, LinTI-
MaT was able to improve the reconstruction of lineages when
compared to MP method. In addition, we used LinTIMaT to
combine data from multiple individuals for reconstructing an
invariant lineage. As we show, such invariant lineage further
improved on each of the individual lineages in terms of both clade
homogeneity and functional assignment for the cells residing on
the leaves of the lineage tree.

Results
Overview of LinTIMaT. An overview of LinTIMaT is shown in
Fig. 1. We assume that the cell lineage is a rooted directed tree
(Fig. 1a), root of which denotes the initial cells that do not contain
any marker (or editing event). The leaves of this tree denote the
cells from which the mutated barcodes and RNA-seq data have
been recovered. The CRISPR-Cas9 edits are acquired on the
branches of the lineage tree as the single-cell zygote transforms
into an adult organism. For expression data, the method assumes
that cells under an internal node can either display similar
expression profile (low variance owing to similar cell type) or two
or more different expression profiles (high variance) if they later
split into multiple cell types. Supplementary Fig. 1 shows the
generative process assumed by LinTIMaT.

LinTIMaT reconstructs the lineage tree by maximizing a
likelihood function that accounts for both mutation and
expression data. The likelihood function imposes a Camin-
Sokal parsimony criterion for each synthetic marker. The
probability associated with a transition of mutation state for a
marker along a branch of the lineage tree is computed based on
the abundance of the marker in the single cells. To compute the
expression likelihood based on the transcriptomic data, the
lineage is modeled as a Bayesian hierarchical clustering (BHC)25

of the cells and the marginal likelihoods of all the partitions
consistent with the given lineage tree are computed based on a
Dirichlet process mixture model. To optimize the tree topology,
we employ a heuristic search algorithm, which stochastically
explores the space of lineage trees.

The above algorithm reconstructs trees for a specific CRISPR-
Cas9 mutation set. To integrate trees resulting from repeat
experiments of the same organism, LinTIMaT further recon-
structs a species-invariant lineage tree (Fig. 1b). Our model
assumes that a subset of the lineages (and cells) are conserved
between different individuals of the same species. Our invariant
lineage reconstruction algorithm attempts to identify such
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invariant groups of cells based on both, their similar expression
pattern and their branching history. After determining the
clusters that are preserved in all the individual lineages (based
on expression similarity), the method starts with an initial greedy
matching and iterates to minimize an objective function

consisting of two distance functions, the first is aimed at
minimizing the disagreement between the topology of the
invariant lineage and the individual lineages while the second
distance is minimized for improving the matching of the
preserved cell clusters. See “Methods” for complete details.

a

b
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Benchmarking LinTIMaT using a Caenorhabditis elegans
dataset. We first tested whether the underlying assumptions
LinTIMaT is based on, namely that gene-expression information
can be used to reduce errors in mutation data for lineage
reconstruction, actually hold. For this, we used a well-resolved
exact lineage from Caenorhabditis elegans26. To benchmark
LinTIMaT, we combined experimental C. elegans scRNA-seq data

with simulated CRISPR-Cas9 mutation data. scRNA-seq data was
obtained from Tintori et al.27 who profiled the 16-cell embryos of
C. elegans. Since we know the lineage for these cells (Fig. 2a), we
could use it to simulate CRISPR-Cas9 mutations based on the
method proposed by Salvador–Martínez et al.28. Simulated
datasets emulated potential errors encountered in a CRISPR-
based lineage tracing experiment. These include issues related to

Fig. 1 Overview of LinTIMaT. a LinTIMaT reconstructs a cell lineage tree by integrating CRISPR-Cas9 mutations and transcriptomic data. In Step 1,

LinTIMaT infers top scoring lineage trees built on barcodes using only mutation likelihood. In Step 2, for all cells carrying the same barcode, LinTIMaT

reconstructs a cellular subtree based on expression likelihood. In Step 3, cellular subtrees are attached to barcode lineages to obtain cell lineage trees and

the tree with the best combined likelihood is selected. Finally, LinTIMaT uses a hill-climbing search for refining the cell lineage tree by optimizing the

combined likelihood (Step 4). b To reconstruct a species-invariant lineage, LinTIMaT first identifies cell clusters that are preserved in all individual lineages

and then performs an iterative search that attempts to minimize the distance between individual lineage trees and the invariant tree topology. As part of

the iterative process, LinTIMaT matches preserved clusters in one individual tree to preserved clusters in other individual tree(s) such that leaves in the

resulting invariant tree contain cells from all individual studies. See Methods for complete details.

a b

c d

Fig. 2 Benchmarking on C. elegans lineage. a 16-cell embryo lineage for Caenorhabditis elegans. scRNA-seq data for each leaf (cell) was obtained from27

and included 6 replicates for each cell. b Comparison of LinTIMaT, Camin-Sokal Maximum Parsimony, and Neighbor-joining when varying the mutation

rates. The number of possible mutational states was set to 8. Fixed mutation rate was used for each CRISPR target. Each box plot summarizes results for

six replicates with varying simulated CRISPR mutation data and experimental scRNA-seq data. c Comparing lineage reconstruction methods when

mutation rate varies between different target sites. d Comparison of accuracy of lineage reconstruction by LinTIMaT, Camin-Sokal Maximum Parsimony,

and Neighbor-joining in the presence of mutation dropout. Fixed mutation rate, μ= 0.15 was used for all targets. For b–d each box-and-whisker plot

summarizes results for six replicates, where the box shows the interquartile range (IQR, the range between the 25th and 75th percentile) with the median

value, whiskers indicate the maximum and minimum value within 1.5 times the IQR, also shown are outliers as black dots.
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variability in the mutation rate (μ) for each cell division, site-
specific variability in mutation rates for different target sites and
dropouts of CRISPR mutations which refer to erasing some of the
earlier lineage mutations by later ones29, see Methods for details.
The lineage reconstruction performance of LinTIMaT on this C.
elegans benchmark dataset was compared against that of the
Camin-Sokal MP method, which was used on the scGESTALT
dataset20 for reconstructing lineage trees from CRISPR mutation
data and the neighbor-joining (NJ) method for reconstructing
phylogenetic trees30. The accuracy of lineage reconstruction was
measured based on a metric used in28 and Robinson-Foulds (RF)
distance31 between the true lineage tree and the inferred lineage
tree (see Methods for details).

Figure 2b compares LinTIMaT, MP, and NJ for varying
mutation rates. For all values of mutation rates, LinTIMaT
achieved higher accuracy in lineage reconstruction compared to
that of MP and NJ. For lower mutation rates (μ ≤ 0.15),
LinTIMaT achieved upto 41.64% improvement in mean lineage
reconstruction accuracy over that of MP, upto 29.45% improve-
ment over that of NJ and lower RF distance compared to the FP
and FN distances for the trees inferred by MP and NJ
(Supplementary Fig. 2). Performance of MP and NJ improved
with an increase in mutation rate but even for datasets with
higher mutation rates (μ ≥ 0.2), LinTIMaT was able to achieve
better lineage reconstruction accuracy (upto 12.9% and 16.57%
improvements over MP and NJ respectively) (see Supplementary
Discussion for more details). Next, on datasets with mutation rate
differing between sites, LinTIMaT achieved higher accuracy
(13.56–30.37% improvement, Fig. 2c) and lower RF distance
compared to that of MP and NJ (Supplementary Fig. 3) indicating
its robustness to higher complexity in the CRISPR mutational
history. Erasure of some of the earlier lineage records (i.e.
CRISPR mutation dropouts)20 have been shown to have
significant impact on the lineage reconstruction accuracy28. To
analyze LinTIMaT’s performance in the presence of dropouts, we
simulated datasets with different dropout rates for a fixed
mutation rate (expected number of dropout events in the cell
lineage, ϵd= {1, 2, 3}, μ= 0.15). For all settings, LinTIMaT
achieved better accuracy (Fig. 2d) and smaller RF distance
(Supplementary Fig. 4) compared to MP and NJ (see Supple-
mentary Discussion for details). LinTIMaT was also able to
consistently obtain higher accuracy compared to MP and NJ for
ϵd= 2 and mutation rate varying from μ= 0.05 to μ= 0.3
(Supplementary Fig. 5).

LinTIMaT recovers convergent and divergent differentiation.
During development, cells with distinct developmental history
can converge onto the same mature cell type (convergent dif-
ferentiation) while cells sharing close ancestry can differentiate
into distinct transcriptional states (divergent differentiation)32.
To assess LinTIMaT’s ability to handle these scenarios, we
combined zebrafish scRNA-seq data from scGESTALT20 with
synthetic CRISPR-Cas9 mutation data from simulated lineage
of 100 cells containing convergent and divergent
differentiation.

For convergent differentiation, we simulated cell lineages
where forebrain neuron cells were divided into two groups and
placed in two different subtrees (see Supplementary Discussion
for details). We simulated lineages under two different ancestry
settings for the cells (Supplementary Figs. 6a and 7a, Supple-
mentary Discussion) and simulated CRISPR mutations with
different dropout rates. For all experimental settings, LinTIMaT’s
lineage reconstruction error was lower when compared to the
error resulting from placing the two groups in the same subtree
(Supplementary Figs. 6b and 7b). Specifically, for all but 2 of the

30 simulations, LinTIMaT was able to correctly place the two
groups in different subtrees (Supplementary Figs. 6c and 7c).

Next, we assessed LinTIMaT’s ability to infer the lineage
relationship between two groups of cells that underwent divergent
differentiation (see Supplementary Fig. 8a, Supplementary
Discussion for details). Again, LinTIMaT achieved lower lineage
reconstruction error when compared to the error resulting from
placing the two groups in different subtrees (Supplementary Fig.
8b) and in all cases correctly placed the two in the same subtree
(Supplementary Fig. 8c).

LinTIMaT improves lineage tree reconstruction. Next, we
applied LinTIMaT to analyze two experimental zebrafish
datasets20,22, each using a different technology for inserting
CRISPR-Cas9 mutations. The first dataset was generated using
scGESTALT20. The second dataset was generated using
ScarTrace22.

For the scGESTALT dataset, we applied LinTIMaT on two
zebrafish samples, ZF1 and ZF3, consisting of 750 and 376 cells
respectively, from which both the transcriptome (20287 genes)
and edited barcode (192 unique barcodes, 324 unique markers for
ZF1 and 150 unique barcodes, 265 unique markers for ZF3) were
recovered. For both fishes, our analysis shows that improving the
likelihood function used by LinTIMaT increases the coherence of
the resulting cell types for each subtree, without impacting the
overall mutation likelihood (Fig. 3a and Supplementary Fig. 9).
For both fishes, LinTIMaT generated highly branched multiclade
lineage trees (Fig. 3b and Supplementary Fig. 10). Blue nodes on
the tree represent mutation events assigned while red nodes
represent the clusters identified based on gene-expression data. It
is important to note that cluster nodes do not necessarily
represent common ancestors for the cells underneath, instead,
cluster nodes are a way of grouping nearby cells together based on
expression information without affecting the mutational
ancestor-descendant relationships. ZF1 lineage tree comprised
25 major clades (level 1 tree nodes) and 113 cluster nodes, 77 of
which consisted of more than one cell. ZF3 lineage tree comprised
17 major clades and 42 cluster nodes, 33 of which consisted of
more than one cell. We compared the lineage trees reconstructed
by LinTIMaT to the trees reconstructed using MP as used in the
original study20 by comparing the accuracy of cell clusters in the
trees. In the original study, 63 transcriptionally distinct cell types
were identified using an unsupervised, modularity-based cluster-
ing approach from 6 zebrafish samples. We used this clustering to
compute the Adjusted Rand Index (ARI) for the cell clustering
obtained from a lineage tree (Methods). For MP lineage trees, the
unique barcodes represent cell clusters as mutation information
was the only basis for reconstructing the tree. For each fish, the
lineage tree reconstructed by LinTIMaT resulted in better cell
clustering (37.5% and 36.4% improvement in ARI for ZF1 and
ZF3 respectively) compared to MP results based on mutation data
alone (see Supplementary Table 1 and Supplementary Discussion
for details).

Lineage trees reconstructed using LinTIMaT showed successful
integration of mutation and expression data. When using only
mutation data, in several cases, cells belonging to very different
cell types were clustered together. In contrast, in LinTIMaT
reconstructed trees, these cells were correctly assigned to different
subtrees corresponding to different cell types. Clade a1 in ZF3
lineage tree (Fig. 3c) is one such example. In MP lineage tree for
ZF3, neural progenitor cells, hindbrain granule cells, and neurons
in ventral forebrain and hypothalamus (total 43 cells) were
clustered together under clade a1 as they shared the same
mutational barcode. The tree reconstructed by LinTIMaT
correctly separated these cells into three major subtrees
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Fig. 3 Reconstructed cell lineage for a single juvenile zebrafish brain (ZF3) from scGESTALT dataset. a Adjusted Rand Index (ARI) which measures the

agreement between cell types in the tree clusters and cell types assigned by the original paper20 as a function of the likelihood computed by LinTIMaT. The

fact that as the likelihood increases the ARI increases as well indicates that the target function of LinTIMaT is capturing biologically relevant relationships

between cells. b Reconstructed cell lineage tree for ZF3 built on 376 cells. Blue nodes represent Cas9-editing events (mutations) and red nodes represent

clusters inferred from transcriptomic data. Each leaf node is a cell, represented by a square, and its color represents its assigned cell type as indicated in the

legend. The mutated barcode for each cell is displayed as a white bar with insertions (blue) and deletions (red). c By using transcriptomic data LinTIMaT is

able to further refine subtrees in which all cells share the same barcode, which can help overcome saturation issues. d, e Example subtrees displaying

LinTIMaT’s ability to cluster cells with different barcodes together based on their cell types. In contrast, maximum parsimony puts these on distinct

branches.
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(progenitor, hindbrain, and forebrain) under the same mutational
node. Similarly for ZF1, in the original MP lineage tree, clade a
consisted of 198 cells including mostly forebrain and progenitor
cells. LinTIMaT lineage tree successfully divided them into
multiple subtrees, with the largest mainly containing forebrain
neuron cells and the other subtrees mostly containing different
types of progenitor cells (Supplementary Fig. 11a). In addition,
LinTIMaT trees also contained examples where cells belonging to
similar cell types but carrying different mutational barcodes are
identified as a cluster instead of being placed on distant branches
as done by MP. Clades b and c in ZF3 lineage tree (Fig. 3d, e)
illustrate this scenario. In the LinTIMaT lineage tree for ZF3,
clade b consists of mostly blood cells that carry different
mutational barcodes. In MP lineage tree, these cells were placed
in four distant branches, which did not convey the fact that they
belong to the same cell type. However, LinTIMaT successfully
grouped them together in a cluster of blood cells while preserving
their mutational differences as illustrated by the mutation nodes
being descendants of the cluster node. Similarly, for clade c most
of the cells were forebrain neurons that were placed in three
distinct branches in the MP lineage tree owing to their mutational
differences. LinTIMaT successfully identified these cells as a
cluster consisting of mostly forebrain neuron cells. Similar
examples can be seen in the tree reconstructed by LinTIMaT
for ZF1 (Supplementary Fig. 11b). We note that while the
LinTIMaT reconstructed lineages displayed much better agree-
ment with cell type coherence, this was not a function of ignoring
mutational data. In fact, the trees inferred by LinTIMaT had
higher likelihoods based on mutation alone (Supplementary
Table 2) when compared to the trees reconstructed by MP20. In
fact, for each fish, the MP lineage tree violated the Camin-Sokal
parsimony criterion for some mutations that resulted in a low
mutation log-likelihood. LinTIMaT lineage trees also revealed
divergent lineage trajectories (Fig. 3b, c, Supplementary
Discussion).

Following the analysis of 20, we also analyzed LinTIMaT and
MP lineage trees for spatial enrichment of clusters by selecting
groups of four or more cells. In both types of lineage trees,
clusters were spatially enriched in hindbrain, forebrain and
midbrain (Supplementary Fig. 12). However, LinTIMaT recon-
structed lineages displayed better spatial enrichment. For ZF3,
LinTIMaT lineage showed more enriched forebrain and hind-
brain clusters compared to the barcode clusters in MP tree,
whereas for ZF1, more hindbrain clusters were enriched in
LinTIMaT lineage compared to the barcode clusters in MP tree.
We also compared the lineages by assessing the functional
significance of the clusters through Gene Ontology (GO) analysis.
The clusters identified by LinTIMaT led to more significant
enrichment of more GO functions compared to the barcode
clusters in MP tree (Supplementary Fig. 13 and Supplementary
Table 6).

To assess LinTIMaT’s ability to generalize to other types of
CRISPR-mutation data, we further applied it on data generated
by the ScarTrace22 method. Similar to scGESTALT, ScarTrace
also uses CRISPR-Cas9 technology for introducing heritable
mutations, though it uses a different lineage recording system
where genomic sites located on in-tandem copies of a transgene
are targeted for inserting mutations (also called scars). For this
dataset, we applied LinTIMaT on two zebrafish samples, R2 and
R3, for which the cells were sampled from adult brain and eyes.
For each of these fishes, we selected 750 cells based on their cell
types. The mutational dataset for R2 consisted of 133 unique
barcodes and 78 unique scars, whereas that for R3 consisted of 85
unique barcodes and 50 unique scars. Applying LinTIMaT to this
data resulted in highly branched multiclade lineage trees (can be
visualized at https://jessica1338.github.io/LinTIMaT/). For

comparison, we also reconstructed lineage trees using MP for
the two fishes. Similar to our observations for scGESTALT
dataset, LinTIMaT was able to correctly separate different types of
cells that were clustered together by MP as well as cluster cells
that belonged to similar cell types but carried different mutational
barcodes. We present a number of examples for these results in
Supplementary Figs. 14–16. In addition, the lineage trees
reconstructed by LinTIMaT for the ScarTrace datasets had higher
likelihoods based on mutation alone (Supplementary Table 3)
when compared to the trees reconstructed by MP. The much
lower likelihoods of the MP trees were caused by the violation of
Camin-Sokal parsimony criterion by multiple mutations (Sup-
plementary Discussion).

LinTIMaT successfully combines data from individual lineages.
Combining CRISPR-Cas9-mutation-based individual lineage
trees is challenging since mutations are random and so differ for
the same cell types between experiments. To address this, we used
LinTIMaT to combine data from the replicates generated by
scGESTALT and ScarTrace to infer invariant lineages for the
development of juvenile zebrafish brain and the development of
zebrafish brain and eyes respectively.

For the scGESTALT dataset, LinTIMaT inferred 113 clusters
for ZF1 and 42 clusters for ZF3, out of which 33 clusters were
found to be preserved in both lineages. Using these, LinTIMaT
inferred an invariant lineage tree (Fig. 4) with 33 leaves each of
which represents a matched pair of clusters from the individual
fishes. We first evaluated the invariant lineage by computing its
Adjusted Rand Index (ARI) based on the 63 cell types obtained
by20. Our analysis showed that, despite the individual fishes
having different spatial distribution of cells (e.g., ZF1 had more
forebrain cells and ZF3 had more hindbrain cells), the ARI for the
invariant lineage (0.079) was comparable to the individual
LinTIMaT lineages (0.084 and 0.076 for ZF1, and ZF3,
respectively) and higher than both individual MP lineages
(0.061 and 0.056 for ZF1 and ZF3, respectively). While the
invariant lineage preserved some of the ancestor-descendant
relationship of the individual lineages (Supplementary Fig. 17), it
also placed similar cell clusters from different branches of the
individual trees under the same subtree (Supplementary Fig. 18).
Thus, in addition to enabling the integration of data across
experiments, by using more data, the invariant lineage tree
method also improved the placement of the matched clusters on
the individual trees themselves.

Spatial enrichment analysis revealed the matched clusters in
the invariant lineage to be enriched in all three regions of brain
(hindbrain, forebrain, and midbrain) as shown in Fig. 5a. The
invariant lineage showed more enriched hindbrain clusters
compared to that of ZF1 and more enriched forebrain clusters
compared to that of ZF3.

To determine the biological significance of the clusters
identified by the invariant lineage, we performed GO analysis
(Methods) on matched clusters that contained more than 10 cells.
We also filtered the matched clusters where the individual cluster
contained fewer than three cells. We selected all GO terms related
to the three major cell types (neuron, blood and progenitor)
present in the data (see Supplementary Tables 4, 7, and 8 for the
keywords and list of GO terms). Figure 5b illustrates the
enrichment of the GO terms in the clusters in terms of p-values.
The invariant clusters showed coherent enrichment of GO terms
for all three major cell types. For example, clusters c23
(forebrain), c17 (midbrain and forebrain), and c2 (midbrain)
had high p-value for the GO terms related to neuron but low
p-value for GO terms related to blood and progenitor. Clusters c4
and c10 consisting mostly of forebrain neurons and some
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progenitor cells showed enrichment of mostly neuron related GO
terms and some progenitor GO terms. Similar GO enrichment
was observed for cluster c30 that mostly consisted of midbrain
and hindbrain neurons and some progenitor cells. The cluster c31
consisting of mostly progenitor cells displayed more enrichment
of the progenitor GO terms. Clusters c8, and c32 that consisted
mostly of blood and progenitor cells showed enrichment of GO
terms related to these two cell types. The invariant clusters also
uncovered additional GO functions that were not enriched in
individual tree clusters (Supplementary Table 10). The coherence
of enrichment can also be observed in the proportion of the GO
terms related to the three major cell types (Supplementary Fig.
19). Clusters in the individual lineage trees also showed

enrichment of the three cell types. However, the invariant lineage
clusters uncovered more GO terms with more significant p-values
compared to the individual lineage clusters.

We further reconstructed an invariant lineage for the ScarTrace
dataset. For this data, LinTIMaT inferred 83 clusters for R2 and
90 clusters for R3; and identified 52 matched clusters, which were
used to reconstruct the invariant tree (visualized at https://
jessica1338.github.io/LinTIMaT/) with 52 leaves, each of which
represents a matched pair of clusters from the individual fishes.
To determine if the invariant clusters inferred by LinTIMaT
uncover functions coherent with the types of cells, we performed
GO analysis by selecting all GO terms related to the three major
cell types in the data (neuron, immune and eye, Supplementary

Fig. 4 Invariant lineage tree for juvenile zebrafish brain for scGESTALT dataset. The two-sided tree in the middle represents the invariant lineage tree

generated by LinTIMaT by combining the individual trees for ZF1 and ZF3. Blue nodes here represent the clusters from individual fishes (left node: ZF1, right

node: ZF3), and red nodes represent the matched invariant clusters. Each leaf node is a cell, represented by a square, and its color represents its cell type

as indicated in the legend. Subtrees illustrate examples of invariant clusters preserved in the individual lineage trees.
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Tables 5 and 9). As can be seen in Supplementary Fig. 20, the
invariant clusters showed better enrichment of GO terms for all
three major cell types. For example, in clusters c7 and c21,
neuron related GO terms were enriched. Clusters c43, c19, and
c9 showed enrichment of GO terms related to immune cell types.
Clusters c47, c11 and c52 showed enrichment of GO terms
related to eye cell types. The invariant clusters also uncovered
additional GO terms that were not identified as significant when
using the individual tree clusters (Supplementary Table 11). For
example, two invariant clusters (c33 and c44) were found to be
associated with erythrocyte and myeloid cell development
(corrected p-value ≤ 0.027). Two other clusters (c7 and c31)
were found to be associated with positive regulation of synaptic
transmission and photoreceptor cell outer segment organization
(p-values ≤ 0.004 and ≤0.0028, respectively). In both cases, cells
related to these categories were not identified in the individual
fish trees.

Discussion
Recent studies20–22 combine two complementary technologies,
CRISPR-Cas9 genome editing and scRNA-seq for elucidating

developmental lineages at whole organism level. These experi-
mental techniques rely on introducing random heritable muta-
tions during cell division using CRISPR-Cas9 and lineage trees
are reconstructed based on these mutations using traditional
phylogenetic algorithms24.

While this exciting new direction to address a decades old
problem in-vivo has already led to several interesting insights into
organ development in multicellular organisms, it suffers from
several challenges that make it difficult to accurately reconstruct
lineages and to combine trees reconstructed from repeat experi-
ments. First, the tree reconstruction is performed solely based on
recovered mutation data, which might be noisy. In addition, the
space for the mutations is limited resulting in saturation
restricting the ability to track further subdivision of cells at later
stages. Finally, due to the random nature of these mutations, it is
impossible to utilize them to reconstruct a consensus lineage tree
by combining data from repeated experiments of the same spe-
cies, in contrast to most phylogenetic studies33. While very
recently, computational methods that address some of these
challenges are being developed21,34,35, they still rely only on
mutation information.

b

a

ZF1 lineage

ZF1 lineage

ZF3 lineage

ZF3 lineage

Invariant lineage

Invariant lineage

Fig. 5 Functional analysis of cell clusters for scGESTALT datasets. a Heat map of the distribution of cell clusters for each region of the brain (columns).

Cell types were classified as belonging to the forebrain, midbrain or hindbrain, and the proportions of cells within each region were calculated for each

cluster. Each row sums to 1. Region proportions were colored as shown in key. The leftmost panel shows the heat map for the clusters in ZF1 lineage

(subsampled), middle panel shows the heat map for ZF3 lineage and the rightmost panel shows the heat map for the invariant lineage. b Heat map of the

p-values (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�log ðp valueÞ
p

, higher value means more significant) for GO terms for invariant clusters. Adjusted p-values for GO terms were obtained from g:

Profiler46. P-values are calculated using the hypergeometric distribution. P-values are adjusted using the g:SCS algorithm49. Rows represent invariant

clusters and columns represent different GO terms (Supplementary Table 8). Yellow, purple and blue columns correspond to GO terms related to neurons,

blood and progenitors respectively. The leftmost panel shows the heat map for ZF1, middle panel for ZF3 and the rightmost panel for the invariant tree. As

can be seen, the invariant tree correctly combines the unique terms identified for each tree. On one hand, it is able to identify neuron clusters, which are

well represented in ZF3 but not in ZF1. On the other hand, it is able to identify progenitor clusters which are not well represented in ZF3.
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To address these issues, we developed a statistical method,
LinTIMaT, which directly incorporates expression data along
with mutation information for reconstructing both, individual
and species-invariant lineage trees. Our method defines a global
likelihood function that combines both mutation agreement and
expression coherence.

We first used data from C. elegans for which ground truth
lineage is known to validate the underlying assumption of our
method: that expression coherence can indeed help in over-
coming mutation data noise. As we show, for several possible
noise factors that can appear in CRISPR-Cas9 lineage experi-
ments, LinTIMaT was able to successfully improve the recon-
struction of the lineage tree by using the additional expression
information. We next used LinTIMaT on more complex data.
While the ground truth for these lineages is unknown, we have
shown that the trees reconstructed by LinTIMaT are as good as
the best mutation-only lineage trees while they greatly improve
over mutation-only lineages in terms of expression coherence,
clade homogeneity and functional annotations. In addition,
by employing agreement based on expression data, we could
further reconstruct a species-invariant lineage that successfully
retained the original tree branching and cell clusters common in
each individual while improving on the individual lineages by
uncovering more biologically significant GO annotations corre-
sponding to different major cell types.

Our analysis shows that gene expression data can be very useful
for selecting between several lineages with equivalent explanation
of the mutation data. Since traditional phylogenetic maximum
parsimony algorithms24 as used in current studies20 end up
selecting a solution that is only slightly better or equivalent
compared to several competing ones (though can be very dif-
ferent), the ability to use additional information (in our case gene
expression) to select between these equally likely lineage trees is a
major advantage of LinTIMaT. LinTIMaT’s Bayesian hierarchical
model for gene expression data also provides a statistical method
for inferring cell clusters with coherent cell types from the lineage
tree. While it is not clear yet if all organisms follow the same
detailed developmental plan as C. elegans36, the ability to com-
bine lineage trees studied in multiple individuals of the same
species can lead to more general trees that capture the major
branching events for the species. In addition, invariant trees can
be used to improve branchings in the individual trees by com-
bining information from multiple experiments. To the best of our
knowledge, LinTIMaT’s solution, which is based on iteratively
matching cell clusters based on their expression, is the first to
enable the reconstruction of such invariant lineage trees from
experiments that simultaneously profile lineage recordings and
single-cell transcriptomes.

While LinTIMaT worked well on the datasets it was tested on,
there exist potential situations for which our approach might face
difficulties. It is currently unclear if cell trajectories inferred by
transcriptional state and lineage should be concordant in all cases.
As we showed, LinTIMaT can correctly identify lineage rela-
tionships even if such differences exist, but it is still possible that
in some cases the use of expression data may lead to less accurate
reconstructions. LinTIMaT uses a user defined parameter for
weighting the contribution of the mutation and expression data.
While our analysis indicates that the outcome is usually robust to
changes of this parameter, a user can change the value of the
weight parameter to reflect their belief about the importance of
the two data types for their experiments. Another potential
problem arises from our selection of clusters for reconstructing
the invariant lineage tree. Since we only use clusters observed in
all individual trees, the method may leave out several key clusters
(or lineages) if their expression levels are not well conserved
between different organisms from the same species.

The application of LinTIMaT to zebrafish brain development
illustrates its potential in delineating lineage relationships in
complex tissues. The method is general and, as we showed, can
work with data for several different related technologies. While
the joint profiling of lineage recordings and single-cell tran-
scriptomes by experimental methods such as scGESTALT laid the
foundation for generating data suitable for identifying cellular
relationships during development and disease, LinTIMaT pro-
vides a unique computational approach for utilizing such data for
accurate lineage reconstruction. As the usage of the experimental
methods expands from zebrafish to other model organisms and
human organoid samples3, LinTIMaT would serve as a powerful
component in the biologists’ toolbox in reconstructing more
accurate and detailed lineages for investigating normal as well as
pathological development.

Methods
Processing of the input data. LinTIMaT is designed for single-cell datasets in
which both edited barcode and scRNA-seq data are available from the same cell.
For scGESTALT datasets, each CRISPR-Cas9 mutation event (edit) has variable
length and a single event could span across multiple adjacent sites. To construct a
lineage tree from the mutation data we first count the number of unique synthetic
markers (Cas9 edits) that occur in the 9 mutation sites. For each cell, the mutated
barcode is represented by a binary vector of length equal to the number of unique
synthetic markers, where each bit represents the state of a synthetic marker. For
example, for ZF1 in the scGESTALT dataset there are 324 entries in this vector for
each cell. Similarly, for ScarTrace dataset, we also use a binary vector with length
equal to all unique mutations to represent the mutated barcode for each cell, and
each bit of the binary vector represents whether or not the cell contains the
mutation event in at least one of its target sites. We use the mutation data to
construct a paired-event matrix, EB ´ S for B unique barcodes and S unique editing
events (synthetic markers), and an imputed gene-expression matrix, YN ´G for N
cells and G genes.

Each row of the paired-event matrix E, corresponds to a mutated barcode (or
allele) and each column corresponds to a unique editing event. An entry ebs of E is
a binary variable that denotes the presence or absence of marker s in barcode b
(1 or 0). Each cell c is associated with one, and only one, of the B unique barcodes.
As a result, each barcode represents a group of cells. For each cell c= 1, …, N, zc
denotes the barcode b profiled for that cell, zc= b, where b ϵ {1, …, B}. Thus, the
matrix E can be transformed to an N × S matrix for N cells and S markers, where
the row c will correspond to the barcode zc associated with cell c.

The other type of data our method uses is scRNA-seq data. In general, the
method can work with any such data. For the specific datasets used in this paper,
we observed a high dropout rate (94% entries were 0). To address this issue we
tested a number of imputation methods (see “Supplementary Methods” and
Supplementary Fig. 21) and selected DrImpute37 for imputation. DrImpute first
clusters the data, and then each zero expression value is imputed with the mean
gene expression of the cells in the cluster the cell belongs to. Next, we normalized
the expression of each cell and log2-transformed the results (“Supplementary
Methods”).

Likelihood of a cell lineage tree. As mentioned in the Introduction, our method
aims to reconstruct a cell lineage tree by combining two complementary types of
data. For this, we defined a joint likelihood function for the two data types and then
search the space of possible trees for a model that maximizes the likelihood
function. We first describe the likelihood function for each of the data types and
then discuss how to perform a search for maximizing the joint likelihood to
reconstruct the most likely tree.

Cell lineage tree. We assume that the cell lineage tree is a rooted directed tree T.
The root of this lineage tree denotes the initial cell that does not contain any
marker (or editing event). The leaves of this tree denote cells profiled in the
experiment. Cells go through the differentiation process along the branches of the
lineage tree and as part of this process acquire the synthetic mutations (edits)
induced by Cas9. Some of the internal nodes in the cell lineage tree represent the
unique mutated barcodes shared by the leaves (cells) under that specific internal
node. For ease of computation, we first reconstruct a rooted binary lineage tree and
later eliminate the internal branchings that are not supported by any synthetic
mutations.

Mutation likelihood. The first component of the likelihood function evaluates the
likelihood of the cell lineage tree based on the mutation data. The mutations
induced by Cas9 are irreversible since the Cas9 protein cannot bind to the target
sites once changed. To account for this, we impose a Camin-Sokal parsimony
criterion38 on each synthetic mutation. This criterion states that each synthetic
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mutation can be acquired at least once along the lineage but once acquired they are
never lost. We also assume that the synthetic mutations are acquired independently
and parsimoniously as higher number of mutations along the branches of the cell
lineage indicates a more complex mutational history which is less likely. For a given
cell lineage tree T, we first use Fitch’s algorithm39 to assign ancestral states for
each marker to each internal node of the tree satisfying maximum parsimony. Such
an assignment, A results in the least number of mutations on the given tree. The
mutation likelihood (LM) of the cell lineage tree is then given by

LMðTÞ ¼ PðEjT;AÞ ¼
Y

S

s¼1

PðE�sjT;AsÞ ð1Þ

where E�s is the observed data for marker s which is a vector corresponding to N
values for N cells. As denotes the parsimonious assignment of ancestral states for
all internal nodes for marker s. For an internal node v with children u and w, Lvs ðAÞ
denotes the partial conditional likelihood for marker s defined by

Lvs ðA
v
s ¼ xÞ ¼ PðEv

s jT;Av
s ¼ xÞ ð2Þ

where Ev
s denotes the restriction of observed data for marker s, E�s to the des-

cendants of node v subject to the condition that Av
s ¼ x is the ancestral state for

marker s assigned by Fitch’s algorithm, x ϵ {0, 1}. Lvs gives the likelihood for marker
s for the subtree rooted at node v, given the assignment of ancestral states by Fitch’s
algorithm.

The likelihood for the full observed data E�s for marker s is given by

PðE�sjT;AÞ ¼ LrsðA
r
s ¼ 0Þ ð3Þ

where r is the root of the lineage tree. Since, the root of the tree does not contain
any synthetic mutation, Ar

s ¼ 0; 8s 2 f1; 2; ¼ ; Sg. For any internal node v with
children u and w, the partial conditional likelihood satisfies the recursive relation

Lvs ¼ PtAv
s !Au

s

Lus

h i

PtAv
s !Aw

s

Lws

h i

ð4Þ

PtAv
s !Au

s

and PtAv
s !Aw

s

denote the transition probabilities on branches that connect v

and u, and v and w, respectively. For each synthetic mutation s, we define a
transition probability matrix given by

Ps
t ¼ 1�msms01�½ ð5Þ

where ms denotes the fraction of cells harboring s and Ps
tði; jÞ denotes the

probability of transition from state i to state j along any branch of the tree. If a
mutation assignment violates the Camin-Sokal parsimony criterion (i.e. a mutation
is reversed), the log-likelihood is heavily penalized (−100000) so that LinTIMaT
prefers the tree without such violation.

For each leaf l of the tree, the partial likelihood is set to Lls ¼ 1. It is important to
note that our mutation likelihood function does not explicitly model the editing
rate at each CRISPR target.

If a mutation s is affected by dropout in some cells, the mutation state appears
to be unmutated in those cells and in effect, observed ms will be lower than the
actual mutation fraction as (true fraction of cells harboring s). For the datasets we
analyzed, we did not have an estimate of the dropout rate. If for some dataset a
good estimate of the dropout rate is available, it can be incorporated in the
transition probability matrix by modeling ms as a function of as and dropout rate
where as is modeled as a beta distributed random variable whose values are
simultaneously estimated while learning the lineage.

Expression likelihood. For the expression data likelihood, we model the lineage as
a Bayesian hierarchical clustering (BHC)25 of the cells and used the likelihood
formulation provided by BHC. BHC is a bottom-up agglomerative clustering
method that iteratively merges clusters based on marginal likelihoods. Following
several other methods we assume a diagonal matrix when computing gene
expression variance for each internal and leaf node40,41. Following BHC algorithm,
we compute the marginal likelihoods of all the partitions consistent with the given
lineage tree based on a Dirichlet process mixture model. The expression likelihood
(LE) for the complete dataset is given by the marginal likelihood for the root of the
tree and it essentially provides a lower bound on the marginal likelihood of a
Dirichlet process mixture model.

LEðTÞ ¼ PðYjTÞ ¼ Lr
G

ð6Þ

where Y is the N × G gene-expression matrix, G is the set of G genes and PðYjTÞ
is the expression likelihood for the lineage tree which is also the marginal like-
lihood (Lr

G
) for the root of the tree.

For an internal node v with children u and w, Tv denotes the subtree rooted at
v. Let Yv � Y be the set of gene expression data at the leaves under the subtree Tv

and Yv ¼ Yu
S

Yw . To compute the marginal likelihood for node v (Lv
G
), we

compute the probability of the data under two hypotheses of BHC. The first
hypothesis, Hv

1 assumes that each data point is independently generated from a
mixture model and each cluster corresponds to a distribution component. This
means that the data points y(i) in the cluster Yv are independently and identically
generated from a probabilistic model P(y∣θ) with parameters θ. Thus, the marginal

probability of the data Yv under the hypothesis Hv
1 is given by

PðYv jHv
1Þ ¼

Z

PðYv jθÞPðθjβÞdθ

1em ¼

Z

Y

yðiÞ2Yv

PðyðiÞjθÞ

2

4

3

5PðθjβÞdθ

ð7Þ

The integral in Eq. (7) can be made tractable by choosing a distribution with
conjugate prior, as discussed in Supplementary Methods.

The alternative hypothesis Hv
2 assumes that there are two or more clusters in

Yv . Instead of summing over all (exponential) possible ways of dividing Yv into
two or more clusters, we follow the strategy in BHC25 and sum over the clusterings
that partition the data Yv in a way that is consistent with the subtrees Tu and T

w.
This gives us the probability of the data under the alternative hypothesis

PðYv jHv
2Þ ¼ Lu

G
Lw
G
¼ PðYujTuÞPðYwjTwÞ ð8Þ

In Eq. (8), PðYujTuÞ and PðYwjTwÞ represent the marginal likelihoods of subtrees
rooted at nodes u and w respectively. Combining the two likelihoods of the two
hypotheses leads to a recursive definition of the marginal likelihood for the subtree
T

v rooted at the node v

Lv
G
¼ PðYv jTvÞ ¼ πvPðY

v jHv
1Þ þ ð1� πvÞPðY

ujTuÞPðYwjTwÞ ð9Þ

where πv is a parameter for weighting the two alternatives and is defined recursively
for every node. The recursive definition of πv for node v is given by

πv ¼
αΓðnvÞ

dv
; dv ¼ αΓðnvÞ þ dudw ð10Þ

In Eq. (10), α denotes a hyperparameter, the concentration parameter of the
Dirichlet process mixture model, nv is the number of data points under the subtree
T

v and Γ(. ) is the Gamma function. For each leaf l, we set the values πl= 1 and

dl= α. Also, for each leaf l, the marginal likelihood (Ll
G
) is calculated based on only

the first hypothesis

Ll
G
¼ PðYl jHl

1Þ: ð11Þ

See Supplementary Methods for discussion on how the prior is set for this model.

Combined likelihood. For a given lineage tree, the joint log-likelihood (LT)
function for the mutation and expression data is a weighted sum given by

LTðTÞ ¼ ω1logLMðTÞ þ ω2logLEðTÞ ð12Þ

The values of ω1 and ω2 are chosen so that the values of the two likelihood
components stay in the same range. In our experiments, we have used ω1= 50 and
ω2 = 1 (see Supplementary Fig. 22). ω1 and ω2 are kept as user defined parameters
whose values can be changed to reflect the prior belief about the importance of the
two types of data used by LinTIMaT.

Search algorithm for inferring lineage tree. Searching for the optimal tree
under a maximum-likelihood framework like ours is a NP hard problem42.
We have thus developed a heuristic search algorithm which stochastically explores
the space of lineage trees. The search algorithm consists of several stages as
described below.

1. In the first step, we only focus on the barcodes and search for top scoring
solutions. The search process starts from a random tree topology built on B
leaves corresponding to B unique barcodes. In searching the barcode lineage
tree, we employ the mutation likelihood function. In each iteration, a new
barcode lineage tree,T0

B is proposed from the current treeTB as we discuss
below. If the proposed tree results in a higher likelihood, it is accepted,
otherwise rejected. Instead of storing a single solution, we keep several of top
scoring barcode lineage trees.

T
½1�
B ;T

½2�
B ; ¼ ;T

½t�
B ¼ argmax

TB

LMðTBÞ ¼ argmax
TB

PðEB ´ SjTB;AÞ ð13Þ

2. Next, we utilize the expression data. As mentioned above, a barcode can be
shared between multiple cells. We thus next search for the best cellular
subtree (T b) for the set of cells associated with each mutated barcode b. We
employ hill-climbing to obtain single solution for each barcode that harbors
more than 2 cells.

T b ¼ argmax
T

PðYðcjzc¼bÞ�jT Þ 2mm8b 2 f1; ¼ ;Bg ð14Þ

3. In the third step, we construct complete cell lineage trees by attaching
cellular subtrees for each barcode to barcode lineage trees. To obtain the cell
lineage tree Ti from a barcode lineage tree T

½i�
B , for each barcode b

harboring more than two cells, we choose the cellular subtree T b inferred in
step 2 and connect its root to the leaf in T

½i�
B that corresponds to b. For a

barcode b shared by two cells, the cells are connected to the leaf
representing b in T

½i�
B as children. This gives us t full binary cell

lineage trees corresponding to t barcode lineage trees. Next, we evaluate
the total log-likelihood of each of these cell lineage trees and choose the
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best one.

T
þ ¼ argmax

Ti ;i¼1;¼ ;t

LTðTiÞ ð15Þ

We also record the best mutation log-likelihood, Lbest
M for the best cell

lineage tree and define a threshold value for mutation log-likelihood

Lthr
M ¼ Lbest

M þ thr ´Lbest
M ð16Þ

where, thr is a user-defined value close to 0.
4. In the final step, we perform another hill-climbing search to optimize the

cell lineage tree T
þ inferred in step 3 in terms of the joint likelihood

function. The search starts from T
þ and in each iteration, we propose a

new cell lineage tree T
0 from the current tree T as we discuss below. For

the new tree, we first ensure that the mutation log-likelihood of the new tree
does not go below Lthr

M . If this condition is satisfied and the total likelihood is
improved then the new lineage tree is accepted. We stop the search if the
total likelihood does not improve for a large number of iterations and return
the best lineage tree achieved so far.

Tbest ¼ argmax
T

LTðTÞ ð17Þ

Tree search. To explore the space of lineage trees, LinTIMaT employ two different
types of moves that can make small and big changes in the tree topology. For this,
we adopt two of the tree proposals described in ref. 43 for efficient exploration of
tree space for Bayesian phylogenetic inference. Both of these moves are branch-
rearrangement proposals that alter the topology of the lineage tree.

The first tree proposal is a swapping move called Stochastic Nearest Neighbor
Interchange (stNNI). In this move, we choose an internal branch as the focal
branch and stochastically swap the subtrees attached to the focal branch. This type
of move results in minimal topology change and is used only in the second step of
our algorithm that infers cellular subtree for each mutated barcode.

The second tree proposal is a pruning-regrafting move, namely Random
Subtree Pruning and Regrafting (rSPR). In this move, we first randomly select an
interior branch, prune a subtree attached to that branch, and then reattach the
subtree to another regrafting branch present in the other subtree. The regrafting
branch is also chosen randomly. This type of move can introduce a larger amount
of topology change in the tree and this is used in step 1 and 4 of our search
algorithm.

Inferring clusters from cell lineage tree. To obtain cell clusters from the inferred
lineage tree, we employ the statistical model comparison criterion provided by the
BHC model for gene expression data. For an internal node v with children u and w,
we compute the probability of the data under two hypotheses. The first hypothesis
suggests that all the cells under the node v belongs to a single cluster. We compute
the posterior probability (rv) of this hypothesis using Bayes rule:

rv ¼ PðHv
1jY

vÞ ¼
πvPðY

v jHv
1Þ

πvPðY
v jHv

1Þ þ ð1� πvÞPðY
ujTuÞPðYwjTwÞ

ð18Þ

The lineage tree can be cut at the nodes where rv goes from rv < 0.5 to rv > 0.5 to
obtain clustering of cells.

Combining lineage trees from multiple individuals to reconstruct an invariant

lineage tree. As mentioned in the Introduction, a key challenge when working
with CRISPR mutation data is the fact that these are not the same across different
experiments. Thus, standard phylogenetic invariant tree building cannot be applied
to this data. Instead, given a set of lineage trees, fT1; ¼ ;TIg for I individuals, we
construct a single lineage tree Tinv that jointly explains the differentiation of these
individual organisms. Individual lineage trees that are input to the invariant lineage
reconstruction method are built on a leaf set of different number of cells. Tinv is
constructed by following the steps below.

1. For each individual lineage tree Ti , we infer the cell clusters based on gene
expression data.

2. We remove all clusters that contain number of cells fewer than a pre-
determined number, tc (we use tc= 3 in our analyses).

3. Next, we compute gene expression distances for cluster groups denoted as a
tuple (cl1, cl2, …, clI), where cli is one of the remaining clusters from lineage
Ti (i ϵ {1, 2, …, I}). The gene expression distance for a cluster group is
computed by summing the pairwise gene expression distances for all
possible cluster pairs in the cluster group. The top x% cluster groups with
the smallest distance are selected as the set of candidate preserved cluster
groups (x= 1 was used in our analyses).

4. Using a greedy algorithm, we first select a set of cluster groups (based on
gene expression distance) to be incorporated in the invariant lineage tree.
The process of selecting the cluster groups is called greedy cluster matching
and the clusters which form a selected cluster group are called matched
clusters. All the candidate cluster groups are ranked in an ascending order

based on the expression distance. In the greedy matching, we first select the
cluster group with the smallest distance. The algorithm continues to select
the next ranked cluster group if none of its constituent clusters have been
matched before. This process goes on until no more cluster groups can be
selected (i.e. the constituent clusters of the remaining cluster groups have
already been matched before). This process results in K cluster groups
(consisting of matched clusters from individual lineages) which are used in
the invariant lineage tree.

5. For each individual lineage tree Ti , we obtain the backbone tree T
c
i built

using these K clusters.
6. Tinv is a lineage tree built on a leaf set of K clusters. We define a cluster

matching M as a matching where each cluster (represented by leaf) in each
individual lineage tree T

c
i is matched with a leaf of Tinv . We reconstruct

Tinv and a cluster matching Minv by minimizing an objective function
given by

Tinv;Minv ¼ argmin
T

� ;M�

ω1

X

I

i¼1

SðT�;Tc
i Þ þ ω2

X

K

j¼1

EðcjÞ ð19Þ

where T
� is a candidate invariant lineage, M� is a candidate cluster

matching, SðT�;Tc
i Þ denotes the sum of pairwise leaf shortest path

distance between candidate invariant lineage T� and individual lineage Tc
i ,

EðcjÞ denotes the sum of pairwise distance between the clusters of the
individual lineage trees that match with cluster (or leaf) cj in the candidate
invariant lineage. The objective function for searching the invariant lineage
and the optimal cluster matching is described below in detail. We employ a
two-step heuristic search algorithm for optimizing the objective function
(described below).

Objective function for optimizing invariant lineage tree. The objective function
for reconstructing the invariant lineage attempts to balance two competing issues.
The first is that the invariant tree should be able to capture the branchings that are
similar in each of the individual lineages. The second is that the agreement (in
terms of expression) between nearby subtrees in the invariant tree would be high.
We thus attempt to minimize two different distance functions to select the optimal

tree. DS ¼
PI

i¼1 SðT
�;Tc

i Þ computes the distance (or disagreement) between the
topology of the invariant lineage and the backbone trees Tc

i obtained from the

individual lineage trees. DE ¼
PK

j¼1 EðcjÞ is the other distance function which

attempts to minimize disagreement between the gene expression values of matched
clusters.

For computing DS , we employ the sum of pairwise leaf shortest-path
distance44,45 between two trees as a distance measure for comparing two tree
topologies. The shortest path distance δij(.) between two leaves ci and cj in a tree is
given by the sum of the number of edges that separate them from their most recent
common ancestor. Overall pairwise leaf shortest-path distance between two trees is
obtained by summing up the absolute differences between the shortest-path
distances of all unordered pairs of leaves in the two trees

SðT1;T2Þ ¼
X

K�1

i¼0

X

K

j¼1þ1

jδijðT1Þ � δijðT2Þj ð20Þ

For computing DE , we sum the pairwise distance between the clusters of the
individual lineage trees that match with a leaf of the invariant lineage. EðcÞ is given
by

EðcÞ ¼
X

I�1

i¼1

X

I

k¼iþ1

eðlci ; l
c
kÞ ð21Þ

where lci and lck denote clusters in individual lineages that match with leaf c in
candidate invariant lineage. e(.) denotes the Euclidean distance between the gene
expression value of two clusters.

Search algorithm for inferring invariant lineage. We use a two-step heuristic
search algorithm for inferring the invariant lineage and the corresponding cluster
matching.

1. The first step employs an iterative search. In each iteration, we first find a
better cluster matching (see “Supplementary Methods” for details) than the
current matching M� , and then keeping this matching fixed, we improve
the topology of the invariant tree. It is important to note that, a new cluster
matching modifies both DE and DS , whereas a new tree topology modifies
only DS . This iterative search goes on until cluster matching can not be
improved further. Let us assume, Dbest

E is the distance corresponding to the
best cluster matching achieved. We define a threshold value for the cluster
matching distance

Dthr
E ¼ Dbest

E þ thr ´Dbest
E ð22Þ

2. In the second step, we try to improve the invariant lineage by improving the
objective function DS þDE using a stochastic search. In the joint ðT�;M�Þ
space, we consider two types of moves to propose a new configuration. In
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each iteration, from the current configuration ðT�;M�Þ, we either propose
a new matching (Supplementary Methods) M�

new or a new tree topology
T

�
new using the tree search moves. When a new matching M�

new is
proposed, we first ensure that the cluster matching distance for the new
matching does not lead to values above the threshold Dthr

E . If this condition
is satisfied and the objective function is minimized then the new matching is
accepted. If the proposed tree topology T

�
new achieves lower value for the

objective function, it is accepted. The search procedure terminates when the
objective function does not improve or the maximum number of iterations
has been reached.

GO analysis on clusters identified by LinTIMaT. To perform GO analysis on
invariant lineage clusters, we first identify a set of differentially expressed (DE)
genes based on t-test of two groups of cells. The first group consists of the cells in
the invariant cluster and the second group includes all other cells in the dataset.
From the set of DE genes, we further select the genes that have higher mean
expression in the first group, with a p-value smaller than 0.05 (or top 500 if more
than 500 genes achieve this p-value). Finally, we use gprofiler46 to perform GO
query for the genes selected for each cluster.

Performance metrics for lineage reconstruction. To assess the performance of a
method in reconstructing the cell lineage, we employ two different metrics. First,
we measure the accuracy of lineage reconstruction based on a metric used in ref. 28,
which calculates the fraction of the non-trivial bipartitions in the ground truth
lineage tree that are precisely recovered in the inferred lineage tree. In addition, we
also compute the RF distance31 between the true lineage tree and the inferred
lineage tree for all methods. RF distance calculates the number of non-trivial
bipartitions that differ between the inferred and true lineage trees (we normalize
this using the total number of bipartitions in the two trees). For the binary lineage
trees inferred by LinTIMaT, we compute RF distance (same as FP and FN dis-
tance). In contrast, since the lineage trees inferred by MP or NJ can potentially be
nonbinary (when a complete lineage barcode is shared by more than two cells), we
separately compute the FP and FN distances between the true lineage tree and the
lineage inferred by MP or NJ.

Analyzing the cell clustering performance of a lineage tree. For assessing the
cell clustering performance of a lineage tree, we use 63 cell types obtained by ref. 20

as ground truth and use Adjusted Rand Index (ARI) as the clustering metric
following47. Basically, ARI is calculated based on the number of agreements and
number of disagreements of two groupings, with randomness taken into account.
ARI is defined as follows. Let X= {X1, X2, . . . , Xr}, Y= {Y1, Y2, . . . , Ys} be two
groupings, where X has r clusters and Y has s clusters. We can set the overlap
between X and Y using a table N with size r*s, where Nij= ∣Xi ⋂ Yj∣ denotes the
number of objects that are common to both Xi and Yj. Let ai= ∑jNij, bj = ∑iNij, n be
the total number of samples, then ARI is given by

ARI ¼
Index� ExpectedIndex

MaxIndex � ExpectedIndex
¼

P

ij
N ij

2

� �

� ð
P

i
ai
2

� �
P

j
bj
2

� �

Þ= n
2

� �

1
2 ð
P

i
ai
2

� �

þ
P

j
bj
2

� �

Þ � ð
P

i
ai
2

� �
P

j
bj
2

� �

Þ= n
2

� �

ð23Þ

Simulation of induced CRISPR-Cas9 mutations. We simulate CRISPR mutations
based on the 16 cell C. elegans lineage using a similar strategy outlined in28. For
the simulation of CRISPR lineage recorders, each cell is represented as a vector of
m= 5 target sites. The 16-cell lineage corresponds to a series of 4 cell divisions. The
nonleaf nodes of the lineage represent the cells that underwent cell division. The
root of the lineage represent the fertilized egg for which each CRISPR target is in an
unmutated state. The branches that connect a nonleaf node to its children repre-
sent the branches where each unmutated target can mutate with a given probability
μ denoting the mutation rate. Each target site can mutate to one of several possible
mutated states. For each target site, the possible number of mutational events is
chosen to be 8 and the different mutational events are considered to be equi-
probable. After a mutation occurs at a target, it can no longer change in the absence
of dropout. The simulation of CRISPR mutations starts from the root and follows
the nonleaf nodes in the order of the cell division they represent (cell division at
level 1 followed by division at level 2 and so on).

For simulating CRISPR mutations with varying mutation rate for different
target sites, we first decide the value of mean mutation rate and standard deviation.
Based on these two, we define a Beta distribution from which the mutation rate for
each target is sampled.

To introduce mutation dropouts, we first define dropout rate as the ratio of the
expected number of dropout events and the number of internal branches in the cell
lineage. Dropouts are introduced in the lineage with probability equal to dropout
rate and can only affect the target sites that have been already mutated. Whenever
dropout happens at a target site, its previous lineage recording gets erased.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The high-throughput datasets used in this study were previously deposited in the Gene

Expression Omnibus under accession numbers GSE77944, GSE105010, and GSE102990.

Lineage trees are available for exploring at https://jessica1338.github.io/LinTIMaT/.

Code availability
LinTIMaT has been implemented in Java and is freely available at https://github.com/

jessica1338/LinTIMaT, under the MIT license. This implementation uses the PhyloNet48

library and the Apache Commons Math package (https://commons.apache.org/proper/

commons-math/).
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