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Systems/Circuits

Single-Cell Membrane Potential Fluctuations Evince
Network Scale-Freeness and Quasicriticality

James K. Johnson, * Nathaniel C. Wright, * Ji Xia, and Ralf Wessel
Department of Physics, Washington University, St. Louis, Missouri 63130

What information single neurons receive about general neural circuit activity is a fundamental question for neuroscience. Somatic
membrane potential (V) fluctuations are driven by the convergence of synaptic inputs from a diverse cross-section of upstream
neurons. Furthermore, neural activity is often scale-free, implying that some measurements should be the same, whether taken at large
or small scales. Together, convergence and scale-freeness support the hypothesis that single V,, recordings carry useful information
about high-dimensional cortical activity. Conveniently, the theory of “critical branching networks” (one purported explanation for
scale-freeness) provides testable predictions about scale-free measurements that are readily applied to V,, fluctuations. To investigate,
we obtained whole-cell current-clamp recordings of pyramidal neurons in visual cortex of turtles with unknown genders. We isolated
fluctuations in V,, below the firing threshold and analyzed them by adapting the definition of “neuronal avalanches” (i.e., spurts of
population spiking). The V,, fluctuations which we analyzed were scale-free and consistent with critical branching. These findings
recapitulated results from large-scale cortical population data obtained separately in complementary experiments using microelectrode
arrays described previously (Shew et al., 2015). Simultaneously recorded single-unit local field potential did not provide a good match,
demonstrating the specific utility of V,,. Modeling shows that estimation of dynamical network properties from neuronal inputs is most
accurate when networks are structured as critical branching networks. In conclusion, these findings extend evidence of critical phenom-
ena while also establishing subthreshold pyramidal neuron V,, fluctuations as an informative gauge of high-dimensional cortical popu-
lation activity.

Key words: balanced networks; membrane potential; neural computation; neuronal avalanches; renormalization group; scale-free

(s )

The relationship between membrane potential (V,,) dynamics of single neurons and population dynamics is indispensable to
understanding cortical circuits. Just as important to the biophysics of computation are emergent properties such as scale-freeness,
where critical branching networks offer insight. This report makes progress on both fronts by comparing statistics from single-
neuron whole-cell recordings with population statistics obtained with microelectrode arrays. Not only are fluctuations of somatic
V., scale-free, they match fluctuations of population activity. Thus, our results demonstrate appropriation of the brain’s own subsam-
pling method (convergence of synaptic inputs) while extending the range of fundamental evidence for critical phenomena in neural
systems from the previously observed mesoscale (fMRI, LFP, population spiking) to the microscale, namely, V,, fluctuations. j
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gle neurons? These questions are central to neuroscience. Uncov-
ering the functional significance of multiscale organization
within cerebral cortex requires knowing the relationship between
the dynamics of networks and individual neurons within them
(Nunez et al., 2013).

For pyramidal neurons in the visual cortex, somatic spike gen-
eration is ambiguously related to presynaptic firing (Tsodyks and
Markram, 1997; Brunel et al., 2014; Gatys et al., 2015; Stuart and
Spruston, 2015; Moore et al., 2017). Such neurons pass spiking
information to many postsynaptic neurons (Lee et al., 2016).

https://doi.org/10.1523/JINEUR0SCI.3163-18.2019
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However, a presynaptic pool with multifarious neighboring and
distant neurons (Hellwig, 2000; Wertz et al., 2015) provides ex-
citatory and inhibitory synaptic inputs throughout the soma and
complex dendritic architecture (Magee, 2000; Larkum et al.,
2008; Moore et al., 2017). Input propagation to the axon hillock
has both active and passive features (London and Hausser, 2005)
and the membrane potential (V,,,) response is increasingly non-
linear near the action potential threshold. Thus, such details of
network propagation give V, more utility than focusing solely on
spiking.

Most computational neuroscientists use spiking data because
spikes are “the currency of the brain” (Wolfe et al., 2010) and
extracellular recording is straightforward compared with whole-
cell recording. Yet, the paucity of single-neuron spiking (Shoham
et al,, 2006) and limited foreknowledge about connections
(Helmstaedter, 2013) make extracellular single-unit observation
an impoverished means of studying neuronal circuits. In con-
trast, subthreshold V_, fluctuations contain rich information
about the circuits containing each neuron (Sachidhanandam et
al., 2013; Petersen, 2017). Integral to gaining a neuron’s view of
the brain is uncovering relationships between the statistics of V,,
fluctuations and fluctuations of local spiking and then contrast-
ing against other plausible one-dimensional signals.

We look for such relationships in the strict predictions and
rigorous measurements of scale-freeness used to identify a fragile
network connectivity pattern known as “critical branching.” This
pattern exhibits emergent properties valuable for information
processing, such as higher susceptibility and dynamic range (Hal-
deman and Beggs, 2005; Beggs, 2008; Shew and Plenz, 2013;
Shriki and Yellin, 2016; Timme et al., 2016), but omits some
neuronal dynamics (Poil et al., 2008, 2012) without extension
(Porta and Copelli, 2018). The pattern is as follows: on average
over all neuronal avalanches (spiking above baseline; Friedman et
al., 2012), one spike leads to exactly one other spike. In most
arbitrary networks there is less or more than one; these are “sub-
critical” and “supercritical” respectively. Among the dazzling
emergent properties of “criticality” are universality, self-
similarity, and scale-free correlations (Stanley, 1999).

These are as follows: A “universality class” is a set of incongru-
ous systems exhibiting identical statistics only at their “critical
points.” “Self-similarity” includes fractal patterns and power laws
in geometrical analysis of avalanches (power laws are “scale-
invariant,” popularly called “scale-free”). Avalanches of any du-
ration have identical average shapes after normalization (Shaukat
and Thivierge, 2016). Avalanche areas grow with duration as an-
other power law (Sethna et al., 2001). However, observation
methods must be consistent with event propagation (Priesemann
etal., 2009; Yu et al., 2014; Levina and Priesemann, 2017). Addi-
tionally, pairwise correlation versus length or time are also power
laws (Chialvo, 2010), meaning any input has a nonzero chance of
propagating forever or anywhere.

In summary, the theory of critical branching networks offers
superb standards of comparison for three reasons: neuronal av-
alanche analysis applies to V,,, offers promising insights, and
makes precise predictions about fluctuation geometry. We study
both V,, fluctuations and criticality with one simple question: Do
Vi, fluctuations match the scale-free statistics of cortical popula-
tions (see Fig. 1)?

To address this question, we simultaneously recorded somatic
V.. from pyramidal neurons and local field potential (LFP) in
visual cortex and performed avalanche analysis on fluctuations.
We found that subthreshold V,, fluctuation statistics match pub-
lished microelectrode array (MEA) data. We used surrogate test-
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ing to show why negative LFP fluctuations don’t match and
modeling to demonstrate dependence on critical branching.

Materials and Methods

Surgery and visual cortex

All procedures were approved by Washington University’s Institutional
Animal Care and Use Committees and conform to the National Insti-
tutes of Health’s Guide for the Care and Use of Laboratory Animals.
Fourteen adult red-eared sliders (Trachemys scripta elegans, 1501000 g)
were used for this study; their genders were not recorded. Turtles were
anesthetized with propofol (2 mg of propofol/kg) then decapitated. Dis-
section proceeded as described previously (Saha et al., 2011; Crockett et
al., 2015; Wright et al., 2017a).

To summarize, immediately after decapitation, the brain was excised
from the skull with the right eye intact and bathed in cold extracellular
saline containing the following (in mm): 85 NaCl, 2 KCl, 2 MgCl,*6H,0,
20 dextrose, 3 CaCl,-2H,0, 45 NaHCOj;. The dura was removed from
the left cortex and right optic nerve and the right eye hemisected to
expose the retina. The rostral tip of the olfactory bulb was removed,
exposing the ventricle that spans the olfactory bulb and cortex. A cut was
made along the midline from the rostral end of the remaining olfactory
bulb to the caudal end of the cortex. The preparation was then trans-
ferred to a perfusion chamber (Warner RC-27LD recording chamber
mounted to PM-7D platform) and placed directly on a glass coverslip
surrounded by Sylgard. A final cut was made to the cortex (orthogonal to
the previous and stopping short of the border between medial and lateral
cortex), allowing the cortex to be pinned flat with the ventricular surface
exposed. Multiple perfusion lines delivered extracellular saline to the
brain and retina in the recording chamber (adjusted to pH 7.4 at room
temperature).

We used a phenomenological approach to identify the visual cortex,
described previously (Shew etal., 2015). In brief, this region was centered
on the anterior lateral cortex, in agreement with voltage-sensitive dye
studies (Senseman and Robbins, 1999, 2002). Anatomical studies iden-
tify this as a region of cortex receiving projections from lateral geniculate
nucleus (Mulligan and Ulinski, 1990). We further identified a region of
neurons as belonging to the visual cortex when the average LFP response
to visual stimulation crossed a given threshold and patched within that
neighborhood (radius of ~300 pwm).

Intracellular recordings

For whole-cell current-clamp recordings, patch pipettes (4—8 M()) were
pulled from borosilicate glass and filled with a standard electrode solu-
tion containing the following (in mm): 124 KMeSO,, 2.3 CaCl,-2H,0,
1.2 MgCl,, 10 HEPES, and 5 EGTA adjusted to pH 7.4 at room temper-
ature. Cells were targeted for patching using a differential interference
contrast microscope (Olympus). V., recordings were collected using an
Axoclamp 900A amplifier, digitized by a data acquisition panel (National
Instruments PCle-6321), and recorded using a custom LabVIEW pro-
gram (National Instruments), sampling at 10 kHz. As described in
(Crockett et al., 2015; Wright and Wessel, 2017; Wright et al., 2017a,b),
before recording from a cell after initial patching current was injected to
elicit spiking. This current injection test was also repeated intermittently
between recording trials. Recording did not proceed if a cell spiked in-
consistently (e.g., failure to spike, insufficient spike amplitude) in re-
sponse to injected current or exhibited extreme depolarization in
response to small current injection amplitudes. If a clog or loss of seal was
suggested by unusually erratic V,, short timescales current, the current
injection test was performed and, upon failure, the affected recording
was marked for exclusion from analysis. We excluded cells that did not
display stable resting V| s for long enough to gather enough avalanches.
Up to three whole-cell recordings were made simultaneously. In total, we
obtained recordings from 51 neurons from 14 turtles.

Recorded V,, fluctuations taken in the dark (no visual stimulation)
were interpreted as ongoing activity. Such ongoing cortical activity was
interrupted by visual stimulation of the retina with whole-field flashes
and naturalistic movies as described previously (Wright and Wessel,
2017; Wright et al., 2017a,b). An uninterrupted recording of ongoing
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activity lasted for 2-5 min. Periods of visual stimulation were too short
and were too frequently interrupted by action potentials to yield the great
number of avalanches required for rigorous power-law fitting.

A sine-wave removal algorithm was used to remove 60 Hz line noise.
Action potentials in turtle cortical pyramidal neurons are relatively rare.
An algorithm was used to detect spikes and the V,, recordings between
spikes were extracted and filtered from 0 to 100 Hz. V,, recordings were
detrended by subtracting the fifth percentile in a sliding 2 s window. The
resulting signal was then shifted to have the same mean value as before
subtraction. Detrending did not affect the size of V,, fluctuations (data
not shown).

Extracellular recordings

Extracellular recordings were achieved with tungsten microelectrodes
(microprobes heat-treated tapered tip) with ~0.5 M() impedance. Elec-
trodes were slowly advanced through tissue under visual guidance using
a manipulator (Narishige) while monitoring for activity using custom
acquisition software (National Instruments). The extracellular recording
electrode was located within ~300 wm of patched neurons. Extracellular
activity was collected using an AM Systems Model 1800 amplifier, band-
pass filtered between 1 Hz and 20,000 Hz, digitized (NI PCle-6231), and
processed using custom software (National Instruments). Extracellular
recordings were downsampled to 10,000 Hz and then filtered (100 Hz
low-pass), yielding the LFP. The LFP was filtered and detrended as de-
scribed above (see “Intracellular recordings” section) except that the
mean of the entire signal was subtracted and the signal was multiplied by
—1 before it was detrended. This final inverted signal is commonly fea-
tured in the literature as negative LFP or nLFP (Kelly et al., 2010; Ka-
jikawa and Schroeder, 2011; Okun et al., 2015; Ness et al., 2016).

Experimental design and statistical analysis

Setwise comparisons

To measure differences between sets of statistics, we relied on three non-
parametric measures. We used the MATLAB Statistics and Machine
Learning Toolbox implementation of Fisher’s exact test (Hammond et
al., 2015). This allowed us to measure the effect size (odds ratio rg) and
statistical significance (p-value) of finding that consistency-with-
criticality is more frequent or less frequent in an experimental group than
a control group.

To quantify the similarity between the exponents measured in differ-
ent sets of data, we used the MATLAB Statistics and Machine Learning
Toolbox implementations of the exact Wilcoxon rank-sum test (Ham-
mond et al., 2015) and the exact Wilcoxon signed-rank test. In both cases
effect size, rqpp is measured by the simple difference formula (Kerby,
2014). The rank-sum test is used when comparing nonsimultaneous re-
cordings, such as comparing MEA data with V, data. The signed-rank
test is used when comparing data that can be paired, such as V, data to
concurrent LFP. When comparing whether a dataset differs from a spe-
cific value, we can use the sign test.

The significance level was set at p = 0.05 for all tests. Each setwise
comparison test stands alone as its own conclusion. They were not com-
bined to assess the significance of any effect across sets-of-sets. Thus, we
are not making multiple comparisons and no corrections are warranted
(Bender and Lange, 2001).

Random surrogate testing
It is possible that scale-free observations have an origin in independent
random processes of a type demonstrated previously (Touboul and
Destexhe, 2017). To control for this, we phase-shuffled the V, fluctua-
tions using the amplitude-adjusted Fourier transform (AAFT) algorithm
(Theiler et al., 1992). This tests against the null hypothesis that a measure
on a time series can be reproduced by performing a nonlinear rescaling of
a linear Gaussian process with the same autocorrelation (same Fourier
amplitudes) as the original process. Phase information is randomized,
which removes higher-order correlations but preserves the scale-free
power-spectrum.

The AAFT tests only higher-order correlations, but a simpler algo-
rithm tests against the null hypothesis that an un-rescaled linear Gauss-
ian process with the same autocorrelation as the original process can
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produce the same results (Theiler et al., 1992). This is known as the
unwindowed Fourier transform (UFT). Once we see what measures de-
pend on the higher-order correlations with the AAFT, we can use the
UFT to see how measures depend on the non-Gaussianity (nonlinear
rescaling), which is inherent to excitable membranes. Using the UFT
alone would make it difficult to attribute whether statistically significant
differences are due to the rescaling or to the higher-order correlations
(Rapp et al., 1994).

We performed AAFT and UFT on each V,, time series once and then
compared how the two datasets performed on every metric used in this
study. The datasets were compared with a matched Wilcoxon sign-rank
test implemented via MATLAB’s statistics tool box. Doing the compari-
son at a dataset level allowed us to obtain a discrimination statistic for
every metric that we used without repeating the computationally expen-
sive analysis procedure hundreds or thousands of times on every V,
trace. With enough individual recordings in each dataset, the matched
Wilcoxon sign-rank test is a reliable measure that empowered us to effi-
ciently compare all important metrics.

Neuronal avalanche analysis

Neuronal avalanches were defined by methods analogous to those de-
scribed previously (Poil et al., 2012), which are used for uninterrupted
ongoing signals; conversely, methods based on event detection (Beggs
and Plenz, 2003) require periods of nonactivity. A threshold is defined
and an avalanche starts when the signal crosses the threshold from
below and ends when the signal crosses the threshold from above. The
choice of threshold is a free parameter and we set it to the 25th percentile
before conducting the complete analysis. In similar situations (continu-
ous nonzero signals), researchers chose one-half the median (Poil et al.,
2012; Larremore et al., 2014). However, one-half the median cannot
work for negative signals or signals with high mean but low variance.
Before analysis, threshold choices between the 15™ to 50" percentile
were tested on data from the five cells with the most recordings to see how
threshold may affect the number of avalanches. The 25" percentile was
consistent with the existing literature and gave many avalanches com-
pared with alternatives. Having a large number of avalanches is impor-
tant because it gives the best statistical resolution. An analysis with a
choice of threshold that yields fewer avalanches (or changing the thresh-
old for each recording) would be suspect for selecting serendipitous re-
sults. After the analysis was conducted, eight percentiles between the 15 ™
to 50" percentile were tested and gave similar power-law exponents.

We quantified each neuronal avalanche by its size A and its duration D.
The avalanche size is the area between the processed V, recording and
the baseline. The baseline is another free parameter that was set at the
second percentile of the processed V,,, recording. The second percentile
was chosen because its value is more stable than the absolute minimum.
The avalanche duration D is the time between threshold crossings.

The lower limit of avalanche duration is defined by the membrane time
constant, which has been reported to be between 50 and 140 ms for the turtle
brain at room temperature (Ulinski, 1990; Larkum et al., 2008). We took a
conservative approach by setting the limit at less than half the lower
bound on membrane time constant, which was significantly less than
the lower cutoff from power-law fits. Only avalanches with a duration
longer than 20 ms were included in the analysis. Thus, we avoided
artificially retaining only the events most likely to be power-law dis-
tributed.

Following the procedure described above, each processed V,, record-
ing of uninterrupted ongoing activity (i.e., a recording of 2-5 min dura-
tion) yielded 327 * 148 (mean = SD) avalanches. This is insufficient for
rigorous statistical fitting on recordings individually (Clauset et al.,
2009). Therefore, we grouped avalanches from multiple recordings of
ongoing activity of the same cells. Each cell produced between 3 and 19
recordings of ongoing activity (2-5 min duration each recording), with
trials recorded intermittently over a period of 10—60 min. We grouped
recordings based on whether they occurred in the first or second 20 min
period since the beginning of recording from that neuron. Then, all the
avalanches from the first or second 20 min period were grouped together
with one data object (the group) storing the size and duration of each
avalanche. It is rare for neurons to have recordings in the third 20 min
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periods, so these data were not included. Since there was a slow drift in
the mean V| over a period of several minutes, we scaled the avalanche
sizes from each recording to have the same median as other recordings
from the same group. Z-scoring was not useful for accounting for trial to
trial variability because it does affect whether a specific time point is
above or below a certain percentile threshold. Therefore, it is not useful
for removing variability in avalanche duration. Windowed z-scoring in-
troduces artifacts near action potentials. On average, four recordings
were possible in each 20 min period. There were 51 neurons with multi-
ple recordings of ongoing activity in the first 20 min of experimentation
(thus 51 recording groups); of these, 18 neurons had an additional 20
min period with more than one recording. This produced a total of 69
groups with 1346 * 1018 (mean * SD) avalanches for each group. Of
these 69 groups, 57% had >1000 avalanches. The largest number of
avalanches was 7495 and the smallest was 313. Only five groups had <500
avalanches. We report on the 51 groups from the first 20 min period
separately from the 18 groups with recordings from the second 20 min
period of experimentation.

For each group, we evaluated the avalanche size and duration distri-
butions with respect to power laws. To test whether a distribution fol-
lowed a power law, we applied the rigorous statistical fitting routine
described previously (Clauset et al., 2009). We tested three power-law
forms: P(x) o x™* (with and without truncation) (Deluca and Corral,
2013), as well as a power law with exponential cutoff, P(x) o« x % ",
We compared these against log normal and exponential alternative (non-
power-law) hypotheses. Distribution parameters were estimated using
maximum likelihood estimation (MLE) and the best model out of those
fitted to the data was chosen using the Akaike information criterion
(Bozdogan, 1987). It should be acknowledged that a small power-law
region in the truncated form would be suspect for false positives, likewise
for a strong exponential cutoff (Deluca and Corral, 2013). Finally, to
decide whether a fitted model was plausible, pseudorandom datasets
were drawn from a distribution with the estimated parameters and then
the fraction that had a lower fit quality (Kolmogorov—Smirnov distance)
than the experimental data was calculated. If this fraction, called the
comparison quotient g, was >0.10, then the best-fit model (according to
the Akaike information criterion) was accepted as the best candidate.
Otherwise, the next best model was considered.

We applied several additional steps and strict criteria to control for
false positives. One such step was assessing whether the scaling relation
was obeyed over the whole avalanche distribution for each group (not
just the portion above the apparent onset of power-law behavior). The
scaling relation is another power-law, ( A)(D) « D?, predicting how the
measured size of avalanches increases geometrically with increasing
duration (on average). For any dataset with three power laws,
(A)D) = D (scaling relation), P(A) o A™7 (size distribution), and
P(D) « D™P (duration distribution), the scaling relation exponent is

1)
predicted by the other two exponentsby y = v, = % (Scarpetta

et al,, 2018). Note that y, = 1 is a trivial value because it implies
(A)(D) = D and that would suggest that individual avalanches were just
noise symmetric about a constant value. This would mean that the aver-
age avalanche shape is just a flat line at some constant of proportionality,

t— t t— t
F ( D 0) = a,where F <TO> is a function describing the shape of

an avalanche of duration D, t, is the beginning of the avalanche, and a is
a constant.

Standards for consistency with critical point behavior. We applied four
standardized criteria to provide a transparent and systematic way to
produce a binary classification; either “no inconsistencies with activity
near a critical point were detected” or “some inconsistencies with activity
near a critical point were detected.”

First, a collection of avalanches must be power-law distributed in both
its size and duration distributions.

Second, the collection of avalanches must have a power-law scaling
relation as determined by R* > 0.95 (coefficient of determination) for
linear least-squares regression to a log-log plot of average size vs dura-
tions: log (A(D)) ~ ylog (D) + b. This R? represents the best that any
linear fit can achieve and must include all the avalanches, not a subset.

J. Neurosci., June 12, 2019 - 39(24):4738 — 4759 « 4741

We denote the scaling exponent (slope from linear regression) from this
fitas yp

Third, the scaling relation exponent predicted by theory (denoted as
¥,) must correspond to a trendline on a log-log scatter plot of (A)(D)
with an R? that is within 90% of the best-case fitted trendline from the
second criterion. Again, the R? for the predicted scaling relation is cal-
culated across all avalanches, not just the subset above the inferred lower
cutoff of power-law behavior (which was found for the first criterion).
This cross-validates agreement with theory.

Fourth, the fitted scaling relation exponent must be significantly greater
than 1: (y; — 1) > o, where o, is the SD. This last requirement eliminates
scaling that might be trivial in origin. It is measured after getting the fitted
scaling relation exponent for all of the data so that a dataset SD can be
determined. It is necessary to also check that the set of scaling relation expo-
nents from the power-law fits to all avalanche sets is significantly different
from 1 at a dataset level. A scaling relation exponent equal to one suggests a
linear relationship between mean size and duration that is not consistent
with criticality in neural systems (Haldeman and Beggs, 2005).

Our four-criterion test cannot measure distance from a critical point
nor eliminate all risk of false positives. To complete our analysis, we also
looked at three additional factors: (1) whether exponent values match
exponent values from other experiments as expected from the universal-
ity prediction of theory, (2) whether all the exponents within our dataset
have similar scaling relation predictions, and (3) whether the avalanches
within our dataset exhibit shape collapse across all the recordings.

Obtaining shape collapse and analyzing it quantitatively and quali-
tatively. Shape collapse is a very literal manifestation of scale-
invariance (also called “self-similarity”) (Sethna et al., 2001; Beggs
and Plenz, 2003; Friedman et al., 2012; Pruessner, 2012; Timme et al.,
2016). Avalanches of different durations should rise and fall in the
same way on average. This average avalanche profile is called a scaling
function. The average avalanche profile for avalanches of duration D is pre-

t— 1
dicted to be A (t,D) = DY VF (TO> where DV~ is the power-law

t— 1
scaling coefficient that modulates the height of the profileand F ( D 0)

is the universal scaling function itself (normalized in time). Shape col-
lapse analysis provides an independent estimate of the scaling relation
exponent ygc, which is only expected to be accurate at criticality (Sethna
etal., 2001; Scarpetta and de Candia, 2013; Shaukat and Thivierge, 2016),
and a visual test of conformation to an empirical scaling function.

Exponent estimation is very sensitive to the unrelated, intermediate
rescaling steps involved in combining the avalanches from multiple re-
cordings into one group. To get an estimate of the scaling relation expo-
nent for each group, ., we averaged the scaling exponents, vy;, found
individually for each recording in that group where i denotes the i
recording and SC is shape collapse).

Naturally, individual avalanche profiles are vectors of variable length
D. We must first “rescale in time” to make them vectors of equal length
without losing track of what each vector’s original duration was. We do
that by linearly interpolation with 20 evenly spaced points. So, the j

avalanche profile of the i " recording is denoted as a 20-element vector 1—_‘;
where the top arrow denotes a vector.

Next, the set of all profiles from recording i with the exact same duration
D, denoted as I'p, where bold indicates a set, were averaged and divided by a

; (1) icasT o (v') = (T AD-0-D ;
test scaling factor D™ ~V. We define thisas I'p,(y') = (I'p,)D™"~". The prime
indicates a test rescaling. The average is over all vectors in the set I'p. The
choice of vy, was optimized using MATLAB’s fminsearch function to mini-

—
mize the mean relative error between the average over all durations (I'p,(y'))

N
and the set members ' (y") so that for recording i:

ITo(y) = oy
Ty

This error minimization and applying the rescaling is the “collapse” in
“shape collapse.”

_ argmin
Yy eh)
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Once we have the v, for the avalanches in each individual recording of
ongoing activity, we compare the average, ysc = (7;), with the predicted
and fitted scaling relation exponents for the group of recordings, ,, and
¥, (statistical comparison tests are described in a previous section). Thus,
quantitative analysis of shape collapse was done by comparing ysc, ¥p»
and v, for each of the 69 groups individually.

Visual assessment of how well avalanche profiles can be described by

D
ponent estimation. This was performed by averaging all the profiles
within specific duration bins (regardless of trial or group) and plotting
them on top of one another. Shape collapse always requires a very large
number of avalanches, so we had to combine avalanches from all 69
groups. However, the resting V, | differs from recording to recording and
cell to cell. Therefore, avalanche profiles from different recordings are
vertically misaligned. To combine avalanche profiles from different re-
cordings, we divided all the profiles by a scalar value unique to each
recording: the time average over all the collapsed profiles. This pro-
duced rescaled and mean-shifted profiles, denoted by a double prime,
- -
F;j = F,;/(F;,-k% where k € [1,20] denotes the interpolated time point.
The set of avalanches from each recording were thus aligned, but indi-
vidual variability was preserved and thus profiles from different record-
ings could be averaged without introducing artifacts. This set, I‘;j,
contained a total of 106,220 shifted and rescaled profiles for the V,, data.
The set of shifted and rescaled profiles falling into a duration bin is
denoted I'},. Each duration bin then provides its own estimate of the

to

one universal scaling function, F ) supports the quantitative ex-

— t—t
scaling function (I'p) ~ F TO) For each bin, D was defined as the

average duration of all constituent profiles. If <700 avalanches had a
particular duration, we included the next longest duration iteratively
until we met or exceeded 700 avalanches. This only applied to long du-
rations. The choice of 700 was made because it allowed smooth averaging
without excessively wide duration bin widths.

We also assessed the mean curvature of avalanche profiles from the

—
rescaled profile for a particular duration (I',). This allowed us to plot
how curvature depends on duration. Mean curvature (k) is defined as
follows, where k still denotes time points:

_ <<F;)>(k+1) — 20N + <F})>(k1)>
(1 + Ty — To)es

Model simulations

We simulated a model network consisting of N = 10* binary probabilis-
tic model neurons. The model neurons form a directed random network
(Erdés—Rényi random graph) where the probability that neuron j con-
nects to neuron i is ¢. In a network of N neurons, this results in a mean
in-degree and out-degree of cN. We tested nine not quite evenly distrib-
uted values of connection probabilities, ¢ € [0.5, 1, 3, 5, 7.5, 10, 15,
20, 25] X 1072 As discussed previously (Kinouchi and Copelli, 2006;
Larremore et al., 2011a, 2014), the impact of connectivity on network
dynamics is nonlinear, so we took a finer look at smaller connection
probabilities while maintaining thorough coverage of intermediate con-
nection probabilities.

The strength of the connection from neuron j to neuron i is quantified
in terms of the network adjacency or weight matrix, W, with the fortune
of having a simple and intuitive meaning. For each existing connection
from neuron j to neuron i, Wj; is the direct change in the probability that
neuron i will fire at the next time step if neuron j spikes in the current
time step.

The dynamics of this network are well characterized by the largest
eigenvalue A of the network weight matrix W with criticality occurring at
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A = 1 (Kinouchi and Copelli, 2006; Larremore et al., 2011a,b, 2012,
2014). The physical interpretation of A is a “branching parameter”(Hal-
deman and Beggs, 2005) that governs expected number of spikes imme-
diately caused by the firing of one neuron. If A = 1, then one spike causes
one other spike on average, while, if A > 1,then one spike causes more
than one on average and vice versa.

We tested five different values of largest eigenvalue at, near and far
from criticality A € [0.9, 0.95, 1, 1.015, 1.03]. A fraction, , of the neu-
rons is designated as inhibitory. This is done by multiplying all outgoing
connections of an inhibitory neuron by —1. We tested nine different
values of the fraction of inhibitory neurons in the range from 0 to 0.25,
thus including the value 0.2, corresponding to the fraction of inhibitory
neurons in the mammalian cortex (Meinecke and Peters, 1987). The
magnitudes of nonzero weights are independently drawn from a distri-
bution of positive numbers with mean m, where the distribution is uni-
form on[0,2n] and nisgivenby n = A(cN(1 — 2x)). The maximum
eigenvalue is then fine-tuned by dividing W by the current maximum
eigenvalue and set to the exactly desired value W = AW'/A" where W’
and A’ are the matrices and eigenvalues before correction.

The binary state S;(¢) of neuron i at time ¢ denotes whether the model
neuron spikes (S;(f) = 1) or does not spike (S;(f) = 0) at time . At each
time step, the states of all neurons are updated synchronously according
to the following update rule:

Si(0) = O 2wt — 1) — &(1)

Where &(#) is a random number on [0,1] drawn from a uniform distri-
bution, and O is the Heaviside step function. In addition to this update
rule, a refractory period of one time step (translated to ~2 ms) was
imposed for certain parameter conditions. A simulation begins with ini-
tiating the activity of one randomly chosen excitatory neuron and con-
tinuing the simulation until overall network activity had ceased. The
process was then repeated.

From the simulated binary states of 10* model neurons, we extracted
three measures of simulated activity. First, the network activity F(t) =

Zf\; 1Si(t) / Nisthe fraction of neurons spiking at time . Second, the input to
model neuron i at time tis P(t) = Z;VWij(t — 1), which is almost always
positive for our parameters. Note that P/'(f) = Pi(r) X O(P(1)) directly
represents the probability for the neruon i to spike at time ¢. Third, we
constructed a proxy for the V,, signal, ®(t) = (ay* P)(t), by
t
convolving the input P;(f) with an alpha-function: «(t) &P
t
(1 - IT) with h,, = 2 time steps (assumed to be ~4 ms).

m

A total of 405 different parameter combinations (connection density,
inhibition, maximum eigenvalue) were simulated. Each combination
was simulated 10 times. Based on the connection probability ¢ and the
fraction of inhibition x, we distinguish four regions in parameter space
classified according to the behavior of the critical model; that is, A = 1.

The first region is the “positive weights” region. Without inhibition
activity increases or dies out in accordance with the branching parame-
ter. This region is defined by x = 0. With moderate inhibition and dense
connectivity, there is a region of parameter space we call “quiet”; activ-
ity lasts only slightly longer than in a system with no inhibition. This
region is defined by the ex post facto boundaries ¢ = e''¥/25 and y >
0. Further increasing inhibition relative to connection density pro-
duces a behavior like “up and down” states (or “telegraph noise”)
(Sachdev et al., 2004; Millman et al., 2010). We call this the “switch-
ing” regime because network activity switches between a low mean
and a high mean. This region is defined by ¢ < e'"'X/25 and
¢ = (10e'™ — 13)/100 and x > 0. When inhibition is high relative
to connection density, the system enters the “ceaseless” region where
stimulating one neuron causes activity that effectively never dies out.
An especially attractive feature of this model is that the “ceaseless”
and “switching” regimes exhibit sustained self-generated activity.
This provides a way to model spontaneous neural activity without
externally imposed firing patterns.
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Refractoriness was studied in the network without inhibition and it
was found that dynamic range was inversely proportional to refractory
period (Larremore et al., 2011a), but the empirical branching parameter
(criticality) displayed no dependence on refractory period (Kinouchi and
Copelli, 2006). In studies that featured inhibition and introduced cease-
lessness, no refractory was used (Larremore et al., 2014). However, we
found that, for some networks in the switching regime, the maximum
eigenvalue was a better predictor of the empirical branching ratio if the
refractory period was one time step. Because this relationship is central to
our understanding of criticality in this model, we ran an initial testing
cycle before each simulation begins to decide whether to set the refrac-
tory period to one time step or to zero. Doing so ensures that the network
displays critical-like phenomena in all regimes (the maximum eigenvalue
of connectivity), but also ensures that the model is consistent with prior
studies.

We performed avalanche analysis on each of the simulated signals
using the methods described above for V,, recordings. If the network was
in the switching regime, then we only performed analysis on the periods
when the network was in the mode (high or low mean) in which it spent
the majority of its time. As before, the 25th percentile defined the ava-
lanche threshold. If the signal had negative values, as in the case of single
neuron V,, proxies in networks with inhibition, then the signal was
shifted by subtracting the second percentile. To obtain good statistics, we
continued stimulating and extracting avalanches until a simulation ei-
ther reached 10* avalanches or 5 X 10 avalanches and a very large file
size or a very long computational time. This ensured that there were
between 2000 and 10,000 avalanches per trial.

Data and software accessibility

All raw data are available at https://github.com/jojker/continuous_
signal_avalanche_analysis and the code developed for this analysis is
available upon request to the corresponding author.

Results

Single-neuron V,, fluctuations are thought to be dominated by
synaptic inputs from multitudes of presynaptic neurons (Stepa-
nyants et al., 2002; Brunel et al., 2014; Petersen, 2017). Because
the way neurons integrate their diverse inputs is central to infor-
mation processing in the brain, it is important that neuroscience
gain a thorough understanding of the relationship between sub-
threshold V,, fluctuations and population activity. A basic step is
to compare statistical analyses, especially analyses in which a
meaningful relationship is expected. We investigated whether an
avalanche analysis on V,, fluctuations would reveal the same sig-
natures of scale-freeness and critical network dynamics found in
measures of population activity (Fig. 1) (Friedman et al., 2012;
Shew et al., 2015; Marshall et al., 2016). To address this compar-
ison across organizational levels, we recorded V,, fluctuations
from 51 pyramidal neurons in visual cortex of 14 turtles and
assessed evidence for critical network dynamics from these
recordings.

In a model investigation we corroborated results evaluated the
conditions needed to enable inferring dynamical network prop-
erties from the inputs to single neurons. Finally, we extended the
analysis to other commonly recorded time series of neural activ-
ity for comparison with the information content of V,, fluctua-
tions about the dynamical network properties.

V.. fluctuations reveal signatures of critical point dynamics

We obtained whole-cell recordings from pyramidal neurons in
the visual cortex of the turtle ex vivo eye-attached whole-brain
preparation (Fig. 2A). Recorded V,, fluctuations taken in the
dark (no visual stimulation) were interpreted as ongoing activity.
We analyzed the recorded ongoing V,, fluctuations employing
the concept of “neuronal avalanches” (Beggs and Plenz, 2003;
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Figure 1. Will fluctuations in somatic V, and comparable signals reflect the scale-free
nature of neuronal avalanches from microelectrode array data? A recurrent network with excit-
atory (teal) and inhibitory (purple) neurons is measured in three ways: MEA (green/top), whole-
cell recording (red/middle), and LFP (blue/bottom). Neuronal avalanches (highlighted in gold)
areinferred from the population raster and fluctuations are analyzed like avalanches for the I/,
and inverted LFP signals. Neuronal avalanches are defined as spurts of activity with quiet peri-
ods between them for MEA or excursions above the 25 " percentile for continuous nonzero data.
The ultimate question is whether V, fluctuations will recapitulate the entire neuronal ava-
lanche analysis previously conducted on MEA data, including power laws in size and duration as
well as a universal avalanche shape. This is abridged in the right-most column which illustrates
power-law distributions.

Poil etal., 2012; Shew et al., 2015), which are positive fluctuations
of network activity. For continuous time series such as the V,
recording, one selects a threshold and a baseline. We defined a
neuronal avalanche based on the positive threshold crossing fol-
lowed by a negative threshold crossing of the V,,, time series (Poil
et al., 2012; Hartley et al., 2014; Larremore et al., 2014; Karimi-
panah et al., 2017a). We quantified each neuronal avalanche by
its size, A, defined as the area between the curve and the baseline,
and its duration D, defined as the time between threshold cross-
ings (Fig. 2B).

To quantify the statistics of avalanche properties, we applied
concepts and notations from the field of “critical phenomena” in
statistical physics (Nishimori and Ortiz, 2011; Pruessner, 2012).
Because the critical point is such a small target for any naturally
occurring self-organization (Pruessner, 2012; Hesse and Gross,
2014; Cocchi et al., 2017) and there is considerable risk of false
positives (Taylor et al., 2013; Hartley et al., 2014; Touboul and
Destexhe, 2017; Priesemann and Shriki, 2018), asserting critical-
ity in a new system or with a new tool requires extraordinary
evidence. Because this is a new tool, we created four criteria and
set quantifiable standards for concluding a system is consistent
with criticality based on avalanche power laws and completed this
exhaustive battery of tests with shape collapse, a geometrical anal-
ysis of self-similarity in the avalanche profiles (see “Experimental
design and statistical analysis” section).

In brief, we found that both the size and duration distribu-
tions of the fluctuations treated as avalanches were consistent
with power laws (Fig. 2C), P(A) % A~ " and P(D) « D~ * match-
ing widely reported exponents (Beggs and Plenz, 2003; Pries-
emann et al., 2009, 2014; Hahn et al., 2010; Klaus et al., 2011;
Friedman et al., 2012; Shriki et al., 2013; Arvivetal., 2015; Shew et
al., 2015; Karimipanah etal., 2017a,b), obeyed the scaling relation
(Fig. 2D), and exhibited shape collapse over an expansive set of
durations (Fig. 2E).

Specifically, of the 51 recording groups featuring data from
the first 20 min period of recording from one cell, 98% had power
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laws in both size and duration distribu-
tions. The exponent values for the size dis-
tribution were 7 = 1.91 * 0.38 (median
+SD). Exponent values for the duration
distribution were 3 = 2.06 = 0.48. Of the
51 neurons with a recording group from
the first 20 min, 18 had an additional 20
min period spanning multiple recordings.
All these 18 groups had power laws in
both size and duration; the exponent val-
ues for the size distribution were 7 =
1.87 £ 0.29 and the exponent values for
the duration distribution were B = 2.21
0.39.

It is also important to confirm that
power-law behavior extends across sev-
eral orders of magnitude of avalanche du-
rations. We demonstrate a power-law
distribution over 2.45 = 0.39 orders of
magnitude of duration. For the scaling re-
lation, we found a larger span with 2.62 =
0.23 orders of magnitude across our
whole avalanche duration range.

Another statistic crucial to signatures
of criticality measures the relationship be-
tween the power laws describing size and
duration of avalanches (Sethna et al.,
2001; Beggs and Timme, 2012; Friedman
et al., 2012). If the average avalanche size
also scales with duration according to
(A)(D) « D?, then the exponent vy is not
independent, but rather depends on the
exponents T and 3 according to y = (8 —
1)/(7 — 1) regardless of criticality (Scar-
petta et al., 2018). For critical systems this
condition is enforced because avalanche
profiles follows the same shape for all du-
rations which means that this prediction
is believed to be more precise than for
non-critical systems and the exact values
are important (Sethna et al., 2001; Nishi-
mori and Ortiz, 2011). We found that av-
erage avalanche size scaled with duration
(A)(D) « D according to a power law
and that the observed values of 7 and
B provided a good prediction y = (8 —
1)/(7 — 1) of the fitted y (Fig. 2D).

Specifically, of the 51 recording groups
from the first 20 min period, the fitted
scaling relation exponents were 7y; =
1.19 = 0.05 and the predicted scaling re-
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Figure2. V, fluctuations reveal signatures of critical point dynamics. A, Whole-brain eye attached joint V,, and LFP recording

preparation. B, V,, (red) thresholded at the 25™ percentile (a dashed line). Avalanches are defined by excursions above this
threshold. The gold region represents the size of the avalanche, which is the area between the signal and its second percentile (a
dashed line). The duration of the avalanche is the duration of the excursion. €, Size (left) and duration (right) distributions of V,
inferred avalanches when data are combined from seven recordings from the same neuron falling in the same 20 min period. The
comparison quotients (g) are both above 0.10 (0.878 and 0.874, respectively), indicating that the size and duration distributions
were better fits to power laws at the given cutoff than 87% of power laws produced by arandom number generator with the same
parameters (shown as a gray density cloud). N" indicates the number of avalanches above the lower cutoff of the fit (red vertical
line) and Nindicates the total number of avalanches. Size duration exponent denoted with Tand B is used for duration. D, Scaling
relation is a function relating average avalanche size to each given duration. The predicted exponent (vy,) successfully explains
95.6% of the variance of a log—log representation of the data. A linear least-squares regression could explain 96.7% and gives the
fitted exponent (yy. Therefore, -y, comes within 1.2% of the best linear explanation despite a 10% difference in exponent values.
E, Shape collapse. Each line represents the average time course of an avalanch of a given duration. The color indicates the duration
according to the scale bar. Durations below 50 ms (the lower bound on turtle pyramidal time constants) are made translucent and
slightly thickened. This shape collapse represents the global collapse across all recordings in all cells. This confirms that a universal
%), is present. For the seven recordings in the group represented in Cand D, the mean scaling relation
exponent derived from shape collapse was ysc = 1.23, a disagreement of 2.2% relative to y.

scaling function, F

lation exponents were vy, = 1.17 = 0.35. For the additional sec-
ond 20 min period (18 groups/neurons), the fitted scaling
relation exponents were y; = 1.21 £ 0.05 and the predicted scal-
ing relation exponents were vy, = 1.28 £ 0.21.

To affect a more convincing analysis, we defined four strin-
gent criteria that must be independently satisfied before any set of
avalanches can be deemed consistent with network dynamics
near a critical point (see “Experimental design and statistical
analysis” section). Overall, of the 69 groups of recordings (which
includes 18 out of 51 cells twice), 98.6% had power laws in both
the size and duration distributions of avalanches and 92.8% had
scaling relations that were well fit by power laws (R* > 0.95). All

were deemed nontrivial by the test (y, — 1) > o, where oy, is
the dataset SD and o, = 0.051. The smallest value was y; = 1.094.
The fourth constraint, that the R” of the predicted scaling relation
was within 10% of the best-fit scaling relation, was satisfied
85.6% of the time. Together, this set of criteria cannot measure
distance from a critical point nor eliminate false positives. How-
ever, the take away is that 81% of all recording groups examined
were judged to be consistent with network activity near a critical
point.

Separating out results: 76% of the 51 recording groups from
the first 20 min period and 94% of the recording groups from the
second 20 min period were judged consistent with criticality. The
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Figure 3.V, fluctuations are consistent with avalanches from previously obtained microelectrode array data. A plot of the

exponents governing power-law scaling of avalanche duration versus the exponents governing avalanche size is shown. Circles
indicate data which was best fit to a power-law in both its size and duration. Triangle indicates otherwise (the MLE estimation of
awould-be power-law fit, the “scaling index,” is plotted in that case; Jezewski, 2004). Filled circles indicate data that meet all four
standardized criteria for judging data to be consistent with criticality. 4, Reproduction from Shew et al. (2015) showing the results
of avalanche analysis on microelectrode array data collected during the steady-state of stimulus presentation in an otherwise
identical experimental preparation. The exponent values appear to covary to maintain a stable value of the scaling relation,
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YT i
avalanche size or duration exponents” section). B, Results of avalanche analysis performed on fluctuations in subthreshold V.. We
found power laws with closely matching exponents and the same scaling relation with the similar level of stability. The correlation

between 3 and T was high (see “Predicted scaling relation exponent is more stable than avalanche size or duration exponents”

The correlation between 3 and T was high (see “Predicted scaling relation exponent is more stable than
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shorter duration avalanches. This is ob-
served as an apparent outlier in Figure 2E.
This likely marks the point where ava-
lanches become so long and so large that
they begin to weakly activate the nonlin-
ear action potential mechanism of the
neuron. When comparing to plausible
alternatives to V, in later sections, we
included analysis of mean curvature and
avalanche profile peak height along with
visual inspection of shape collapse qual-
ity (Fig. 2E). The shape collapse plots
begin with short avalanches (20 ms) that
are below the median lower cutoff for
power-law behavior (which was 256 ms)
but are well predicted by the scaling
relation.

The exponents estimated from the shape
collapse were a good match for both the pre-
dicted and fitted scaling relation exponents.
The groups of recordings from the first 20
min yielded ys = 1.1868 = 0.042. The av-
erage matched absolute percentage error
was 1.3% with respect to 7y A matched
signed-rank difference of median test re-
vealed that y, was not significantly different

section).

general pattern is that the first 20 min period and the second are
both consistent with criticality, but the second group meets our
criteria much more frequently. This could be an effect related to
the length of time we are able to maintain a patch or it could be
that a better patching results in both longer stable recording abil-
ity and better inference of dynamical network properties.

To further discount the possibility of false positives we inves-
tigated whether the avalanches within our dataset exhibited
“shape collapse” (Fig. 2E). The scaling relation is a consequence
of self-similarity (Sethna et al., 2001; Papanikolaou et al., 2011;
Friedman et al., 2012; Marshall et al., 2016; Shaukat and Thiv-
ierge, 2016; Cocchi et al., 2017). In other words, avalanches all
have the same “hump shape” no matter how long they last; this
shape is called the scaling function or avalanche profile. The
shape collapse also provides an independent estimate of the scal-
ing relation exponent . If estimated exponent, s, matches the
fitted exponent, 7y then it is considered strong evidence of
critical point behavior. For critical systems, the average ava-
lanche profile of an avalanche of duration D is given as A(,D)

t— 1
= DU VF (DO> where D"~V is a coefficient governing the

t— 1
scaling of height with duration, and F (DO) is the scaling-

function that describes the universal shape of an avalanche at any
duration. The similarity of avalanche profiles of different dura-
tions is qualitatively judged (Sethna et al., 2001; Beggs and Plenz,
2003; Friedman et al., 2012; Pruessner, 2012; Timme et al., 2016)
by plotting empirically estimated scaling functions for several
durations on top of one another after they have been rescaled as
part of the process of estimating ysc.

We obtained shape collapse across more than one order of
magnitude (between ~50 and 700 ms) of avalanche durations.
Below 50 ms, distinct peaks arose. Above 700 ms, the profile
height grew faster than the power-law scaling that worked for

from vy, simple difference effect size rqpp
= 0.089, p = 0.063 (where p < 0.05 indi-
cates that they are different).

This stage of the analysis showed that, when fluctuations of V,
are treated like neuronal avalanches, they are consistent with crit-
icality by the standards of power laws governing size and dura-
tion. We also showed that V,, avalanches exhibit geometrical
self-similarity across more than one order of magnitude. These
factors showed that the cortical circuits driving fluctuations of
V.. are consistent with activity near a critical point according to
standards of self-similarity. In our next investigation, we com-
pared with population data from microelectrode arrays and other
results from the literature to determine whether V,, fluctuations
are consistent with the universality requirement of behavior near
critical points and if they can be used to measure dynamical net-
work properties.

V., fluctuations are consistent with avalanches from
previously obtained microelectrode array LFP recordings

We sought to interpret our results from the analysis of single-neuron
V. fluctuations in the context of the more commonly used analysis
of multiunit spiking activity (Friedman et al., 2012; Shew et al., 2015;
Marshall et al., 2016; Karimipanah et al., 2017a) or multisite LFP
event detection from MEA data (also known as “multielectrode ar-
ray”) (Beggs and Plenz, 2003; Shew et al., 2015).

In a previous study, avalanche analysis was performed on LFP
multisite MEA recordings from the visual cortex of a different set
of 13 ex vivo eye-attached whole-brain preparations in turtles
(Shew et al., 2015). Avalanches were inferred from the steady-
state (after on response transients but before off response tran-
sients) of responses to visual presentation of naturalistic movies
as opposed to the resting-state activity between presentations
(which is where the V,, data come from). Avalanche size and
duration distributions followed power laws.

The median exponents were T = 1.94 = 0.27 for the avalanche
size distributions and B = 2.14 = 0.32 for the avalanche duration
distributions (Fig. 3A). A scaling relation existed with average
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exponent y; = 1.20 % 0.06 fitted to the dataand 1y, = 1.19 + 0.07
from the average of the predicted scaling based on theory. The
scaling power-law extended over one to two orders of magnitude.
Critical branching was more firmly established in Shew et al.
(2015) by analyzing the branching ratio. The branching ratio is
the average ratio of events (i.e., spikes) from one moment in time
to the next, but only during identified avalanches. A critical
branching network has a branching ratio of one, but empirically
estimating it requires discrete events and an assiduous choice of
time binning for analysis. Shew et al. (2015) found that a branch-
ing ratio near one that was robust to reasonable choices of time
bin and varied with choice of time bin in expectation with critical
branching. We are not aware of methods for estimating a branch-
ing ratio in continuous signals like V.

The set of avalanche size, duration, and scaling relation expo-
nents obtained from V, fluctuations (Fig. 3B) were not distin-
guishable from the MEA obtained set. The fitted scaling relation
exponent 7y, had the least variability of all three kinds of expo-
nents, so it is the most likely to show a difference. Thus, if a
difference is not significant, then this suggests universality more
strongly than for the avalanche size 7 or duration 3 distribution
exponents.

When we limited our analysis to the first 20 min period that
contained multiple recordings (51 cells), neither the fitted scaling
relation exponent nor the predicted scaling relation exponent
were significantly different from the MEA results. The Wilcoxon
rank-sum difference of medians test against the MEA data yielded
(rspr = 0.164, p = 0.37), and (rgpr = 0.08, p = 0.67), respectively.
The median exponent values for the size and duration distribu-
tions were not significantly different from the median of the MEA
data (rgpp = 0.164, p = 0.37) and (r¢pr = 204, p = 0.265),
respectively.

These results establish V, fluctuations as an informative
gauge of high-dimensional information while also demonstrat-
ing that the power-law characteristics are universal properties of
the brain by showing a close match between data at different
scales and under different conditions. Further underscoring uni-
versality, our results are also similar to the critical exponents
measured from other animals such as the 7 = 1.8 result from in
vivo anesthetized cats (Hahn etal., 2010). Although an exhaustive
literature search was not conducted here, others have conducted
incomplete surveys (Ribeiro et al., 2010; Priesemann et al., 2014).

Single-neuron estimate of network dynamics is optimized at
the network critical point

To gain a deeper insight into the relation between single-neuron
input and network activity, we investigated a model network of
probabilistic integrate and fire model neurons (Kinouchi and
Copelli, 2006; Larremore et al., 2011a,b, 2012, 2014; Karimipanah et
al., 2017a,b). This model network contains fundamental features of
cortical populations, such as low connectivity, inhibition, and spik-
ing while being sufficiently tractable for mathematical analysis (see
“Model simulations” section).

In brief, the model network consists of N = 10* binary prob-
abilistic model neurons (Fig. 4A). The connection probability ¢
results in a mean in-degree and out-degree of cN. The connection
strength from neuron j to neuron i is quantified in terms of the
network adjacency matrix W. Each connection strength Wj; is
drawn from a distribution of (initially) positive numbers with
mean 7, where the distribution is uniform on [0,27]. A fraction y
of the neurons are designated as inhibitory; that is, their outgoing
connections are made negative. The binary state S;(¢) of neuron i
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is updated according to Si(t) = @(E;]V\/,-jsj(t - 1) — &@)
where &(t) is a random number between 0 and 1 drawn from a
uniform distribution and O is the Heaviside step function.

The largest eigenvalue, A\ = mcN(1 — 2Y), of the network
adjacency matrix W characterizes the network dynamics, with
critical network dynamics occurringat A = 1. This tuning param-
eter A controls the degree to which spike propagation “branches”:
A = 1 means that one spike creates one other spike on average,
A > 1 implies that one spike creates more than one other spike,
whereas A < 1 means that one spike creates less than one other
spike (Haldeman and Beggs, 2005; Kinouchi and Copelli, 2006;
Levina et al., 2007; Larremore et al., 2011b, 2012; Kello, 2013).

The input to model neuron i is P(t) = EJI-\]‘/V,-]-S}-(t — 1)and
provides the link between network activity and single-neuron
activity. From this we can derive a simple mathematical result
characterizing how estimation of network properties is opti-
mized at criticality.

Ifwelet K;(t — 1) denote the number of active neurons in the
presynaptic population of neuron 7, then we can rewrite the input
to a model neuron as a sum of independent and identically dis-
tributed random variables drawn from the nonzero entries of W:
Pi(t) = EkK'(til)Wijk. After implementing inhibition by inverting
some elements of W, the distribution of weights is not uniform
but piecewise uniform. Weights are drawn uniformly from the
interval [—2m,0] with probability y and from the interval [0,27]
with probability 1 — x. The mean of the nonzero entries of W are
denoted with a prime so that the meanis (W,) = n(1 — 2y)and
the SD is \(W2) — (W}) = m\[(1 — 12(x* — x))/3. Now we
can find the mean behavior of the input integration function as it
relates to the presynaptic population:

(P1)) % apy = (1 = 2x) Ki(t — 1)

+ (1= 12(x° — Y) Ki(t — 1)/3

We learn three things by examining the mean behavior of the
input integration function. First, the mean grows as O(K;) but
the SD grows as the root O( \/I?,v), so the function becomes a
more precise estimator of network activity with increasing activ-
ity in the presynaptic population (increasing K;). Second, the
input integration function Pj(¢) is rarely negative. At the param-
eter combination ¢ = 0.005 and y = 0.25 (which has the largest
variance relative to the mean), the mean becomes >1 SD larger
than 0 when K; > 5. Third, and most importantly, the input
integration function is an averaging operator and the tuning pa-
rameter A biases that averaging operation. To show this, we only
need two observations: the instantaneous firing rate averaged
over the presynaptic population is the number of active neurons
divided by the expected total number of presynaptic neurons,
w,(f) = Ki(£)/cN. Next, we rearrange the definition of A to get
A/eN=mn(1 — 2x).Substituting these two observations into the
mean behavior of our input integration function we get the key
mathematical result:

Note that P,(f) = P,(t) X O(P(t)) directly represents the prob-
ability for the neuron to spike at time t.

These results demonstrate that the inputs to a neuron P; and
the instantaneous firing rate of that neuron are the result of an
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Figure 4.  The single-neuron estimate of network dynamics is optimized at the network critical point. A, Model network consisting of 10* excitatory (cyan) and inhibitory (magenta) model
neurons with sparse connectivity (line tips: arrows = excitation; circles = inhibition). The simulated model activity (raster plot) is represented in terms of the single-neuron spiking (raster plot) and
the active fraction of the network F(r) = S(#)/IN where population spiking s S(¢). Concurrently, the smoothed inputs (orange) to a single neuron represents the V., proxy, d;(¢). The threshold
(dashed line) crossings of D,() define avalanches (see “Experimental design and statistical analysis” section). Avalanches of F(t) and ;(¢) are analyzed in terms of their size (shown) and duration
(data not shown) distributions and their corresponding exponents, 7. Avalanche statistics depend on several network parameters including the critical branching tuning parameter A. B, Diagram
showing how the inclusion of inhibition affects the network behavior. The black lines mark the boundaries of arbitrarily defined parameter regions approximately corresponding to distinct kinds of
behavior. The shade of blue indicates what fraction of 10 trials at each point met all four of our standardized criteria for consistency with expectations of critical branching behavior. €, Stacked area
chart showing the probability density distribution of size exponent error (between F(t) and d;(¢) for different A and dynamical regimes. The vertical thickness of each color band shows the
probability density for that subset of the data and the outer envelope shows the overall probability density. Probability density is estimated with a normal kernel smoothing function. In this panel,
we can see that power-law scaling is most similar at criticality despite variability dependent on the parameter regime. D, Complete summary of the tests for criticality when applied to £(t) (top row)
and ®; () (bottom row). From this, we can confirm that the system is consistent with riticality when there is no inhibition. The subsampling method &;(£) demonstrates consistency with criticality
but displays a wider dispersion of exponent estimates. For experimental V/, and MEA data, there was alarge correlation between 3 and 7, showing that the scaling relation (which predicts the slope
of the trendline) is much more stable than exponent values. This is not the case for the model where for F(t), where the correlation s low (see “Predicted scaling relation exponent is more stable than
avalanche size or duration exponents” section).

averaging operator acting on the presynaptic population, which
is a subsample of the network. Furthermore, the tuning parame-
ter A not only modulates the relationship of single neuron firing
to downstream events (also known as branching), but also gov-
erns how the input to a neuron relates to the presynaptic popu-
lation. It biases the averaging operator to either amplify firing rate
(A >1) or dampen it (A < 1). Therefore, our model implements
both critical branching and the inverse of the critical branching
condition, a critical coarse-graining condition. The model is a
network of subsampling operators that only capture whole-
system statistics when A = 1 and the operators reflect an unbiased

stochastic estimate of mean firing rate among the subsample (the
presynaptic population). This averaging operation may exist in
many kinds of networks, including those with structure and those
that are not critical branching networks, so this result helps to
establish plausible generalizability.

To further evaluate the relation between single-neuron input
and network activity under different conditions, we simulated
the described network of 10* model neurons for a total of 405
different parameter combinations, including connection proba-
bility, inhibition, and maximum eigenvalue (Fig. 4A), each pa-
rameter combination was repeated 10 times. We then compared
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the avalanche analysis results of simulated network activity
1
E(t) = (N) Efi 1Si(#) with the input to a single neuron (the input

integration function). However, P(t) = E]I-\IW,-]-Sj(t) is the prob-
ability that neuron i will fire at time ¢, also known as the instan-
taneous firing rate of neuron 7.

V.. is not a direct representation of firing rate, but rather the
firing rate is related to synaptic input through the F-I curve which
is nonlinearly related to V.. This nonlinearity could destroy the
correspondence between the simulated single neuron signal and
network activity. To better facilitate comparison of the simulated
input integration function with the experimentally recorded V,,,,
we constructed a proxy for the subthreshold V,,,, ®;(#), of a model
neuron by convolving the simulated input P;(¢) with an alpha-
function (see “Model Simulations” section).

The parameter space has four distinct patterns of critical net-
work behavior (Fig. 4B). Qualitatively, these were reflected in the
network activity. The presence of these paradoxical behaviors
may indicate the presence of second phase transition tuned by the
balance of excitation to inhibition (Shew et al., 2011; Poil et al.,
2012; Kello, 2013; Hesse and Gross, 2014; Larremore et al., 2014;
Scarpetta et al., 2018). Several key results differ strongly and thus
are reported separately for these regions of parameter space.

These regions are defined in terms of the connection density
and inhibition and are shown in Figure 4B. First is the “positive
weights” region, where there is no inhibition (y = 0) and the
network is a standard critical branching network. The second
region, “quiet,” has a small increase in the fraction of inhibitory
neurons. Activity lasts slightly longer than for the classically crit-
ical network. The third region is called the “switching” regime
because network activity switches between a low mean and a high
mean (like “up and down states”; Destexhe et al., 2003; Millman
et al., 2010; Larremore et al., 2014; Scarpetta et al., 2018). This
occurred in the middle portion of the values of connectivity and
inhibition. Last, we have the “ceaseless” region, with a large frac-
tion of inhibition relative to connection density, where activity
never dies out. This region is defined by ¢ < (10e'?* — 13)/100
and x > 0. Three of these regimes are displayed in Figure 5A; the
“quiet” region is mostly redundant to the “positive weights” re-
gion. The “ceaseless” and “switching” regimes exhibit sustained
self-generated activity and are included with the intention to
model ongoing spontaneous activity dynamics without contam-
ination by externally imposed firing patterns (Mao et al., 2001).

We looked at the magnitude of relative error between esti-
mated exponents for the avalanche size distribution (Fig. 4C) to
determine how well our proxy neural inputs, ¢;(t), reflected net-
work activity, F(#), in different parameter regions, and with dif-
ferent values for the tuning parameter, A. Importantly, the least
error occurred for A = 1 with and without the presence of inhib-
itory nodes. This insensitivity to parameter differences supports
the claim (Larremore et al., 2014) that the system becomes critical
when A = 1 even in the presence of inhibition.

However, the four regions of parameter space perform differ-
ently according to our four standardized criteria for consistency
with criticality. In the “positive weights” region, 90% of 90 trials
(nine points in parameter space with 10 trials per point) have
network activity that meets all four criteria when the tuning pa-
rameter is set at criticality (A = 1) (Fig. 4C). A total of 39% meet
the criteria in the “ceaseless” region, 19% in the “quiet” region,
and 67% in the “switching” region, which may indicate the loca-
tion of a second phase transition and shows that evidence for
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precise criticality in this model is limited once inhibition is
included.

As we vary the tuning parameter, we can clearly distinguish
critical from noncritical systems. Overall, 47% of trials met all
four criteria when A = 1, whereas 3% did when A = 0.95, 18%
when A = 1.015, 1% when A = 0.9, and 1% when A = 1.03 (Fig.
4D).

The estimated power-law exponents show that the avalanche
size distributions for F(t), P;(t), and ®,(f) are most alike at criti-
cality. Note that estimated exponents serves as the “scaling in-
dex,” ameasure of the heavy tail even when a power-law is not the
statistical model that fits best (Jezewski, 2004). The fact that
matching between network activity and the input integration
function was best at criticality is important because it under-
scores the scale-free nature of critical phenomena and contrasts
with the results obtained when testing subsampling methods with
a different relationship to network structure (Priesemann et al.,
2009; Yu et al., 2014; Levina and Priesemann, 2017).

While the system was both critical (A = 1) and in the positive
weights region, our V,, proxy ®;(¢) met all four criteria for con-
sistency with criticality 74% of the time for 90 trials (Fig. 4D),
whereas P;(f) met all four only 1% of the time. The network
activity had avalanche size and duration exponent values 7 =
1.43 = 0.04 and B = 1.87 % 0.09 (Fig. 4D) and had a fitted
scaling relation exponent, y;, = 1.83 = 0.02 and a predicted
exponent vy, = 1.99 * 0.23. The V,, proxy, ®,(t), had slightly
lower avalanche size and duration exponent values that fluc-
tuated around the paired network values, 7, = 1.40 = 0.06
and By = 1.73 £ 0.17 (Fig. 4D), and exclusively lower scaling
relation exponents yp, = 1.68 * 0.02. Although the un-
smoothed P;(t) varied considerably more it had size and duration
exponents that were almost exclusively higher than the paired
network values, 7, = 1.87 £ 0.50and B, = 1.87 = 0.50 with
a fitted scaling relation exponent that was exclusively lower,
Yp, = 1.68 = 0.02.

In Figure 5, we compared different population dynamics esti-
mation techniques by looking at avalanches inferred from P;(t)
(the inputs to neuron i), and the V,, proxy ®;(¢). Both P;(t) and
®,(¢) fluctuate about F(¢), but P;(¢) is much noisier (Fig. 54); in
the ceaseless regime, P;(f) and ®;(1) are systematically offset. Av-
alanches inferred from ®;(t) had average sizes that scaled with
duration (Fig. 5B). Avalanches from ®;(t) consistently had dura-
tion and size distribution exponents that were closer to network
avalanches than avalanches from P;(t). However, P,(f) performed
satisfactorily in the sense that its error was systematically offset
and best at criticality (Fig. 5C).

Including inhibition introduced several important differ-
ences. For the ceaseless region with A = 1, far fewer trails met our
criteria; however, P;(t) followed F(f) much more closely. The
network activity had avalanche size and duration exponent values
7 = 148 £ 0.09, and B = 1.53 = 0.09 and had a fitted
scaling relation exponent, y;, = 1.23 * 0.11. The V,, proxy,
®,(t), had slightly higher avalanche size and duration exponent
values that fluctuated around the paired network values, 74 =
1.51 £ 0.19and By = 1.57 * 0.17, but nearly identical scaling
relation exponents vy, = 1.23 * 0.11. Although the un-
smoothed P;(¢) varied considerably more, it had size and dura-
tion exponents that were almost exclusively higher than the
paired network values, 7, = 1.88 = 0.20 and B, = 2.18 =
0.34, with a fitted scaling relation exponent that was slightly
lower, yp, = 1.19 = 0.07.

When A # 1,both ®,(t) and P,(¢) failed to meet all four criteria
for criticality at the same high rate as F(¢) (to within 1%). This
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Figure 5. Inputs to a neuron stochastically estimate firing of its presynaptic pool in this critical branching model. 4, Differences in model activity dynamics with parameter regions
(constant connectivity, A =1 but inhibition, ¥, varies). Each plot shows the active fraction of the network F(t) in blue, the instantaneous firing rate of node, P;(t), isin gold and the V,
proxy for the same node, ®;(#), is in orange. The node is randomly selected from the nodes with degree within 10% of mean degree. The V,, proxy is produced by convolving the firing
rate of a single neuron with an alpha-function with a 4 ms time constant. The top plot shows that with no inhibition (or very little inhibition) activity in this parameter region dies away
tozero and is unimodally distributed about a small value. The middle plot shows that moderate amounts of inhibition results in self-sustained activity that is bimodally distributed about
one high and one low value. The bottom plot shows that, when the fraction of nodes that are inhibitory is much larger than connection density, activity is self-sustaining and unimodally
distributed about a high value with low variance relative to the mean. B, Scaling relation for the avalanches inferred from &;(¢) at different levels of inhibition, as in A. Inhibition
detrimentally impacts the validity of the scaling relation predictions, which are required for consistency with critical branching. The predicted (v,) and fitted (y,) scaling exponents are
indicated as is the goodness of fit (R;) for the predicted exponent. C, Diagram showing how avalanche (fluctuation) statistics vary with the parameter set displayed in A and B. The top
row shows avalanche (fluctuation) sizes and the bottom row shows the duration distributions. Exponents 7 (size distribution) and 3 (duration distribution) and comparison quotients
g are annotated on the plot. From these plots, we can see that temporal smoothing (®,(¢)) is necessary to accurately capture F(t). Additionally, we see that mismatch between the F(z)
and P;(t) avalanche distributions vary with network parameters. At high levels of inhibition, the i(t) avalanches are power-law distributed over smaller portions of their support. For
@ (), neither of the networks with less inhibition show the cutoffs associated with under sampling a critical branching network.

lack of false positives confirms that these signals are useful for
characterizing critical branching. In Figure 4B, we calculated the
absolute magnitude of relative error between the size exponent
from avalanche analysis performed on F(¢) and ®;(f). As ex-
pected, the avalanches were usually not power laws according to
our standards; in this case, the exponent is known as the “scaling

index” and describes the decay of the distribution’s heavy tail
(Jezewski, 2004).

When we set A = 0.95, we see a moderate deterioration in the
ability of either ®;(¥) or P;(¢) to recapitulate network exponent
values. The error is no longer systematic; so they cannot be used
to predict network values. The variability of the exponents in-
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creases greatly for ®;(t), whereas it decreases for P;(t). The expo-
nent error increases slightly over the A = 1 case and the base of the
distribution is much broader.

Reducing A further, to A = 0.90, the input integration func-
tion, Pi(f) ~ Aw;(t — 1), rapidly dampens impulses (w; is the
instantaneous firing rate over the presynaptic population for
neuron 7). Variability continues to increase and a systematic off-
set does not return. Exponent error is now much broader. With
branching this low, events often are not able to propagate to the
randomly selected neuron; an exception is the “ceaseless” regime
where activity is still long lived.

When we set A = 1.015, we see a dramatic deterioration in the
ability of either ®;(f) or P;(¢) to recapitulate network values. Vari-
ability in exponent estimation increases for both ®;(¢) and P;(%).
Exponent error increases rapidly, underscoring the inability to
estimate network activity from neuron inputs.

Increasing A further to A = 1.03 produces an input integration
function, P;(t) ~ Aw;(t — 1), which rapidly amplifies all im-
pulses and the network saturates. The effect is that variability in
the estimated exponents decreases and a systematic offset re-
turns, with both ®,(f) and P;(#), producing exponents that are
exclusively and considerably higher than network values. Expo-
nent error reveals that estimating network properties from the
inputs to a neuron is probably not possible for supercriticality in
this model.

The results here show that the V,, proxy represents an effective
way of subsampling network flow. This is a hallmark of the near-
critical region in the PIF model and a manifestation of scale-
freeness. Criticality in our model corresponds to the point when
the inputs to a neuron represent an average of the activity of the
presynaptic population. Importantly we explored why it works,
as well as showing that it does work in experimental data. This
analysis, presented in forthcoming sections, uncovered that
proper temporal and spatial aggregation is important as is the
role of inhibition in V,, dynamics. This supports both the criti-
cality hypothesis and tight balance (Barrett et al., 2013; Boerlin et
al., 2013; Deneve and Machens, 2016). Additionally, it has spe-
cific implications for the information content of V..

Predicted scaling relation exponent is more stable than
avalanche size or duration exponents

A key part of the study of criticality in neural systems is the
assumption that biological systems must self-organize to a critical
point. The precise critical point is a very small target for a self-
organizing mechanism in any natural system. Therefore, a key
question is whether the self-organizing mechanism of the brain
prioritizes efficiently achieving information processing advan-
tages of scale-free covariance at the expense of being slightly sub
or supercritical (which is a larger target) (Priesemann et al., 2014;
Tomen et al., 2014; Williams-Garcia et al., 2014; Gautam et al.,
2015; Clawson et al., 2017).

Our data offered unexpected insight. It is known that so long
as three requirements are met the scaling relation will be margin-
ally obeyed: Avalanche size and durations must be power-law
distributed (with exponents 7 and f3, respectively) and average
size must scale with duration according to a power-law with ex-
ponent vy. Given those three requirements one can derive a pre-
diction for the scaling exponent,y, = (8 — 1)/(7 — 1) without
needing to assume criticality (Scarpetta et al., 2018). However,
without any other assumptions, one expects 8 and 7 to be inde-
pendent, so plotting one against the other should make a point-
cloud that is symmetrical, not stretched along a trendline (Fig. 3).
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We analyzed the independence of 7, 8, and y measured from
experimental data (where self-organization is hypothesized) and
compared it with model data (where self-organization is impos-
sible, but criticality is guaranteed). We found that 8 and T are
more independent and the predicted scaling relation is more vari-
able for the model than for experimental data in which 8 and 7
covary, apparently to maintain a fixed scaling relation prediction.

The previous multisite LFP recordings displayed a range of
values for the avalanche size 7 and duration 3 distribution expo-
nents across the tested brain preparations. Interestingly, the ex-
ponent values were not independent; rather, the duration
exponent varied linearly with the size exponent (Shew et al.,
2015) (Fig. 3A). The single-neuron V,,, fluctuations reported here
produced a similar linear relationship between size and duration
exponent (Fig. 3B). Algebraic manipulation of the predicted scal-
ing exponent y, = (B — 1)/(7 — 1) provides a clue. If the
scaling relation (8 — 1) = y(r — 1) is obeyed and if vy, is a
fixed universal property, then the linear relationship B;  (v,)7;
holds across different cells and animals.

To demonstrate this important result, variability in the pre-
dicted scaling relation is much less than expected, we propagate
errors and assume independent 3 and 7. We would expect the SD

fy tob . B~ 78 2+ o 2~072
[0) ’YP 0 (S O-'Yp |'T_1| B_l =1 . 5

which is approximately twice the real value in V,, data,
o, ~ 0.35.

The Pearson correlation, p, confirms strong dependence be-
tween 7and B, p,3 = 0.61, p = 2.57 X 10 ° for the V,, data,
whereas for the MEA data p,g = 0.96, p =1.01 X 10 . From
this, we confirm what Figure 3 shows: the variability in Tand B are
not independent and this implies the existence of an organizing
principle connecting 7 to 3. Whatever the principle may turn out
to be, one of its effects is the maintenance of low variability in Yp
at the expense of greater variability in 7and .

A principle reason to suspect self-organization is that this
trend is not seen in the model results. Importantly, T and (3 are
independent of the scaling-relation exponent function, although
still weakly correlated. In this model, there is no adaptive orga-
nizing principle driving this network to criticality, instead the
structure is fixed and set to be at the critical point. This shows
how systems behave in the absence of self-organization. No pa-
rameter is being maintained at low variability at the expense of
other parameters.

Limiting ourselves to simulated network activity for the A = 1
case without inhibition (Fig. 4C), propagation of errors leads us
to expect the SD of the scaling-relation prediction to be
O';,FV ~ 0.27, which is very close to real value of oy, ~ 0.23. The
correlation is statistically significant at the 5% level, but much
smaller p.g = 0.23,p = 0.027. This was noted in the original
study (Shew et al., 2015), where the authors were able to repro-
duce the linear trend between avalanche size and duration expo-
nents by simulating a network with synaptic depression to
adaptively restore critical behavior after an increase in network
drive. They showed that the trendline is produced by corrupting
their simulated data via randomly deleting 70-90% of spiking
events and then changing the way that they group events in time
(adaptive time binning). Our V,, fluctuations have no counter-
part to the adaptive time binning other than the intrinsic mem-
brane time constant, which is not manipulated experimentally.

In conclusion, the linear trend between avalanche size and
duration exponents is not a universal property of critical systems
because it was not found in the model. This suggests that the
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linear trend is enforced by an organizing principle at work in the
brain but absent in the model. This principle prioritizes main-
taining stability in either the scaling of avalanche size with dura-
tion, or the power-law scaling of autocorrelation which is closely
related to the scaling relation and scale-free covariance via the
power-law governing autocorrelation (Bak et al., 1987; Sethna et
al.,, 2001).

Nonlinearity and temporal characteristics such as high-order
correlation, proper combination of synaptic events, and
signal timescale are required to reproduce network measures
from single-electrode recordings

To demonstrate that subthreshold V,, fluctuations can be used as
an informative gauge of cortical population activity, it is neces-
sary to compare against alternative signals that have either been
used by experimentalists as a measure of population activity or
that share some key features of V, but are missing others. By
making these comparisons, we can illuminate which features of
the V, signal are responsible for its ability to preserve properties
of cortical network activity. Additionally, it is necessary to deter-
mine whether the statistical properties of avalanches can be ex-
plained by random processes unrelated to criticality. To address
these points of the investigation, we analyzed five surrogate signals:
single-site LFP recorded concurrently with the V, recordings, two
phase-shuffled versions of V, recordings, computationally inferred
excitatory current, and the same inferred excitatory current further
transformed to match V,,, autocorrelation (which tests the role of
IPSPs by making a V,,,-like signal that lacks them).

Negative fluctuations of LFP disagree with V,, and MEA
results and are inconsistent with avalanches in critical
systems

The first alternative hypothesis to test is whether the LFP could
yield the same results. We used low-pass filtered and inverted
single site LFP, which is commonly believed to measure local
population activity. However, in our analysis, it did not recapit-
ulate the results from either MEA or V,, avalanche analysis. We
obtained viable single-site LFP recordings (see “Extracellular re-
cordings” section), simultaneous and adjacent with whole-cell
recordings, for 38 of the 51 neurons reported above. We per-
formed avalanche analyses on the LFP recordings using a proce-
dure like the one described for the V,, recordings (see
“Intracellular recordings” section) (Fig. 6). LFP recordings were
grouped in the same way that V,, recordings were to match them
for comparison. However, the numbers of recordings are not the
same because there were two or three cells being patched along-
side (within 300 wm) one extracellular electrode and there was
not always a simultaneous LFP recording. LFP also produced
more avalanches per 2-5 min recording, N, = 1128 * 348.
There are 23 20 min periods spanning multiple LFP recordings.
These recordings were gathered into groups and matched against
49V, recording groups (38 from the first 20 min period, 11 from
the second). Additionally, there were 16 20 min periods spanning
only one LFP recording but with >500 avalanches. The concur-
rent V,, recordings did not have enough avalanches. This gives us
39 LFP avalanche datasets.

The LFP recording groups performed poorly according to our
four criteria for consistency with criticality. Of the 39 LFP record-
ing groups, only 41% had acceptable scaling relation predictions
and only 36% met all four standard criteria for criticality (Fig.
7A). The additional criterion of shape collapse was not observed
(Fig. 6C); there was no linear trend among the exponents gov-
erned by the scaling relation and the exponents did not match
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MEA data (Fig. 3A). However, 85% produced power-law fits for
size and duration, 92% had scaling relations well fit by power
laws, and all were nontrivial. We expect from previous data
(Touboul and Destexhe, 2017) that some fraction of noncritical
data will pass the four standard criteria by chance as long as the
data have a 1/f power spectrum.

To emphasize that these results are chance, we can limit our-
selves to just those with the best chance of meeting the scaling
relation criteria by picking those that have power laws in the size
and duration distributions. This is enough to expect the scaling
relation to be obeyed if mean size scales geometrically with dura-
tion (Scarpetta et al., 2018). It is still the case that only 42% of
recording groups meet the three remaining standard criteria for
consistency with criticality. Therefore, having power laws is sta-
tistically independent of meeting the other criterion for consis-
tency with criticality.

Not only does the single-site LFP data differ from MEA and
V., data because it fails to demonstrate consistency with critical-
ity, it is also the case that the scale-free properties that do exist are
not representative of the MEA data or the simultaneous V., re-
cordings. The failure was not because LFP recordings cooccurred
with decreased consistency with criticality more generally.
Eighty-one percent of the matched V,, recordings met all the
criteria, whereas 58% of the LFP recordings did, a statistically
significant dissimilarity (rop = 7.65,p = 1.1 X 10 ).

The estimated exponents from all 39 LFP recording groups
were highly variable. The duration distribution and scaling rela-
tion were most dissimilar to V, and MEA data. Of the 33 LFP
groups that were power-law distributed, the avalanche size expo-
nent had a median value of T = 1.90 = 0.63, whereas the
duration exponentwas 8 = 1.41 * 0.9 (verylow) (Fig. 7A) and
the fitted exponent was y; = 1.11 = 0.02. The predicted
scaling-relation exponents were inaccurate, with y, = 0.89

* 0.76 for the subset of recording groups that had power laws.

The extreme variability makes it difficult to determine
whether the size and duration exponents match other data, but
the fitted scaling relation exponent was much less variable and
more clearly separated from MEA or V,, results. The matched
difference of median test (Wilcoxon signed-rank) between 49 re-
cording groups found that the best fit 7, (t = 1.90 * 0.63), wasnot
significantly distinguishable from the V,,, data (rqpr = 0.15, p =
0.33),but B, (B = 1.41 = 0.9), was dissimilar with a comparable
effectsize (ropp = 0.17,p = 0.028); v (y; = 1.11 * 0.02), wasalso
dissimilar (rgpp = 0.25,p = 7.1 X 107").

When comparing against the 13 samples of MEA data vy, was
significantly different from the MEA data (rspr = 0.88,and p =
9.21 X 10 ™). This contrasts with our comparison between V,,
and MEA data. In that case the scaling relation was not distin-
guishable even with 51 points of comparison and very low vari-
ability making a difference easier to detect. However, because of
their extreme variability the size and duration exponents fail a 5%
significance threshold for distinguishing from the MEA databy a
Wilcoxon rank-sum result (rspr = 0.06, p = 0.766 for 7 and
rspr = 0.29,p = 0.123 for B). This failure of inverted LFP to
show the same statistical properties as multiunit activity may add
a caveat to the assumptions behind the use of inverted LFP as a
proxy for population activity (Kelly et al., 2010; Einevoll et al.,
2013; Okun et al., 2015). Specifically, the amplitude of single-
electrode negative LFP excursions is ambiguously related to the
number of spiking neurons, whereas the use of electrode arrays as
described previously (Beggs and Plenz, 2003; Shew et al., 2015) is
more appropriate.
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Figure6.  Comparison with surrogate signals reveals the importance of nonlinearity and temporal characteristics such as high-order correlation, proper combination of synaptic events, and signal
timescale. 4, Alternative signals and surrogate data time synchronized to Figure 28 and showing thresholds and integration baselines (dashed lines) with avalanche areas marked in yellow. The top
row shows the inverted LFP signal. The LFP is low-pass filtered (0 —100 Hz), inverted, detrended, and analyzed for avalanchesidentically to V... The second and third rows show the inferred excitatory
inputs to aneuron. An algorithm reconstructs the timing and shape of ePSPs from V. The resultant signal, g, is much faster, making it analogous to the P;(¢) signal from the PIF model. This signal
is smoothed (third row, see “Model simulations” section for details) to produce a signal that s like V., (Fig. 2B) would be if it lacked IPSPs. The last row provides an example of amplitude matched
phase shuffled surrogate data (amplitude adjusted Fourier transform algorithm). B, Scaling relation in the same order and dataset as A. The dashed line is the predicted scaling relation exponent
inferred from power-law fits to the size and duration distributions of positive fluctuations. In cases where a power-law is not the best model the exponent nonetheless gives the average slope of a
linearregression onalog-log plot, a “scalingindex” (Jezewski, 2004). The predicted (+y,) andfitted (y) scaling exponents are indicated as is the goodness offit (Rf,) for the predicted exponent. Mean
size scales with duration for all signals but often it is trivial (-, ~ 1) or poorly explained by a power law (R} < 0.95) and it is rarely a good match with the prediction from the scaling relation.
C, Shape collapse from the total dataset in the same order and dataset as A. The color indicates the duration according to the scale bar. If self-similarity is present, then each avalanche profile will
collapse onto the same curve: 7 <%> The LFP illustrates a trivial scaling relation that is not produced by true self-similarity: limited curvature and the exponents are very close to one. The
second row shows the reconstructed excitatory inputs, ... and lacks shape collapse, as expected from the lack of a scaling relation power-law in B. The third row shows that sensible curvature
reemerges with smoothing but does not produce a universal scaling function. In the last row the phase shuffled ¥/, shows a shape collapse which is worse than for the original V., (Fig. 2£). D, Size
and duration distributions from each signal compared with the V, (in solid red). The phase shuffled V,, (dashed red) still obeys power laws but the exponent values disagree, and it less frequently
meets our standardized criteria. Unsmoothed g (solid gold) is more like inverted LFP than anything else. When g __ is smoothed (dashed gold), it becomes closer to the original ¥/, but retains
pronounced curvature in the duration distribution. We see ¥, AAFT, and smoothed g produce distributions that extend over similar orders of magnitude (~ 2). E, Maximum value and curvature
of the average profiles after “collapse” as functions of duration. Shape collapse quality is a subjective measure, but these give a more quantitative perspective. Good shape collapse should have a fixed
maximum value and a high but fixed mean curvature. For comparison, the UFT phase-shuffled data are also shown to provide a comparison with low curvature but a fixed maximum value. By visual
inspection of AAFT and V., it is apparent that the asymmetry is gone and that deviation from the collapsed shape begins at shorter durations. The max value diverges from a linear trend sooner for
AAFT (~0.15 s) than for V, (~0.7 s). Curvature also diverges sooner for the AAFT (0.5 s vs 0.7 5). Curvature does not become appreciable until approximately 50 —70 ms. Between the onset of

0.15 0.7
curvature and divergence of maximum value, there are logm(m> ~ 0.48 orders of magnitude for AAFT and logm(m) ~ 1.15 orders of magnitude for the original V/,.
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Figure 7.  Plausible alternative signals fail to demonstrate consistency with criticality. A plot of the exponents governing
power-law scaling of avalanche duration versus the exponents governing avalanche size is shown. Circles indicate data that were
best fit to a power-law in both its size and duration. Triangle indicates otherwise (the MLE estimation of a would-be power-law fit,
the “scaling index,” is plotted in that case; Jezewski, 2004). Filled circles indicate data that meet all four standardized criteria for
judging data to be consistent with criticality. We show the performance summary for the first group of data from each cell (the first
20 min period which contained multiple recordings). The best fit slope is from linear regression to the plotted orindicated data and
this is compared with the slope predicted by the mean +y; (the exponent describing how avalanche size scales with duration). 4,
Positive fluctuations of inverted LFP were less likely to be power-law distributed and the power-law exponents tended to be
unstable and not resemble MEA results. All 39 LFP datasets are represented. B, Results from the reconstruction of excitatory input
conductance g,.... Only 12% were power-law distributed. The results do not resemble the MEA results. The slope from the trendline
matches the scaling relation exponent but the regression is bad, R* = 0.51. ¢, Adding back some temporal smoothing to g,
can improve results; 94% have power laws but the exponents are more variable and generally larger. Most (96%) fail to have
scaling relations that are well described by power laws. The exponents 3 and Tare less independent but are not well described by
the regression trendlines (R> = 0.35). The fit is applied only to the top right dluster, excluding the outliers in the region 8

< 1.6 and 7 < 1.6.D, Summary of results from the AAFT phase-shuffled V.. As expected for a shuffling that preserves
autocorrelation, power laws are also preserved. However, the exponents are shifted down (especially the size distribution expo-
nent). Far more fail to meet our criteria for consistency with riticality, as statistically significant difference (see “Stochastic
surrogates are distinguishable from V, or MEA results, revealing the importance of nonlinearfiltering” section). Significantly fewer
datasets have scaling relations well described by a power law (75% vs 90%) and this is consistent with a slightly worse shape
collapse (Fig. 60).
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random processes (Touboul and Destexhe,
2017; Priesemann and Shriki, 2018) simi-
lar to those used when contesting evi-
dence for critical brain dynamics (Bédard
et al., 2006; Touboul and Destexhe, 2010,
2017). We also wanted to learn what ef-
fects nonlinearity (non-Gaussianity) has
in signals such as V.

To address these questions, we used
both the AAFT and UFT phase shuffling
algorithms (see “Experimental design and
statistical analysis” section). AAFT (Fig.
6) preserves both the exact power spec-
trum (autocorrelation) of the signal and
nonlinear skew of signal values, but ran-
domizes the phase (higher-order tempo-
ral correlations). UFT is the same but
forces the distribution of signal values to
be Gaussian. Using both allows us to attri-
bute some characteristics to nonlinear
rescaling and others to precise temporal
correlation structure.

Phase shuffling tends to preserve
power laws since it explicitly preserves the
1/f trend of the power spectrum. How-
ever, the matched signed-rank test reveals
that the values of the exponents change in
both methods. Under UFT transformation
the scaling relation and shape collapse be-
came more trivial and like the LFP. This sug-
gests that both the nonlinear rescaling of
input currents by membrane properties and
the way that input populations interact
throughout the intricate dendritic arboriza-
tion are important.

For the 51 recording groups from the
first 20 min, the AAFT reshuffled data yield
a median size exponent of 7 = 1.74 *
0.29, whereas the duration exponent was 3

= 2.0 = 0.34 (Fig. 7D). The fitted scaling

relation exponent was y; = 1.19 = 0.06
and the predicted scaling relation exponent
wasy, = 1.21 %= 0.49.

To summarize, single-site LFP fluctuations result from the
superposition of local spiking and extracellular synaptic current
from juxtaposed network elements (Kajikawa and Schroeder,
2011; Einevoll et al., 2013; Pettersen et al., 2014; Ness et al., 2016).
These fluctuations were found to be less informative about the
network dynamics than single-neuron V,, fluctuations. V,,, fluc-
tuations result from the superposition of EPSPs and IPSPs, indi-
cating neuronal responses propagating in a manner consistent
with the true neural network architecture. In other words, syn-
aptic and spiking events driving fluctuations at single extracellu-
lar electrodes may be too badly out of sequence and distorted to
faithfully represent neuronal avalanches, whereas the sequence of
synaptic and spiking events driving somatic V,, fluctuations is
functionally relevant by definition.

Stochastic surrogates are distinguishable from V,, or MEA
results, revealing the importance of nonlinear filtering

After eliminating inverted LFP as an alternative single-electrode
signal, it was important to establish whether our results could
have been created from a linear combination of independent

Pairing the surrogates to the original V, data and perform-
ing the Wilcoxon signed-rank test for difference of medians
gives (rgpp = 0.053,p = 2 X 10 %), (rgpr = 0.091, p = 0.08),
and (rgpp = 0.207, p = 3 X 10 ~°) for 7, B, and v,, respectively.
Therefore, T and vy, are both significantly different; this is
supported by the fact that only 55% of the groups meet all four
standard criteria for criticality, whereas 76% of meet them for
the original V,, time series. This difference between success
rates is significant by Fisher’s exact test (rOR = 2.67,
p=0.0363).

The failure mode for AAFT shuffled data was almost entirely
in reduced goodness of fit (R?) for a power-law fit to its scaling
relation, 17% fewer recording groups met the criterion R> > 0.95
than for V, (ror = 4.18, p = 0.0093). When the shape collapse
is examined, we see another clear, if qualitative, difference in the
symmetry of any presumed scaling function (Fig. 6C). The AAFT
shuffled dataset is not consistent with critical point behavior.
Thus, we show that the exponent values and evidence for critical-
ity, especially scaling and shape collapse that we inferred from V,,
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are not likely to come from random processes and are dependent
on nonlinear temporal correlation structure.

The key feature of the UFT result is that the fitted scaling
relation exponent is much lower, y; = 1.05 * 0.049, which is
significantly less than for AAFT (rgpr = 0.25,p =1 X 10~ "*) and
less than the LFP (rgpy = 0.228, p = 3 X 10~ °). It is very close to
trivial scaling but is still distinguishable from y; = 1 at a popula-
tion level via the sign test (rgpr = 0.843,p = 2 X 10 ~'°). Because the
fitted scaling relation exponent and shape collapse were similar in
both the UFT and LFP data, this suggests that lack of nonlinear
rescaling (nonlinear filtering) may be a key feature of LFP that ex-
plains its failure to accurately reflect critical point behavior.

The UFT was universally poorer performing, 39% do pass the
criticality test; but given that the scaling relation exponent is so
low, this is simply random chance and significantly worse than
the V,, results (rop = 5.04, p = 3 X 10~*). The UFT phase
shuffling results obtain a median size exponent of 7 = 1.69 *
0.45, while the duration exponent was 8 = 1.81 * 0.49. The
predicted scaling relation exponent was y, = 1.01 * 0.72. All
are significantly different from the V,, results, (5, = 0.183, p =
0.005), (rgpr = 0.199, p = 2 X 10 %), and (rgpr = 0.249,p = 2 X
10 ") for 7, B, and vy,, respectively. These results are redundant
with the AAFT, confirming that our results do not have a trivial
explanation.

When the scaling relation was examined, we saw another
clear, if qualitative, difference in the symmetry of any presumed
scaling function (Fig. 6C). When taken together, our four stan-
dardized criteria followed by shape collapse analysis let us distin-
guish phase-shuffled V,, fluctuations from the original V,,
fluctuations, even limiting ourselves to data that meets the four
criteria. Therefore, the phase-shuffled data showed that the evi-
dence for criticality in the original V,, fluctuations is dependent
on nonlinear temporal correlations.

Excitatory and inhibitory synaptic activity are both required
for V,, fluctuations to match MEA avalanches

Having learned that single-site LFP recordings cannot be used to
accurately infer the statistics of population activity and knowing
that low-pass filtered and inverted LFP is believed to reflect ex-
citatory synaptic activity (Kajikawa and Schroeder, 2011; Buzsaki
et al., 2012; Einevoll et al., 2013; Ness et al., 2016), this begs the
question: to what extent do excitatory synaptic events contain
evidence for network criticality?

Somatic V,,, fluctuations are the complex result of spatially
and temporally distributed excitatory and inhibitory synaptic in-
puts further mangled by active and passive membrane properties
in dendrites and soma. There is reason to believe that these fea-
tures conspire to enforce the condition that V, faithfully repre-
sents inputs to the presynaptic network (Barrett et al., 2013;
Boerlin et al., 2013; Deneve and Machens, 2016), similar to how
input signals relate to presynaptic populations in our model. To
address the stated question, we estimated the excitatory synaptic
conductance changes g, . from the V,, recordings using a previ-
ously developed inverse modeling algorithm (Yasar et al., 2016)
and applied the avalanche analysis on the inferred g, time series
(Fig. 6).

The inferred excitatory conductance is plausibly related to the
presynaptic population, however it failed to be a reliable measure
of network dynamics (Fig. 7B). We cannot know whether the
failure is because excitatory current does not contain enough
information or because the signal’s time constant is too short.
Power laws in the avalanche size and duration distributions were
observed in only 12% of the 51 groups from the first 20 min of
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recording. Comparing with V,, this was very different (1o, = 375,
p = 6 X 107'). Shape collapse was absent from the inferred
excitatory conductance (Fig. 6C) and none passed all four criteria
for criticality. From this, we conclude that inferred excitatory
conductances are not a good network measure.

One of many potential reasons for this failure could be the
much shorter time constant of the inferred g,,, signal compared
with the V, signal. We saw exactly that situation when examining
model results: P;(¢) failed to reproduce network values as well as
its smoothed version, ®,(t). Therefore, we smoothed the g, sig-
nal with an alpha-function chosen because it should impose a
similar non-Gaussian distribution as the V,,, signal. The time
constant of the alpha-function was tuned to minimize the error
between the autocorrelation of the smoothed g, signal and the
original V,, signal. By doing so, we create a signal with a 1/fpower
spectrum that should exhibit power laws and reproduce many V|
statistical features (Fig. 6).

Reinstating the autocorrelation does not summon the return
of scale-freeness. The smoothed signal did demonstrate power
laws (94%) and one serendipitously met the standardized criteria
for consistency with critical point behavior (Fig. 6D). However,
this is chance. The average coefficient of determination for a
fitted scaling relation on alog-log plot was R* = 0.84 = 0.14,s0
overall average avalanche sizes did not scale with duration as a
power law. Nonetheless, this is a substantial improvement on the
unsmoothed version R* = 0.68 * 0.17. This is a statistically
significant difference (rgpr = 0.054, p = 3 X 10™%).

The smoothed inferred g, . signal (Fig. 6A) is visually more
like the original V,,, (Fig. 2B) than the AAFT shuffled V,,, surro-
gate (Fig. 6A); however, it was a worse match. This shows that
signals dependent only on excitation, even ones with very similar
non-Gaussian distribution and power-spectrum do not reflect
the statistics of population activity. Interactions between EPSPs
and IPSPs may be needed.

In conclusion, the single-site LFP, the phase-shuffled re-
corded V,, and the inferred excitatory conductance g, includ-
ing its smoothed version, all failed to reveal the critical network
dynamics. However, there are either similarities between the sig-
nals or some remaining scale-free signatures which reveal the
importance of signal aspects. To faithfully represent population
activity statistics, a candidate signal must: have the right non-
Gaussian distribution, the right 1/f power-spectrum characteris-
tics, and be sensitively dependent on higher-order temporal
correlations such as may result from the complex interplay of
excitation and inhibition within the dendritic arborization of a
pyramidal neuron in the visual cortex.

Discussion

Leveraging V,,, and LFP recordings with modeling and MEA data
yielded two principle findings: subthreshold Vs are a useful in-
dicator of network activity and this correspondence is inherent to
critical coarse-graining. Scrutiny revealed that avalanche size and
duration distribution parameters covary to maintain similar geo-
metrical scaling across different experiments, a noteworthy
observation. The following discussion emphasizes possible sig-
nificance and research intersections, such as explaining disagree-
ment with theory via subsampling effects or quasicriticality or
relating neural computation to a mathematical apparatus within
critical systems theory.

Although “appropriating the brain’s own subsampling
method” is a novel description of whole-cell recordings, it was
inspired by examples. Whole-cell recordings contain informa-
tion about the network (Gasparini and Magee, 2006; Mokeichev
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et al., 2007; Poulet and Petersen, 2008; El Boustani et al., 2009;
Okun et al., 2015; Cohen-Kashi Malina et al., 2016; Hulse et al.,
2017; Lee and Brecht, 2018) and stimulus (Anderson et al., 2000;
Sachidhanandam et al., 2013). Usually, the focus is using neural
inputs to predict outputs, not to measure population dynamics
(Destexhe and Paré, 1999; Carandini and Ferster, 2000; Isaacson
and Scanziani, 2011; Okun et al., 2015). Additionally, long-time
or large-population statistics, like our avalanche analysis, are use-
ful for understanding neural code (Sachdev et al., 2004; Church-
land et al., 2010; Crochet et al., 2011; Graupner and Reyes, 2013;
McGinley et al., 2015; Gao et al., 2016) and are robust to noise.
Our finding that single V, recordings reflect scale-free network
activity is significant as recording stability in behaving animals
improves (Poulet and Petersen, 2008; Kodandaramaiah et al.,
2012; Lee and Brecht, 2018). We open the door to using V,,
fluctuations as windows into network dynamics.

Rigorous analysis supports our experimental conclusion: sub-
threshold V, fluctuations mimic neuronal avalanches and evince
critical phenomena, but negative LFP deflections do not despite
being purported network indicators (Bédard et al., 2006; Liu and
Newsome, 2006; Kelly et al., 2010; Einevoll et al., 2013; Okun et
al., 2015). We invoke network not single-neuron criticality (Gal
and Marom, 2013; Taillefumier and Magnasco, 2013) because the
trend between size and duration exponents agrees with MEA
data. Our findings originate from spontaneous activity of ex-vivo
turtle visual cortex which shares many connectivity and func-
tional features with mammalian cortex (Ulinski, 1990; Larkum et
al., 2008). Last, the results are not serendipitous noise because the
V.. dataset significantly differed from a dataset of phase-shuffled
and rescaled surrogates (Theiler et al., 1992).

Readers keen on critical phenomena may notice our expo-
nents differ from the exact theoretical predictions (7= 1.5, 8 = 2)
(Haldeman and Beggs, 2005). Others observing this mismatch
have suggested the brain operates slightly off-critical (Hahn et al.,
2010; Priesemann et al., 2014; Tomen et al., 2014).

An extension of this suggestion, quasicriticality (Williams-
Garciaetal., 2014), also explains the highly stable scaling relation:
biological systems blocked from precise critically may optimize
properties that are maximized only for critical systems, becoming
“quasicritical.” Correlation time and length are maximized only
at criticality and closely related to avalanche geometrical scaling
(Tang and Bak, 1988; Sethna et al., 2001). If brains optimize
correlation length, then a highly stable scaling relation may result.
Furthermore, including inhibition (Larremore et al., 2014)
makes our otherwise critical model less consistent with criticality
except that population statistics can still be inferred from input
fluctuations. The stable scaling was not in the model, which lacks
any plasticity mechanisms. Stable scaling may be a rare observa-
tion of self-organization principles such as quasicriticality. A
contributing explanation is subsampling effects (Priesemann et
al., 2009; Levina and Priesemann, 2017), but it does not explain
the stable scaling relation unless quasicriticality is also invoked.

Neuronal avalanche and neural input fluctuation similarity

are captured by a critical recurrent coarse-graining network

Our main modeling finding, inputs to a neuron reflect network
activity best for critical branching networks, is supported by a
parameter sweep and detailed analysis. Our network had no
structure, but structure exists at all scales of brain networks (Song
etal., 2005; Perin et al., 2011; Shimono and Beggs, 2015) and can
have profound impacts on network dynamics (Litwin-Kumar
and Doiron, 2012; Mastrogiuseppe and Ostojic, 2018). We
derived a relationship showing that the findings may be transfer-
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rable to networks where neural inputs fluctuate about propor-
tionality to some subsample’s activity. We tune proportionality
to be one, but that can also emerge from plasticity (Shew et al.,
2015; Del Papa et al., 2017). Tight balance suggests a biological
mechanism causing subthreshold V,,, to track excitation into a
presynaptic population because IPSPs can have their timing and
strength “balanced” to truncate EPSPs that would otherwise last
longer than spurts of presynaptic excitation (Barrett et al., 2013;
Boerlin et al., 2013; Gatys et al., 2015; Denéve and Machens,
2016). We use the V., proxy (1), an alpha-function convolved
with a point process, P;(t). ®;(¢) is more like V,,, than P;(t) and
reproduces our experimental findings. Last, we investigate qua-
sicriticality by including inhibition but tuning the maximum
eigenvalue to what would be the critical point without inhibition.

Our model provides insights on network subsampling and
renormalization group. Usually, subsampling means selecting
neurons at random or modeling an MEA with an arbitrary grid
(Priesemann et al., 2009). Our “subsample” is the presynaptic
population represented by summing weighted inputs from active
neurons. This is the first analysis intersecting network conver-
gence (i.e., postsynaptic soma).

Subsampling distorts avalanche size and duration, likely cre-
ating differences between experimental results and theoretical
predictions (Priesemann et al., 2009; Ribeiro et al., 2014; Levina
and Priesemann, 2017; Wilting and Priesemann, 2018). Subsam-
pling may explain disagreement between avalanche analysis on
simulated network activity, F(¢), the V,, proxy ®;(¢), and the
single-neuron firing rate P,(f). However, V, and MEA results are
off theory but match each other. Either their subsampling errors
are alike enough to produce similar distortions or subsampling
cooccurs with quasicriticality (Priesemann et al., 2014; Williams-
Garcia et al., 2014).

Intriguingly, the restricted Boltzmann machine (RBM) (Ag-
garwal, 2018) (a related model) was exactly mapped to a “renor-
malization group” (RG) operator (Mehta and Schwab, 2014;
Koch-Janusz and Ringel, 2018). RG is a mathematical apparatus
relating bulk properties to minute interactions (Maris and Ka-
danoff, 1978; Nishimori and Ortiz, 2011; Sfondrini, 2012). It
characterizes critical points of phase transitions (Stanley, 1999;
Sethna et al., 2001) and helps to derive neuronal avalanche anal-
ysis predictions (Sethna et al., 2001; Le Doussal and Wiese, 2009;
Papanikolaou et al., 2011; Cowan et al., 2013). RG operators
coarse-grain and then rescale, like resizing a digital image. Cru-
cially, iterating an appropriate operator on a critical system pro-
duces statistically identical “copies,” but on noncritical systems,
the iterations diverge. Our model averages (coarse-grains) pre-
synaptic pools to get an instantaneous firing probability for each
neuron; then, alogical operation (rescaling) sets the spiking states
for the next iteration, demonstrating an RG-like operation that
reproduces our experimental findings. Denéve and Machens
(2016) proposed a similar relationship between real V, and pre-
synaptic pools. The finding that a similar neural operation
emerges in RBMs underscores the relevance of RG and the exten-
sion of our findings to structured or nonbranching networks. The
importance is that a recurrent coarse-graining network may be
like a scale-free ouroboros, displaying widespread scale-freeness
if any component is critical or briefly driven by critical or scale-
free inputs (Mehta and Schwab, 2014; Schwab et al., 2014; Aoki
and Kobayashi, 2017; Koch-Janusz and Ringel, 2018).

Significantly, associating neuronal processing with critical
branching may induce an organizing principle, the “information
bottleneck principle.” This balances dimensionality reduction
(compression) against information loss (Tishby and Zaslavsky,
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2015) and is reminiscent of efficient coding (Friston, 2010; De-
néve and Machens, 2016) and origins of tuning curves (Wilson et
al., 2016; Heeger, 2017). Koch-Janusz and Ringel (2018) trained
their network by maximizing mutual information between many
inputs and few outputs. This produced nodes with receptive
fields matching popular RG operators. They derived correct
power laws by iterating the network. Applications of RG to neural
computation are known: image processing (Gidas, 1989; Mehta
and Schwab, 2014; Saremi and Sejnowski, 2016), brain and be-
havior (Freeman and Cao, 2008), emergent consciousness
(Werner, 2012; Fingelkurts et al., 2013; Laughlin, 2014), and hi-
erarchical modular networks (Lee et al., 1986; Willcox, 1991)
important for criticality (Moretti and Mufioz, 2013). Further-
more, our model’s RG-like features are crucial to reproducing
experimental results. It follows that elegant RG operators as in
the RBM might also capture biological neuronal processing,
fulfilling the demand for beautiful neuroscience models (Rob-
erts, 2018) while offering insights into organizing principles
and scale-freeness.

Conclusion

We have established that subthreshold fluctuations of V,,, in sin-
gle neurons agree with neuronal avalanche statistics and with
critical branching, but fluctuations in other single-electrode sig-
nals do not. Computational modeling showed that accurate
inference requires critical-branching-like connectivity. Fluctua-
tion size scales with duration more self-consistently in experi-
mental than model results, hinting at self-organization. These
findings are consistent with a nascent reduction of neural
computation to coarse-graining operations that may explain
the prevalence of critical-like behavior during spontaneous
neural activity. Fully articulating the implications requires
more investigation, but we have substantially extended the
evidence for critical phenomena in neural systems while rig-
orously demonstrating that subthreshold V,, fluctuations of
single neurons contain useful information about dynamical
network properties.
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