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Abstract

Background: Intra-tumoral genetic and functional heterogeneity correlates with cancer clinical prognoses.

However, the mechanisms by which intra-tumoral heterogeneity impacts therapeutic outcome remain poorly

understood. RNA sequencing (RNA-seq) of single tumor cells can provide comprehensive information about gene

expression and single-nucleotide variations in individual tumor cells, which may allow for the translation of

heterogeneous tumor cell functional responses into customized anti-cancer treatments.

Results: We isolated 34 patient-derived xenograft (PDX) tumor cells from a lung adenocarcinoma patient tumor

xenograft. Individual tumor cells were subjected to single cell RNA-seq for gene expression profiling and expressed

mutation profiling. Fifty tumor-specific single-nucleotide variations, including KRASG12D, were observed to be

heterogeneous in individual PDX cells. Semi-supervised clustering, based on KRASG12D mutant expression and a risk

score representing expression of 69 lung adenocarcinoma-prognostic genes, classified PDX cells into four groups.

PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome signatures consistent with the

group characterized by KRASG12D and low risk score.

Conclusions: Single-cell RNA-seq on viable PDX cells identified a candidate tumor cell subgroup associated with

anti-cancer drug resistance. Thus, single-cell RNA-seq is a powerful approach for identifying unique tumor cell-

specific gene expression profiles which could facilitate the development of optimized clinical anti-cancer strategies.

Background
Identification of somatic driver mutations in cancer has

led to the development of targeted therapeutics that

have improved the clinical outcomes of cancer patients

[1–3]. Lung adenocarcinoma (LUAD), the most common

histological subtype of non-small cell lung cancer [4], is

denoted by genetic alterations in the receptor tyrosine kin-

ase (RTK)-RAS-mitogen-activated protein kinase (MAPK)

pathway [2]. Companion diagnostics for hotspot muta-

tions of EGFR, KRAS, BRAF, and ALK, which are clinic-

ally associated with specific targeted cancer therapies, are

currently available for LUADs [5]. While the detection

rate of currently identified actionable mutations in LUAD

is over 60 % [2], efforts to catalogue all the clinically

relevant genetic variations are still ongoing [6–9].

Moreover, drug resistance and disease recurrence after

anti-cancer treatments require more comprehensive

genomic analysis of individual LUADs [10, 11].

Although the individual cells in a tumor mass originate

from a common ancestor and share early tumor-initiating

genetic alterations, tumor cells frequently diverge and

show heterogeneity in growth [12–14], drug resistance

[15, 16], and metastatic potential [13, 14]. Intra-tumoral

heterogeneity results from mutation and clonal selection

dynamics during tumor growth [13, 14, 16], where indi-

vidual tumor cells accumulate cell-specific genetic

changes [12]. This genetic heterogeneity is significantly

associated with tumor progression and the treatment

outcomes of cancers [17, 18]. Therefore, monitoring

intra-tumoral heterogeneity at the single-cell level
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would broaden our understanding of tumor recurrence

mechanisms after anti-cancer treatments [19] and guide

us in developing more sophisticated strategies to over-

come drug resistance.

Single-cell genome profiling technology provides the

highest-resolution analysis of intra-tumoral genetic het-

erogeneity [20–22]. Based on heterogeneity, we can

identify individual cells with specific genetic alterations

or genomic expression profiles that could be responsible

for treatment resistance. Therefore, correlating the geno-

type–phenotype relationship in genetically distinct single

cells can provide important new information for selecting

the most appropriate clinical intervention for targeting

heterogeneous LUADs [23]. For this purpose, patient-

derived xenograft (PDX) cells provide a genetically and

phenotypically accessible model for single cancer cell ana-

lyses of the heterogeneous histopathological, genetic, mo-

lecular, and functional characteristics of parental tumors

[24, 25]. Moreover, drug-resistant tumor cells can be se-

lected and analyzed in vitro using PDX cells.

We performed transcriptome profiling on single PDX

cells from a LUAD patient to elucidate the molecular

mechanisms and underlying genomic characteristics of

tumor cell resistance to anti-cancer drug treatments.

Single-cell transcriptome analysis uncovered heteroge-

neous behaviors of individual tumor cells and provided

new insights into drug resistance signatures that were

masked in bulk tumor analyses.

Results
Intra-tumoral genetic heterogeneity of LUAD PDX cells

Surgically removed LUAD tissue was propagated

through xenograft engraftments in mice (Fig. 1a). Viable

cancer cells were dissociated from the PDX tissue and

primarily cultured in vitro (Figure S1a in Additional file

1). Cultured PDX cells were genomically analyzed by

RNA sequencing (RNA-seq) and whole-exome sequen-

cing (WES). Although the tumor portion in the surgical

sample represented approximately 40 % of the excised

tissue volume (Figure S1b in Additional file 1), multiple
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Fig. 1 Enrichment of cancer cells in the PDX. a Schematic representation of experiments. A portion of a LUAD patient tumor (Pt tumor) was

propagated by xenograft transplantation in humanized immunocompromised female NOG mice. PDX cells (PDX) were dissociated and cultured

from xenograft tumors, and subjected to drug screening. b Estimated cancer cell fraction in Pt tumor and PDX cells. The fraction was quantified

by histopathological examination (striped bar), or estimated based on computational analysis using expression profiles (blue) or WES data (green).

c Estimated degree of normalized copy number changes in log2 ratio to matched peripheral blood for deletion (green) or amplification (red) are

indicated. Representative sites of copy number changes in LUAD are labeled on the right side. d Distribution of variant allele frequencies (VAF) of

the non-synonymous somatic mutations that overlap between Pt tumor and PDX cells. Color-scaled density map indicates the number

of mutations
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validated genomic analyses utilizing WES [26, 27] and

expression profiles [28] indicated that human cancer

cells were highly enriched (~100 %) in the PDX cells

(Fig. 1b). Overall, copy number alterations and variant

allele frequencies were increased in the PDX tumor,

compared with the surgical specimen (Fig. 1c, d). Some

mutations present in the patient tumor were lost in the

PDX, suggesting that our PDX model went through a se-

lective engraftment process [29]. The histologic charac-

teristics of the patient tumor were well preserved in the

PDX (Figure S1c in Additional file 1). The full profiles of

somatic mutations in the patient tumor and PDX cells

are listed in Additional file 2.

Tumor cell-enriched PDX cells (LC-PT-45) [30] were

further analyzed by single-cell RNA-seq using the Flui-

digm C1™ autoprep system with SMART-seq [31].

cDNAs from 34 individual PDX cells were successfully

amplified. Using 100-bp paired-end sequencing, we ob-

tained an average of 8.12 ± 2.34 million mapped reads

from the captured cells (Additional file 3). Overall,

85.63 % of reads mapped to the human reference gen-

ome, which was a lower percentage than is typical for

unamplified conventional RNA-seq, but comparable to

other single cell RNA-seq data [31, 32]. We also se-

quenced 50 single H358 human lung cancer cells as cell

line controls and obtained an 85.39 % mapping rate

(Additional file 3). Noticeably skewed coverage at the 3’

end of transcripts, which was inversely proportional to

the expression level, was observed in the single-cell

RNA-seq data (Additional file 4). The use of smaller ini-

tial RNA templates for amplification is known to in-

crease this bias [31].

Despite the sequencing bias in amplified RNAs, aver-

age gene expression in single cells correlated well with

expression in bulk cells, for both H358 and PDX cells

(Fig. 2a). The inter-correlation of total gene expression

among the 34 individual PDX cells showed wider distri-

bution compared with that in the 50 H358 cells (Fig. 2b),

indicating moderately higher transcriptome heterogen-

eity. The level of transcriptome heterogeneity was also

Fig. 2 Intra-tumoral heterogeneity of PDX cells. a Scatter plots of the average gene expression of single cells (H358, n = 50; LC-PT-45, n = 34;

LC-PT-45-Re, n = 43) compared with those of the corresponding bulk cells (~1 × 105 cells). Black dotted lines are x = y lines with correlation

coefficients (Pearson r and Spearman r) for linear fit. TPM transcripts per million. b Inter-correlation (Pearson r) between gene expression in single

cells. Density plots were constructed with a kernel function fitting over the histograms. c Explanatory power (adjusted R-square) of gene

expression in various numbers of single cells relative to the bulk cells was determined by multiple regression analysis with randomly selected cell

numbers with permutation (×1000). d Overlap ratio of expressed single-nucleotide variations (SNV) among single cells. Density plots were

constructed with a kernel function fitting over the histograms. e Overlap ratio of expressed SNVs of various numbers of single cells relative to that of

the bulk cells was calculated with a randomly selected given number of cells with permutation (×1000). For boxplots in (c) and (e), box = interquartile

range between the first and the third quartiles, error bars = 10th–90th percentiles
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evaluated by multiple regression analysis of different

sized pools (n = 5, 15, 25, 34/35, 50; randomly selected

by permutation × 1000) of single cell transcriptomes to

the bulk sample (Fig. 2c). The modeling demonstrated

that five H358 or PDX individual cells represented

>70 % of the gene expression of the whole population.

When averaging increased numbers of cells, the single

cell data approximated the bulk up to 85 %, suggesting

that the single cell data are consistent with the bulk data

(Fig. 2c). We repeated the single cell isolation and RNA-

seq using 43 additional PDX cells and obtained compar-

able results that were highly correlated with the first

data set (Fig. 2; Figure S3a–f in Additional file 5, LC-PT-

45 and LC-PT-45-Re). Comparisons of gene expression

data for the 43 target genes (see Additional file 6 for the

gene list and Figure S3g in Additional file 5 for expres-

sion levels) between technical replicate RNA-seq sets

(Figure S3h left in Additional file 5) or between RNA-

seq and quantitative PCR (qPCR) analysis (Figure S3h

right in Additional file 5) also demonstrated statistically

significant correlation, comparable to that reported in a

previous publication [33].

Single-cell heterogeneity of expressed single-nucleotide

variants

To estimate tumor heterogeneity at the genetic mutation

level, we identified expressed single-nucleotide variants

(SNVs) using the single-cell RNA-seq and bulk WES

data (Figure S4a in Additional file 7). After removal of

potential false positive SNVs specifically found in RNA-

seq using the SNPiR package [34], higher overlap ratios

to bulk WES data were observed (Figure S4b middle

panels in Additional file 7). Selection of SNVs found in

both single cell RNA-seq and bulk WES data signifi-

cantly increased the overlap ratios to dbSNP137 (Figure

S4b right panels in Additional file 7). These filtered

SNVs of individual PDX cells showed relatively heteroge-

neous expression compared with those of H358 cells in

terms of the lower overlap ratios between single cells

(Fig. 2d). The union of SNVs from five PDX cells (ran-

domly selected by permutation × 1000) reflected 49 % of

the expressed SNVs in the whole population, whereas

those of five H358 cells represented 75 % (Fig. 2e). With

increased numbers of single cells, the coverage increased

up to 70 and 90 % for PDX cells (34 LC-PT-45 or 43

LC-PT-45-Re) and H358 cells, respectively.

After exclusion of germline variants by selecting only

somatic SNVs from bulk WES data, expression of 50

tumor-specific non-synonymous SNVs was analyzed in

individual PDX cells (Figure S4a in Additional file 7).

The 50 tumor-specific SNVs showed heterogeneous ex-

pression patterns in the individual PDX cells (Fig. 3a,

LC-PT-45) with numerous allele dropouts. For compari-

son, we plotted expression of lung cancer mutations in

the H358 cell line listed in COSMIC [35] (Figure S5a in

Additional file 8), which also showed variable expression

patterns with more uniform coverage (Figure S5b in

Additional file 8). For the PDX cells, we detected com-

parable mutation patterns and frequencies in the original

and replicate PDX analyses (Fig. 3a; Figure S3c, f in

Additional file 5, LC-PT-45 vs. LC-PT-45-Re RNA-seq).

The number of reads mapped to the human genome

reference were determined for individual cells to assure

sequencing quality (Fig. 3b). We also performed geno-

typing PCR on the LC-PT-45-Re samples in parallel,

which showed >70 % concordance with the RNA-seq re-

sults [Fig. 3a, LC-PT-45-Re (RNA-seq) vs. LC-PT-45-Re

(genotyping PCR), and Fig. 3c; Additional file 9]. To-

gether these data support reproducible cellular variance

in SNV expression. Nevertheless, no calls and discrepant

mutation calls between RNA-seq and genotyping PCR

demonstrate limitations of single cell RNA-seq, which

might have originated from allelic dropouts.

Among the genes with SNVs detected in PDX cells,

KRAS [1, 2], GAPVD1 [36], and JMJD1C [37] are func-

tionally related to the RTK-RAS-MAPK signaling path-

way. The hotspot KRASG12D mutation was detected in

27 out of 34 single PDX cells (79.4 %), or 33 out of 43

PDX replicates (76.7 %). To determine whether the

variable mutant allele expression was due to genetic

heterogeneity, we assessed the genotypes of 12 somatic

mutations at the single-cell DNA level with droplet

digital PCR (ddPCR; Figure S7a in Additional file 10).

When mutation rates were computed as variant allele

frequencies in bulk cells or as mutant single cell frac-

tions at both the DNA and RNA levels, they showed

overall correlation (Figure S7b in Additional file 10).

With respect to the KRAS mutation, all PDX cells (21

of 21) harbored the mutant allele in the single-cell

DNA analysis. Of note, copy number gains (Fig. 1c)

and mutant/wild-type ratios in KRAS (Figure S7c in

Additional file 10) suggest that variable copy numbers

of the mutant KRAS influenced the differential allele

expression. These data suggest that genetic heterogen-

eity contributes to variable mutant allele expression. In

addition, allele-biased expression may also contribute to

mutant allele expression heterogeneity. Given the im-

portance of oncogenic KRAS mutations, we defined two

subpopulations in the PDX based on the expressed

genotype: one with dominant KRASG12D expression, and

another without KRASG12D expression (KRASwild type (WT)

expression).

Identification of PDX cell subgroups

To further identify subclones with possible phenotypic

implications in the PDX cells, we utilized the expression

profiles of 69 genes related to the clinical prognosis of

LUAD patients (Additional file 11) [6] as multivariate
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markers to compute a risk score (RS) (Fig. 4a). A previ-

ous study [6] defined a high-RS population as those with

the top 40 % of RSs (normalized RS > 0). The prognostic

significance of the RS was validated in two independent

public datasets from The Cancer Genome Atlas and

from Korean LUAD patients (Additional file 12). More-

over, a higher RS was significantly associated with the

KRAS mutation in the LUAD patient population [6]

(Fig. 4b), which is consistent with a previously observed

correlation of the KRAS mutation with worse clinical

outcomes [5, 38].

Interestingly, individual PDX cells were calculated to

have a wide RS distribution (Fig. 4a). Eighteen out of the

34 PDX cells or 21 out of 43 of the replicate samples

were determined to be high-RS. We combined the repli-

cate PDX RNA-seq data for further analysis and found
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that PDX cells with KRASG12D expression tend to have a

higher RS (Fig. 4b). The finding is consistent with those

of LUAD patients in clinical studies [6]. Altogether,

semi-supervised clustering based on the expression of

the KRAS mutation and RS classified the PDX cells into

four groups: group 1, no KRASG12D (KRASWT)/low RS

(n = 3); group 2, KRASG12D/low RS (n = 25); group 3, no

KRASG12D (KRASWT)/high RS (n = 3); and group 4,

KRASG12D/high RS (n = 35) (Fig. 4c).

These four groups displayed characteristic gene ex-

pression profiles that likely reflect the different pheno-

types among individual PDX cells (Figure S9a in

Additional file 13). In particular, group 4 had enhanced

gene expression signatures associated with KRAS over-

expression and activation of the RAS-MAPK signaling

pathway [39, 40] (Fig. 4f, h), which correlated well with

KRAS mutational status. Group 4 PDX cells also showed

significantly higher cell cycle gene mRNA expression

(Figure S9c in Additional file 13) [41]. In contrast, des-

pite having the KRAS mutation signature (Fig. 4g), group

2 cells had lower KRAS expression levels and KRAS

overexpression signatures (Fig. 4e, f ), lower RAS-MAPK

signaling pathway activation status (Fig. 4h), and re-

duced expression of cell cycle-related genes (Figure S9c

in Additional file 13).

The distinct gene expression signatures among the

four groups were visualized by a principal component

analysis (PCA) plot using genes exclusively expressed by

each group, with a criterion of at least a twofold change

in transcripts per million (TPM) ratio with statistical sig-

nificance (t-test P < 0.05; Fig. 4d). Although group 2 cells

showed a lower RAS-MAPK signaling pathway activa-

tion status, they had significantly upregulated expression

of ion channel transport pathway-related genes (Figure
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S9b in Additional file 13), which has been implicated in

the drug resistance mechanism [10].

Phenotypic interpretation of PDX cell subgroups

The results above indicated that, in the PDX cell popula-

tion, there is a specific subgroup (group 4) that is pre-

dicted to be more aggressive than the other groups. This

subset is characterized by a high RS, KRAS mutation,

RAS-MAPK signaling pathway activation, and upregula-

tion of cell cycle-related genes. To determine whether

individual cells associate with tumor phenotypic aggres-

siveness, such as drug resistance, we screened the

in vitro sensitivity of the PDX cells against a panel of 25

anti-cancer agents used in non-small cell lung cancer

treatment (Additional file 14). The PDX cells were highly

sensitive to a variety of drug treatments, including doce-

taxel, and molecular pathway targeting agents. Among

the identified agents, we focused on the MEK1/2 inhibi-

tor selumetinib, and the phosphatidylinositide 3-kinase

(PI3K) inhibitors BKM120 and BEZ235 (PI3K/mTOR),

because of their potential clinical benefits [42, 43]. Other

cytotoxic drugs (e.g., carboplatin, and the Notch inhibi-

tor DAPT) did not show any effects (Fig. 5a). Although

docetaxel, BKM120, BEZ235, and selumetinib showed

tumoricidal effects, some PDX cells survived the three

days of treatment with these drugs when utilized at their

reported IC50.

When evaluated as a bulk population, PDX cells mani-

fested group 4-like characteristics with high RS and

KRASG12D. Ineffective treatments with carboplatin or

DAPT did not alter these properties of the group

(Fig. 5b–g). However, those PDX cells that survived the

docetaxel, BKM120, BEZ235, or selumetinib treatments

showed group 2-like gene expression signatures: low RS

(Fig. 5b), slight decrease in total KRAS expression levels

(Fig. 5c), down-regulation of gene expression signatures

associated with KRAS overexpression (Fig. 5d), preserva-

tion of the mutant KRASG12D expression signature

(Fig. 5e), and down-regulation of RAS-MAPK signaling

pathway activation (Fig. 5f ). Moreover, upregulation of

ion channel transport genes (Figure S9b in Additional

file 13) and downregulation of cell cycle-related genes

(Figure S9c in Additional file 13) were observed in these

treatment groups. The overall gene expression signature

represented by PCA confirmed the group 2 cell-like

properties of the drug-resistant PDX cells, in a support
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Fig. 5 Interpretation of drug responses using single-cell signatures. a Dose response curves for the four selected anti-cancer compounds

(cytotoxic compounds carboplatin and docetaxel; molecular targeting compounds DAPT, BKM120, BEZ235, and selumetinib). b Normalized RSs

(top) and adjusted-expression of the 69 prognostic markers (middle) with KRAS mutant expression (bottom) for the control and drug-treated PDX

cells. c–f Comparative features among the control and drug-treated PDX cells. c KRAS gene expression (Log2 ratio of TPM + 1). Gene set signature

scores (computed by gene set variation analysis) corresponding to the KRAS over-expression signature [39] (d), KRAS mutation signature [40] (e),

and MAPK pathway signature (gene sets from BioCarta) (f). g Results from the principal component (PC) analysis on single cells along with the

control and drug-treated PDX cells. Ellipsoids correspond to the single cell subgroups (group 1, light green; group 2, dark green; group 3, light red;
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classification support vector machine type 1 (C-SVM classification) was applied to a test set of the control and drug-treated PDX cells

Kim et al. Genome Biology  (2015) 16:127 Page 7 of 15



vector machine (SVM) model (Fig. 5g). Altogether, these

results suggest that the drug-resistant population was

cell-cycle quiescent and with possibly higher transporter

activity for the anti-cancer drugs.

We further determined whether the group 2-like

population conveyed the low risk gene expression signa-

ture after anti-cancer drug treatment with selumetinib

(Figure S11a in Additional file 15). Interestingly, the low

RS of surviving PDX cells was gradually reverted to a

high RS after drug removal (Figure S11b in Additional

file 15). The KRAS over-expression signature (Fig. S11d

in Additional file 15) and MAPK pathway activation

(Figure S11f in Additional file 15) recovered as well. By

contrast, the level of total KRAS expression (Figure S11c

in Additional file 15) and mutational status (Figure S11e

in Additional file 15) were not altered by drug removal.

The possible mechanisms of the dynamic nature of these

gene expression signatures, such as epigenetic regulation

or recovery of heterogeneity by clonal proliferation, need

to be further elucidated.

Validation of analytical procedures in an independent

lung cancer PDX case

To validate our strategy of using single cell RNA-seq

data for subgroup identification, we used an independent

set of PDX cells derived from a lung cancer-brain metas-

tasis (LC-MBT-15) [30]. The LC-MBT-15 PDX harbors

an insertional mutation in EGFR exon 20, a well-known

driver mutation in LUAD conferring resistance to re-

versible EGFR inhibitors [44, 45]. Single cells from LC-

MBT-15 had less heterogeneous transcriptome and SNV

expression compared with the KRAS mutant PDX cells

(Figure S12a–e in Additional file 16), which might have

been caused by extensive clonal selection during serial

anti-cancer treatments before PDX establishment (see

the patient description in “Materials and methods”).

Nonetheless, the LC-MBT-15 single cells were still clus-

tered into two subgroups by RS, similar to the original

PDX case (Figure S12f, i in Additional file 16). In con-

trast to the KRASG12D mutation, the EGFR mutation was

modestly detected and showed no preferential expres-

sion in the high RS group (Figure S12g, h in Additional

file 16).

Drug screening on LC-MBT-15 cells was performed

using 28 lung cancer drugs (Additional file 17). LC-

MBT-15 cells were highly sensitive to the irreversible

EGFR/HER2 inhibitor afatinib and the c-Met inhibitor

tivantinib but were resistant to the reversible EGFR in-

hibitor erlotinib. When gene expression profiles for the

drug-resistant populations were analyzed 3 days later,

PCA of the single cells and application of a SVM model

for drug-treated populations revealed that the drug-

resistant populations shared the gene expression signa-

ture of the low RS group (Figure S12j, l in Additional file

16). Interestingly, upregulation of ion channel transport

genes was also noted in the drug-resistant populations

(Figure S12k in Additional file 16), similar to the low

risk group single cells. These results are consistent with

the original LC-PT-45 PDX case, and further support

the observation that (1) single cell profiles of a popula-

tion reveal cells with drug-resistant signatures and (2)

the drug-resistant population may come from a subset

with higher transporter activity and low cell proliferation

activity.

Discussion

Single-cell genome analysis enables measurement of the

extent of intra-tumoral heterogeneity, which may pro-

vide clues for solving problems such as cancer recur-

rence, metastasis, and drug resistance [46]. Single-cell

RNA-seq can provide integrative information on both

gene expression and somatic SNVs, which makes it a

comprehensive tool to connect a cell’s genotype with its

expression profile and phenotype. We used tumor cell-

enriched LUAD PDX cells to define genomic signatures

of individual tumor cells, and then verified the applic-

ability of translating this information into biological can-

cer cell phenotypes such as drug responses.

When interpreting single cell RNA-seq data, the data

quality needs to be considered, because of the high mag-

nitude of amplification in the sequencing process. Se-

quence errors can be incorporated during the reverse

transcription, cDNA amplification, and library construc-

tion processes, causing false positive mutation calls.

RNA editing and monoallelic expression can also cause

discrepancies between SNV calls from RNA and DNA

sequencing. In this study, we focused on the RNA-seq

SNVs that were simultaneously detected by WES and

identified in more than three single cells. This approach

would minimize the probability of false positive SNV

calls. On the other hand, false negative SNV calls could

result from missing reads at the mutant position in both

DNA and RNA sequencing, which might be misinter-

preted as biological heterogeneity [47]. Various ap-

proaches such as Nuc-seq, which increases the starting

material by using G2/M phase cells, are reported to in-

crease the genome coverage up to 91 % for DNA

sequencing [48]. For the RNA-seq-based genotype ana-

lysis, mutations in rare transcripts are most prone to

the dropout events, suggesting that RNA-seq is suit-

able for genotyping highly expressed oncogenic driver

mutations.

Despite limitations in the accuracy of single-cell RNA-

seq, in this study we observed good correlations between

the merged single-cell data and the bulk cell data at both

the gene expression and expressed SNV levels. Once the

number of single cells exceeded 30, the averaged expres-

sion levels and consensus SNVs largely recapitulated the
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data from bulk populations. Significant correlations were

also detected between replicate RNA-seq analyses and

with the PCR-based genotyping method. While these

concordant results and overall high expression level of

KRAS support the validity of the KRAS mutation calls in

RNA, 12–16 % of cells had insufficient RNA read counts

at the mutant position, resulting in ambiguous calls.

Downsizing sequencing data further increased the num-

ber of ambiguous calls (data not shown), indicating that

a sufficient number of reads is critical in the RNA-based

mutation analysis. This is in contrast to the gene expres-

sion analysis, which required only 0.5 million reads for

the transcriptome estimation [33].

We isolated single PDX cells from a KRAS-driven

tumor, which represents 25–33 % of LUADs [2, 3]. Com-

parison of the patient tumor and PDX cells revealed a

significant enrichment of KRAS mutant tumor areas in

the PDX, indicating that this PDX is a good model in

which to study KRAS-driven tumors. However, we ob-

served loss of some mutations as well as increased vari-

ant allele frequencies of many shared mutations and de

novo mutations, possibly resulting from the expansion

of subclones [29]. These subclones might be undergoing

proliferation due to clonal selection and adaptation in

the PDX, leading to a transient increase in genetic vari-

ation of the sample. In the longer term, the selection

would have diminished the level of tumor heterogeneity

originally present in the patient tumor. Therefore, use of

freshly isolated tumor cells is warranted for the accurate

estimation of tumor heterogeneity in future studies.

Because activating KRAS mutations are associated with

poor LUAD prognosis and due to the current lack of re-

liable targeting agents [5, 38], it is a clinical challenge to

find efficient treatment strategies for KRAS-driven can-

cers. According to the KRAS mutation status, the PDX

cells analyzed as a bulk population showed clinically un-

favorable genomic characteristics when the RS was cal-

culated from the signature of 69 prognostic genes [6].

However, single-cell RNA-seq of PDX cells revealed

intra-tumoral heterogeneity in terms of the KRAS mutant

and RS gene expression characteristics. Having individual

tumor cells that display intra-tumorally heterogeneous

molecular signatures that are prognostic in LUAD patients

is an interesting attribute. Similar findings were reported

in other single-cell or multi-regional studies in glioblast-

oma [32], in which single cells from the same tumor were

classified into multiple subtypes. Moreover, glioblastoma

patients with mixed subtype cells manifested worse prog-

noses [32], suggesting the prognostic value of defining

intra-tumoral heterogeneity.

The intra-tumoral heterogeneity might be driven by

DNA mutations as well as by epigenetic and regulatory

mechanisms. In this study we identified individual cells

with variable mutant KRAS gene expression and RSs.

Both genetic and non-genetic factors likely contributed

to specify the subpopulations. The gene expression sig-

natures might be driven by genomic profiles, including

KRAS, and other environmental factors, including the

drug treatment. The gradual reversion of drug-resistant

signatures after drug withdrawal (Additional file 15) sug-

gests that non-genetic regulatory mechanisms could be

involved in the specification. To devise effective anti-

cancer treatment strategies, we need to understand the

underlying mechanisms whereby transcriptome hetero-

geneity is maintained in the tumor.

According to the prognostic value of the activating

KRAS mutation and RS, PDX cells with KRASG12D ex-

pression and high RS would be expected to be drug re-

sistant. Moreover, as a whole population, the PDX cells

had a high KRASG12D variant allele frequency and high

RS that masked the no KRASG12D (KRASWT) and/or

low RS cell types. The use of tumoricidal anti-cancer

drugs with different mechanisms of action (cytotoxic

and targeting specific signaling pathways) dramatically

changed the gene expression features of the PDX cells

in this study from KRASG12D plus high RS to KRASG12D

plus low RS. The result was counterintuitive, since

high RS is significantly associated with worse prognosis

of LUAD patients. However, in an independent PDX

case, cells with a low RS also survived in vitro anti-

cancer treatments, supporting the validity of the unex-

pected results.

The unexpected results indicate that (1) tumor cells

with activated KRAS signatures were drug targets, but

the KRAS mutation itself was not a target, and (2) the

actual tumor population responsible for drug resistance

might be masked by dominant genomic characteristics

within a bulk population. In this study, the cells that sur-

vived the effective treatments retained the KRAS muta-

tion but seemed to stay in a dormant state without

activating KRAS signaling. Interestingly, the molecular

signatures of this group indicated upregulation of genes

involved in the ion channel transport and P-type

ATPases, which might play key roles in drug resistance

[10]. Whether this potentially drug-resistant population

is indeed a pre-existing tumor subclone or dynamically

changes gene expression signatures in response to drug

treatments needs to be addressed by future studies.

Conclusions
This study demonstrates that gene expression and

somatic SNVs of single tumor cells could be retrieved

simultaneously by single-cell RNA-seq. Furthermore,

the genomic data obtained could be used to elucidate

potentially drug-resistant subclones and to generate

hypotheses on the molecular mechanisms of treatment

resistance that are masked in the whole cancer cell

population.
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Materials and methods
Patient samples and PDX cells

This study was carried out in accordance with the prin-

ciples of the Declaration of Helsinki, and approved by

The Samsung Medical Center (Seoul, Korea) Institu-

tional Review Board (no. 2010-04-004). Participants in

this study gave written informed consent for research

and publication of the results. Surgical specimens were

acquired from a 60-year-old male patient who under-

went surgical resection of a 37-mm irregular primary

lung lesion in the right middle lobe (LC-PT-45), and

from a 57-year-old female patient who underwent surgi-

cal resection of a metachronous brain metastasis

(LC-MBT-15). The LC-PT-45 tumor was taken in a

treatment-naïve status whereas the LC-MBT-15 tumor

was taken after standard chemotherapy and erlotinib

treatments. Pathologic examination of the primary tu-

mors revealed a poorly differentiated lung adenocarcin-

oma based on the World Health Organization criteria

[49]. The PDX cells were isolated and cultured in vitro

as described previously [24, 30, 50]. Briefly, surgically

removed tumor tissues were directly injected into the

subrenal space of 6–8-week-old humanized immuno-

compromised female NOG (NOD/Shi- SCID/IL-2Rγ-null)

mice (Orient Bio, Seongnam, Korea). Xenograft tumors

were taken from the mice for PDX cell culture and vali-

dated by short tandem repeat DNA fingerprinting as hav-

ing been derived from the original tumor. We used PDX

cells at fewer than three in vitro passages for single-cell

RNA-seq and drug screening. Animal care and handling

was performed according to the National Institute of

Health Guide for the Care and Use of Laboratory Animals

(NIH publication no.80-23, revised 1978).

Drug screening with PDX cells

Dissociated PDX cells were cultured in neurobasal

media-A supplemented with N2 (×1/2; Life Technologies,

Carlsbad, CA, USA), B27 (×1/2; GIBCO, San Diego, CA,

USA), basic fibroblast growth factor (bFGF; 25 ng/mL;

R&D Systems, Minneapolis, MN, USA), epidermal growth

factor (EGF; 25 ng/mL; R&D Systems), neuregulin 1

(NRG; 10 ng/mL; R&D Systems), and insulin-like growth

factor 1(IGF1; 100 ng/mL; R&D Systems). The cells grown

in these serum-free sphere culture conditions were seeded

in 384-well plates (500 cells/well), and treated with a drug

library (Selleck, Houston, TX, USA). The drug library was

composed of targeted agents and cytotoxic chemothera-

peutics, which were included in the clinical guideline or

current clinical trial for the treatment of non-small cell

lung cancer. After 3 days of incubation at 37 °C in a 5 %

CO2 humidified incubator, cell viability was analyzed

using an adenosine triphosphate monitoring system

based on firefly luciferase (ATPlite™ 1step; PerkinElmer,

Waltham, CA, USA). Test concentrations for each drug

were empirically determined to produce a clinically rele-

vant spectrum of drug activity. Dose response curves

and corresponding half maximal (50 %) inhibitory con-

centration values (IC50) were calculated using the S+

Chip Analyzer (Samsung Electro-Mechanics, Suwon,

Korea) [51].

WES and data processing

Genomic DNA was extracted from PDX cells using the

QIAamp® DNA Mini kit (Qiagen, Hilden, Germany) or

QIAamp DNA Blood Maxi Kit (Qiagen). Exomes were

captured using the SureSelect XT Human All Exon V5

kit (Agilent Technologies, Inc., Santa Clara, CA, USA).

The sequencing library was constructed and analyzed by

the HiSeq 2000 or 2500 systems (Illumina, San Diego,

CA, USA) using the 100-bp paired-end mode of the

TruSeq Rapid PE Cluster kit and TruSeq Rapid SBS kit

(Illumina). Mean target coverage for exome data was

153.4 ± 26.99 × .

Exome-sequencing reads were aligned to the hg19 ref-

erence genome using BWA-0.7.10 [52]. Putative duplica-

tions were marked by Picard-1.93 software [53]. Sites

potentially harboring small insertions or deletions were

realigned, and SNVs were called by applying GATK-3.2

[54] ‘HaplotypeCaller’ with known variant sites identified

from phase I of the 1000 Genomes Project [55] and

dbSNP-137 [56], using default option parameters. Then,

called variants were evaluated to obtain highly accurate

call sets through a two-stage processing step of ‘Varian-

tRecalibrator’ and ‘ApplyRecalibration’, using default

option parameters. To detect somatic mutations with

increased sensitivity both in lower and higher allele fre-

quencies [57], we used the caller programs of MuTect-

1.1.5 [58] and VarScan2 [59].

Estimation of copy number variation from WES was

performed using the ExomeCNV software package [26]

in default quantification mode. Circular binary segmen-

tation was applied to determine the neighboring regions

of DNA that exhibited a statistically significant differ-

ence in copy number. The output was also applied to

infer tumor purity using AbsCNseq [27].

Isolation of single cells and RNA-seq

We used the C1™ Single-Cell Auto Prep System (Fluidigm,

San Francisco, CA, USA) with the SMARTer kit (Clon-

tech, Mountain View, CA, USA). For the original ex-

periment, 44 cells were captured as a single isolate on

a C1 array chip for mRNA sequencing (17–25 μm) as

determined by microscopic examination, and 34 passed

the required criteria for cDNA quantity and quality as

measured with a Qubit® 2.0 Fluorometer (Life Technolo-

gies) and 2100 Bioanalyzer (Agilent). RNA from bulk cell

samples was also amplified using a SMARTer kit with

10 ng of starting material. Libraries were generated using
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the Nextera XT DNA Sample Prep Kit (Illumina) and se-

quenced on the HiSeq 2500 using the 100-bp paired-end

mode of the TruSeq Rapid PE Cluster kit and TruSeq

Rapid SBS kit.

RNA-seq data processing

RNA-seq reads were aligned to the human genome ref-

erence (hg19) together with splice junction information

of each sample using the two-pass default mode of

STAR_2.4.0d [60]. Gene expression was quantified by

implementing RSEM v.1.2.18 [61] in default mode with

Genecode v.19 [62] annotation, and calculated as the sum

of isoform expression. Pre-processing steps for RNA-seq

reads before calling variants were optimized by deduplica-

tion, splitting reads into exon segments, hard-clipping any

sequences overhanging the intronic regions, realigning

reads and recalibration using GATK-3.2 [54]. Then, vari-

ants were called by ‘HaplotypeCaller’mode with option pa-

rameters of (−R hg19.fa –genotyping_mode DISCOVERY

-recoverDanglingHeads -dontUseSoftClippedBases –dbsnp

dbsnp_137.hg19.vcf -stand_emit_conf 20 -stand_call_conf

20 -nct 4). Highly accurate variants were filtered by

applying ‘VariantFiltration’ (option parameters: −F

hg19.fa -window 35 -cluster 3 -filterName FS -filter

“FS > 30.0” -filterName QD -filter “QD < 2.0” \). After

removal of variant call quality Q < 20, further filtering

was applied to SNVs that were considered to be po-

tential false positives in RNA-seq by SNPiR [34]. We

regarded only those SNVs which overlapped with

WES as true positives. The overall process of calling

and filtering the variants is summarized in Figure

S4a in Additional file 7.

Computing RS using multivariate markers

RSs were regression coefficients calculated by a linear

combination of the expression values of the prognosis

markers using a training set [6] of LUAD patients. Prog-

nosis markers were also derived from the previous re-

port [6] that classified LUAD patients according to gene

expression profiles of the suggested markers, and 69

genes were ultimately chosen by overlapping our data

sets after gene filtering of zero expression across all sin-

gle cells. These filtered genes (Additional file 11) were

validated as prognosis markers with independent LUAD

datasets from The Cancer Genome Atlas [2] and from a

Korean LUAD cohort [63]. Batch effects on gene expres-

sion between independent datasets were removed by

means of ComBat [64]. Regression coefficients and P

values of the training set were estimated using univariate

Cox proportional hazards regression modeling and or-

dered by P values. To partition patient samples into high-

and low-RS-based groups upon computation of response

score, we applied a 60th percentile cutoff as described in

Beer et al. [6]. Survival analysis was performed using the R

Survival package [65] and validated through Kaplan-Meier

survival curves with log-rank testing (training set, P =

1.04 × 10−6; validation set, P = 9.25 × 10−3) (Figure S8b in

Additional file 12).

To classify the control and drug-treated PDX cells into

semi-supervised clustered single cells (LC-PT-45, Fig. 4;

LC-MBT-15, Additional file 16: Figure S12), a classifica-

tion SVM type 1 (C-SVM classification) model was ap-

plied using the R package e1071 [66].

Gene set signature activation analysis

To characterize gene expression features of a subgroup

compared with the other groups among the classified

single cells, we utilized the GSEA-P program with de-

fault mode searching for significantly enriched gene set

signatures [67]. Applied gene sets were derived from the

three major curated pathway databases of KEGG, REAC-

TOME, and BIOCARTA in MSigDB v.4.0 [68]. To esti-

mate the gene set activation status of a single sample,

gene set variation analysis [69] was applied in default

mode.

Validating gene expression and expressed SNVs at the

RNA level by qPCR

Gene expression and expressed SNVs were assessed by

qPCR or SNP type PCR across single cells using a Bio-

mark HD system (Fluidigm). cDNAs obtained from the

C1 array for mRNA sequencing chip were subjected to

specific target amplification following the manufacturer’s

recommendations. For the gene expression qPCR, Delta

Gene Assay (Fluidigm) with EvaGreen second generation

dsDNA binding dye was performed for gene sets se-

lected from the RS genes (Additional file 6). To compare

correlations between RNA-seq and qPCR platforms for

the selected 43 gene expression, mean fold change over

median expression was calculated as in the previous

study [33]. Validation of expressed SNVs at the RNA

level was carried out using a SNP Type Assay (Fluidigm)

with locus-specific primer sequences. Primers were de-

signed using D3™ software (Fluidigm), and sequences are

available in Additional file 6.

Validating genomic variants at the DNA level by ddPCR

PDX cells were labeled with 6-carboxyfluorescein succi-

nimidyl ester (Life Technologies) and sorted into single

cells using a FACSAria™ III flow cytometer (BD Biosci-

ences, CA, USA). Wells with a single green fluorescence

signal were manually inspected and selected for amplifi-

cation of genomic DNA with a GenomiPhi V2 DNA

Amplification Kit (GE Healthcare, Little Chalfont, UK).

The mutant alleles were detected using ddPCR Super-

mix for Probes reagents (Bio-Rad, Hercules, CA, USA)

implemented using a QX200 ddPCR system, following

the manufacturer’s protocols. The negative signal of
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droplets was normalized with a vehicle control, and the

numbers of wild-type or mutation alleles in droplets

were estimated in a Poisson distribution. Variant allele

frequency was calculated by counting copies of mutation

alleles over the total number of detected alleles. We

regarded genotypes of detected variants as homozygous

when the variant allele frequency was higher than 90 %.

Sequences of the primers used in ddPCR are available in

Additional file 6.

Statistical analysis of single-cell gene expression

Linear regression was applied to scatter plots of the av-

eraged single cells over the pooled-cell samples in Fig. 2a

with zero intercepts. The inter-correlation distribution

between single cells was calculated as Pearson’s and

Spearman’s correlation coefficients, and plotted as a

density plot with a kernel function fitting over the histo-

grams (Fig. 2b). Multiple regression analysis estimated

how many single cells hypothetically accounted for the

pooled cell fraction. Single-cell samples were randomly

chosen with the given number and the adjusted R2

(Fig. 2c) and the overlap ratio (Fig. 2e) were determined

1000 times with permutation. The differences in normal-

ized RS, gene expression, and gene set activation score

between single-cell subgroups were tested using two-

tailed Student’s t-tests.

Data access

The data reported in this paper have been deposited at

the Samsung Genome Institute (SGI) data repository

[70] and at the NCBI Gene Expression Omnibus (GEO)

under accession number GSE69405.

Additional files

Additional file 1: Figure S1. Propagation of LUAD tumor cells in the

xenograft model. a A summarized depiction of the experimental process

of tumor engraftment from a LUAD patient into mice. b Histological

examination by a licensed pathologist determined the tumor area

(dotted lines) in formalin-fixed, paraffin-embedded (FFPE) samples of a

patient tumor. c Evaluation of propagation of LUAD from a patient and

in mice by immunohistochemistry analysis, using lung adenocarcinoma

cell-specific markers (TTF-1 and Napsin A) and a lung squamous cell

carcinoma-specific marker (CK 5/6). Scale bar, 100 μm (b, c). H&E

hematoxylin and eosin.

Additional file 2: Table S1. Somatic mutations identified in PDX cells.

Additional file 3: Table S2. Summary of mapping information for

RNA-seq samples.

Additional file 4: Figure S2. Coverage plots of transcripts based on

expression level. Expression levels of the transcripts were rank-ordered

and classified in each sample. Top: top 1000 transcripts. Middle: 500

transcripts above and 500 transcripts below the median, rank-ordered.

Bottom: bottom 1000 transcripts. Coverage ratio was normalized to the

maximal degree of coverage in each sample. Standard deviation across

samples is depicted as thinner vertical lines over thicker curves.

Additional file 5: Figure S3. Evaluation of batch effects using a

technical replicate set. a Principal component analysis for total data sets

of single cells used in this study. b, c Interrelation between single cells

from LC-PT-45 and LC-PT-45-Re, a technical replicate set, in gene

expression (measured by Pearson r) (b), and in expressed SNVs (measured

by overlap ratio) (c). Unsupervised hierarchical clustering trees were

constructed by applying Euclidean distance. d–f Reciprocal relations

between single cells and bulk cells from the other batch set. d Scatter

plots depicting average gene expression of single cells and bulk cells.

Black dotted lines are x = y lines with correlation coefficients (Pearson r

and Spearman r) for linear fit. e Explanatory power (adjusted R-square) of

gene expression of various numbers of single cells relative to the bulk

cells was determined by multiple regression analysis using randomly

selected cell numbers with permutation (×1000). f Overlap ratio of

expressed SNVs of various single-cell numbers relative to that of the bulk

cells was calculated with a randomly selected given number of cells with

permutation (×1000). For the boxplots in (e) and (f), box = interquartile

range (IQR) between the first and the third quartiles, error bars = 10th–90th

percentiles. g Distribution of mean expression across single cell RNA-seq

data for the total genes (main graph) and for the genes used in qPCR (inset,

n = 43). h Evaluation of gene expression variation across single cells

between two batch sets of RNA-seq (left), and between the two

technical platforms of RNA-seq and qPCR (right). For parallel comparison

(left and right panels), 43 target gene probes were selected for validation.

Black dotted lines are x = y lines with correlation coefficients (Pearson r and

Spearman r) for linear fit.

Additional file 6: Table S4. Information on primers used in qPCR

(expression and genotyping) and ddPCR.

Additional file 7: Figure S4. Detection and filtering of variants in

single-cell RNA-seq data. a Schematic overview of data processing for the

discovery of expressed variants. See “Materials and methods” for details. b

Comparative evaluation of the detection processes for genomic variants

in RNA-seq, following filtering steps marked in (a).

Additional file 8: Figure S5. Expressed genotypes of SNVs in H358

cells. a Top left: bar graph of mutation events per sample. Bottom left:

heat map of mutation profiles across samples. Right: bar graph of

normalized mutation fraction over total single cells (n = 50). b Mapping

information from RNA-seq reads to a human reference genome (hg19).

Vertical bar plots of the number of RNA-seq reads (left y-axis) and scatter

plots with a connecting line for the unique mapping rate (uniquely

mapped reads/input reads, right y-axis) are in the same order as in (a).

Additional file 9: Figure S6. Summary heatmap identifying

concordance between RNA-seq and genotyping PCR across matched

single cells. Top left: bar graph of concordance events per sample. Bottom

left: heat map of concordance profiles across samples. Right: bar graph of

normalized concordance fraction over total single cells (LC-PT-45-Re,

n = 43).

Additional file 10: Figure S7. Comparison of various platforms for

detecting mutant single cell fractions and variant allele frequencies of

bulk cells. a The summarized results of ddPCR for selected SNVs at the

DNA level. Top left: bar graph of mutation events per sample. Bottom left:

heat map of mutation profiles across samples. Right: bar graph of

normalized mutation fraction over total single cells (LC-PT-45, n = 21). b

Multidimensional scatter plots of the comparative fraction of SNVs across

various platforms. Black dotted lines are x = y lines with correlation

coefficients (Pearson r and Spearman r) for linear fit. c The variant allele

frequency (VAF) of KRASG12D across single cells separately measured for

DNA (by ddPCR) and RNA (by RNA-seq).

Additional file 11: Table S3. Prognostic genes used for computing risk

scores.

Additional file 12: Figure S8. Application of risk scores to patient

survival in LUAD cohorts. a Strategy to classify single cells according to

prognostic marker expression. b Kaplan-Meier curves of overall survival of

patients in two independent LUAD cohorts and of recurrence-free

survival of patients in a Korean LUAD cohort, according to the estimated

risk scores (log-rank test).

Additional file 13: Figure S9. Distinct gene expression signatures

among the classified single cell subgroups along with the drug treatment

groups. a Expression heatmap discriminating single cells into subgroups

classified as in Fig. 4c. bREACTOME-defined ion channel transport is

significantly activated in group 2 compared with the other groups, as
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determined by gene set enrichment analysis. Statistical significance was

determined using the nominal P values. ES enrichment score; NES

normalized enrichment score. Gene set activation signatures were

estimated for the control and drug-treated PDX cells by gene set

variation analysis. c Gene expression signature for the cell cycle was

estimated by gene set variation analysis. The gene set for the cell cycle

signature was obtained from REACTOME.

Additional file 14: Figure S10. Procedure and the results of drug

screening for LC-PT-45. a The overall process from PDX cell preparation

to drug screening. b Summarized list of drugs used in the screening, their

known targets, and calculated IC50s. The six anti-cancer compounds used

in this study are indicated: †cytotoxic compounds carboplatin and

docetaxel; *molecular targeting compounds DAPT, BKM120, BEZ235, and

selumetinib.

Additional file 15: Figure S11. Assessment of phenotypic reversibility

for selumetinib-mediated gene expression signatures. a The experimental

design to examine the change of gene expression under selumetinib.

LC-PT-45 PDX cells were serially collected before and after 3-day exposure

to 1 μM selumetinib, and on 3 days (R3) and 7 days (R7) after the wash-

out of the drug. b Normalized RSs (top) and adjusted-expression of the

69 prognostic markers (middle) with KRAS mutant expression (bottom) for

the mock- and selumetinib-treated PDX cells. c–f Comparative features

among the mock- and selumetinib-treated PDX cells. c KRAS gene

expression (Log2 ratio of TPM + 1). Gene set signature scores (computed

by gene set variation analysis) corresponding to the KRAS overexpression

signature [39] (d), KRAS mutation signature [40] (e), and MAPK pathway

signature (gene sets from BioCarta) (f).

Additional file 16: Figure S12. Validation of analytical procedures on

an additional PDX, LC-MBT-15. a A scatter plot of the average gene

expression of single cells (n = 49) and that of the corresponding bulk cells

(~1 × 105 cells). Black dotted line is the x = y line with correlation

coefficients (Pearson r and Spearman r) for linear fit. b Inter-correlation

(Pearson r) between gene expression of single cells. Density plots were

constructed with a kernel function fitting over the histograms. c Explanatory

power (adjusted R-square) of gene expression of various numbers of single

cells relative to the bulk cells was determined by multiple regression analysis

using randomly selected cell numbers with permutation (×1000). d Overlap

ratio of expressed SNVs among single cells. Density plots were constructed

with a kernel function fitting over the histograms. e Overlap ratio of

expressed SNVs of various single-cell numbers relative to that of the bulk

cells was calculated with a randomly selected given number of cells with

permutation (×1000). For the boxplot, box = interquartile range (IQR)

between the first and the third quartiles, error bars = 10th–90th percentiles.

f Top: bar graph of normalized RS. Middle: heatmap of expression of 69

prognostic markers. Bottom: bar graph of KRAS and EGFRmutation status of

single cells. g Scatter plots demonstrating the lack of impact of the EGFR

mutation on RSs of LC-MBT-15 single cells. Horizontal lines represent the

mean. h EGFR gene expression (Log2 ratio of TPM+ 1). For the boxplots in

(g, h), box = IQR between the first and the third quartiles, error bars = 10th–

90th percentiles. i Graphical illustration of principal component analysis of the

genes discriminating between the low-RS and high-RS subgroups. Ellipsoids

were generated with standard deviations around each subgroup. j Top: bar

graph of normalized RSs. Middle: heatmap of adjusted-expression of the 69

prognostic markers. Bottom: KRAS and EGFR mutation status for the control

and drug-treated PDX cells. k Gene set activation signatures were

estimated for single cells (left) and the control and drug-treated PDX

cells (right) by gene set variation analysis. Gene expression signatures for

ion channel transport and cell cycle were from REACTOME. l Results

from the principal component (PC) analysis on single cells along with

the control and drug-treated PDX cells. Ellipsoids corresponding to the

single cell subgroups [low-RS (green), high-RS (red)], with the control

and drug-treated PDX cells projected on the PC1-PC2 plane. Using single

cell subgroups as a training set, a C-SVM classification was applied to a

test set of the control and drug-treated PDX cells.

Additional file 17: Figure S13 The results of drug screening for

LC-MBT-15. Summarized list of drugs used in the screening, their known

targets, and calculated IC50s. The six anti-cancer compounds used in this

study are indicated: †cytotoxic compounds carboplatin and docetaxel;

*molecular targeting compounds afatinib, DAPT, erlotinib, and tivantinib).

Abbreviations
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