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The COVID-19 global pandemic has caused >120 million 
infections and 2.6 million deaths (as of 17 March 2021)1,2. 
Symptoms vary in severity and include acute respiratory dis-

tress syndrome, thrombosis and organ failure3. COVID-19 is caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
a single-stranded RNA betacoronavirus that enters host cells 
through receptors such as angiotensin-converting enzyme 2 (ACE2) 
and neuropilin (NRP1), which are expressed widely, including in 
nasal epithelium4–6.

Several studies have highlighted a complex network of peripheral  
blood immune responses in COVID-19 infection7,8. A reduction in 

T cells with disease severity and reduced interferon (IFN)-γ produc-
tion by lymphocytes have been reported9. However, an expansion 
of highly cytotoxic effector T cell subsets in moderate to severe dis-
ease10,11 and higher expression of exhaustion markers programmed 
cell death protein 1 and Tim-3 on CD8+ T cells have been described 
in patients receiving intensive care therapy5. In severe cases, clas-
sical monocytes have been shown to display a type 1 IFN inflam-
matory signature6; however, low levels of IFNα coupled with a 
reduction in plasmacytoid dendritic cells (DCs) have been reported 
in patients with critical disease12. Emergency and dysregulated 
myelopoiesis, and expanded activated megakaryocytes have also 
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Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute 
respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcrip-
tome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear 
cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassi-
cal monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replen-
ish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed 
toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. 
Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe 
disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic 
disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response 
that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy.
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been reported13–15. Proliferating plasmablasts and extrafollicular  
B cell activation are present in critically ill patients, but despite high 
levels of SARS-CoV-2-specific antibodies and antibody-secreting 
cells, many of these patients do not recover8,15. To better under-
stand the coordinated systemic immune response in individuals 
with asymptomatic and symptomatic COVID-19, we performed 
combined single-cell transcriptome, cell-surface protein and lym-
phocyte antigen receptor repertoire analysis of peripheral blood of 
a cross-sectional patient cohort and integrated results across three 
UK medical centers.

Results
Altered cellular profiles across COVID-19 severities. We gene-
rated single-cell combined transcriptome and surface proteome 
data from peripheral blood mononuclear cells (PBMCs) from indi-
viduals with asymptomatic, mild, moderate, severe and critical16  
COVID-19 across three UK centers in Newcastle, Cambridge 
and London (Fig. 1a, Extended Data Fig. 1a and Supplementary 
Table 1). Controls included healthy volunteers, individuals with 
non-COVID-19 severe respiratory illness and healthy volunteers 
administered with intravenous lipopolysaccharide (IV-LPS) as 
a surrogate for an acute systemic inflammatory response (Fig. 1a 
and Supplementary Table 2). We sequenced 1,141,860 cells from 
143 samples. Following computational doublet removal, 781,123 
cells passed quality control (QC; minimum of 200 genes and <10% 
mitochondrial reads per cell; Extended Data Fig. 1b). Data were 
integrated using Harmony17 with good mixing of cells by the kBET 
statistic calculated for each cluster across samples (rejection rate 
improved from 0.62 to 0.36 following integration, P < 2.1 × 10−8 by 
Wilcoxon paired signed-rank test; Extended Data Fig. 1c,d).

Following Leiden clustering, cells were manually annotated 
based on the RNA expression of known marker genes supported 
by surface protein expression of markers employed in flow cyto-
metry to discriminate subpopulations (Extended Data Fig. 1e). We 
defined 18 cell subsets (Fig. 1b), with an additional 27 cell states 
identified following subclustering (Figs. 1b, 2a, 3a,b and 4a,b and 
Supplementary Table 3). Our annotation was further validated 
using Azimuth, whereby more than 50% of cells were mapped 
and matched to a unique cluster in 32/33 of the clusters defined in 
the Azimuth PBMC dataset (Methods; proliferating CD8+ T cells 
mapped across two clusters). Clusters unique to our data included 
proliferating monocytes, innate lymphoid cell subpopulations and 
isotype-specific plasma cells (Extended Data Fig. 1f).

We observed a relative expansion of proliferating lymphocytes, 
proliferating monocytes, platelets and mobilized hematopoietic  
stem and progenitor cells (HSPCs) with worsening disease. 
Plasmablasts and B cells were expanded in severe and critical dis-
ease (Fig. 1c and Extended Data Fig. 2a). These changes matched 
trends in clinical blood cell counts (Extended Data Fig. 2b and 
Supplementary Table 4). To assess the broader impacts of patient 
characteristics and clinical metadata on the altered proportion of 
cell types/states, we used a Poisson linear mixed model (Methods), 
which predicted the COVID-19 swab result (Bonferroni-corrected 
logistic regression (BF-corrected LR), P = 1.1 × 10−3; Methods), dis-
ease severity at blood sampling (BF-corrected LR, P = 8.9 × 10−8) 
and center (contributed by increased red blood cells (RBCs) and 
reduced monocytes in the Cambridge patient cohort; (BF-corrected 
LR, P = 2.0 × 10−142) as the main contributing factors among 
seven different clinical/technical factors (Extended Data Fig. 2c). 
PBMC composition varied depending on symptom duration, with 
increased relative frequency of plasmacytoid dendritic cells (pDCs), 
natural killer (NK) cells, CD14+ and CD16+ monocytes (false  
discovery rate (FDR), 10%) and decreased relative frequencies of  
B cells, regulatory T (Treg) cells, RBCs, platelets and CD4+ T cells, 
with a longer symptomatic interval before hospital admission 
(Extended Data Fig. 2d). These changes may be due to a subset 

of individuals in the critically ill category who reported a longer 
time since symptom onset, consistent with a protracted course of 
infection in critical disease (Extended Data Fig. 2e,f). However, 
concordant changes in immune cell composition were observed 
when excluding patients with either the longest symptom durations 
(>24 d) or critical disease (Extended Data Fig. 2g), indicating that 
disease severity changes were not driven by symptom duration. 
Cell abundance results were also in agreement when performing a 
leave-one-out analysis (Extended Data Fig. 2h).

We observed expression of type I/III interferon response  
genes in monocytes, DCs and HSPCs across the spectrum of 
COVID-19 severity, but not in individuals challenged with IV-LPS, 
in keeping with the importance of type I and III interferons in  
innate immune responses to viral infection (Fig. 1d). Type I/III  
interferon response-related genes were recently implicated in 
genome-wide association studies (GWAS) for COVID-19 sus-
ceptibility18,19. IFNAR2 was both upregulated in individuals with 
COVID-19 compared to healthy controls in most circulating cell 
types and highly expressed by plasmablasts, monocytes and DCs 
(Extended Data Fig. 2i).

Multiplexed analysis of 45 proteins in serum showed two  
contrasting profiles between mild/moderate and severe/critical 
patients. CCL4, CXCL10, interleukin (IL)-7 and IL-1α were asso-
ciated with severe and critical disease, suggesting an augmented 
drive for monocyte and NK lymphocyte recruitment, as well as 
support for T cell activity/pathology (Extended Data Fig. 2j and 
Supplementary Table 5).

We used Cydar20 to characterize the immune landscape changes 
with disease severity based on surface protein expression by  
dividing cells into phenotypic hyperspheres. We quantified the  
number of cells from each severity group within the hyperspheres, 
identifying 608 hyperspheres that differed significantly in abun dance 
with increasing severity (spatial FDR < 0.05; Fig. 1e). Differentially 
abundant hyperspheres were present in all major immune compart-
ments. Notably, we found an increase in B cells (CD19+/CD20+), 
plasma cells (CD38+) and HSPCs (CD34+), as well as remodeling  
of the myeloid compartment13 (Fig. 1e).

Mononuclear phagocytes and HSPC changes. Transcriptome 
and surface proteome analysis of blood mononuclear phagocytes 
(MPs) identified known DC subsets (pDC, ASDC (AXL+SIGLEC6+ 
DC), DC1, DC2 and DC3) and several monocyte states (Fig. 2a,b). 
Three CD14+ monocyte states were present (proliferating, classical  
CD14+ and activated CD83+) in addition to two CD16+ mono-
cyte states (nonclassical CD16+ and C1QA/B/C+CD16+; Fig. 2a,b). 
Proliferating monocytes and DCs expressing MKI67 and TOP2A 
were increased with disease severity (Fig. 2a,b). In contrast, the 
frequencies of DC2 and DC3 were reduced. Proliferating mono-
cytes, previously reported by flow cytometry analysis of blood 
from patients with COVID-1914, transcriptionally resembled 
CD14+ monocytes and was the only population to change signifi-
cantly with symptom duration. (Fig. 2a,b and Extended Data  
Fig. 3a). Proliferating DCs resembled the DC2 subset (Fig. 2a,b). 
Rare C1QA/B/C-expressing CD16+ monocytes were the only source 
of C1 complement components (Fig. 2b and Extended Data Fig. 3b).

We previously demonstrated egress of blood DCs and mono-
cytes to the alveolar space with rapid acquisition of a lung molecular  
profile following human inhalational LPS challenge21. To investi-
gate the relationship between circulating and lung alveolar MPs in 
COVID-19, we compared the transcriptome profile of blood DCs 
and monocytes with their bronchoalveolar lavage (BAL) counter-
parts using recently published data (GSE145926)22 (Extended Data 
Fig. 3d). Partition-based graph abstraction (PAGA) suggested tran-
scriptional similarity between circulating CD14+ monocytes and 
BAL macrophages in health, aligning with recent data demonstrating 
that BAL macrophages can arise from circulating CD14+ monocytes 
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Fig. 1 | Single-cell multi-omics analysis of PBMCs from individuals with COVID-19 and controls. a, Overview of the participants included and the 
samples and data collected. Figure was created using BioRender.com. b, UMAP visualization of all 781,123 cells after QC. Leiden clusters based on 5′ gene 
expression shown and colored by cell type. Lymph, lymphocyte; mono, monocyte; prolif, proliferating. c, Bar plot of the proportion of cell types shown in 
b, separated by condition and COVID-19 severity status. Hypothesis testing was performed using quasi-likelihood F-test comparing healthy controls to 
individuals with COVID-19 for linear trends across disease severity groups (healthy > asymptomatic > mild > moderate > severe > critical). Differentially 
abundant cell types were determined using a 10% FDR and are marked with an asterisk. d, Enrichment of interferon response of each cell state separated 
by severity. IFN response was calculated using a published gene list (GO:0034340) e, UMAP computed using batch-corrected mean staining intensities 
of 188 antibodies for 4,241 hyperspheres. Each hypersphere represents an area in the 188-dimensional space and is colored by significant (spatial 
FDR < 0.05) severity-associated changes in abundance of cells within that space.
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(Fig. 2c)23. In COVID-19, there was greater transcriptional similar-
ity between BAL macrophages and circulating C1QA/B/C+CD16+ 
monocytes (Fig. 2c), suggesting a differential origin of alveolar 
macrophages in healthy donors and individuals with COVID-19. 
Both BAL macrophages and C1QA/B/C+CD16+ monocytes express 
FCGR3A and C1QA/B/C and type I interferon response genes  
(Fig. 2a). Myeloid hyperinflammation causing lung and peripheral 
tissue damage via secretion of inflammatory cytokines such as IL-6 
and tumor necrosis factor (TNF) in COVID-19 has been reported 
and in our analysis were primarily expressed by tissue rather 
than blood MPs (Fig. 2c). Genes differentially expressed by blood 
monocytes identified S100A8, previously reported in COVID-19 
as contributing to the cytokine storm in severe infection24. BAL 
macrophages expressed leukocyte-recruiting chemokines including 
CCL2, CCL4, CCL7 and CCL8 (Fig. 2d).

Tissue DCs respond to local inflammation and pathogen  
challenge by migrating to the draining lymph node to activate 
naïve T cells. BAL macrophages contain a population of mature, 
migratory DCs that express CCR7 and LAMP3 but downregu-
late DC-specific markers, such as CD1C and CLEC9A (Extended  
Data Fig. 3c). These migratory DCs express IL10 in health, but  
TNF and the common IL-12 and IL-23 subunit IL12B in COVID-19,  
suggesting altered capacity for T cell polarization (Fig. 2e). In 
peri pheral blood, C1QA/B/C+CD16+ monocytes expressed the  
highest amount of type 1 IFN response genes compared to all 
myeloid cells (Fig. 2f and Supplementary Tables 6 and 7). We 
detected minimal TNF-mediated or IL-6-mediated JAK–STAT  
signaling activation in circulating monocytes and DCs, but this  
was upregulated by COVID-19 BAL MPs (Fig. 2f, Supplementary 
Tables 6 and 7).

Coagulation abnormalities and monocyte–platelet aggregates 
have been previously reported in COVID-19 (refs. 25,26), leading 
us to investigate predicted receptor–ligand interactions between 
monocytes and platelets using the CellPhoneDB repository. 
The expression levels of SIRPA:CD47, FPR1:ANXA1, FPR2:APP 
between monocytes:platelets were highest in the C1QA/B/C+CD16+  
monocytes (Fig. 2g). Using protein data, we identified ICAM1  
interactions on platelets with CD11a/b/c/CD18 primarily on  
C1QA/B/C+CD16+ monocytes and CD16+ monocytes (Extended 
Data Fig. 3d), accompanied by increased expression of surface pro-
teins indicative of platelet activation (Fig. 2h).

Our large dataset of 781,123 PBMCs allowed us to interrogate 
3,297 CD34+ HSPCs. Leiden clustering and uniform manifold and 
projection (UMAP) visualization showed a cloud-like representa-
tion, consistent with a stem/progenitor cell landscape previously 
described for bone marrow HSPCs27 (Fig. 2i and Extended Data 

Fig. 3e). Absence of CD38 mRNA and protein expression marks 
the most immature cells within the CD34+ compartment, while 
expression of markers such as GATA1, MPO and PF4 characterizes 
distinct erythroid, myeloid and megakaryocytic progenitor popula-
tions, respectively (Fig. 2i). Accordingly, we were able to annotate 
six transcriptional clusters as CD34+CD38− HSPCs, CD34+CD38+ 
early progenitor HSPCs and CD34+CD38+ erythroid, megakaryo-
cytic and myeloid progenitors, as well as a small population dis-
tinguished by the expression of cell cycle (S phase) genes (Fig. 2i). 
Megakaryocyte progenitors were absent in healthy and asympto-
matic individuals but made up ~5% of CD34+ cells in all symp-
tomatic individuals (Fig. 2j). As peripheral blood is not a site for 
hematopoiesis28, this finding likely reflects COVID-19-mediated 
pertur bation of normal homeostatic functioning of the bone  
marrow HSPC compartment.

In light of our earlier observations of platelet activation and 
enhanced C1QA/B/C+CD16+ monocyte–platelet interactions  
(Fig. 2g,h), the appearance of CD34+ megakaryocyte progenitors 
was of particular interest, as it suggested a rebalancing of the stem/
progenitor cell compartment. To further explore this hypothesis, 
we generated differential gene expression signatures between the 
megakaryocyte, myeloid and erythroid progenitor clusters to inter-
rogate potential early activation or priming in the most immature 
HSPC clusters (Extended Data Fig. 3f). We observed enrichment of 
the megakaryocyte progenitor signature in the CD38+ HSPC popu-
lations in moderate COVID-19 compared to the healthy condition 
(Fig. 2k and Supplementary Table 8), but no enrichment of erythroid 
or myeloid signatures in either CD38− or CD38+ HSPCs (Extended 
Data Fig. 3g and Supplementary Table 8). Our earlier observation 
of increased platelet activation within the context of normal platelet 
counts (Fig. 2h and Extended Data Fig. 2b) is thus consistent with 
a model whereby a rebalancing of the HSPC compartment toward 
megakaryopoiesis may be compensating for peripheral platelet  
consumption in COVID-19.

T lymphocytes and T cell receptor changes. Fine-resolution  
clustering of mRNA profiles revealed 11 initial clusters of CD4+ 
T cells, CD8+ T cells and innate-like T cells including γδ T cells, 
NK T cells and mucosal-associated invariant T (MAIT) cells (Fig. 3a  
and Extended Data Fig. 4). Annotations were refined further  
using RNA expression of effector cytokines and surface protein 
expression (Fig. 3a–c).

Cellular composition of the T cell compartment varied between 
healthy and infected groups (Fig. 3d). Based on their relative pro-
portions and differential abundance testing (FDR 10%), we found 
activated CD4+ T cells expressing IL22, circulating follicular helper 

Fig. 2 | Expansion of complement-expressing nonclassical monocytes and megakaryocyte-primed progenitor cells and increased platelet activation 
with COVID-19 disease severity. a, Dot plots of gene (left) and surface protein (right) expression for myeloid populations. b, Bar plot of the proportion 
of myeloid populations from the Newcastle and London sites. Hypothesis testing was performed using a quasi-likelihood F-test comparing healthy 
controls to individuals with COVID-19. Differentially abundant cell types were determined using a 10% FDR and are marked with an asterisk. c, PAGA 
graph representing connectivity between clusters defined in a for healthy (top left) and COVID-19 (bottom left) monocytes and BAL macrophages (mac). 
Expression of IL6 (top right) and TNF (bottom right) in each cluster along the predicted path for COVID-19 monocytes. d, Expression of differentially 
expressed cytokines between CD83+CD14+ monocytes and BAL macrophages shown by cells ordered by pseudotime calculated for cells from c. e, Dot 
plot of gene expression of DC-derived T cell polarizing cytokines in peripheral blood DC2 cells and mature BAL DCs. f, Heat map displaying gene-set 
enrichment scores for type 1/3 IFN response, TNF response and JAK–STAT signatures in the myeloid populations. Asterisks indicate significance compared 
to healthy controls. Absolute values and other comparisons are provided in Supplementary Table 7. g, Heat map of predicted ligand–receptor interactions 
between platelets and monocyte subsets, using RNA data. h, Dot plot of significant differentially expressed genes between samples from healthy donors 
and individuals with COVID-19 filtered for platelet activation markers. i, UMAP representation of HSPCs (top) and dot plot of gene expression markers 
used to annotate clusters (bottom). MK, megakaryocyte; prog, progenitor. j, Bar chart depicting the proportion of progenitors. k, Box plots displaying the 
enrichment of a megakaryocyte progenitor signature in CD34+CD38+ HSPCs (right) and CD34+CD38− (left), averaged per donor scores. Comparisons 
were made by an analysis of variance (ANOVA) with pairwise comparisons using Tukey’s test. Asterisks above bars indicate significance and are colored 
by the severity for which they were compared to. Absolute values are provided in Supplementary Table 8. Boxes denote the interquartile range (IQR), and 
the median is shown as horizontal bars. Whiskers extend to 1.5 times the IQR, and outliers are shown as individual points (P values: CD38-negative cells in 
healthy versus LPS group (90 min), 0.3 × 10−3; CD38-positive cells in healthy versus moderate group, 0.7 × 10−3).
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T (TFH) cells, type 1 helper T (TH1) cells, CD8+ effector memory  
T (TEM) cells and MAIT cells relatively enriched in individuals with 
asymptomatic and mild infection, with NKT, proliferating CD8+ 
and CD4+, and CD8+ terminal effector T (TTE) cells enriched in 
individuals with more severe infection (Fig. 3e and Extended Data 
Fig. 5a,b). Treating disease severity as an ordinal variable (Methods), 
multiple cell populations displayed nonlinear differences across dis-
ease severity (proliferating CD4+ and CD8+ T cells, CD8+ TTE, CD4+ 

TH1, CD4+ TH17, CD4+ central memory T (TCM) and IL-22+CD4+ 
T cells), illustrating the complex compositional changes to peri-
pheral T cells that occur with COVID-19 (Fig. 3e and Extended Data 
Fig. 5b). IL-22-expressing CD4+ T cells seen in asymptomatic and 
mild disease could be associated with tissue-protective responses 
that may restrict immunopathology (Fig. 3e) as previously shown 
for IL-22 in influenza A virus infection29 and lower viral load in 
COVID-19 patients’ lungs30. Proliferating CD4+ and CD8+ T cells 
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coexpressed exhaustion marker genes LAG3 and TOX (Extended 
Data Fig. 5c), in keeping with previous studies of patients with 
severe COVID-19 (ref. 5). In contrast to disease severity, CD4+ TH1, 
CD4+ TH2, CD4+IL-22+ and CD4+ TCM cells were enriched among 
individuals with longer symptom duration, while effector popula-
tions with a cytotoxic phenotype (CD8+ TTE, CD8+ TEM, MAIT and 
NK T cells) were enriched in individuals with shorter symptom 
duration (Extended Data Fig. 5d).

Differential gene expression analysis across disease severity 
(FDR 1%) and gene-set enrichment analysis (GSEA) identified 
pathways associated with inflammation and T cell activation across 
multiple subsets, including IL-2–STAT5 signaling, mTORC1 signal-
ing, inflammatory response, IFNγ response, and IL-6–JAK–STAT3 
signaling (Extended Data Fig. 5e). The increased activation and 
cytotoxic phenotype in T cells from individuals with COVID-19 
was functionally validated by flow cytometry analysis of PBMCs 
stimulated ex vivo with SARS-CoV-2 peptide showing upregulation 
of CD137 and CD107α (Extended Data Fig. 5f).

T cell receptor (TCR) clonality analysis showed that effector 
CD8+ T cells were the most clonally expanded (odds ratio (OR) (95% 
confidence interval (CI)) 1.81 (1.58–2.10)), P = 2.49 × 10−15) and  
their relative proportion increased with disease severity (Fig. 3f,g 
and Extended Data Fig. 5g,h and Supplementary Tables 6 and 7). 
Conversely, the relative proportion of clonally expanded effec-
tor memory CD8+ TEM cells decreased in individuals with more 
severe disease (OR (95% CI) 0.87 (0.72–1.04), P = 0.26; Fig. 3f,g and 
Supplementary Tables 9 and 10). These clonal alterations were pri-
marily driven by severity rather than differences in symptom dura-
tion for more severely ill patients, as CD8+ TEM clones expanded 
in individuals who had longer symptom dura tion, in line with a 
more developed infection trajectory in these indivi duals (per day, 
OR (95% CI) 1.02 (1.01–1.03), P = 2.66 × 10−10). The ratio of effec-
tor CD8+ T cells to CD8+ TEM cells (TE:EM ratio) correlated with 
disease severity (linear model β 2.97, P = 2.92 × 10−18; Fig. 3g and 
Supplementary Tables 9 and 10), suggesting that CD8+ T cell dif-
ferentiation outcome may contribute to both antiviral protection 
and immunopathology, as previously reported in animal models31, 
although bystander T cell activation cannot be excluded.

B lymphocytes and B cell receptor changes. Re-clustering of  
B cells and plasma cells identified nine clusters that were annotated 
according to canonical marker expression (Fig. 4a,b), and previously 
published transcriptional signatures (Extended Data Fig. 6a). This 
included immature, naïve, switched and non-switched memory 
B cells, and a cluster of cells that enriched for markers previously 
described in exhausted memory B cells32,33 (Fig. 4a,b and Extended 
Data Fig. 6a). We also found a large population of plasmablasts 
with negative expression of CD19 and CD20, with high expres-
sion of the proliferation marker MKI67, consistent with previous 

reports on severe SARS-CoV-2 infection15,24, as well as IgM+, IgG+ 
and IgA+ plasma cells (Fig. 4a,b). In individuals with symptomatic 
COVID-19, there was a significant expansion of plasmablasts and 
plasma cells (Fig. 4c and Extended Data Fig. 6b). The magnitude 
of this expansion increased from mild to moderate disease but was 
attenuated in severe to critical disease. This observation persisted 
even after accounting for days from symptom onset (Extended Data 
Fig. 6b). IgA+ cells were decreased in individuals with symptom-
atic COVID-19 due to a significant decrease of the IgA2 subclass  
(Fig. 4d and Extended Data Fig. 6b,c), suggestive of the maintenance 
of an effective mucosal humoral response in asymptomatic individu-
als. In parallel, we observed the greatest expansion of circulating fol-
licular helper T (cTFH) cells in asymptomatic individuals and a strong 
positive correlation between cTFH cells and plasma cells in indi-
viduals with asymptomatic/mild disease that was lost with increas-
ing disease severity (Figs. 3e and 4e and Extended Data Fig. 5a,b).  
Together, this suggests the presence of coordinated T cell and B cell 
responses in asymptomatic and mild disease, generating effective 
antiviral humoral immunity that becomes uncoupled in severe and 
critical disease. This is consistent with previous findings relating 
to the requirement of TFH cells for optimal antibody responses and 
high-quality neutralizing antibodies in viral infection34.

GSEA analysis identified interferon alpha response and inter-
feron gamma response pathway genes enriched in all B cell subsets in  
individuals with COVID-19, and this was more marked in those  
with asymptomatic or mild disease, and attenuated in severe and 
critical disease (Fig. 4f and Extended Data Fig. 6d). The magnitude  
of type 1 interferon transcriptional response in B cells mirrored 
serum IFNα levels, which were highest in individuals with mild dis-
ease (Extended Data Fig. 2j), suggesting that the low expression of 
IFN response genes in B cells in severe or critical disease does not 
reflect an inability of B cells to respond to IFNα, but rather attenua-
tion of IFNα. This may be because the initial antiviral response has 
waned in patients with severe or critical disease or because these 
individuals fail to sustain adequate IFNα production by myeloid 
cells and pDCs following symptom onset as previously reported7. 
Longitudinal sampling would be required to distinguish these two 
possibilities.

In asymptomatic individuals, TNF signaling via nuclear factor 
kappa B (NF-κB) pathway genes was enriched in immature, naïve 
and switched memory B cells, but decreased in immature B cells 
and plasma cells in critical and severe disease (Fig. 4f and Extended 
Data Fig. 6d). Assessment of the leading-edge genes in this path-
way demonstrated their markedly higher expression in all B cell  
and plasmablast/cell subsets in asymptomatic individuals with 
COVID-19 compared with those with symptomatic disease  
(Fig. 4g and Extended Data Fig. 6e). TNF was barely detectable  
in COVID-19 serum samples and highest in individuals with  
moderate disease (Extended Data Fig. 2j), suggesting that another 

Fig. 3 | Compositional and clonal analyses of T lymphocytes illustrate the expansion of effector subsets. a, UMAP visualization of 309,617 T cells based 
on gene expression shown and colored by cell type. Insets show the two-dimensional kernel density estimates of select T cell types in UMAP space. b, Dot 
plots of gene (top) and surface protein (bottom) expression for populations shown in a. c, Dot plots of gene expression of cytokine genes for populations 
shown in a. d, Box plots of cell type proportions that are differentially abundant between healthy donors and individuals with COVID-19. Boxes denote 
the IQR, and the median is shown as horizontal bars. Whiskers extend to 1.5 times the IQR and outliers are shown as individual points (n = 24 healthy, 
n = 86 COVID-19 biologically independent samples). e, Box plots of the proportion of cell types shown in a. Only cell types showing trends of changes 
by severity status are shown. Boxes denote IQR with median shown as horizontal bars. Whiskers extend to 1.5 times the IQR, and outliers are shown as 
individual points (n = 9 asymptomatic, n = 23 mild, n = 30 moderate, n = 13 severe, n = 10 critical biologically independent samples). f, Bar plots show 
the frequency of clonal T cells. Expanded clones denote clonotypes observed more than once. Asterisks indicate significance after multiple-testing 
correction (logistic regression using two-sided t-test with Benjamini–Hochberg FDR correction; CD4+ TCM adjusted P = 0.119, CD4+ TEM adjusted P = 0.472, 
CD4+IL-22+ adjusted P = 0.01, CD4+ prolif. adjusted P = 0.993, CD4+ TH1 adjusted P = 0.993, CD4+ TFH adjusted P = 0.109, Treg adjusted P = 0.993, CD8+ 
prolif. adjusted P = 0.016, CD8+ TTE adjusted P = 2.49 × 10−15, CD8+ TEM adjusted P = 0.259). g, Box plots of the proportion of clonally expanded CD8+ TEM 
cells (left), effector CD8+ T cells (middle) and the ratio of effector CD8+ T cells to CD8+ TEM cells (right). Boxes denote the IQR, and the median is shown 
as horizontal bars. Whiskers extend to 1.5 times the IQR, and outliers are shown as individual points. Legend is as in e.
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cytokine, for example IL-6, or stimulus may be responsible for 
NF-κB activation in asymptomatic individuals with COVID-19.

Hypoxia pathway genes were enriched in immature and naïve 
B cells only in asymptomatic individuals (Fig. 4f and Extended 
Data Fig. 6d). Since these individuals are unlikely to be hypoxic 
(given their lack of symptoms), we postulated that this signature 

may reflect another hypoxia inducible factor-activating stimulus, 
which includes B cell receptor (BCR) cross-linking35. We assessed 
the expression of genes associated with BCR activation, such as 
CD79A and CD79B, and downstream kinases such as BTK in B cell 
subsets. Overall, BCR activation-associated genes were most highly 
expressed in B cells in healthy controls, followed by asymptomatic  
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individuals with COVID-19, with lower expression observed 
in all symptomatic COVID-19 groups (Fig. 4g and Extended  
Data Fig. 6e). BCR activation threshold is also modulated by 
immune tyrosine inhibitory motif-containing receptors that recruit 
phosphatases, increasing the activation threshold of B cells36. BCR 
inhibitory gene expression was limited, but CD22 was detectable 
across B cell subsets in asymptomatic COVID-19, while FCGR2B, 
CD72 and PTPN6 expression was evident in B cells in severe 
COVID-19 (Fig. 4g and Extended Data Fig. 6e). Together, this  
analysis suggests that B cells in asymptomatic individuals with  
COVID-19 and those with mild disease have a more pronounced 
response to interferons, increased NF-κB activation and a higher 
expression of genes associated with BCR activation signaling,  
suggesting a potential for greater BCR activation. Longitudinal 
analysis of patient samples will be required to establish if this is  
due to avid responses early in disease that prevent progression to 
a more severe phenotype or the immune response in early disease.

Following activation, B cells differentiate into antibody-producing 
plasma cells, accompanied by a progressive increase in oxidative  
metabolism37,38. We observed differences in metabolic gene path-
way expression in plasmablasts and plasma cells between disease  
severity categories, with enrichment of oxidative phosphorylation 
pathway genes in all disease groups, and a relative increase in gly-
colysis pathway genes in asymptomatic patient plasmablasts when 
compared to symptomatic disease groups (Fig. 4f and Extended 
Data Fig. 6e).

We next assessed BCR clonality using ‘dandelion’, a single-cell 
BCR-sequencing analysis package (Methods), and found sub-
stantially more clonal expansion in symptomatic individuals with 
COVID-19 (Fig. 4h and Extended Data Fig. 7). Expanded clono-
types were found across all major cell types with larger clonotypes 
present primarily in plasmablast/plasma cell clusters (Extended 
Data Fig. 8a,b). Within the expanded clonotypes, there was some 
evidence of class switching within symptomatic COVID-19 groups 
but not in the asymptomatic/healthy individuals (Extended Data 
Fig. 8c). Unlike other large-scale single-cell RNA-sequencing 
(scRNA-seq) studies with BCR profiling15,24, there was no obvious 
bias of immunoglobulin heavy-chain variable (IGHV) gene usage 
in general (Extended Data Fig. 9a). Disaggregating the IGHV gene 
usage data to individual gender groups showed that only IGHV1-46  
was significantly increased in women with critical COVID-19 
relative to healthy controls (Extended Data Fig. 9a). Some related 
BCRs were present in different individuals, with more incidence  
of V and J gene usage and related amino acid sequences of heavy-chain 
and light-chain CDR3s observed in individuals with severe or criti-
cal disease, and in individuals from one center (Newcastle; Fig. 4i), 
which could arise due to local variants of the virus driving expansion 

of specific B cell clones. We note that none of these related BCRs 
were found to be expanded in the individuals, which was expected as 
only a relatively small number of B cells per individual were sampled. 
It would have been unlikely to find exactly matching heavy-chain 
and light-chain sequences across different individuals (even when 
allowing for somatic hypermutation variation), given the expected 
low coverage that arises from a small number of single cells (rela-
tive to bulk BCR sequencing). Finally, we observed disproportionate 
distribution in clonotype size, whether considering expanded or all 
clonotypes, and increased BCR mutations between men and women 
with COVID-19, with greater levels of both in women compared 
with men (Fig. 4j and Extended Data Fig. 9b). These differences 
in clonal expansion of B cells are consistent with a role in previous 
reports of worse outcomes in COVID-19 in men39,40.

We summarize the immunological cellular and molecular pro-
files observed in our study distinguishing features between asymp-
tomatic/mild disease from severe/critical disease (Fig. 5). Future 
longitudinal studies may enable us to distinguish if the distinct 
responses in asymptomatic and milder disease prevent progression 
to severe phenotypes.

Discussion
Our cross-sectional multi-omics PBMC survey revealed several  
new insights into COVID-19 pathogenesis. Firstly, peripheral blood  
monocytes and DCs exhibit an interferon response to infection.  
We identified CD1QA/B/C+CD16+ monocytes, coexpressing 
receptors and ligands for interactions with platelets, that are pre-
dicted to replenish alveolar macrophages in COVID-19. Secondly, 
altered hematopoiesis is evident in the peripheral circulation with 
megakaryocyte-primed gene expression in the earliest CD34+CD38+ 
HSPCs, and expanded megakaryocyte progenitors in the response 
to COVID-19. We reveal a balance in protective versus immuno-
pathogenic adaptive immune responses in COVID-19 patients. 
Previous studies have reported expanded proliferative CD4+ and 
CD8+ T cells with disease severity24, but a reduction in ɣδ T cells24,41, 
consistent with our study. In addition, we observed enrichment 
of TH1 cells in asymptomatic donors, consistent with previously 
reported IFNγ and IL-2 antigen-specific T cells in asymptom-
atic individuals42. We report expansion of CD8+ effector T cells, 
which likely include antigen-specific short-lived effector cells that  
could lead to uncontrolled inflammation and immunopathology, 
expanding on previous reports43–46.

The expansion of plasmablasts and plasma cells is less evident in  
critical and severe disease than in moderate and mild disease, in 
contrast to previous studies that reported the diminished plas-
mablast expansion in convalescent stages and not within active  
disease15. This response is paralleled by the TFH profile in individuals  

Fig. 4 | Single-cell analysis of B lymphocytes and BCR repertoire reveal plasmablast expansion and clonality differences between genders. a, UMAP 
visualization of 74,019 cells in the B cell lineage identified from gene expression data. b, Dot plots of gene (top) and surface protein (bottom) expression 
for populations shown in a. c, Bar plot of the mean proportion of cell types shown in a. d, Proportion of total IgA and IgA2 in plasmablast and plasma cells 
based on BCR data. Kruskal–Wallis test with Benjamini–Hochberg correction. e, Coordinated changes between TFH and B cells assessed by differential 
correlation analysis (empirical P ≤ 0.1). Shown is the Pearson correlation (± bootstrap s.e.m.) between TFH proportions and plasmablast or plasma cell 
(combined); only significant trends are shown. f, GSEA of MSigDB hallmark signatures in naive B cells, switched memory B cells and plasmablasts for 
asymptomatic/symptomatic COVID-19 versus healthy groups. Size of circles indicate (absolute) normalized enrichment score (NES). GSEA (permutation) 
nominal P < 0.05 and FDR < 0.25 denoted by non-gray colored dots. EMT, epithelial–mesenchymal transition; UV, ultraviolet. g, Dot plots of genes related 
to TNF signaling and BCR signaling in naive B cells, switched memory B cells and plasmablasts. Size of circles indicates the percentage of cells expressing 
the gene, and color gradient corresponds to increasing mean expression value. h, Scatterplot of clonotype size by node closeness centrality gini indices 
with marginal histograms indicating the distribution. Each dot represents an individual. i, BCR overlap incidence plot. Nodes correspond to individual 
donors colored by (inner ring) severity and (outer ring) site from which samples were collected. Edges indicate if at least one cell from each individual 
displayed an identical combination of heavy and light-chain V and J gene usage with CDR3 similarity allowance (≥85%). j, Clonotype size (left) and node 
closeness centrality gini indices (right) separated by gender. Mann–Whitney U test with Benjamini–Hochberg correction between the gender groups 
within each severity status. Color of adjusted P values indicates the gender group with the higher mean value. The box portion of the box plots extends 
from the 25th to 75th percentiles, whiskers extend from the smallest to largest values, and the middle line corresponds to the median. NS, not significant.
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with COVID-19 and is consistent with postmortem observations  
showing a lack of germinal centers in lymph nodes and spleen 
in individuals with fatal COVID-19 and a decrease in TFH cells44. 

Our data revealed a significant decrease in IgA2 in symptomatic  
COVID-19 compared to asymptomatic donors, suggesting that 
maintenance of a robust mucosal humoral immune response  
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may influence the fate of individuals infected with SARS-CoV-2.  
We observed a diminished IFNα response in the B cell compartments 
of individuals with critical and severe disease, further emphasiz-
ing a crucial role of these responses in outcomes, as previously  
reported in patients with COVID-19 who had type I IFN antibodies47.  
Our data also suggest differential BCR clonality and mutation  
frequencies between gender groups, which may contribute to the 
differing clinical outcomes observed between men and women 

with COVID-1948. Our study provides a valuable resource, exploit-
able for translational studies, and a template for future integrative 
meta-analysis of single-cell multi-omics datasets from individuals 
with COVID-19 worldwide.

Online content
Any methods, additional references, Nature Research reporting  
summaries, source data, extended data, supplementary information,  
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Methods
Ethics and sample collection. Newcastle. Participants were recruited and 
consented under the Newcastle Biobank (Research Ethics Committee (REC) no. 
17/NE/0361; Integrated Research Application System (IRAS) no. 233551) study 
and ethical governance. For the COVID-19-positive samples and healthy controls, 
peripheral blood was collected in EDTA tubes and serum separator tubes and 
processed within 4 h of collection.

For the IV-LPS control samples, ethical approval was granted by a REC (17/
YH/0021). Healthy volunteers provided informed, written consent and passed the 
inclusion criteria as set out in the study protocol (Supplementary File 1.) LPS was 
obtained from Clinical Center Reference Endotoxin (94332B1, National Institutes 
of Health) and injected intravenously as a bolus dose of 2 ng kg−1. Blood samples 
were taken before IV-LPS administration (baseline), at 90 min, and at 10 h after 
challenge. Venous blood was drawn from an 18-gauge venous cannula and was 
collected into EDTA and serum separator tubes. Only samples from 90 min and 
10 h were analyzed in this study.

Cambridge. Study participants were recruited between 31 March 2020 and 20 July 
2020 from patients attending Addenbrooke’s Hospital with suspected COVID-
19 or a confirmed diagnosis of COVID-19 by nucleic acid amplification test 
(including point-of-care testing), patients admitted to Royal Papworth Hospital 
NHS Foundation Trust or Cambridge and Peterborough Foundation Trust with a 
confirmed diagnosis of COVID-19, together with health-care workers identified 
through staff screening with a positive PCR test for SARS-CoV-2. Controls 
were recruited among hospital staff attending Addenbrooke’s serology screening 
program, and selected to cover the whole age spectrum of COVID-19-positive 
study participants, across gender groups. Only controls with negative serology 
results (45 of 47) were subsequently included in the study. Recruitment of 
inpatients at Addenbrooke’s Hospital and health-care workers was undertaken by 
the National Institute for Health Research (NIHR) Cambridge Clinical Research 
Facility outreach team and the NIHR BioResource research nurse team. Ethical 
approval was obtained from the East of England Cambridge Central Research 
Ethics Committee (NIHR BioResource, REC no. 17/EE/0025; ‘Genetic variation 
and altered leukocyte function in health and disease (GANDALF)’, REC no. 
08/H0308/176). Informed consent was obtained from all participants. Each 
participant provided 27 ml of peripheral venous blood collected into a 9-ml sodium 
citrate tube.

London. Participants aged 18 years and older were recruited from two large 
hospital sites in London, United Kingdom, namely University College London 
(UCL) Hospitals NHS Foundation Trust and Royal Free London NHS Foundation 
Trust during the height of the pandemic in the United Kingdom (April to 
July 2020). All participants provided informed consent. Ethical approval was 
obtained through the Living Airway Biobank, administered through UCL Great 
Ormond Street Institute of Child Health (REC no. 19/NW/0171, IRAS project 
no. 261511), as well as by the local R&D departments at both hospitals. At daily 
virtual COVID-19 coordination meetings, suitable participants were chosen from 
a list of newly diagnosed and admitted patients within the preceding 24 h (based 
on a positive nasopharyngeal swab for SARS-CoV-2). Participants with typical 
clinical and radiological COVID-19 features but with a negative screening test for 
SARS-CoV-2 were excluded. Other exclusion criteria included active hematological 
malignancy or cancer, known immunodeficiencies, sepsis from any cause and a 
blood transfusion within 4 weeks. Maximal severity of COVID-19 was determined 
retrospectively by identifying the presence of symptoms, the need for oxygen 
supplementation and the level of respiratory support. Peripheral blood sampling 
was performed before inclusion to any pharmacological interventional trials.

Samples were collected and transferred to a category level 3 facility at UCL and 
processed within 2 h of sample collection. Peripheral blood was centrifuged after 
adding Ficoll-Paque Plus, and PBMCs, serum and neutrophils were separated, 
collected and frozen for later processing.

Clinical status assignment. Clinical metadata were collected at the point-of-care 
sample collection, including current oxygen requirements and location. This 
was used to assign disease severity status. Participants based on a ward and not 
requiring oxygen were defined as having ‘mild’ disease. Participants outside of an 
intensive care unit (ICU) environment requiring oxygen were defined as having 
‘moderate’ disease. All patients in ICU and/or requiring noninvasive ventilation 
were defined as having ‘severe’ disease. Participants requiring intubation and 
ventilation were defined as having ‘critical’ disease. There were no patients in ICU 
that did not require supplemental oxygen.

PBMC isolation and dead cell removal. Newcastle. PBMCs were isolated from 
blood samples using Lymphoprep (StemCell Technologies) density gradient 
centrifugation according to the manufacturer’s instructions. Single-cell suspensions 
were then washed with Dulbecco’s PBS (Sigma) and frozen in aliquots containing 
5–10 million cells in 90% (vol/vol) heat-inactivated FCS (Gibco) and 10% (vol/
vol) DMSO (Sigma-Aldrich). On the day of the experiment, the cells were thawed 
for 1 min, transferred to wash buffer (PBS supplemented with 2% (vol/vol) FCS 
and 2 mM EDTA) and centrifuged at 500g for 5 min. Resuspended cells were 

passed through a 30-μm filter and counted before live-cell magnetic-activated cell 
sorting (MACS) enrichment with the dead cell removal kit (Miltenyi Biotech), 
per the manufacturer’s instructions. Cell pellets were resuspended in microbeads 
and incubated at room temperature for 15 min. Each stained sample was passed 
through an LS column and rinsed with binding buffer (all from Miltenyi Biotec) 
before centrifugation. Cell pellets were resuspended in wash buffer and counted 
for antibody staining by cellular indexing of transcriptomes and epitopes by 
sequencing (CITE-seq).

Cambridge. PBMCs were isolated using Leucosep tubes (Greiner Bio-One) 
with Histopaque 1077 (Sigma) by centrifugation at 800g for 15 min at room 
temperature. PBMCs at the interface were collected, rinsed twice with autoMACS 
running buffer (Miltenyi Biotech) and cryopreserved in FBS with 10% DMSO. 
All samples were processed within 4 h of collection. Purified PBMCs were thawed 
at 37 °C, transferred to a 50-ml tube, and ten volumes of prewarmed thawing 
medium (IMDM; Gibco, 12440-053) with 50% (vol/vol) FCS (not heat inactivated; 
PAN-Biotech, P40-37500) and 0.1 mg ml−1 DNase I (Worthington, LS002139)) 
were added slowly and dropwise, followed by centrifugation at 500g for 5 min. 
The pellet was resuspended in 1 ml of FACS buffer (PBS; Sigma, D8537) with 3% 
(vol/vol) heat-inactivated FCS, and the viability of each sample was assessed by 
counting in an improved Neubauer chamber using Trypan blue. Pools of four 
samples were generated by combining 0.5 million live cells per individual (2 
million live cells in total). The pools were washed twice in FACS buffer (10 ml and 
2 ml, respectively) followed by centrifugation for 5 min at 500g. The pellet was then 
resuspended in 35 μl of FACS buffer and the viability of each pool was assessed.

London. Peripheral whole blood was collected in EDTA tubes and processed fresh 
via Ficoll-Paque Plus separation (GE Healthcare, 17144002). The blood was first 
diluted with 5 ml 2 mM EDTA-PBS (Invitrogen, 1555785-038), before 10–20 ml 
of diluted blood was carefully layered onto 15 ml of Ficoll in a 50-ml falcon tube. 
If the sample volume was less than 5 ml, blood was diluted with an equal volume 
of EDTA-PBS and layered onto 3 ml Ficoll. The sample was centrifuged at 800g 
for 20 min at room temperature. The plasma layer was carefully removed and the 
PBMC layer collected using a sterile Pasteur pipette. The PBMC layer was washed 
with three volumes of EDTA-PBS by centrifugation at 500g for 10 min. The pellet 
was suspended in EDTA-PBS and centrifuged again at 300g for 5 min. The PBMC 
pellet was collected and the cell number and viability assessed using Trypan blue. 
Cell freezing medium (90% FBS and 10% DMSO) was added dropwise to PBMCs 
slowly on ice and the mixture cryopreserved at −80 °C until further full-sample 
processing.

TotalSeq-C antibody staining and 10x Chromium loading. Newcastle. 
Approximately 200,000 cells from each donor were stained with Human TruStain 
FcX Fc Blocking Reagent (BioLegend, 422302) for 10 min at room temperature. 
The cells were then stained with the custom panel TotalSeq-C (BioLegend, 
99813; Supplementary Table 1) for 30 min at 4 °C. Cells were then washed twice 
with PBS supplemented with 2% (vol/vol) FCS and 2 mM EDTA (Sigma) before 
resuspending in PBS and counting. Approximately 20,000–30,000 cells per sample 
were loaded onto the 10x Chromium controller using Chromium NextGEM Single 
Cell V(D)J Reagent kits v1.1 with Feature Barcoding technology for Cell-Surface 
Protein (10x Genomics) according to the manufacturer’s protocol.

Cambridge. Half a million viable cells were resuspended in 25 μl of FACS buffer 
and incubated with 2.5 μl of Human TruStain FcX Fc blocking reagent (BioLegend, 
422302) for 10 min at 4 °C. The TotalSeq-C antibody cocktail (BioLegend 99813; 
Supplementary Table 1) was centrifuged at 14,000g at 4 °C for 1 min, resuspended 
in 52 μl of FACS buffer, incubated at room temperature for 5 min and centrifuged 
at 14,000g at 4 °C for 10 min. Around 25 μl of solution was subsequently added to 
each sample pool and incubated for 30 min at 4 °C in the dark. Pools were washed 
three times with 27 volumes (1.4 ml) of FACS buffer, followed by centrifugation 
at 500g for 5 min. The pellet was resuspended in 62.5 µl of 1× PBS + 0.04% BSA 
(Ambion, AM2616), filtered through a 40-μm cell strainer (Flowmi, H13680-
0040), and viable cells of each sample pool were counted in an improved Neubauer 
chamber using Trypan blue. Around 50,000 live cells (up to a maximum of 60,000 
total cells) for each pool were processed using Single Cell V(D)J 5′ version 1.1 
(1000020) together with Single Cell 5′ Feature Barcode library kit (1000080), 
Single Cell V(D)J Enrichment Kit, human B cells (1000016) and Single Cell V(D)
J Enrichment Kit, human T cells (10x Genomics, 1000005) according to the 
manufacturer’s protocols.

London. Frozen PBMC samples were thawed quickly in a water bath at 37 °C. 
Warm RPMI 1640 medium (20–30 ml) containing 10% FBS was added slowly to 
the cells before centrifuging at 300g for 5 min. The pellet was then washed with 
5 ml RPMI 1640-FBS and centrifuged again (300g for 5 min). The PBMC pellet 
was collected and cell number and viability determined using Trypan blue. PBMCs 
from four different donors were then pooled together at equal numbers (1.25 × 105 
PBMCs from each donor) to make up 5.0 × 105 cells in total. The remaining cells 
were used for DNA extraction (Qiagen, 69504). The pooled PBMCs were stained 
with TotalSeq-C antibodies (BioLegend, 99814) according to manufacturer’s 
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instructions. After incubating with half a vial of TotalSeq-C for 30 min at 4 °C, 
PBMCs were washed three times by centrifugation at 500g for 5 min at 4 °C. 
PBMCs were counted again and processed immediately for 10x 5′ single-cell 
capture (Chromium Next GEM Single Cell V(D)J Reagent Kit v1.1 with Feature 
Barcoding technology for Cell-Surface Protein-Rev D protocol). Two lanes of 
25,000 cells were loaded per pool on a 10x chip.

Library preparation and sequencing. Newcastle and London. Gene expression, 
TCR-enriched and BCR-enriched libraries were prepared for each sample 
according to the manufacturer’s protocol (10x Genomics). Cell-surface protein 
libraries were subjected to double the manufacturer’s recommended primer 
concentration and seven to eight amplification cycles during the sample index 
PCR to reduce the likelihood of daisy chains forming. Libraries were pooled 
per participant using a ratio of 6:2:1:1 for gene expression, cell-surface protein, 
TCR-enriched and BCR-enriched libraries, respectively. All libraries were 
sequenced using a NovaSeq 6000 (Illumina) to achieve a minimum of 50,000 
paired-end reads per cell for gene expression and 20,000 paired-end reads per cell 
for cell-surface protein, TCR-enriched and BCR-enriched libraries.

Cambridge. The samples were subjected to 12 cycles of cDNA amplification and 8 
cycles for the cell-surface protein library construction. Following this, the libraries 
were processed according to the manufacturer’s protocol. Libraries were pooled 
per sample using a ratio of 9:2.4:1:0.6 for gene expression, cell-surface protein 
expression, and TCR and BCR enrichment libraries, respectively. Samples were 
sequenced using a NovaSeq 6000 (Illumina), using S1 flow cells.

Alignment and quantification. Droplet libraries were processed using Cell Ranger 
v4.0. Reads were aligned to the GRCh38 human genome concatenated to the 
SARS-CoV-2 genome (NCBI SARS-CoV-2 isolate Wuhan-Hu-1) using STAR49 
(v2.5.1b) and unique molecular identifiers (UMIs) deduplicated. CITE-seq UMIs 
were counted for GEX and ADT libraries simultaneously to generate feature-X 
droplet UMI count matrices.

Doublet identification. Newcastle. Scrublet (v0.2.1) was applied to each sample 
to generate a doublet score. These formed a bimodal distribution so the tool’s 
automatic threshold was applied.

Cambridge. Non-empty droplets were called within each multiplexed pool 
of donors using the emptyDrops function implemented in the Bioconductor 
package DropletUtils (v1.10.3), using a UMI threshold of 100 and FDR of 1%. 
The probability of being a doublet was estimated for each cell per sample (that 
is, one 10x lane) using the ‘doubletCells’ function in ‘scran’ based on highly 
variable genes (HVGs). Next, we used ‘cluster_walktrap’ on the shared nearest 
neighbor graph that was computed on HVGs to form highly resolved clusters per 
sample. Per-sample clusters with either a median doublet score greater than the 
median + 2.5× median absolute deviation (MAD) or clusters containing more than 
the median + 2.5× MAD genotype doublets were tagged as doublets. This was 
followed by a second round of highly resolved clustering across the whole dataset, 
in which again cells belonging to clusters with a high proportion (>60%) of cells 
previously labeled as doublets were also defined as doublets.

London. For pooled donor CITE-seq samples, the donor ID of each cell was 
determined by genotype-based demultiplexing using souporcell (v2)50. Souporcell 
analyses were performed with ‘skip_remap’ enabled and a set of known donor 
genotypes given under the ‘common_variants’ parameter. The donor ID of each 
souporcell genotype cluster was annotated by comparing each souporcell genotype 
to the set of known genotypes. Droplets that contained more than one genotype 
according to souporcell were flagged as ‘ground-truth’ doublets for heterotypic 
doublet identification. Ground-truth doublets were used by DoubletFinder 
(v2.0.3)51 to empirically determine an optimal ‘pK’ value for doublet detection. 
DoubletFinder analysis was performed on each sample separately using ten 
principal components (PCs), a ‘pN’ value of 0.25, and the ‘nExp’ parameter 
estimated from the fraction of ground-truth doublets and the number of pooled 
donors.

CITE-seq background signal removal. Background antibody-specific and 
nonspecific staining was subtracted from ADT counts in each data set from the 
3 data acquisition sites separately. Antibody-derived tag (ADT) counts for each 
protein were first normalized using counts per million and log transformed, 
with a pseudocount of +1. To estimate the background signal for each protein, a 
two-component Gaussian mixture model, implemented in the R package function 
‘mclust’ (v5.4.7), was fit across the droplets with a total UMI count of >10 and 
<100 from each experimental sample separately. The mean of the first Gaussian 
mixture model component for each protein was then subtracted from the log 
counts per million from the QC-passed droplets in the respective experimental 
sample.

Quality control, normalization, embedding and clustering. Combined raw 
data from the three centers was filtered to remove cells that expressed fewer 

than 200 genes and >10% mitochondrial reads. Data were normalized (scanpy: 
normalize_total), log + 1 corrected (scanpy: log1p) and HVGs identified using the 
Seurat vst algorithm (scanpy: highly_variable_genes). Harmony was used to adjust 
PCs by sample ID and used to generate the neighborhood graph and embedded 
using UMAP. Clustering was performed using the Leiden algorithm with an initial 
resolution of 3. For initial clustering, differentially expressed genes were calculated 
using the Wilcoxon rank-sum test.

Cluster differential abundance testing. Numbers of cells of each cell 
subtype were quantified in each participant and control sample (donors) to 
compute a matrix of cell type × donor counts. Cell type abundance counts 
were modeled as a function of either disease severity (as an ordinal variable: 
healthy < asymptomatic < mild < moderate < severe < critical) or days from 
symptom onset, adjusting for age, gender, batch and days from onset, in a negative 
binomial generalized linear model (NB GLM), implemented in the Bioconductor 
package edgeR. Counts were normalized in the model using the (log) of the total 
numbers of all cells captured for each donor. Hypothesis testing was performed 
using a quasi-likelihood F-test for either a linear or a quadratic trend across disease 
severity groups (asymptomatic > mild > moderate > severe > critical), or comparing 
healthy controls to SARS-CoV-2-infected donors (healthy versus all asymptomatic, 
mild, moderate, severe and critical groups). Differentially abundant cell types were 
determined using a 10% FDR. Due to compositional differences across sites, when 
analyzing differential abundance of myeloid populations (Fig. 2), only samples 
from Newcastle and London were included.

Relative importance of metadata on cell type composition. The number of cells 
for each sample (N = 110 samples in total with complete metadata) and cell type 
(18 different cell types in total) combination was modeled with a generalized linear 
mixed model with a Poisson outcome. The five clinical factors (COVID-19 swab 
result, age, gender, disease severity at day 0 and days from onset) and the two 
technical factors (patient and sequencing center) were fitted as random effects to 
overcome the collinearity among the factors. The effect of each clinical/technical 
factor on cell type composition was estimated by the interaction term with the cell 
type. The likelihood ratio test was performed to assess the statistical significance of 
each factor on cell type abundance by removing one interaction term from the full 
model at a time. The number of factors was used to adjust multiple testing with the 
Bonferroni approach. The ‘glmer’ function in the lme4 package implemented on R 
was used to fit the model. The standard error of variance parameter for each factor 
was estimated using the ‘numDeriv’ package.

Cydar analysis. We utilized cydar to identify changes in cell composition 
across the different severity groups based on the protein data alone. First, the 
background-corrected protein counts from the three different sites were integrated 
using the ‘fastMNN’ method (k = 20, d = 50, cos.norm = TRUE) in batchelor 
(v1.6.2). The batch-corrected counts for 188 proteins (four rat/mouse antibody 
isotypes were removed) were then used to construct hyperspheres using the 
‘countCells’ function (downsample = 7) with the tolerance parameter chosen so 
that each hypersphere had at least 20 cells, estimated using the ‘neighborDistances’ 
function. To assess whether the abundance of cells in each hypersphere were 
associated with disease status, hypersphere counts were analyzed using the 
quasi-likelihood method in edgeR (v3.32.1). After filtering out hyperspheres with 
an average count per sample below five, we fitted a mean-dependent trend to the 
NB dispersion estimates. The trended dispersion for each hypersphere was used 
to fit an NB GLM using the log-transformed total number of cells as the offset for 
each sample and blocking for gender, age and batch. The quasi-likelihood F-test 
was used to compute P values for each hypersphere, which were corrected for 
multiple testing using the spatial FDR method in cydar.

Comparisons of PBMC annotation using the Azimuth tool. The final annotation 
of PBMCs was compared to a published PBMC annotation using the Azimuth 
tool (http://azimuth.satijalab.org/app/azimuth/). Because of size restrictions of 
100,000 cells, our data were subsampled to 10% of the total cells. After running 
the algorithm, results with a prediction score < 0.5 were removed (5.8% of total 
removed). For each cluster in the COVID-19 PBMC data, the percentage of cells 
mapped to each cluster in the Azimuth annotation was calculated.

Interferon, TNF and JAK–STAT response scoring. A list of genes related to 
response to type I interferons was obtained from the GSEA Molecular Signatures 
Database (MSigDB; GO:0034340). Enrichment of the interferon score was 
measured using the ‘tl.score_genes’ tool in ‘scanpy’, which subtracts the average 
expression of all genes in the dataset from the average expression of the genes in 
this list. The scores were averaged across clusters and clinical status and expressed 
as a fold change over the interferon score in the equivalent healthy cluster.

kBET analysis. The kBET52 algorithm (https://github.com/theislab/kBET/) 
was run for each cluster (Fig. 1) using the UMAP coordinates generated from 
Harmony-adjusted PCs and the sample number as the batch factor. The same 
procedure was then performed with the same annotation but using the UMAP 
coordinates generated from non-Harmony-adjusted PCs. The resultant rejection 
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rates were averaged across clusters and compared using a Wilcoxon paired 
signed-rank test.

Bronchoalveolar lavage data analysis. scRNA-seq data from BAL was obtained 
from the Gene Expression Omnibus (accession no. GSE145926)22. Raw data 
were analyzed using the same pipeline as for PBMC data, specifically using the 
same QC cutoffs (minimum of 200 genes and <10% mitochondrial reads per 
cell), and data were batch corrected using Harmony by donor ID. To gain greater 
resolution of MPs, the DCs and macrophages were analyzed with further rounds of 
subclustering to identify DC1, DC2 and mature DC subsets.

PAGA analysis of blood monocytes and BAL macrophages. Annotated raw 
expression datasets of BAL macrophages and COVID-19 PBMCs were merged and 
data log normalized and scaled as for the original datasets. The top 3,000 HVGs 
were chosen using the Seurat ‘vst’ method and used for downstream analysis. PCs 
were batch corrected by donor and used to build a neighborhood graph. The PAGA 
tool in scanpy (tl.paga) was used to generate the abstracted graph between clusters.

CellphoneDB. CellphoneDB53 was used to assess putative interactions between 
monocytes (CD14_mono, CD83_CD14_mono, C1_CD16_mono, CD16_mono 
and Prolif_mono) and platelets. The tool was run for 100 iterations, and an 
expression threshold of 0.25 (limiting the analysis to genes expressed by 25% of 
cells). For downstream analysis, we focused on interactions between platelets and 
any monocyte subset.

Platelet activation. Differentially expressed genes in platelets between healthy 
control and COVID-19 samples were filtered for those predicted to be involved 
in platelet activation (https://www.gsea-msigdb.org/gsea/msigdb/cards/
REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION).

HSPC commitment scoring. HSPCs were subsetted from the data and Leiden 
clusters generated using the same pipeline and parameters as for the whole PBMC 
dataset. Differentially expressed genes between the HSPC clusters that showed 
evidence of lineage commitment (megakaryocyte, erythroid and myeloid) were 
calculated using the FindAllMarkers tool in Seurat (with thresholds of genes 
expressed by 25% of cells and with a log fold change of 0.25), and genes with an 
adjusted P-value cutoff of 0.05 were used to generate gene signatures for each. 
Enrichment scores of these signatures in the CD38-negative and CD38-positive 
HSPC clusters were calculated using the tl.score_genes tool in scanpy (v1.6.0). 
The average expression of these enrichment scores in the CD38-negative and 
CD38-positive HSPC clusters was averaged by donor then compared across clinical 
states. Differences between groups were assessed using ANOVA with pairwise 
comparisons using Tukey’s test.

Multiplex cytokine analysis. Serum was obtained from peripheral blood in 
red-topped serum Vacutainers (BD, 367815) and allowed to clot for at least 30 min 
before centrifugation (800g for 10 min) to separate the serum. After collection, 
serum was frozen at −80 °C and thawed on ice on the day of experiment. The assay 
was carried out using the Cytokine/Chemokine/Growth Factor 45-Plex Human 
ProcartaPlex Panel 1 kit (Invitrogen, EPX450-12171-901), utilizing the Luminex 
xMAP technology and according to the manufacturer’s protocol. Each sample 
was run in duplicate. The values of each analyte were detected using the MAGPIX 
system and analyzed using the ProcartaPlex Analyst v1.0 Software (Thermo Fisher 
Scientific).

Restimulation of PBMCs with SARS-Cov-2 peptide S. Purified PMBCs were 
thawed at 37 °C, transferred into a 15-ml tube with 10 ml prewarmed complete 
culture media RPMI 1640 medium (Sigma-Aldrich, R0883) supplemented with 
10% (vol/vol) FCS (Gibco, 10270-106) and 1% (vol/vol) penicillin–streptomycin 
(100 U ml−1 and 100 μg ml−1, respectively; Sigma-Aldrich, P0781) and 1% (vol/vol) 
l-glutamine (2 mM; Sigma-Aldrich, G7513), referred to as RPMI 10, followed by 
centrifugation at 500g for 5 min. Cell pellet was resuspended in 500 μl RPMI 10 
with added DNase (1 μg ml−1; Merck, 10104159001), divided into five wells of a 
round-bottom 96-well plate and left to rest at 37 °C for 1 h. Cells were stimulated 
with SARS-CoV-2 PepTivator peptide S for pan-HLA (2 μg ml−1; Miltenyi 
Biotec, 136-126-700) and PMA/ionomycin as a control (2 μl ml−1 Cell Activation 
cocktail; BioLegend, 423301), and incubated at 37 °C for 2 h. Negative controls 
were left untreated. Brefeldin A (2 μg ml−1; GolgiPlug, BD Bioscience, 555029) 
and anti-CD107a-BB700 (1:50 dilution; clone H4A3; BD Bioscience, 566558) was 
added for an additional 4 h into all conditions. Cells were stained for detection of 
activation-induced markers and intracellular cytokines 6 h after stimulation and 
subjected to flow cytometry.

Flow cytometry of stimulated cells. PBMCs stimulated for 6 h with the 
SARS-CoV-2 peptide were washed with PBS, and cell-surface stained for 
1 h at room temperature: anti-CD14-FITC (1:50 dilution; clone M5E2; BD 
Biosciences, 555397), anti-CD19-FITC (1:50 dilution; clone 4G7; BD Biosciences, 
345776), anti-CD137-PE-Dazzle594 (1:50 dilution; clone 4B4-1; BioLegend, 
309826), anti-CCR7-PE-Cy7 (1:50 dilution; clone G043H7; BioLegend, 

353226), anti-CD45RO-APC-H7 (1:50 dilution; clone UCHL1; BD Biosciences, 
561137), anti-CD28-BV480 (1:50 dilution; clone CD28.2; BD Biosciences, 
566110), anti-CD4-BV785 (1:100 dilution; clone SK3; BioLegend, 344642), 
anti-CD3-BUV395 (1:50 dilution; clone UCHT1; BD Biosciences, 563546), 
anti-CD8-BUV496 (1:100 dilution; clone RPA-T8; BD Biosciences, 564804), 
anti-CD25-BUV737 (1:100 dilution; clone 2A3; BD Biosciences, 612806) and 
viability dye Zombie Yellow (1:200 dilution; BioLegend, 423104). Cells were 
washed with PBS 2% (vol/vol) FCS, fixed with 4% (wt/vol) paraformaldehyde 
(Thermo Fisher Scientific, 28908) and kept at 4 °C overnight. Subsequently, cells 
were washed with PBS, permeabilized with Perm/Wash buffer (BD Biosciences, 
554723) according to the manufacturer’s instructions, and stained with 
intracellular antibodies for 1 h on ice: anti-IL10-PE (1:10 dilution; clone JES3-
19F1; BD Biosciences, 559330), anti-IFN-APC (1:25 dilution; Miltenyi Biotec, 
130-090-762), anti-TNF-AF700 (1:50 dilution; clone MAb11; BioLegend, 502928), 
anti-IL-2-BV421 (1:100 dilution; clone 5344.111; BD Biosciences, 562914) and 
anti-CD154-BV605 (1:50 dilution; clone 24-31; BioLegend, 310826). Cells were 
washed, transferred to flow cytometry 5-ml tubes, and acquired on a Symphony 
A5 flow cytometer (BD Biosciences). Data were analyzed by FlowJo v10 (BD 
Biosciences).

GSEA analysis. Preranked gene-set analysis on MSigDB v7.2 Hallmark gene sets54 
was performed using preranked gene lists with the fgsea55 package in R. Genes were 
preranked according to signed −log10 P values for all preranked gene-set analysis 
procedures. For B cells, generation of the rank gene list was performed using a 
Wilcoxon rank-sum test (via ‘tl.rank_genes_groups’ in scanpy) with each day 0 
COVID-19 statuses (asymptomatic to symptomatic critical) as the ‘tests’ versus day 
0 healthy samples as the ‘reference/controls’.

T cell clustering, annotation and visualization. Droplets labeled as T cells (CD4, 
CD8, Treg, MAIT and γδ T) were subset from those in Fig. 1b and reclustered 
using a set of HVGs calculated within each batch, the union of which was used 
to estimate the first 50 PCs across cells using the ‘irbla’ R package (v2.3.3). Batch 
effects were removed across the first 30 PCs using the fastMNN56 implementation 
in the Bioconductor package batchelor (v1.6.2; k = 50). A k-nearest-neighbor 
graph (k = 20) was computed across these 30 batch-integrated PCs using the 
‘buildKNNGraph’ function implemented in the Bioconductor package scran 
(v1.18.3), which was then used to group cells into connected communities using 
Louvain57 clustering implemented in the R package ‘igraph’ (v1.2.6). Clusters 
that displayed mixed profiles of T and other lymphoid lineages, that is, CD19, 
CD20 and immunoglobulin genes, were classed as doublets and removed 
from downstream analyses. Clusters indicative of NK cells (CD3−CD56+) were 
subsequently annotated as such and removed from T cell analyses. Remaining 
clusters were annotated using a combination of canonical protein and mRNA 
markers for major αβ T cells (CD4, CD8, CCR7, CD45RA, CD45RO, CD62L, 
CD27, CD38, CD44, CXCR5, CD40LG, CCR7, FOXP3 and IKZF2), γδ T cells (Vγ9, 
Vγ2, TRGV9 andTRDV2) and invariant T cells, MAIT (Vα24-Jα18 and TRAV1.2) 
and NK T (CD3, CD16, CD56, NCAM1, NCR1 and FCGR3A) cells. Polarized 
CD4+ T cell annotations were refined using the combination of transcription 
factor genes and expressed cytokines for the respective TH cell types: TH1 (IFNG, 
TBX21 and TNFA), TH2 (GATA3, IL4 and IL5) and TH17 (RORC, IL17A, IL17F and 
IL21). Where clusters appeared heterogeneous in their expression of T cell lineage 
markers, single-cell annotations were refined based on the coexpression of specific 
marker gene and protein pairs. Dot plots to visualize marker protein and mRNA 
expression across clusters were generated using the R package ‘ggplot2’ (v3.3.3). 
UMAP58 was used to project all single T cells into a two-dimensional space (k = 31) 
using the first 30 batch-integrated PCs as input with the R package ‘umap’. R v4.0.3 
and Bioconductor v3.12 were used for all analyses.

T cell differential gene expression analysis. Differential gene expression 
analysis was performed across COVID-19 disease severity groups, ordered from 
healthy > asymptomatic > mild > moderate > severe > critical. Donor pseudo-bulk 
samples were first created by aggregating gene counts for each annotated T cell 
type, within each donor, where there were at least 20 cells of that type. Genes 
with fewer than three counts in any given pseudo-bulk sample, or fewer than 
five counts in total across donor pseudo-bulk samples, were removed before 
analysis. Differential gene expression testing was performed using an NB GLM 
implemented in the Bioconductor package edgeR59,60 (v3.32.1). Statistically 
significant differentially expressed genes were defined with FDR < 0.1. Functional 
annotation enrichment was performed using the Bioconductor package 
enrichR61(v3.0). Upregulated and downregulated differentially expressed genes 
in each T cell type were used as input, testing separately against the MSigDB 
Hallmark 2020 and Transcription Factor Protein–Protein Interactions gene sets. 
Significant enrichments were defined with 1% FDR.

T cell receptor analysis. Single-cell TCRs were computed from the 
TCR-sequencing data using Cell Ranger v4.0.0. The unfiltered outputs of 
reconstructed TCR contigs across all three sites (Newcastle, Cambridge and 
London) were combined before filtering using: (1) full-length CDR3, (2) each 
cell droplet barcode matched a TCR droplet barcode and (3) productive CDR3 
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spanning V + J genes. Chain-specific TCR clones were defined for each observed 
α-chain and β-chain by first concatenating the V, J and identical CDR3 nucleotide 
sequences. For each single T cell, these chains were then combined to form a single 
clonotype, removing cells that contained: (1) greater than two β-chains and greater 
than two α-chains and (2) a single α-chain or a single β-chain only. T cells with 
exactly two β-chains and one α-chain, or those with exactly two α-chains and one 
β-chain were retained. TCR clonotypes were counted within each donor sample, 
and expanded clones were defined where more than one cell was assigned to the 
TCR clonotype.

The proportion of expanded clones as a function of a linear trend across 
disease severity groups was modeled using logistic regression, adjusted for age, 
gender and batch. A separate model was run for each T cell subtype that contained 
at least five cells assigned to the expanded TCR clonotypes. Linear trend P values 
were corrected for multiple testing using the Benjamini–Hochberg procedure62.

The TE:EM ratio was calculated within each donor, using the number of 
observed expanded clonotypes. The TE:EM ratio change across COVID-19 severity 
was tested using a robust linear model implemented in the R package ‘robustbase’ 
(v0.93-7), regressing the TE:EM ratio on either disease severity as an ordered 
linear variable (asymptomatic > mild > moderate > severe > critical) or symptom 
duration, adjusted for age, gender and batch. Statistical significance was defined 
based on the linear trend across disease severity (P ≤ 0.01). An equivalent analysis 
was performed, restricted to participants with a shorter symptom duration (≤24 d).

Differential correlation analysis. Changes in the correlations between PBMC cell 
types were computed using a differential correlation analysis, implemented in the 
R package DCARS63 (v0.3.5). Cell type proportions were computed by normalizing 
the counts of each cell type within each donor by the total number of cells captured 
for that donor sample. Donor samples were ranked according to their disease 
severity (healthy > asymptomatic > mild > moderate > severe > critical). Differential 
correlation analysis was then performed between CD4.TFH versus all B cell types. 
Statistically significant differentially correlated cell types were defined with 
empirical P value ≤ 0.1, estimated from 10,000 permutations.

BCR V(D)J analysis. Single-cell V(D)J data from the 5′ Chromium 10x kit were 
initially processed with Cell Ranger vdj pipeline (4.0.0). BCR contigs contained 
in ‘filtered_contigs.fasta’ and ‘filtered_contig_annotations.csv’ from all three sites 
were then preprocessed using ‘immcantation’ inspired preprocessing pipeline64 
implemented in the dandelion Python package; dandelion is a new single-cell 
BCR-seq analysis package for 10x Chromium 5′ data. All steps outlined below were 
performed using dandelion v0.0.27.post2 and are available at https://github.com/
clatworthylab/dandelion/.

BCR preprocessing. Individual BCR contigs were reannotated with ‘igblastn’ 
v1.1.15 using the IMGT reference database (downloaded on 30 June 2020)65 by 
calling changeo’s ‘AssignGenes.py’ script, and reannotated contigs in ‘blast’ format 
were parsed into the Adaptive Immune Receptor Repertoire standards 1.3 format 
with changeo’s ‘MakeDB.py’ script. Amino acid sequence alignment information 
not present in the output from blast format was retrieved from reannotation with 
igblastn in AIRR format. Heavy-chain V-gene alleles were corrected for individual 
genotypes with TIgGER66 (v1.0.0) using a modified ‘tigger-genotype.R’ script 
from ‘immcantation’ suite. Germline sequences were reconstructed based on the 
genotype corrected V-gene assignments using changeo’s (v1.0.1) ‘CreateGermines.
py’ script; contigs which failed germline sequence reconstruction were removed 
from further analysis. Constant genes were reannotated using blastn (v2.10.0+) 
with CH1 regions of constant gene sequences from IMGT followed by pairwise 
alignment against curated sequences to correct assignment errors due to 
insufficient length of constant regions.

BCR filtering. Contigs assigned to cells that passed QC on the transcriptome 
data were retained for further QC assessment, which included the following 
checks: (1) contigs with mismatched locus and V, J and constant gene assignments 
were removed from the analysis; (2) cell barcodes with multiple heavy-chain 
contigs were flagged for filtering (exceptions to this were (a) when the multiple 
heavy-chain contigs were assessed to have identical V(D)J sequences but assigned 
as different contigs belonging to the same cell by Cell Ranger vdj pipeline, (b) when 
there was a clear dominance (assessed by difference in UMI count) by a particular 
contig, and (c) if and when there was presence of one IgM and one IgD contig 
assigned to a single cell barcode; in the first two cases, the contig with the highest 
UMI count was retained); (3) cell barcodes with multiple light-chain contigs were 
flagged for filtering; and (4) in situations where cell barcodes were matched with 
only light-chain contigs, the contigs were dropped from the V(D)J data but the 
transcriptome barcode was retained.

B cell clone/clonotype definition. BCRs were grouped into clones/clonotypes 
based on the following sequential criteria that apply to both heavy-chain and 
light-chain contigs: (1) identical V and J gene usage, (2) identical junctional CDR3 
amino acid length, and (3) at least 85% amino acid sequence similarity at the CDR3 
junction (based on hamming distance). Light-chain pairing was performed using 
the same criteria within each heavy-chain clone. Only samples collected at day 0 of 

the study were analyzed from this step onwards and clones/clonotypes were called 
across the entire dataset; the sample from one of the donors who was subsequently 
found to have a B cell malignancy was separated from the analysis and processed 
independently.

B cell clone/clonotype network. Single-cell BCR networks were constructed 
using adjacency matrices computed from pairwise Levenshtein distance of the full 
amino acid sequence alignment for BCR(s) contained in every pair of cells within 
each disease severity cohort. Construction of the Levenshtein distance matrices 
were performed separately for heavy-chain and light-chain contigs, and the sum 
of the total edit distance across all layers/matrices was used as the final adjacency 
matrix. To construct the BCR neighborhood graph, a minimum-spanning tree 
was constructed on the adjacency matrix for each clone/clonotype, creating a 
simple graph with edges indicating the shortest edit distance between a B cell and 
its nearest neighbor. Cells with identical BCRs, that is, cells with a total pairwise 
edit distance of zero, were then connected to the graph to recover edges trimmed 
off during the minimum-spanning-tree construction step. Fruchterman–Reingold 
graph layout was generated using a modified method to prevent singletons from 
flying out to infinity in ‘networkx’ (v2.5). Visualization of the resulting single-cell 
BCR network was achieved via transfer of the graph to relevant ‘anndata’ slots, 
allowing for access to plotting tools in scanpy.

The use of the BCR network properties for computing gini indices was inspired 
from bulk BCR-sequencing network analysis methods where distributions of clone 
sizes and vertex sizes (sum of identical BCR reads) in BCR clone networks were 
used to infer the relationships between BCR clonality, somatic hypermutation 
and diversity67. However, there are challenges with native implementation of this 
approach for single-cell data. Firstly, to enable calculation of network-based clone/
cluster and vertex/node size distribution, BCR networks needed to be reduced such 
that nodes/cells with identical BCRs had to be merged and counted; this required 
the reconstruction of BCR networks per sample and discarding single-cell-level 
information. Furthermore, the process of node contraction and counting of 
merging events requires substantial computation time and resource. Secondly, this 
approach is dependent on sufficient coverage of the BCR repertoire, as the BCRs 
from the number of cells sampled (after QC) may not necessarily recapitulate the 
entire repertoire, which may underrepresent or overrepresent merged counts for 
gini index calculation. We propose the use of node closeness centrality computed 
on each expanded clone (clone size > 1) as an alternative metric to emulate the 
statistics to adapt to the single-cell nature of the data; closeness centrality defines 
how close and central each node is with respect to other nodes in the graph; 
therefore, cells with identical BCRs will have high closeness centrality scores, due 
to the way the BCR network is constructed in dandelion. Thus, we can quickly 
calculate if cells across clones, and/or samples overall, in the entire graph display 
proportionately/disproportionately high or low closeness centrality scores. One 
caveat to the current implementation is that it is only meaningful if there are 
clonotypes with at least two cells, as scores will only be computed for non-singleton 
components of the graph. Gini indices are computed using ‘skbio.diversity.alpha.
gini_index’ (scikit-bio v0.5.6) with the ‘trapezoids’ method after clone definition 
and network generation. Summary visualization was performed using plotting 
tools in ‘seaborn’ (v0.11.0).

Definition of BCR convergence across participants. BCR overlap was determined 
by collapsing sharing incidence of V and J gene usage and CDR3 amino acid 
sequences, in both heavy and light chains, between individuals into a binarized 
format (1 or 0). The information is turned into an adjacency matrix where an edge 
is created between two individuals if there is at least one clonotype (at least one 
cell from each individual displays an identical combination of heavy-chain and 
light-chain V and J gene usage with allowance for somatic hypermutation at the 
CDR3 junctional region) that is similar between the two individuals. Visualization 
was achieved using the ‘CircosPlot’ function from ‘nxviz’ package (v0.6.2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset from our study can be explored interactively through the web portal 
https://covid19cellatlas.org/. The data object, as a h5ad file, can also be downloaded 
from https://covid19cellatlas.org/. The processed data are available to download 
from Array Express under accession number E-MTAB-10026. Source data are 
provided with this paper.

Code availability
All data analysis scripts are available on https://github.com/scCOVID-19/
COVIDPBMC/.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Single-cell analysis quality control and cell type definition for COVID PBMC single cell analysis. a, Bar chart showing the 
composition of sample severities across the three sites (n = 23 mild, n = 30 moderate, n = 11, severe, n = 10 critical biologically independent samples). b, 
Scatter plot displaying the total number of gene counts per sample from each site. c, UMAP visualisations from Fig. 1b coloured by site. d, Boxplot of kBET 
results calculated both before and after batch correction with Harmony for each cluster in Fig. 1b kBET statistic calculation using patient ID as the batch 
factor (n = 130 biologically independent samples, n = 627,172 cells in 1 experiment). Hinges indicate to 25th and 75th percentile and whiskers to lowest 
and highest value in 1.5*interquartile range. e, Dot plots of 5’ gene expression (top; blue) and surface protein (bottom; red) expression for populations 
shown in Fig. 1a where the colour is scaled by mean expression and the dot size is proportional to the percent of the population expressing the gene/
protein, respectively. f, Tile plot showing percentage concordance between COVID-19 PBMC annotation (x-axis) and Azimuth annotation (y-axis) (https://
satijalab.org/azimuth/).

NATuRE MEDICINE | www.nature.com/naturemedicine

https://satijalab.org/azimuth/
https://satijalab.org/azimuth/
http://www.nature.com/naturemedicine


Articles NATurE MEDICINE

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Differential abundance analysis and expression of GWAS hits related to cytokines, chemokines and growth factors. a, Volcano 
plots showing differential abundance testing performed using quasi-likelihood F-test comparing healthy controls to cases for linear trends across disease 
severity groups. Differentially abundant cell types were determined using a 10% false discovery rate (FDR). b, Scatter plots showing blood counts for 
Newcastle data grouped by severity status (n = 6 healthy and LPS samples; n = 11 mild, n = 17 moderate, n = 7 severe, and n = 7 critical biologically 
independent samples). Dotted lines mark the normal ranges. Significance determined using Kruskal-Wallis with Dunn’s post hoc corrected for multiple 
comparison. WBC, whole blood count. c, Forest plot showing the standard deviation of each clinical/technical factor estimated by the Poisson generalised 
linear mixed model. Error bars show the standard error estimated from the Fisher information matrix (n = 130 biologically independent samples) SD, 
standard deviation. d, Volcano plots showing differential abundance testing according to time since symptom onset. Differentially abundant (FDR 10%) 
points are shown in red. e, Box plots displaying the duration of COVID-19 symptoms from the onset by severity (n = 23 mild, n = 30 moderate, n = 11, 
severe, n = 10 critical biologically independent samples). Boxes denote IQR with median shown as horizontal bars. Whiskers extend to 1.5x the IQR; 
outliers are shown as individual points. f, Box plots displaying the duration of COVID-19 symptoms from the onset split by severity and sex (n = 23 mild, 
n = 30 moderate, n = 11, severe, n = 10 critical biologically independent samples). Boxes denote IQR with median shown as horizontal bars. Whiskers 
extend to 1.5x the IQR; outliers are shown as individual points. g, Correlated log fold-changes of cell type abundance changes as a function of symptom 
duration with (x-axis) and without critically ill patients (y-axis). h, Differential abundance testing with a leave-one-out analysis for the T cells (top) of 
B cells (bottom) (FDR10%). i, Heat map displaying fold change over healthy (left) and dot plot of gene expression where the colour is scaled by mean 
expression and the dot size is proportional to the percent of the population expressing the gene (right) for genes associated with COVID-19 identified in 
recent GWAS studies18,19 for the cell populations in Fig. 1b. j, Heat map displaying normalised values of cytokine, chemokine and growth factors in serum of 
patients with COVID-19.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Myeloid comparisons with bronchial alveolar lavage dataset and receptor-ligand interaction analysis between megakaryocyte, 
myeloid and progenitor cells. a, Volcano plot showing differential abundance testing according to time since symptom onset for the myeloid populations. 
Differentially abundant (FDR 10%) points are shown in red. b, Dot plots of gene expression of C1 complement components for cells in Fig. 1b where the 
colour is scaled by mean expression and the dot size is proportional to the percent of the population expressing the gene. c, Dot plots of gene expression 
of a recently published BAL dataset (accession number GSE14592622) for genes in Fig. 2a where the colour is scaled by mean expression and the dot size 
is proportional to the percent of the population expressing the gene. d, Heat map of CellPhoneDB predicted ligand:receptor interactions between platelets 
and monocyte subsets, based on the protein data. e, Dot plots of expression of protein markers used to annotate clusters in Fig. 2i. MK, Megakaryocyte 
f. Heatmap of differentially expressed genes between megakaryocyte, myeloid and erythroid progenitor clusters. MK, megakaryocyte; My, myeloid. g, 
Box plots displaying enrichment of an erythroid signature (top) and a myeloid signature (bottom) found in CD34−CD38− (left) and CD34+CD38+ HSPCs 
(right), separated by severity. Asterisks above bars indicate significance and are coloured by the severity for which they were compared to. Absolute 
values are provided in Supplementary Tables 8 and 9. (n = 120 biologically independent samples, n = 3297 cells in 1 experiment). Boxes denote IQR with 
median shown as horizontal bars. Whiskers extend to 1.5x the IQR; outliers are shown as individual points (n = 24 healthy, n = 86 COVID-19 biologically 
independent samples) (p-values: Myeloid signature in CD38 negative HSPCs, Healthy vs. Mild: 0.8 x 10-3, Healthy vs Moderate 0.02).
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Extended Data Fig. 4 | uMAP embedding of T lymphoid clusters showing cell type estimation and covariates. a, UMAP visualisation of 309,617 T cells 
separated by sources of donors. b, UMAP visualisation showing 2-dimensional kernel density estimates of each T cell type in UMAP space. c.-e. UMAP 
visualisation of T cells coloured by gender (c), disease severity status (d) and age (e).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Differential abundance testing, gene set enrichment analysis and clonal diversity analysis of T lymphoid compartment. a, 
Box plots showing the proportion of cell types shown in Fig. 3a, n = 108 biologically independent samples. Boxes denote IQR with median shown as 
horizontal bars. Whiskers extend to 1.5x the IQR; outliers are shown as individual points. b, Volcano plots showing results of differential abundance 
testing. Abundance counts were modelled either comparing healthy vs. COVID-19, or as a function of severity. Hypothesis testing was performed using 
quasi-likelihood F-test comparing healthy controls to cases, or for either a linear or quadratic trend across disease severity. Differentially abundant 
cell types were determined using a 10% false discovery rate (FDR). c, Heatmaps showing mean expression levels across T cell subsets for suppressive 
(FOXP3), proliferating (MKI67) and exhaustion markers (PDCD1, HAVCR2, LAG3, TIGIT, TOX). Columns denote the mean log-normalised expression within 
each severity category and healthy controls. d, Volcano plot showing differential abundance testing according to time since symptom onset for the T 
cell populations. Differentially abundant (FDR 10%) points are shown in red. e, Gene set enrichment (Methods) in each T cell type based on differential 
gene expression (DGE) analysis was performed across COVID-19 disease severity groups, ordered from healthy > asymptomatic > mild > moderate > 
severe > critical. Statistically significant DE genes were defined with FDR < 1%. Significant enrichments were defined with 10% FDR. f, Bar plots showing 
percent (mean + /- SEM) of CD3+CD4+ (blue) and CD3+CD8+ (green) T cells expressing CD107a (left) and CD137 (right) in response to SARS-CoV-2 S 
peptide stimulation (n = 12 healthy, n = 10 mild, n = 17 moderate, n = 9 severe, and n = 5 critical biologically independent samples). Significance determined 
using Kruskal-Wallis with Dunn’s post-hoc corrected for multiple comparison. g, Box plots showing clone size distribution for each T cell subset (n = 9 
asymptomatic, n = 19 mild, n = 29 moderate, n = 12 severe, n = 10 critical biologically independent samples). Boxes denote IQR with median shown as 
horizontal bars. Whiskers extend to 1.5x the IQR; outliers are shown as individual points. h, Box plots slowing clonal diversity for each T cell subset (n = 22 
healthy, n = 12 asymptomatic, n = 22 mild, n = 31 moderate, n = 14 severe, n = 13 critical biologically independent samples). Boxes denote IQR with median 
shown as horizontal bars. Whiskers extend to 1.5x the IQR; outliers are shown as individual points.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Single-cell analysis of B lymphocytes proportion and gene set differences across COVID-19 severity. a, Heatmap of mean gene 
set enrichment scores of (top) adult peripheral blood B cell signatures32 and (bottom) bone marrow B cell signatures68. Row enrichment value is scaled 
from 0-1 and colour gradient corresponds to increasing mean enrichment score. b, (Top) Kruskal-Wallis test results with Benjamini-Hochberg false 
discovery correction for cell type proportion differences in plasmablast/plasma cells between severities. Significance is denoted by Benjamini-Hochberg 
corrected P < 0.05 (red text). (Bottom) Cell type abundance counts were modelled as a function of severity. Hypothesis testing was performed using 
quasi-likelihood F-test comparing asymptomatic to symptomatic covid, for either a linear or quadratic trend across severities. Differentially abundant cell 
types were determined using a 10% false discovery rate (FDR). c, (Left) Bar plot showing the mean proportion of plasmablast/plasma cells expressing 
IgA, IgD, IgE, IgG or IgM, based on V(D)J information. (Right) Proportion of IgM, IgA1, total IgG, IgG1, and IgG2 subclass in plasmablast and plasma cells. 
Kruskal-Wallis test results with Benjamini-Hochberg false discovery correction for cell type proportion differences in plasmablast/plasma cells between 
severities showed no significant differences. n = 10, 6, 21, 24, 11, 11 (IgM), n = 18, 9, 21, 27, 12, 9 (IgA1), n = 16, 8, 23, 27, 13, 8 (IgG (all)), n = 11, 6, 22, 25, 
11, 8 (IgG1) and n = 8, 4, 16, 23, 9, 7 (IgG2) biologically independent patients/samples for healthy, asymptomatic, mild, moderate, severe and critical 
respectively. d, GSEA of pathways in B cell subsets for asymptomatic/symptomatic COVID versus healthy. Size of circles indicate (absolute) normalised 
enrichment score (NES). Pathways were considered statistically significant if GSEA (permutation) nominal P < 0.05 and FDR < 0.25 (denoted by non-grey 
coloured dots; boundary lines in the middle marks FDR = 0.25). EMT, Epithelial-mesenchymal transition. e, Dot plots of TNF signalling molecules, 
activating and inhibitory BCR signaling molecules (5’ gene expression data) in immature B cells, non-switched memory B cells, ‘exhausted’ B cells and 
plasma cells. Size of circles indicate percent of cells expressing the gene and colour gradient corresponds to increasing mean expression value.
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Extended Data Fig. 7 | Single-cell BCR networks across COVID-19 severity. Single-cell BCR network plots for each severity status coloured by heavy chain 
isotype class (IgM, IgD, IgA, IgE, or IgG). Each circle/node corresponds to a single B cell with a corresponding set of BCR(s). Each clonotype is presented 
as a minimally connected graph with edge widths scaled to 1/d + 1 for edge weight d where d corresponds to the total (Levenshtein) edit distance of BCRs 
between two cells. Size of nodes is scaled according to increasing node closeness centrality scores that is nodes that are highly central to a clonotype 
network will be larger.
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Extended Data Fig. 8 | See next page for caption.

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNATurE MEDICINE

Extended Data Fig. 8 | Single-cell BCR clonotype expansion analysis across COVID-19 severity. a, UMAP visualisation of B cell lineage and coloured by 
clonotype size in the V(D)J data. Only expanded clonotypes are coloured (clonotype size > 2). b, Single-cell BCR network plots for each severity status 
coloured by assigned cell type. c, Single-cell BCR network plots for each severity status coloured by heavy chain isotype subclass (IgM, IgD, IgA1, IgA2, IgE, 
IgG1, IgG2, IgG3 or IgG4). Each circle/node corresponds to a single B cell with a corresponding set of BCR(s). Each clonotype is presented as a minimally 
connected graph with edge widths scaled to 1/d + 1 for edge weight d where d corresponds to the total (Levenshtein) edit distance of BCRs between two 
cells. Size of nodes is scaled according to increasing node closeness centrality scores that is nodes that are highly central to a clonotype network will be 
larger.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Single-cell BCR analysis between genders across COVID-19 severity. a, Summary plot for BCR IGHV gene usage split by gender 
(top: female; bottom: male). Each data point is presented as the mean gene usage proportion + /- standard error of the mean for samples within each 
sample group. Kruskal-Wallis test with Benjamini-Hochberg *P < 0.05 (adjusted p = 0.035) n = 12, 5, 8, 20, 6 and 6 biologically independent male 
patients/samples and n = 12, 4, 15, 10, 7 and 5 biologically independent female patients/samples for healthy, asymptomatic, mild, moderate, severe and 
critical respectively. b, (Top) Scatter plot of clonotype/cluster size by vertex size gini indices computed from contracted BCR networks (identical nodes 
are merged and counted). Each dot represents the gini indices of an individual coloured by severity status. Marginal histograms indicate the distribution 
of samples in a given severity status along the axes. (Bottom, left) Cluster/clonotype size (contracted network) gini indices separated by gender. (Bottom, 
right) Vertex size (contracted network) gini indices separated by gender. The boxes extend from the 25th to 75th percentiles. The whiskers go down to 
the smallest value and up to the largest. The line in the middle of the boxes is plotted at the median. Statistical tests were performed with non-parametric 
Mann-Whitney U test between the gender groups within each severity status and were considered statistically significant if Benjamini-Hochberg 
corrected P < 0.05 (denoted by *; n.s. denotes not significant). The Benjamini-Hochberg adjusted p-values are as follows: cluster/clonotype size 
(contracted network) gini indices comparisons: 3.42x10-1, 1.91x10-25, 7.71x10-272, 1.31x10-169, 3.84x10-113 and 2.98x10-1; vertex size (contracted network) gini 
indices comparisons: 1.12x10-57, 2.17x10-1, <1x10-308, 3.64x10-49, 2.69x10-53 and 2.37x10-04 - for healthy, asymptomatic, mild, moderate, severe and critical 
respectively. Colour of asterisks indicates which gender group displays a higher mean gini index (yellow: female; grey: male). n = 12, 5, 8, 20, 6 and 6 
biologically independent male patients/samples and n = 12, 4, 15, 10, 7 and 5 biologically independent female patients/samples for healthy, asymptomatic, 
mild, moderate, severe and critical respectively. n = 1 for malignant (male).

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine















	Single-cell multi-omics analysis of the immune response in COVID-19
	Results
	Altered cellular profiles across COVID-19 severities. 
	Mononuclear phagocytes and HSPC changes. 
	T lymphocytes and T cell receptor changes. 
	B lymphocytes and B cell receptor changes. 

	Discussion
	Online content
	Fig. 1 Single-cell multi-omics analysis of PBMCs from individuals with COVID-19 and controls.
	Fig. 2 Expansion of complement-expressing nonclassical monocytes and megakaryocyte-primed progenitor cells and increased platelet activation with COVID-19 disease severity.
	Fig. 3 Compositional and clonal analyses of T lymphocytes illustrate the expansion of effector subsets.
	Fig. 4 Single-cell analysis of B lymphocytes and BCR repertoire reveal plasmablast expansion and clonality differences between genders.
	Fig. 5 Integrated framework of the peripheral immune response in COVID-19.
	Extended Data Fig. 1 Single-cell analysis quality control and cell type definition for COVID PBMC single cell analysis.
	Extended Data Fig. 2 Differential abundance analysis and expression of GWAS hits related to cytokines, chemokines and growth factors.
	Extended Data Fig. 3 Myeloid comparisons with bronchial alveolar lavage dataset and receptor-ligand interaction analysis between megakaryocyte, myeloid and progenitor cells.
	Extended Data Fig. 4 UMAP embedding of T lymphoid clusters showing cell type estimation and covariates.
	Extended Data Fig. 5 Differential abundance testing, gene set enrichment analysis and clonal diversity analysis of T lymphoid compartment.
	Extended Data Fig. 6 Single-cell analysis of B lymphocytes proportion and gene set differences across COVID-19 severity.
	Extended Data Fig. 7 Single-cell BCR networks across COVID-19 severity.
	Extended Data Fig. 8 Single-cell BCR clonotype expansion analysis across COVID-19 severity.
	Extended Data Fig. 9 Single-cell BCR analysis between genders across COVID-19 severity.


