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Single-cell multiomics analysis reveals regulatory
programs in clear cell renal cell carcinoma
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Abstract
The clear cell renal cell carcinoma (ccRCC) microenvironment consists of many different cell types and structural
components that play critical roles in cancer progression and drug resistance, but the cellular architecture and
underlying gene regulatory features of ccRCC have not been fully characterized. Here, we applied single-cell RNA
sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to
generate transcriptional and epigenomic landscapes of ccRCC. We identified tumor cell-specific regulatory programs
mediated by four key transcription factors (TFs) (HOXC5, VENTX, ISL1, and OTP), and these TFs have prognostic
significance in The Cancer Genome Atlas (TCGA) database. Targeting these TFs via short hairpin RNAs (shRNAs) or
small molecule inhibitors decreased tumor cell proliferation. We next performed an integrative analysis of chromatin
accessibility and gene expression for CD8+ T cells and macrophages to reveal the different regulatory elements in their
subgroups. Furthermore, we delineated the intercellular communications mediated by ligand–receptor interactions
within the tumor microenvironment. Taken together, our multiomics approach further clarifies the cellular
heterogeneity of ccRCC and identifies potential therapeutic targets.

Introduction
Clear cell renal carcinoma (ccRCC) is the most common

and aggressive histological subtype of renal cell carci-
noma1,2. More than one-third of ccRCC patients relapse
and develop metastases after surgery. The prognosis for
metastatic ccRCC patients is poor, with a 5-year survival
rate of 10%3, emphasizing the need to understand the
underlying cellular and molecular mechanisms to facilitate
the discovery of biomarkers and guide clinical intervention.
The efficacy of current ccRCC clinical treatment modalities,
including conventional chemotherapy, targeted therapy,
and immunotherapy, is limited by tumor heterogeneity2,4.
Previously, large-scale genomic studies revealed many

essential genome mutations that drive tumor progression

and contribute to clinical treatment5–7. A common
mutation is the inactivation of the VHL gene, leading to
the stabilization of oncogenic hypoxia-inducible factor
proteins (HIF1α, HIF2α). Other frequent mutations in
chromatin remodeling genes, such as PBRM1, BAP1, and
SETD2, are necessary for tumorigenesis and tumor
development7,8. However, tumors exist in a highly het-
erogeneous microenvironment that includes many dif-
ferent cell types, so bulk sequencing is not suitable for
delineating tumor characteristics at the cellular level.
Single-cell isolation and barcoding technologies have
enabled us to investigate cellular heterogeneity at a single-
cell resolution to discern the role of different cell popu-
lations whose gene expression patterns may be masked or
diluted in bulk sequencing9,10. ScRNA-seq has been used
to comprehensively characterize the cellular composition
and transcriptional states of ccRCC, revealing its origin
and intratumoral heterogeneity11,12. Comparative scRNA-
seq analyses of different conditions (e.g., before and after
treatment, in disease stages, and at sampling sites)
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revealed multiple cell populations associated with immu-
notherapy resistance and a poor prognosis in ccRCC
patients13–15. Although significant progress has been made
toward delineating changes in the transcriptional expression
of various cell types during tumor development and clinical
treatment, it remains unclear how cis-acting DNA elements
(e.g., enhancers and promoters) and trans-acting factors
(e.g., transcription factors (TFs)) regulate these changes
within the microenvironment.
ScATAC-seq identifies accessible chromatin regions by

Tn5 transposase-mediated tagmentation and captures
active DNA regulatory elements at a single-cell resolu-
tion16. Similar to bulk ATAC-seq, this approach can
capture multiple types of gene regulatory information; for
example, it can identify genome-wide cis-elements and
indicate inference with TFs binding and activity.
ScATAC-seq has been widely used to delineate the dif-
ferentiation trajectory of developmental lineages and
reveal key regulatory elements17,18. Multidimensional
data, such as DNA and RNA sequencing data, provide
different perspectives to investigate biological phenomena
and deepen our understanding of tumor pathogenesis and
progression. Recent studies integrating scRNA-seq and
scATAC-seq data on healthy kidneys have depicted the
transcriptional and chromatin accessibility landscape and
identified key celltype-specific TFs that play crucial roles
in kidney development19,20. Resolving ccRCC hetero-
geneity with multidimensional information at the single-
cell level can provide new insights for exploring tumor
regulatory mechanisms and identifying potential ther-
apeutic targets.
Here, we performed scRNA-seq and scATAC-seq on

ccRCC primary tumor tissues to identify the key reg-
ulatory molecules that mediate tumor development and
manipulate the function of immune cells. Our multiomics
analysis revealed a tumor-specific regulatory signature
and multiple TFs associated with immune cell functional
states. Our work provides important insights into dis-
secting the tumor heterogeneity of ccRCC using single-
cell multiomics data.

Results
Single-cell transcriptional and chromatin accessibility
profiling in ccRCC
To systematically dissect the heterogenous architecture

of ccRCC tumors, we performed paired scRNA-seq and
scATAC-seq on three patients and scRNA-seq alone on
one additional patient (Fig. 1a). Selected patients ranged
in age from 33 to 75 years old and included both women
(n= 2) and men (n= 2) (Supplementary Table S1). All
samples had VHL gene mutations (Supplementary Fig.
S1a). Other common mutations, such as the histone
deubiquitinase BAP18 and SWI/SNF component
ARID1B21, were also detected sporadically in these

samples. After quality-control filtering, a total of 38,097
cells from scRNA-seq and 21,272 cells from scATAC-seq
were retained for the following analysis (Supplementary
Fig. S1b–e). Using canonical markers, we identified 15 cell
types in the scRNA-seq dataset (Fig. 1b, c and Supple-
mentary Tables S2, S3). For our scATAC-seq data, we
calculated the prediction scores by Seurat’s label-transfer
algorithm and annotated cell clusters in a supervised
manner (Fig. 1d and Supplementary Fig. S1f, g). In par-
allel, we inspected the chromatin accessibility at the
promoter regions for known marker genes and calculated
their activity scores for assigning cell identities (Supple-
mentary Fig. S1h). Comparing the annotation results
between these two annotation strategies, we found that
most cell types were present in both datasets, which
supported that scATAC-seq is comparable to scRNA-seq
in the detection and annotation of cell types (Supple-
mentary Fig. S1i). Finally, we identified 12 cell types in the
scATAC-seq dataset by combining these two annotation
results (Fig. 1e, f).
We identified five major lymphocyte populations: CD4+

(CD4, IL7R, CD3D, CD3E) and CD8+ T cells (CD8A,
CD8B, CD3D, CD3E), Treg (FOXP3, IL2RA), natural killer
(NK)/natural killer T (NKT) cells (KLRD1, GNLY), B cells
(MS4A1/CD20, CD79A) and multiple myeloid subsets
after integration of scRNA-seq data and scATAC-seq
data, including macrophages (CSF1R, CD68, CD163),
monocytes (S100A12, FCGR3A/CD16), and mast cells
(TPSAB1, KIT) (Fig. 1c, f and Supplementary Fig. S1j). We
also identified several nonimmune cell types, including
endothelial cells (PECAM1, PTPRB) and mesangial cells
(PDGFRB, ACTA2). Notably, we found two different
endothelial subpopulations: one specifically expressed
vascular cell adhesion molecule 1 (VCAM1), while the
other did not express VCAM1 but had enriched kinase
insert domain receptor (KDR). Similar to a previous
study11, we found that the VCAM1− endothelial cells
highly expressed genes regulating endothelial cell pro-
liferation and vasculature development, whereas the
VCAM1+ endothelial cells highly expressed genes reg-
ulating immune cell chemotaxis and migration (Supple-
mentary Fig. S1k). Next, we identified the tumor cells by
detecting both the canonical marker CA911,22 and classic
copy number variations (CNVs) (chromosome 3p loss or
chromosome 5q gain)8 (Fig. 1c, f, g). In the entire tumor
microenvironment (TME) of ccRCC, we found that
immune cells were the most numerous cell population,
accounting for more than 70% of the total cells, while
tumor cells accounted for <10% of the population (9.36%
from scRNA-seq data; 6.2% from scATAC-seq data)
(Fig. 1h). Moreover, we found that the abundance of cell
types varied across samples, suggesting a considerable
level of tumor heterogeneity (Supplementary Fig. S1l). In
summary, our integrated scRNA-seq and scATAC-seq
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multiomics approach revealed the heterogeneous cellular
composition of ccRCC.

Tumor-specific regulatory elements in ccRCC
To investigate the differences in chromatin accessi-

bility among all cell types, we first identified a total of
212,326 peaks in our scATAC-seq data by using
MACS223 and found that ~10.6% (22,682 unique peaks)
of them exhibited significant differences among cell
types; these sites were defined as differentially accessible
chromatin regions (DARs) (adjusted P < 0.05 and log2
(fold change (FC)) > 0.25) (Fig. 2a). Approximately 17.3%
(mean proportion= 0.173 ± 0.067) of DARs were closely
associated with differentially expressed genes (DEGs) in
their respective cell types (Supplementary Table S4).
Overall, endothelium and mesangial cells had the most
DARs, followed by tumor cells (Supplementary Fig. S2a).
Notably, lymphoid lineage populations, except B cells,
had fewer DARs than myeloid cell populations. The
majority of DARs were located in the promoter and
intronic regions of the genome, and the distribution of
DARs was relatively conserved across cell types (Fig. 2b
and Supplementary Fig. S2b). In addition, we found that
both DARs and DEGs of tumor cells were significantly
enriched in metabolism-related biological processes
(Fig. 2c and Supplementary Fig. S2c). Next, we applied
chromVAR24 to infer TF motif activity in our scATAC-
seq data. Hierarchical clustering of the bias-corrected
deviation scores for the differential TFs revealed shared
and unique regulatory elements across cell types (Fig. 2d
and Supplementary Table S5). The identification of
distinct lineage-specific TFs further supported our
assignment of cell identities. For example, T-Box (e.g.,
EOMES and TBX5) TFs were exclusively enriched in
NK/NKT and CD8+ T cell populations25,26. Within
myeloid cells, SPI127 TF were enriched in macrophages,
CEBP TF family28 exhibited high activity in monocytes,
while the GATA229 TF was specifically enriched in mast
cells. Interestingly, two endothelial subpopulations
exhibited differences in TF enrichment: the VCAM1−

endothelial cells showed high activity of SOX TF family,
while STAT1 and NFATC4 were enriched in the
VCAM1+ endothelial cells.

To uncover the pivotal TFs participating in tumor-
igenesis and development, we designed a filtering strategy
to identify highly specific TFs enriched in tumor cells.
First, we calculated the standard deviation of chromVAR
bias-corrected scores among all cell types for each TF and
filtered out the TFs with low variability by the median
absolute deviation method30. Then, we selected the TFs
highly enriched exclusively in tumor cells (log2(FC) > 4 in
tumor cells and log2(FC) < 1 in any other cell types;
adjusted P < 0.0001) and identified 49 TFs with higher
activity scores in tumor cells than in any other cell types
(Fig. 2e and Supplementary Table S6). Hepatocyte nuclear
factor 1 (HNF1A, HNF1B), a family of tissue-restricted
transcription regulators associated with kidney develop-
mental disorders31, had the highest activity scores and
were highly expressed in tumor cells specifically (Sup-
plementary Fig. S2d). Multiple HOX family TF genes were
also highly enriched in tumor cells and have been
reported to play crucial roles in numerous tumor pro-
cesses, including angiogenesis and oncogenesis32,33. We
then examined the association of these tumor-specific TFs
with the prognosis of patients in The Cancer Genome
Atlas kidney renal clear cell carcinoma (TCGA-KIRC)
cohort. Patients with high average expression of tumor-
specific TFs had shorter overall survival and disease-free
survival than the patients with low average expression
(Fig. 2f and Supplementary Fig. S2e).
To further investigate and verify the biological functions

of these TFs in ccRCC, we selected four TFs (HOXC5,
VENTX, ISL1, and OTP) whose expression levels were
significantly associated with worse overall survival in the
TCGA-KIRC dataset, and binding sites were located in
accessible chromatin regions, which were specific for
kidney cancer and identified by ATAC-seq34 (Fig. 3a and
Supplementary Fig. S3a). We identified their target genes
whose promoters or linked candidate cis-regulatory ele-
ments (cCREs) were accessible and contained the TF-
binding motif in tumor cells. Then, we constructed TF
regulatory networks to gain further insights into TF-
mediated gene regulation in tumor cells. Within these
networks, we found that these four TFs regulated multiple
tumor-specific genes, such as FXYD2 and CRYAB, with a
significant increase in expression in tumor cells (Fig. 3b

(see figure on previous page)
Fig. 1 Single-cell transcriptional and chromatin accessibility profiling of human ccRCC. a Schematic of multiomics profiling of chromatin
accessibility and transcription in ccRCC using scRNA-seq and scATAC-seq. b scRNA-seq UMAP projection of 38,097 single cells from four ccRCC
samples. c Dot plot showing the gene expression patterns of cell-type marker genes in the scRNA-seq data. d Cross-platform linkage of scATAC-seq
cells with scRNA-seq cells. e scATAC-seq UMAP projection of 21,272 single cells from three ccRCC samples. f Normalized chromatin accessibility
profiles for each cell type at canonical marker genes. The promoter region is highlighted in gray with the gene model and chromosome position
shown below. g Heatmap of CNV signals normalized against the “normal” cluster shown in the top panel (CD8+ T cells and NK/NKT cells) for CNV
changes by chromosome (columns) within individual cells (rows). All cells in the tumor population (bottom panel) exhibited chromosome 3p loss
(blue dotted frame) or chromosome 5q gain (red dotted frame), which are classic genomic features of ccRCC. h Pie charts of the proportion of each
class in the scRNA-seq and scATAC-seq dataset.
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and Supplementary Table S3). Moreover, we found that
the target genes of these TFs were significantly enriched
in hypoxia and cell proliferation signaling pathways
(Supplementary Fig. S3b). For each TF, we calculated the
target gene scores for each cell type and found that the
scores in tumor cells were significantly higher than in any
other cell type (Supplementary Fig. S3c). Similar phe-
nomena were observed in the other three previous
scRNA-seq datasets of ccRCC11,13,14 (Supplementary Fig.
S3d–f). More importantly, we found that knocking down
these TFs significantly reduced tumor cell proliferation
and increased cell death (Fig. 3c, d and Supplementary
Fig. S3g, h). We further confirmed that knocking down
two TFs (HOXC5 and ISL1) strongly reduced tumor
growth in the xenograft mouse models (Supplementary
Fig. S3i–k). To find potential drugs for targeting these
TFs, we used the LINCS consortium35, which included
19,811 small molecule compound-perturbed profiles, to
interrogate the effects of drugs on gene expression. With
this information, we found two candidate drugs (homo-
harringtonine (HHT) and mitotane) approved by the FDA
could significantly decrease the expression level of
HOXC5, ISL1, and VENTX (Fig. 3e). OTP was not inclu-
ded in the drug perturbation expression profile and thus
was not subjected to subsequent analysis. As we expected,
both of these drugs significantly decreased the prolifera-
tion rate of tumor cells and the expression levels of
HOXC5, ISL1, and VENTX in two renal cancer cell lines
(Fig. 3f–j). Collectively, we identified tumor-specific reg-
ulatory elements with chromosome accessibility signals
captured by scATAC-seq and verified their roles in pro-
moting tumor growth.

Malignant transcriptional programs within ccRCC
To explore how expression states vary among different

malignant cells within ccRCC, we focused on 3564 tumor
cells from four samples (Supplementary Fig. S4a). Pair-
wise correlation analysis revealed multiple distinct tran-
scriptional states that were consistently present within
these tumors (Fig. 4a). To interrogate tumor hetero-
geneity information more precisely, we applied non-
negative matrix factorization (NMF) to define underlying
transcriptional programs consisting of coexpressed genes.
NMF is a matrix factorization method and can extract

meaningful features from noisy or complex data in a
direct, unbiased manner36. Due to its excellent perfor-
mance in dimensionality reduction and data interpret-
ability, NMF is widely used to identify key subclasses and
latent biological processes in the scRNA-seq dataset37,38.
With this method, we successfully extracted a total of 11
intratumor programs among these samples (Supplemen-
tary Fig. S4b, c). Subsequently, we refined these programs
by hierarchical clustering and identified two meta-
programs that included highly similar programs across
the four samples (Fig. 4b and Supplementary Fig. S4d,
Table S7). Meta-program 1 was present in all samples,
while meta-program 2 was present in three samples. The
cluster of programs that covered less than half the sam-
ples was not subjected to subsequent analysis. These two
meta-programs exhibited a relatively low correlation
(r=−0.2), suggesting the different roles in tumors (Sup-
plementary Fig. S4e). Next, we investigated the biological
functions of these meta-programs using pathway enrich-
ment analysis. The genes of meta-program 1 were sig-
nificantly enriched in stress-related pathways, such as
hypoxia and the MAPK signaling pathway, while the
genes of meta-program 2 were mainly involved in
metabolic-related biological processes, such as glycolysis
and monosaccharide metabolism (Fig. 4c). Furthermore,
we examined the association between the average gene
expression of each meta-program and the prognosis of
patients in the TCGA-KIRC cohort. Patients with high
expression of meta-program 1 had worse overall survival
than patients with low expression, while patients with
high expression of meta-program 2 were associated with
better overall survival (Fig. 4d, e).
We further interrogated the key regulatory molecules

for these two meta-programs. With the previous strategy
for the identification of TF target genes, we found that
more than two-thirds of the genes in each meta-program
can be regulated by numerous TFs (Supplementary Fig. S4f).
Multiple TFs, such as ZNF263 and SP1, showed similar
and strong regulatory capabilities in different meta-
programs. We noticed that VEGFA and SMIM24 were
the cardinal coregulatory target genes of these TFs for
meta-program 1 and meta-program 2, respectively (Sup-
plementary Fig. S4g, h). We further explored the reg-
ulatory relationship between meta-programs and four

(see figure on previous page)
Fig. 2 Identification of tumor-specific regulatory elements. a Heatmap of the Z-score normalized accessibilities of 22,682 scATAC-seq differential
peaks for each cell type. b Pie plot of genomic annotations for scATAC-seq differential peaks. c Gene ontology term enrichment analysis for distal
(intergenic region) and proximal (promoter and gene body) upregulated DARs in tumor cells. The Benjamini-Hochberg adjusted P values are shown
on the right side of the plots. d Heatmap representation of chromVAR bias-corrected deviation scores for the differential TF motifs of each cell type.
The top TF motifs of each cell type are indicated on both sides of the plot. e Heatmap of the log2(FC) values for tumor-specific TFs identified by our
filtering strategy. The right bar plot shows the Bonferroni-adjusted P values. f Kaplan–Meier overall survival curves of TCGA-KIRC patients grouped by
the average expression of tumor-specific TFs (with the median value as the threshold). HR hazard ratio.
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Fig. 3 (See legend on next page.)
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tumor-specific TFs identified previously. Notably, we also
found that the four TFs all exhibited a regulatory rela-
tionship with VEGFA in meta-program 1 (Fig. 4f). In
meta-program 2, CRYAB, the second most significant
DEG in tumor cells, was regulated by all four TFs (Fig. 4g).
The most significant DEG in tumor cells, FXYD2, was
regulated by both ISL1 and OTP. Overall, we discovered
two major transcriptome programs within ccRCC tumor
cells and further identified the possible regulatory ele-
ments of these two programs.

CD8+ T cell clustering and state analysis in ccRCC
CD8+ T lymphocytes play crucial roles in inhibiting

tumor progression. To better elucidate the heterogeneity
of tumor-infiltrating CD8+ T cells, we further investigated
CD8+ T cell subpopulations in both scRNA-seq and
scATAC-seq datasets. We focused on the major sub-
populations and removed clusters with fewer than 100
cells (Supplementary Fig. S5a–f). Finally, we identified
four major clusters in the scRNA-seq dataset and five
major clusters in the scATAC-seq dataset (Fig. 5a, b).
Tissue-resident CD8+ T cells were identified in both
scRNA-seq and scATAC-seq datasets with high gene
expression or activity of tissue-resident markers (CD69,
ZNF683/Hobit, ITGAE/CD103, and ITGA1/CD49A)39–41

(Fig. 5c). Interestingly, tissue-resident CD8+ T cells
included two clusters in the scRNA-seq data: one cluster
(tissue-resident C2) exhibited high expression of effector
molecules (TNF, IFNG, and GZMA), and the other (tis-
sue-resident C1) was highly expressed naive/memory
genes (IL7R, CCR7, and TCF7). We identified the
exhausted CD8+ T cells based on the expression of
exhaustion markers (PDCD1 and TOX42) (Fig. 5c and
Supplementary Fig. S5g). The cluster (“exhausted
immediate-early genes (exhausted IEG)”) was also char-
acterized by the high expression of genes induced early
after activation (e.g., HSPA1A, DNAJB1, JUNB, and
ATF3), which is consistent with a recent study15. Notably,
we identified two exhausted IEG clusters in the scATAC-

seq dataset and exhibited different gene activities in T cell
inhibitory genes (CTLA4, LAG3, and HAVCR2/TIM3).
We further investigated the functional properties of

these CD8+ T cell subpopulations using multiple func-
tional gene sets13,43 and the VISION method44 (Supple-
mentary Table S2). The exhaustion cluster presented the
highest cytotoxic, exhaustion, and terminal differentiation
signature scores (Fig. 5d, e and Supplementary Fig. S5h).
Exhausted IEG cells had higher cell stress signature scores
than other cells (Supplementary Fig. S5i). Recent studies
have reported that progenitor exhausted T cells control
tumors more effectively than terminally exhausted T cells
and respond better to anti-PD1 therapy43,45. Thus, we
assessed progenitor and terminally exhausted signatures
and found that the tissue-resident C1 cluster had the
highest progenitor exhausted signature scores and the
lowest terminally exhausted signature scores (Fig. 5f),
indicating an important role in tumor immunotherapy. In
parallel, we performed pathway enrichment analysis for
DEGs (adjusted P < 0.05 and log2(FC) > 0.5) of each clus-
ter in our scRNA-seq dataset. We found that two tissue-
resident clusters enriched distinct pathways: the tissue-
resident C1 cluster was significantly associated with the
inflammatory response and the tissue-resident C2 cluster
was enriched in cytokine and vitamin metabolic pathways
(Fig. 5g). Multiple T cell exhaustion-related pathways,
such as PD-1, IL2-STAT546, and IL6-JAK-STAT347 sig-
naling, were significantly enriched in the exhaustion
cluster. Furthermore, we found that the average expres-
sion of DEGs in the exhaustion cluster was associated
with worse overall survival in the TCGA-KIRC and
CheckMate-025 cohorts, a randomized phase III trial of
nivolumab (anti-PD-1) treatment in ccRCC48 (Supple-
mentary Fig. S5j). Next, we examined the regulatory ele-
ments in these CD8+ T clusters. EOMES and BATF
implicating in CD8+ T cell exhaustion49,50 were highly
enriched in the exhaustion cluster (Fig. 5h). Multiple Rel/
NF-κB family TFs, such as RELA and NFKB1, were also
enriched in the exhaustion cluster. Interestingly, we found

(see figure on previous page)
Fig. 3 Characterization of the four tumor-specific TFs. a Kaplan–Meier analyses of overall survival in TCGA-KIRC patients separated by HOXC5,
VENTX, ISL1, and OTP expression (with the median value as the threshold) individually. HR, hazard ratio. b TF regulatory network showing the
candidate target genes for the following TFs: HOXC5, VENTX, ISL1, and OTP in tumor cells. c The effects of sh-HOXC5, VENTX, ISL1, OTP, and vector on
cell proliferation were determined by a cell proliferation assay in the 786-O cell line. d HOXC5, VENTX, ISL1, and OTP mRNA expression were
significantly downregulated in the 786-O cell line. Significance was determined by two-way ANOVA. e Heatmap showing the degree of decrease in
expression levels of VENTX, ISL1, and HOXC5 after drug treatment. f Cell proliferation was assessed over a 2-day time course after treatment with
DMSO or HHT in the 786-O (top) and 769-P (bottom) ccRCC cell lines. Significance was determined by multiple t-tests. g The mRNA levels of HOXC5
after treatment with DMSO or HHT in the 786-O (left) and 769-P (right) ccRCC cell lines were measured using qPCR. Significance was determined by
Student’s t-test. h Cell proliferation was assessed over a 2-day time course after treatment with DMSO or mitotane in the 786-O (top) and 769-P
(bottom) ccRCC cell lines. Significance was determined by multiple t-tests. i The mRNA levels of VENTX after treatment with DMSO or mitotane in the
786-O (left) and 769-P (right) ccRCC cell lines were measured using qPCR. Significance was determined by Student’s t-test. j The mRNA levels of ISL1
after treatment with DMSO or mitotane in the 786-O (left) and 769-P (right) ccRCC cell lines were measured using qPCR. Significance was determined
by Student’s t-test. For all statistical tests, *P < 0.05; **P < 0.01; ***P < 0.001.
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that two exhausted IEG clusters were regulated by
different TFs.

Macrophage clustering and state analysis in ccRCC
Tumor-associated macrophages (TAMs) are the major

population of myeloid cells in tumors and play vital roles
in tumorigenesis and drug resistance51. To systematically
interrogate the heterogeneity of TAMs, we performed
recluster analysis similar to CD8+ T cells and identified
three TAM clusters in both datasets using known phe-
notypic markers52 (Fig. 6a–c and Supplementary Fig.
S6a–f). The first cluster (“TAM-C1QB”) expressed com-
plement genes (e.g., C1QB and C1QC), APOE, and early
response-related genes (e.g., IER2 and JUN). Moreover,
numerous MHC class II molecules were highly expressed
in this cluster, suggesting strong antigen presentation
ability (Fig. 6d). The second cluster (“TAM-RGCC”)
expressed high levels of RGCC and proinflammatory
genes, such as NLRP353, CLEC5A, and IL1A/B. The third
cluster (“TAM-LGALS3”) exhibited intermediate expres-
sion of C1QB and C1QC but highly expressed genes
involved in alternative (M2) macrophage activation, such
as ANXA254 and LGALS355. In addition, this cluster also
expressed immunosuppressive genes, such as GPNMB56

and TREM257, and multiple MHC class I molecules.
To understand the function of these TAM subpopula-

tions, we further examined the expression or activity of
multiple functional gene sets58 (Supplementary Table S2).
We found that the TAM-RGCC cluster exhibited the
highest M1 signature scores, followed by the TAM-C1QB
cluster (Fig. 6e and Supplementary Fig. 6g). Conversely,
the M2 signature was primarily enriched in the TAM-
LGALS3 cluster. TAM-RGCC cluster possessed higher
angiogenesis signature scores (Fig. 6f and Supplementary
Fig. S6h). Notably, the TAM-C1QB cluster showed the
highest phagocytosis signature scores in scRNA-seq data,
suggesting a high phagocytic activity (Fig. 6g). However,
scATAC-seq data did not show a similar trend, maybe
due to the sparsity of its data59 (Supplementary Fig. S6i).
In parallel, we investigated the differences among these
subpopulations at the pathway level and found that var-
ious pathways related to inflammation (e.g., TNFA sig-
naling via NFKB, and inflammatory response) and
phagocytosis (e.g., endocytosis and phagocytosis) were

significantly enriched in the TAM-C1QB cluster (Sup-
plementary Fig. S6j). TAM-RGCC cluster exhibited
enrichment of angiogenesis-related pathways, while the
TAM-LGALS3 cluster exhibited enrichment of lysosome
and lipid catabolic processes. Furthermore, we examined
the expression of immune checkpoint genes and costi-
mulatory molecules. Multiple costimulatory signals were
detected in both TAM-C1QB and TAM-RGCC clusters
but not in the TAM-LGALS3 cluster (Fig. 6h). The
ligands (PD-L1, PD-L2, VSIR/VISTA60, VSIG461, and
SIGLEC1062) mediating T cell immune checkpoint were
highly expressed in the TAM-C1QB cluster while
LGALS963 was specifically enriched in the TAM-LGALS3
cluster. Next, we investigated the difference in TF motif
activity and found distinct TF regulation programs among
the three TAM clusters (Supplementary Fig. S6k). Four
TFs (MEF2C, NFKB1, RUNX3, and ENO1) showed a
substantial increase in both gene expression and activity
in the corresponding clusters (Fig. 6i). Previous studies
have demonstrated that MEF2C plays vital roles in pro-
moting M1 macrophage polarization and inducing cell
death of macrophage64,65. We identified MEF2C target
genes using the same strategy described in the previous
section and found that this gene regulated multiple TFs
(e.g., FOXO1, NEU1, and NRP1) and chemokines (e.g.,
CCL3 and CCL3L1) (Fig. 6j) that have been demonstrated
to be associated with phagocytosis and angiogenesis in
macrophages66–69. Moreover, the signature score of
MEF2C target genes was associated with better survival in
both the TCGA-KIRC and CheckMate-025 cohorts
(Supplementary Fig. S6l).

Cell–cell cross-talk in the ccRCC microenvironment
To demonstrate the intercellular communications

within the ccRCC microenvironment, we applied Cell-
PhoneDB, a repository of known ligand–receptor inter-
actions, for data analysis. We found that the endothelial
cells had the largest ligand–receptor interaction pairs,
while B cells had the fewest (Fig. 7a and Supplementary
Fig. S7a). Notably, the TAM populations had the largest
number of ligand–receptor interaction pairs compared to
other immune cell populations (Supplementary Fig. S7b).
Tumor cells are the key cellular component of the entire
TME, and the interactions between tumor cells and other

(see figure on previous page)
Fig. 4 Deciphering malignant transcriptional programs within ccRCC. a Pairwise correlations between the expression profiles of four scRNA-seq
samples (3564 cells). b Heatmap of average correlations across four samples between pairs of programs. c Dot plot showing significantly enriched
pathways for signature genes of each meta-program. The color shade of the dot indicates the P value after FDR correction (the redder, the smaller
adjusted P value), and the size of the dot represents the number of genes in the indicated pathway (the larger, the more genes included). d, e The
Kaplan–Meier overall survival curves of TCGA-KIRC patients grouped by the average gene expression of meta-program 1 and meta-program 2 (with
the median as the threshold). The P value was calculated by the log-rank test. HR, hazard ratio. f, g Sankey diagrams showing the regulatory
relationship between the four tumor-specific TFs and genes within meta-program 1 and meta-program 2.
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cells play crucial roles in tumorigenesis. Therefore, we
built an interaction map to investigate the intercellular
communications of tumor cells (Fig. 7b). Tumor cells
mainly communicated with the endothelium, TAMs,
proliferative CD8+ T cells, and CD8+ exhaustion T cells

through multiple ligand–receptor interactions (Fig. 7c
and Supplementary Fig. S7c).
The crosstalks between various immune cells (especially

macrophages and T cells) and tumor cells play crucial
roles in tumor immune escape, which is a hot spot in
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Fig. 5 Characterization of CD8+ T cells in ccRCC. a, b Subclustering of CD8+ T cells on the UMAP plots of the scRNA-seq and scATAC-seq datasets.
c Heatmap of CD8+ T cell lineage and functional markers provided phenotypic information for individual CD8+ T cell clusters in the scRNA-seq (left)
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cancer immunology research. Thus, we selected three cell
subpopulations in the myeloid and lymphoid lineages with
the highest number of interactions with tumor cells for
further study. We found strong interactions between
tumor cells and TAM populations mediated by macro-
phage migration inhibitory factor (MIF) and its receptors
(CD44 and CD74), which have been well characterized to
play vital roles in tumor progression, angiogenesis, and
immune escape in ccRCC70–72 (Fig. 7d and Supplemen-
tary Fig. S7d). We also uncovered some novel interactions
that have not been reported in ccRCC, for example, the
ligand–receptor interaction between ribosomal protein
S19 (RPS19) and complement C5a receptor 1 (C5AR1),
which has been shown to contribute to immunosup-
pression in the human breast and ovarian cancer TME73.
Patients with high average expression of RPS19 and
C5AR1 had a poor prognosis in the TCGA-KIRC dataset
(Fig. 7e). Moreover, we identified multiple interactions
between tumor cells and three lymphocyte subpopula-
tions (proliferative CD8+ T cell, Treg, and CD8+ T-
exhaustion) (Fig. 7f). Notably, we characterized a Treg-
tumor cell-specific interaction mediated by the ligand
Lymphotoxin Beta (LTB) and its receptor lymphotoxin
beta receptor (LTBR), which is required for fibrosarcoma
and hepatocellular carcinoma tumor formation74,75. High
average expression of LTB and LTBR was associated with
poor clinical outcomes in the TCGA-KIRC dataset, sug-
gesting the translational potential of this finding (Fig. 7g).

Discussion
Here, we performed integrative scRNA-seq and

scATAC-seq to delineate the transcriptional and epige-
netic landscape of ccRCC. Our analysis demonstrated that
scRNA-seq and scATAC-seq had consistently high cell
identification abilities, and their data confirmed and
complemented each other. Single-cell multiomics profil-
ing can provide more comprehensive information from
different perspectives, enabling us to better dissect cel-
lular compositions and decipher cross-compartment
interactions in the TME.
Consistent with several recently reported scRNA-seq

studies of ccRCC, we found that tumor cells represent

only a small fraction (7.2%) of all cells in ccRCC tissues11,
suggesting that traditional bulk-level epigenetic sequen-
cing methods, such as ATAC-seq and ChIP-seq, may fail
to identify some tumor cell-specific regulatory elements
and their networks. In this study, we revealed several
pivotal regulatory TFs (HOXC5, ISL1, VENTX, and OTP)
in tumor cells by integrating scRNA-seq and scATAC-seq
data and further experimentally validated their roles in
tumor growth. The function of these TFs had been
explored in some other types of cancers. For example,
ISL1 has been reported as an important regulator and
potential therapeutic target for gastric cancer and triple-
negative breast cancer76,77, while OTP has been char-
acterized as a promising prognostic marker of pulmonary
neuroendocrine tumors78. Our findings highlight the
potential oncogenic roles of these TFs in ccRCC for the
first time, but the underlying mechanisms remain to be
investigated in future studies.
In addition, multiple hepatocyte nuclear factors (e.g.,

HNF1A, HNF4A, and HNF4G) we identified in tumor
cells have been shown to be specific for proximal tubule
cells, which are the original cells of ccRCC79. We also
adopted a refined clustering strategy on the two major
immune cell populations (CD8+ T cells and macro-
phages) in the TME to reveal the TFs that control dif-
ferent functional states of these cells. Multiple NFATC
TFs (e.g., NFATC2/NFAT1 and NFATC3/NFAT4) were
specifically enriched in the exhausted IEG C1 population
and have already been demonstrated to promote
exhaustion of T cells and better control immune
responses by disrupting its interactions80,81. C-Rel (REL)
plays a vital role in the activation of Tregs and is a
potential target for suppressing Treg function82. Inter-
estingly, we found that the REL TF was significantly
enriched in the exhaustion T cells, suggesting a potential
target for CD8+ T cells for future research. Furthermore,
we comprehensively delineated the multicellular com-
munities in the TME and identified ligand–receptor pairs,
including RPS19-C5AR1 and LTB-LTBR, which could
serve as potential therapeutic targets for further studies.
Targeting the LTB-LTBR interaction with an agonistic
monoclonal antibody (CBE11) inhibited tumor growth

(see figure on previous page)
Fig. 6 Characterization of TAMs in ccRCC. a, b Subclustering of TAMs on the UMAP plots of the scRNA-seq and scATAC-seq datasets. c Dot plot
showing the expression levels and activity scores for known phenotypic markers in each TAM cluster. Dot size indicates the fraction of expressing
cells, colored based on normalized expression or activity. d Heatmap showing the expression of MHC molecules, chemokines, cytokines, and other
related genes in each TAM cluster. e Boxplots showing the M1 and M2 signature scores for each TAM cluster in the scRNA-seq data. The signature
score was calculated by the VISION method. Two-sided Wilcoxon test. ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
f, g Boxplot showing the angiogenesis and phagocytosis signature scores for each TAM cluster in the scRNA-seq data. The signature score was
calculated by the VISION method. Two-sided Wilcoxon test. ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. h Dot plot showing
the expression of the immune costimulatory, checkpoint, and evasion genes for each TAM cluster in the scRNA-seq dataset. i Heatmap of log2(FC)
values for TFs with significant differences both in the scRNA-seq and scATAC-seq datasets. j TF regulatory network showing the predicted target
genes for MEF2C in the TAM-C1QB cluster.
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and prolonged survival in colorectal cancer xenografts83.
Therefore, therapeutic interruption of these interactions
by antagonist or blocking antibodies may alleviate the
immunosuppressive nature of the microenvironment and
provide a potential strategy for ccRCC treatment.
In summary, our single-cell multiomics analysis pro-

vides a high-resolution transcriptional and epigenomic
map of ccRCC and in-depth knowledge of tumor het-
erogeneity and underlying regulatory factors, facilitating a
step forward in rational therapeutic strategy design.

Materials and methods
Human specimens
All research activities were pre-approved by The Insti-

tutional Research Ethics Committee of The Second
Affiliated Hospital, School of Medicine, Zhejiang Uni-
versity (NO. IR2020001463), and Informed consent were
obtained for all human participants. Human ccRCC
samples were directly obtained from the operating room
during nephrectomy and transported in MACS tissue
storage solution (#130-100-008; Miltenyi) on ice.

Tissue dissociation and library preparation
The tumor tissue of each sample was equally divided

into two parts for scRNA-seq and scATAC-seq library
preparation. For scATAC-seq, fresh nuclei were isolated
with 1 mL prepared lysis buffer (10 nM Tris-HCI, 10 mM
NaCI, 3 mM MgCl2, 0.1% NonidetTM P40 Substitute
(#74385; Sigma-Aldrich)) and incubated on ice for 5 min.
The culture was centrifuged at 500× g for 5 min at 4 °C
and mixed with 1 mL nuclear resuspension buffer (1×
PBS, 1% BSA, and 0.2 U/μL RNase Inhibitor). The
homogenate was filtered through a 40-μm cell strainer
(#H13680-0040; BelArt) and the nuclear concentration
was determined using Countess® II FL Automated Cell
Counter (#C10228; Thermo Fisher). For scRNA-seq, tis-
sues were cut into 2–4mm3 pieces and dissociated to
generate a single-cell suspension. The cell suspension
culture was centrifuged at 300× g for 30 s and resus-
pended with an additional 10 mL RPMI 1640 (#10-040-

CM; Miltenyi Biotec). The homogenate was filtered
through a 70-μm cell strainer (#130-098-462; Miltenyi
Biotec) and centrifuged at 300× g for 7 min followed by
red blood cell lysis with 1 mL 1× Red Blood Cell Lysis
Solution (#130-094-183; Miltenyi Biotec). The cell con-
centration was determined using Countess® II FL Auto-
mated Cell Counter. 10× Chromium libraries were
prepared according to manufacturer protocol. Three
scATAC-seq libraries and four scRNA-seq libraries were
obtained using 10× Genomics Chromium Single Cell
ATAC v1 chemistry and 10× Genomics Chromium Single
Cell 3′ v3 chemistry, respectively. All libraries were
sequenced on Illumina NovaSeq 6000 using a paired-end
150 bp protocol.

scRNA-seq data processing
Raw sequencing data were processed with Cell Ranger

(v5.0.0, 10× Genomics) software for demultiplexing,
aligning to GRCh38 human reference genome, and gen-
erating gene-barcode matrices. Seurat (v4.0.3)84 R pack-
age was used to perform filtering, normalization,
dimensionality reduction, clustering, and differential
expression analysis. The following criteria were applied to
each sample to remove low-quality cells: gene number
between 200 and 6000, UMI count > 1000, and mito-
chondrial content > 10%. Doublets were predicted by the
DoubletFinder (v2.0.3)85 algorithm. After filtering, a total
of 38,600 cells were left. The batch effect across different
samples was eliminated by the Harmony (v1.0)86 method.
The top 40 harmony embedding was selected by the
“ElbowPlot” function and used to perform clustering and
visualization. The “FindClusters” function was performed
to generate different clustering results with resolutions
ranging from 0.2 to 1.2. An appropriate resolution was
determined based on cluster stability with clustree
(v0.4.3)87 R package. Finally, we obtained 19 clusters
(resolution= 0.3) (Supplementary Fig. S1c). Two clusters
(15 and 18) were excluded because they contained fewer
than 100 cells or did not express known markers, and
38,097 cells were retained for the subsequent analysis.

(see figure on previous page)
Fig. 7 Ligand–receptor-based interaction between tumor and immune cells. a Heatmap of the number of significant ligand–receptor
interactions between cell types in the scRNA-seq data. b The interaction network between the tumor cell and other cell types. The direction of the
arrow indicates the cell type expressing the receptor. The wider the edge or larger the dot is, the greater the number of interactions. c Heatmap of
the number of significant interactions mediated by tumor cells as ligand-expressing and receptor-expressing cells. d Dot plots showing the mean
interaction strength for selected ligand–receptor pairs between tumor cells and TAM clusters. The left and right plots show that the ligand is
expressed in the tumor cells and TAM clusters, respectively. Dot size indicates the P value, colored by the average expression level of interacting
molecule 1 in cluster 1 and interacting molecule 2 in cluster 2. e The Kaplan–Meier overall survival curves of TCGA-KIRC patients grouped by the
averaged expression of RPS19 and C5AR1 (with the median value as the threshold). HR, hazard ratio. f Dot plots showing the mean interaction
strength for selected ligand–receptor pairs between tumor cells and three lymphoid subsets. The left and right plots show that the ligand is
expressed in the tumor cells and lymphoid subsets, respectively. Dot size indicates the P value, colored by the average expression level of interacting
molecule 1 in cluster 1 and interacting molecule 2 in cluster 2. g Kaplan–Meier overall survival curves of TCGA-KIRC patients grouped by the averaged
expression of LTB and LTBR (with the median value as the threshold).
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Differential gene analysis was performed by the MAST
method88 (“FindAllMarkers” function) and the donor as
the latent variable. DEGs were identified with Bonferroni-
adjusted P values smaller than 0.05 and log2-fold-change
values larger than 0.25. The second round of clustering
procedures for CD8+ T and macrophage cells was the
same as above: starting from normalized expression
matrix with SCTransfrom method, performing integra-
tion analysis with Harmony method, and clustering with
“FindNeighbors” and “FindClusters” function.

scATAC-seq data processing
Raw sequencing data were processed with Cell Ranger

ATAC (v1.2.0, 10× Genomics) software for demultiplex-
ing, aligning to GRCh38 human reference genome, and
generating peak-barcode matrices. Signac (v1.2.1)89 R
package was used to perform subsequent analysis. Low-
quality cells were removed based on the following criteria:
peak region fragments > 1000, peak region fragments <
20,000, reads in peaks > 15%, blacklist ratio < 0.05,
nucleosome signal < 4 and TSS enrichment > 3. After
filtering, a dataset from three samples comprising 88,392
peaks from 24,173 cells remained for latent semantic
indexing (LSI) analysis. Clustering and dimensionality
reduction were then performed on the corrected LSI
components by the Harmony86 method. Finally, we
obtained 15 clusters with resolution= 0.5 and dims=
2:15 (Supplementary Fig. S1e). The activity of each gene
was quantified by examining the local chromatin acces-
sibility, including the 2 kb upstream of the transcriptional
start site and gene body. The accessible chromatin peaks
for each cell type were identified by the MACS2
method23. Differential chromatin accessibility analysis was
performed by the “FindAllMarkers” function. Differen-
tially accessible chromatin regions were identified with
Bonferroni-adjusted P values smaller than 0.05 and log2-
fold-change values larger than 0.25. The genomic regions
containing accessible chromatin peaks were annotated by
ChIPSeeker (v1.26.2)90 with the UCSC database on
hg3891. A similar analysis strategy as described above was
used to investigate the subpopulation for CD8+ T cells
and macrophages.

Integrated analysis of scRNA-seq and scATAC-seq data
To help to interpret the scATAC-seq data, we applied

Seurat’s integration framework to identify the pairs of
corresponding cells between two modalities data. The
shared correlation patterns between scATAC-seq gene
activity and scRNA-seq gene expression were identified by
the “FindTransferAnchors” function (reduction= ‘cca’).
Then the cell type label of each cell in scATAC-seq data
was predicted by “TransferData” function (weight.reduc-
tion= ‘lsi’ and dim= 2:15). A total of 21,272 cells were
left after filtering using a maximum prediction score ≥ 0.5

(Supplementary Fig. S1f). The filtered scATAC-seq object
was reprocessed with LSI, batch corrected with Harmony
algorithm, and clustered with SLM algorithm. The Jaccard
index was used to assess the consistency between cell
identities predicted by label transfer and curated anno-
tations based on gene activities of known markers (Sup-
plementary Fig. S1i).

Single-cell copy number variation analysis
The inferCNV (v1.6.0) (inferCNV of the Trinity CTAT

Project, https://github.com/broadinstitute/inferCNV) R
package was used to distinguish malignant cells by
inferring chromosomal CNVs based on the gene expres-
sion data. The CD8+ T cells and NK/NKT cells as normal
reference cells were used to estimate CNVs for the
potential tumor cell population. A gene ordering file from
the human GRCh38 assembly containing each gene’s
chromosomal start and end positions was created as the
input of the “gene_order_file” parameter. The raw count
matrix and annotation file were input to run inferCNV
with cutoff= 0.1.

Single-cell transcription factor activity analysis
Single-cell TF motif activity was estimated for a set of

870 TFs from the Catalog of Inferred Sequence Binding
Preferences (CIS-BP) database (from chromVAR motifs
‘human_pwms_v2’) using the RunChromVAR wrapper in
Signac (v1.2.1)24,89. Differential TF activity between cell
types were calculated by “FindMarkers” function
(log2(FC) > 1 and Bonferroni-adjusted P < 0.05).

Identification of tumor-specific transcription factor
We designed a filtering strategy to identify tumor-

specific TFs. For each TF, the bias-corrected deviation
scores calculated by chromVAR were averaged within
each cell type. Then the standard deviations (SDs) of
average deviation scores were calculated across all cell
types as the degree of variation. Since the distribution of
SDs of all TFs was not a normal distribution or symmetric
distribution, the double Median Absolute Deviation
strategy was used to compute the median absolute
deviation30,92. Candidate-specific TFs were identified with
their SDs greater than the predefined threshold, which
was the median of SDs plus 4× median absolute deviation.
To further refine these candidate-specific TFs for tumor
cells, we require that the Bonferroni-adjusted P value of
each TF was < 0.0001, and log2(FC) was > 4 in tumor cells
and < 1 in any other cell types. Finally, we identified 49
tumor-specific TFs.

Cis-regulatory elements analysis
We identified the candidate cis-regulatory elements

(cCREs) based on co-accessible peaks, as previously
described93. First, the co-accessibilities between pairs of
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peaks were quantified by the R package Cicero
(v1.3.4.11)94 with a graphical LASSO algorithm. The
Pearson correlation as the co-accessibility score for each
peak-to-peak link was computed using the “run_cicero”
function with default parameters (co-access cutoff of 0.2).
Next, we required one of the peaks to overlap a gene’s
promoter region (distance to the transcription start site
(TSS) ≤ 1 kb) and then calculated the Pearson correlation
between averaged chromatin accessibility of the other
peak and averaged RNA expression of this gene across all
cell types. Finally, the significant gene-linked cCREs were
identified with a Benjamini-Hochberg corrected P value <
0.05, considered as candidate cCREs.

Transcription factor regulatory network construction
We combined the scATAC-seq data and scRNA-seq

data in one cell type and identified the candidate TF target
genes. For each TF, we defined the candidate target genes
based on the following two criteria: (1) the promoter
region of the target gene directly contains the TF binding
motif; (2) the promoter region of the target gene is linked
through gene-linked cCREs. The cell-type-specific TF
regulatory network was constructed with these TF-gene
pairs using igraph (v1.2.6) R package. Additional infor-
mation, such as DEGs, was overlaid onto the network.

Identification of drug targeting transcription factor
We used a large number of drug perturbed profiles

generated from the LINCS consortium35 for screening
candidate drugs that can target a TF. The ExperimentHub
(v1.16.1)95 R package was used to download drug per-
turbed results, including a Z-score matrix from differ-
ential expression analysis of 12,328 genes for 8140
compound treatments. Only the genes with Z-score
smaller than –2 were considered as differentially down-
regulated genes. The candidate drugs were defined as
those that can significantly downregulate the expression
of TF and be approved for disease treatment by the Food
and Drug Administration. Finally, homoharringtonine
and mitotane were selected as the candidate drugs for
targeting HOXC5, ISL1, and VENTX, respectively
(Fig. 3e).

Identification of intratumor NMF programs
The non-negative Matrix Factorization (NMF) method

was used to dissect the underlying transcriptional pro-
grams in the tumor cells from four samples and imple-
mented by NMF (v0.23.0) R package. We applied NMF
(k= 2:6, nrun= 30) to the relative expression matrix of
tumor cells in each sample with all negative values con-
verted to zero. The robust clustering result was deter-
mined by choosing the optimal k value at which the
cophenetic coefficient begins to produce the maximum
drop (Supplementary Fig. S4b)36. Finally, 11 programs

were extracted among four samples (Supplementary Fig.
S4c). For each program, the 30 genes with the highest
NMF scores were used to score tumor cells in each
sample using Seurat ‘AddModuleScore’ function. The
correlations between these program scores were calcu-
lated in each sample individually. Finally, we identified
two meta-programs through hierarchical clustering of
averaged correlations of pairs of programs across all
samples with Pearson correlation as the distance metric
and Ward’s linkage (Fig. 4b). Other clustering groups
were neglected because they covered less than half of the
samples. The 30 genes with the highest average NMF
score within each highly correlated program set were used
to represent the corresponding meta-program. The clus-
terProfiler (v.3.18.1)96 R package was used to perform
pathway enrichment analysis for each meta-program. The
regulatory elements for genes within each meta-program
were identified with the same strategy as identifying
candidate TF target genes.

Cell–cell interaction analysis
The CellPhoneDB (v2.0)97 was used to investigate

cell–cell interaction between different cell types, espe-
cially between tumor cells and other cell types, in ccRCC.
To capture interaction more systematically and compre-
hensively, we integrated multiple ligand–receptor
resources from previous studies98–100 and obtained 3471
human ligand–receptor pairs (Supplementary Table S8).
The gene-cell raw matrix data, cell type annotation
information, and these ligand–receptor pairs were input
to CellPhoneDB with threshold= 0.1. The significant
ligand–receptor pairs with P < 0.05 and mean value ≥ 1
were selected for subsequent analyses.

Cell culture and reagents
Human renal cell carcinoma cell lines 786-O (Cat#

CRL-1932) and 769-P (Cat# CRL-1933) were obtained
from American Type Culture Collection (ATCC).
HEK293FT was purchased from ThermoFisher Scientific
(R70007). Short Tandem Repeat (STR) analyses were
performed to authenticate the identity of each Cell line
used in this article. The 786-O and 769-P cells were
cultured in RPMI-1640 medium (#SH30809.01;
HyClone). The HEK293FT cells were cultured in Dul-
becco’s Modified Eagle’s medium (#C11995599CP;
Gibco). All three cell lines were supplemented with 10%
fetal bovine serum (#10099-141C; Gibco), 1% penicillin-
streptomycin (#SV30010; Hyclone), and 1% GlutaMaxTM
Supplement (#35050-061; Gibco) and grown in a humi-
dified 5% CO2 atmosphere at 37 °C.

Vectors and lentiviral transfection
All the short hairpin RNAs (shRNA) were cloned into

pLKO.1-TRC vector. Target sequences are as follows:
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HOXC5#1: GCCACAGATTTACCCGTGGAT,
HOXC5#2: GCCAACAACTTGTGTCTCAAT,
VENTX#2: TAAGGAGCCAAATACCTTGCG,
VENTX#4: CATGAAACACAAACGGCAAAT,
ISL#1: GTGCGGAGTGTAATCAGTATT,
ISL#2: TCAGGTTGTACGGGATCAAAT,
OTP#1: CTATGAGCTTCACTTAATGCA,
OTP#6: CCTGTGCTCTTTCCACGCCAA.
Lentiviral particles were produced by transfecting the

shRNA plasmid, packaging vectors psPAX2 and pMD2.G
in HEK293FT cells at a ratio of 3:2:1 by LipoD293™ In
Vitro DNA Transfection Reagent (#SL100668; SignaGen
Laboratories). The media was changed after 12 h. Then
48 h after media change, the media containing the virus
were collected and concentrated using the Lentivirus
concentration reagent (#GM-040801-100; Genomedi-
tech). Viral supernatants were centrifuged at 1500× g for
45 min and viral pellets were resuspended with RPMI-
1640 medium. The lentivirus was frozen at –80 °C for
further use. The efficiency of lentiviral shRNA clones was
determined by real-time PCR.

Lentiviral infection
5 × 105 786-O cells were seeded into each well of 12-

well plates, at the same time, added with 200 μL of len-
tivirus and 10 μg/mL polybrene (#TR-1003-G; Merck
Millipore). Plates were incubated at 37 °C for 12 h. The
cells were then passaged and seeded into new culture
dishes. Twenty-four hours after cell passage, infected
lentiviral cells were selected with Puromycin (1 μg/mL,
#ant-pr-1; Invivogen) for 3 days.

Cell proliferation assay
Cell proliferation was measured over a 6-day time course

using the CellTiter-Glo® Luminescent Cell Viability Assay
kit (#G7572; Promega). For this assay, 500 cells were
seeded into each well of a 96-well plate containing 200 μL
of medium per well and cultured in normal conditions. At
the time point of detection, plates were cooled down to
room temperature, then 40 μL of the CellTiter-Glo reagent
was added to each well. Plates were covered with alumi-
num foil and placed on an orbital shaker at 120 rpm for
15min. Finally, plates were read using a microplate reader
(Varioskan LUX; Thermo). All data were normalized to
day 0 and presented as mean ± SD.

RNA isolation and RT-qPCR
Total cellular RNA was isolated using TRIzol Reagent

(#15596018; Thermo Fisher Scientific). The RNA con-
centration was measured using Nanodrop 2000 (Thermo
Fisher Scientific, USA). Total RNA was reverse transcribed
into cDNA using Novoscript Plus All in one First Strand
cDNA Synthesis SuperMix (#E047-01S; Novoprotein)
according to the manufacturer’s instructions. Quantitative

reverse transcription PCR was performed per the manu-
facturer’s protocol on the Bio-RAD CFX ConnectTM sys-
tem using SYBR Green Master Mix (#E096-01;
Novoprotein) and gene-specific primers. The qPCR pri-
mers sequences are as follows:
HOXC5-fwd: 5′-AGAGCCCCAATATCCCTGC-3′,
HOXC5-rev: 5′-CGGTGGGAAAGTGATGCTT-3′,
VENTX-fwd: 5′-CCGTCAGCATCAAGGAGG-3′,
VENTX-rev: 5′-CTGGACCTCTGAGAGCTGC-3′,
ISL1-fwd: 5′-TACGGGATCAAATGCGCCAA-3′,
ISL1-rev: 5′-CACACAGCGGAAACACTCGAT-3′,
OTP-fwd: 5′-GCACAGCTCAACGAGTTGGA-3′,
OTP-rev: 5′-GTCAGCCCGATACGCAGTG-3′.

Drug treatment
For cell proliferation assay, 500 cells of 786-O or 769-P

were seeded into 96-well plates containing 200 μL of
medium per well. After 24 h of culture at 5% CO2 at 37 °C,
cells were exposed to 50 nM homoharringtonine (#HY-
14944; MedChemExpress) for 2 days or 30 μM mitotane
(#S1732; Selleckchem) for 3 days. Every 24 h, cell pro-
liferation was measured using the CellTiter-Glo® Lumi-
nescent Cell Viability Assay kit (#G7572; Promega). For
detecting the mRNA level of the targeted gene induced by
drug treatment, 1 × 105 786-O or 769-P cells were seeded
into each 60mm cell culture dish. After 24 h of culture at
5% CO2 at 37 °C, cells were treated with 50 nM homo-
harringtonine (HHT) for 2 days or treated with 30 μM
mitotane for 3 days. Then cells were harvested for
detecting the mRNA level of the targeted genes.

Apoptosis assay
Cells were collected, then washed twice with cold PBS.

After that, cells were resuspended with binding buffer and
stained with Annexin V-FITC (# 40302ES50; YEASEN)
for 15min in the dark at room temperature. After incu-
bation, cell apoptosis analysis was measured by flow cyt-
ometer (Beckman, CytoFLEX LX). Data were analyzed
with FlowJo V10 software.

Protein extraction and western blotting
Cells were collected, washed with PBS, and lysed in

RIPA Lysis Buffer (#P0013C; Beyotime) with protease
inhibitor cocktail (#04693132001; Roche). The lysates
were incubated on ice for 15min and cleared by cen-
trifugation at 12,000× g at 4 °C for 15min. Protein con-
centration was determined using the Bradford protein
assay kit (#P0006C; Beyotime). The lysates were mixed
with loading buffer (#E151-05; Genstar) and boiled for
10min. Samples were loaded onto 10% 15-well sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, elec-
trophoresed, and then transferred to 0.45-μm PVDF
membranes (#IPVH00010; Merckmillipor). Blocking was
performed for 1 h with 5% non-fat milk (#A600669-0250;
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Sangon Biotech) in TBST, and blotting was performed
with primary antibodies at 4 °C overnight, followed by
secondary antibodies. Finally, the membrane was incu-
bated with an enhanced chemiluminescence ECL
(#34580; Thermo Scientific), and the images were
obtained by using ChemiDoc XRS+ Imaging System
(#1708265; BIO-RAD). The following antibodies were
used: monoclonal anti-GAPDH (#60004-1 Ig,1:20,000;
proteintech), polyclonal anti-PARP (#9532, 1:1000; Cell
Signaling Technology), anti-rabbit IgG (#7074, 1:3000;
Cell Signaling Technology), and anti-mouse IgG (#7074,
1:5000; Cell Signaling Technology).

Tumor xenograft model
For tumorigenicity assay in vivo, six-week-old NPSG

mice were randomly divided into shNT, shHOXC5#1,
shHOXC5#2, shISL1#1, and shISL1#2 groups, five mice
per group. 5 × 106 786-O cells mixed with equal volume
Matrigel (#354277; Corning) were injected sub-
cutaneously into the right-back of NPSG mice. After
implantation for 70 days, mice were sacrificed and the
xenograft tumors were removed. The tumor volume was
calculated by this formula: volume(mm3)= (longer dia-
meter × shorter diameter2)/2.

Public data acquisition
Normalized counts and clinical information from

TCGA RNA-seq data of kidney renal clear cell carcinoma
were downloaded from the Broad Institute GDAC Fire-
hose constitutes (https://gdac.broadinstitute.org/). The
normalized expression data of anti-PD-1 (Nivolumab)
treatment for ccRCC (Checkmate025) was obtained from
the previous study48. The enrichment of TF motifs for 18
tumor tissue types was downloaded from the supple-
mentary material of the original article34. Three additional
scRNA-seq datasets of ccRCC were obtained from the
data materials provided by the authors11,13,14.

Statistical analysis
Gene Set Enrichment Analysis (GSEA) for DEGs was

performed by the GSEA desktop application (v4.1.0)101.
Enrichment analysis for differentially accessible chroma-
tin regions was performed by rGREAT (v1.22.0)102 R
package. The VISION (v2.0.0)44 R package was used to
calculate the signature score of the immune gene sets for
a single cell. Overall survival analyses were performed by
the Log-rank test, and P < 0.05 are considered significant.
Details of all statistical tests used can be found in the
corresponding figure legends.
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