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Single-cell multiomics sequencing reveals the
functional regulatory landscape of early embryos
Yang Wang 1,2,3,7, Peng Yuan1,2,3,7, Zhiqiang Yan1,2,3,7, Ming Yang1,2,3,4,7, Ying Huo1,2,3, Yanli Nie1,2,3,

Xiaohui Zhu1,2,3, Jie Qiao 1,2,3,4,5,6✉ & Liying Yan 1,2,3,5,6✉

Extensive epigenetic reprogramming occurs during preimplantation embryo development.

However, it remains largely unclear how the drastic epigenetic reprogramming contributes to

transcriptional regulatory network during this period. Here, we develop a single-cell multio-

mics sequencing technology (scNOMeRe-seq) that enables profiling of genome-wide chro-

matin accessibility, DNA methylation and RNA expression in the same individual cell. We

apply this method to depict a single-cell multiomics map of mouse preimplantation devel-

opment. We find that genome-wide DNA methylation remodeling facilitates the recon-

struction of genetic lineages in early embryos. Further, we construct a zygotic genome

activation (ZGA)-associated regulatory network and reveal coordination among multiple

epigenetic layers, transcription factors and repeat elements that instruct proper ZGA. Cell

fates associated cis-regulatory elements are activated stepwise in post-ZGA stages. Tro-

phectoderm (TE)-specific transcription factors play dual roles in promoting the TE program

while repressing the inner cell mass (ICM) program during the ICM/TE separation.
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I
n mammals, embryo development starts from a unified zygote.
Coincident with the first several zygotic cleavages, early
embryos activate the zygotic genome, restore totipotency and

further generate the inner cell mass (ICM) and trophectoderm
(TE) during preimplantation development1–3. Failures in zygotic
genome activation (ZGA) or ICM/TE lineage specification can
cause early embryo developmental arrest and implantation failure
in both mice and humans. With advances in low-input and
single-cell epigenome sequencing, recent studies have revealed
that extensive global epigenetic reprogramming, for instance,
reprogramming of DNA methylation (Met), chromatin accessi-
bility (Acc) and histone modifications, occurs in early embryos
during this period4–14. However, it remains to be explored how
these epigenome reconfigurations contribute to the establishment
of proper regulatory networks of early embryos.

Acc is a hallmark of cis-regulatory elements (CREs), such as
promoters and enhancers, that act coordinately with transcription
factors (TFs) and epigenetic modifications to finely regulate the
transcriptional activity of downstream genes and establish cell-
type specific regulatory networks15,16. The currently optimized
low-input open-chromatin sequencing techniques, such as the
assay for transposase-accessible chromatin using sequencing
(ATAC-seq) and low-input DNase I sequencing (liDNase-seq),
are able to detect genome-wide dynamics of Acc in early embryos.
However, the signal of the open regions reflects the average signal
of the mixed sample, which may be confounded by highly het-
erogeneous and asynchronized blastomeres and even abnormal
embryos6,10,17,18. Single-cell ATAC-seq detects only thousands of
informative reads per cell on average, which might limit its
application with the scarce resources of early embryos19–21.
Moreover, because of the high heterogeneity of early blastomeres,
a functional understanding of epigenomic changes requires
knowledge of the transcriptional output from one individual cell.
Recently, different single-cell epigenome sequencing methods and
transcriptome sequencing methods have been combined to profile
different combinations of molecular layers from the same indi-
vidual cell, providing opportunities to explore the associations
between different molecular layers22–26. However, factors com-
promising the quality of data from current single cell multi-omics
technologies, such as poor genome coverage or low gene number
detection, might constrain the precise interpretation of the
associations between different molecular layers.

Here, we describe a technique called single-cell nucleosome
occupancy, methylome and RNA expression sequencing (scNO-
MeRe-seq) that effectively combines single-cell nucleosome
occupancy and methylome sequencing (scNOMe-seq) with Mul-
tiple Annealing and dC-Tailing-based Quantitative single-cell
RNA sequencing (MATQ-seq), showing improved performance
for profiling of multiple molecular layers from the same individual
cell4,27,28. We applied scNOMeRe-seq to analyze genome- wide
Acc, Met and RNA expression (Expr) in mouse preimplantation
embryos at single-cell resolution and to provide a comprehensive
overview of the functional regulatory landscape in early embryos.

Results
scNOMeRe-seq profiles in mouse preimplantation embryos. To
simultaneously detect genome-wide Acc, Met and Expr in the
same individual cell, we developed a single-cell multiomic
sequencing method, scNOMeRe-seq, by combining scNOMe-seq
and MATQ-seq (Fig. 1a). We employed this method to profile
233 single cells isolated from mouse preimplantation embryos at
different stages with RNA data from 221 (94.8%) single cells and
DNA data from 218 (93.4%) single cells passed our stringent
criteria, showing a high success rate (Supplementary Fig. 1a–c;
Supplementary Data 2). The DNA data showed that our method

could simultaneously detect over 15% genomic WCG/GCH sites
(WCG 3.49 million, 15.8%; GCH 31.0 million, 15.5% on average
per cell at around 3× sequencing depth) with improved capture
efficiency compared with single-cell nucleosome, methylation and
transcription sequencing (scNMT-seq) and single-cell chromatin
overall omic-scale landscape sequencing (scCOOL-seq) (Supple-
mentary Fig. 1e)4,23. Moreover, the DNA data showed a high
GCH and low WCG methylation level at the previously defined
DNase hypersensitive sites and open chromatin, supporting our
method a valid and reproducible approach (Supplementary
Fig. 1d)6,10. The RNA dataset showed high accuracy, high
reproducibility, even coverage through genic regions, and high
detection sensitivity for genes expressed at low levels (Supple-
mentary Fig. 1f–i)23,29. More importantly, our RNA dataset could
faithfully distinguish between ICM and TE cells in embryonic day
(E) 3.5 blastocysts (Supplementary Fig. 1j–k), further confirming
the high quality of our RNA data obtained from scNOMeRe-seq.

To detect the abnormal blastomeres in our early embryos, we
analyzed the copy number variations (CNVs) with the RNA data
and DNA data for each individual cell. Consistent results were
obtained from both datasets regarding the inferred CNVs, even
for the partial chromosome CNVs (Fig. 1b and Supplementary
Fig. 2a). Unexpectedly, we also found several parthenogenetic
(PG) embryos among our detected early embryos using single-
nucleotide polymorphism (SNP)-separated allelic reads (Fig. 1c
and Supplementary Fig. 2a). Then, we sought to determine
whether the embryo abnormalities would cause aberrant embryo
development. Notably, along the developmental trajectory
inferred from the RNA dataset, most PG blastomeres showed
delayed development after ZGA compared to that of normal and
aneuploid blastomeres (Supplementary Fig. 2b, c). Although only
58% of ZGA genes were activated in PG blastomeres at the 2-cell
stage, the PG blastomeres became more similar to the rest of the
blastomeres beginning at the same stage after ZGA, indicating
that the PG embryos were able to go through at least partial ZGA
and develop to further stages (Supplementary Fig. 2b and d). The
Met in PG blastomeres were clearly distinct from that in normal
and aneuploid blastomeres, while Acc did not differ among PG,
normal and aneuploid blastomeres (Supplementary Figs. 2f–g and
3a). Together, these results revealed that the aneuploid cells were
able to undergo preimplantation development as well as proper
epigenetic reprogramming; however, the PG cells showed delayed
development and an aberrant Met pattern.

Furthermore, k-means clustering with the Acc of the
transcription start site (TSS) could not distinguish the abnormal
cells from the normal cells; however, the cells from the two
clusters showed significant differences in global Acc levels and
correlations between Acc and Expr at the TSS regions for each
stage (Supplementary Fig. 3b). Notably, the cells from the cluster
with the relatively higher Acc level (cluster_2) consistently
showed lower correlations between Acc and Expr at the TSS
regions, without differences in global Met levels, and correlations
between Met and Expr were observed between the two clusters,
suggesting that Acc changes in the cells of cluster_2 were
irrelevant to the transcriptional regulation, which could be
derived from biological differences, such as DNA duplication30,
or other unknown technical artefacts (Supplementary Fig. 3b).
Furthermore, we detected the nucleosome-depleted regions
(NDRs) using an aggregated Acc dataset from single cells in
each cluster at each stage. Regardless of the genome coverage,
cluster_1 (low Acc level and high correlation between Acc and
Expr) exhibited more NDRs than cluster_2 for each stage
(Supplementary Fig. 3c, d). The NDRs in cluster_1 at each stage
showed greater fractions overlapping with previously defined
open chromatin in early embryos than those in cluster_2
(Supplementary Fig. 3e, f)4,6,10.
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To focus on transcriptional regulation-related epigenome
characteristics during preimplantation development, the Acc
datasets of cells from cluster_2 (n= 68 cells) and the Met datasets
of PG cells (n= 21 cells) were removed for downstream analysis
(Supplementary Fig. 3g). Then, we explored the dynamics and

associations of different molecular layers in each single cell during
preimplantation development. Both unsupervised clustering and
principal component analysis (PCA) revealed that cells of the
same stage clustered more closely within each molecular layer
(Fig. 1d), consistent with the findings of previous studies4. The

Fig. 1 scNOMeRe-seq profiles in mouse preimplantation embryos. a Schematic illustration of scNOMeRe-seq, including key steps, methods of library

preparation, mouse preimplantation stages analyzed in this work and embryo numbers (n) outlined in the text. b Heat map showing copy number variations

(CNV) inferred by DNA reads (left) and gene expression level (right, normalized each gene by average closest 100 genes) in mouse preimplantation

blastomeres. Arrows indicate the examples of matched CNV inferences from DNA and RNA reads. c Bar plot showing the ratios of SNP tracked maternal

DNA (top) or RNA (bottom) reads in total SNP tracked parental reads in each individual cell across preimplantation development. d Unsupervised clustering

(left) and principle component analysis (right) of preimplantation blastomeres using gene expression level (top), DNA methylation level of 5 kilobases (kb)

tiles (middle) and chromatin accessibility of all stage merged NDRs (bottom). n, the cell numbers of each dataset. e Profiles showing DNA methylation level

(top), the weighted Pearson correlation coefficients of DNA methylation level vs gene expression level (bottom) along the gene bodies and 2.5 kb upstream

of the transcription start sites (TSS) and 2.5 kb downstream of the transcription end sites (TES) of all genes for each stage. Met, WCG methylation; Expr,

RNA expression. f Profiles showing chromatin accessibility (top), the weighted Pearson correlation coefficients of chromatin accessibility vs gene expression

level (bottom), along the gene bodies and 2.5 kb upstream of the TSS and 2.5 kb downstream of the TES of all genes for each stage. Acc, GCH methylation.

The sample size for b and c is provided in Supplementary Fig. 2a, and for d–f is provided in Supplementary Fig. 3g.
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global Met levels were relatively stable in earlier stages but sharply
decreased at the blastocyst stage (Fig. 1e, Supplementary Fig. 2e).
The correlations between Met and Expr in the TSS and gene body
regions showed the highest associations in zygotes and gradually
decreased in the following stages (Fig. 1e). In contrast, global Acc
was drastically decreased at the 2-cell stage and restored at the 4-
cell stage before gradually increasing at later stages (Fig. 1f,
Supplementary Fig. 2e). Notably, the correlations between Acc
and Expr at the TSS regions were the most positive at the 2-cell
stage among all preimplantation stages, coinciding with ZGA; this
finding suggests that the drastic Acc reprogramming at the 2-cell
stage might contribute to proper ZGA (Fig. 1f).

Reconstruction of genetic lineages reveals the source of het-
erogeneity in early embryos. Given the insufficient maintenance
of Met levels during mitosis in early embryos, a previous study
sought to reconstruct the genetic lineages of 4-cell embryos using
single-cell genome-wide CpG Met datasets in both humans and
mice and successfully elucidated the lineages5. To test whether
our single-cell Met (WCG) datasets could be used to infer the
genetic lineages of early embryos, we first computed the pairwise
correlations among blastomeres in each individual 4-cell (n= 10
embryos) or late 4-cell embryo (n= 5 embryos) (see Methods).
We repeatedly observed two pairs of cells with highly negatively
correlated Met levels in each individual embryo, consistent with
previous findings (Fig. 2a, b, d)5. Then, we validated that the two
cells in each pair originated from the same mother 2-cell blas-
tomere (Fig. 2e). We also observed a conserved pairwise corre-
lation of Met levels among blastomeres for each analyzed 8-cell
embryo (n= 3 embryos), implying that it might be possible to
reconstruct genetic lineages for 8-cell embryos using single-cell
Met datasets (Fig. 2c, d). To verify the Met correlation patterns
among blastomeres at the 8-cell stage derived from the same
blastomeres in 2-cell and 4-cell embryos, we microinjected FITC
to label one blastomere each in 2-cell and 4-cell embryos and
performed single-cell bisulfite sequencing (scBS-seq) for each
individual cell when these embryos developed to the 8-cell stage.
Blastomeres in 8-cell embryos derived from the same blastomeres
in 4-cell embryos exhibited highly positively correlated Met levels;
in contrast, 2 pairs of blastomeres in 8-cell embryos derived from
the same blastomeres in 2-cell embryos exhibited highly positively
correlated Met levels within pairs, but cells from different pairs
exhibited highly negatively correlated Met levels (Fig. 2f, g).
Therefore, these results demonstrate that we can accurately
construct the full lineages from the zygote stage to the 8-cell
embryo stage using single-cell Met datasets.

Furthermore, we investigated when unified zygotes generate
heterogeneity in different molecular layers among blastomeres. We
first computed the correlations between blastomeres within each
embryo (intra-embryonic correlations) versus those between
blastomeres from different embryos (inter-embryonic correlations)
at the same stage for each molecular layer. We found that the
intra-embryonic correlations were consistently higher than the
inter-embryonic correlations for each molecular layer throughout
the preimplantation development stages, suggesting highly asyn-
chronous development among different embryos at the same stage
(Fig. 2h). Moreover, the correlations in Expr levels were highest at
the zygote stage and gradually decreased at later stages, suggesting
that the heterogeneity among blastomeres in the same embryo was
generated during ZGA and gradually increased with preimplanta-
tion development (Fig. 2h). We also noticed that the correlations
in both the Met and Acc levels were highest at the 2-cell stage,
indicating that the epigenome was robustly reprogrammed for
each individual cell during ZGA (Fig. 2h). Leveraging this lineage
tracing information, we further explored the dynamics of

heterogeneity between daughter cells during the first three
cleavages. In the transcriptome, the correlations between blas-
tomeres from the same mother cells gradually decreased during the
first three cleavages, whereas the correlations between blastomeres
from the same mother cells at the late 4-cell stage were comparable
to those at the 4-cell stage (Fig. 2h). Moreover, the correlations
between blastomeres from the same grandmother cells were higher
than those of blastomeres from different grandmother cells in 8-
cell embryos at the transcriptome level (Fig. 2h) (Student t-test, P
= 2e-07). These results demonstrated that asymmetric cleavage
might have been the major source of the transcriptome
heterogeneity. We found the gradually increased transcriptome
heterogeneity during the first three cleavages were highly
conserved for each embryo, which enabled us to reconstruct
genetic lineages of early embryos with single-cell transcriptome
datasets (Supplementary Fig. 4). Although the heterogeneity in the
epigenome seemed not to be associated with asymmetric cleavage,
we notably observed that the correlations in Met levels between
blastomeres from the same mother cells were higher in 8-cell
embryos than in 4-cell and late 4-cell embryos (average correlation
coefficient of 0.59 in 4-cell, 0.58 in late 4-cell and 0.74 in 8-cell;
Student t-test, 4-cell vs 8-cell, P= 0.018; late 4-cell vs 8-cell, P=
0.013), indicating that increased Met maintenance occurs to some
extent during DNA duplication at the 4-cell stage (Fig. 2h).

Allele-specific regulation of gene expression in early embryos.
Drastic epigenetic reprogramming occurs in parental genomes
after fertilization. The Acc levels of the parental genomes were
comparable in most individual cells throughout preimplantation
development (Fig. 3a). The Met level in the paternal allele was
consistently higher than that in the maternal allele for each
individual zygote (Fig. 3b). From the 2-cell to the 8-cell stage, the
global differences in Met levels between parental alleles varied in
the different individual cells; however, after the morula stage, the
Met level in the maternal allele was consistently higher than that
in the paternal allele for each individual cell (Fig. 3b). In addition,
we found that 16.7%–29.7% of regions showed significant allelic
differences (FDR < 0.01) in Acc levels, and 7.9%–40.2% of regions
showed significant allelic differences (FDR < 0.01) in Met levels
across preimplantation stages (Supplementary Fig. 5a, b). The
differences in allelic Acc levels were widely distributed in the
whole genome and showed no preference for a particular parental
allele (Fig. 3c, Supplementary Fig. 5c). Notably, the maternal
hypermethylated regions were highly enriched in genic regions,
whereas the paternal hypermethylated regions were highly enri-
ched in distal intergenic regions throughout the preimplantation
stages, consistent with previous findings (Fig. 3d, Supplementary
Fig. 5d)4. Given that the oocyte genome is highly methylated at
actively transcribed genic regions and hypomethylated at inter-
genic regions, while the sperm genome is highly methylated at
intergenic regions, our results indicate that global differences in
Met levels between parental alleles in gametes could be largely
maintained throughout preimplantation development4,12.

We next sought to determine whether the allelic epigenome
differences were associated with allelic transcriptional regulation.
First, we overlapped the differential allelic epigenetic regions with
known imprinting control regions (ICRs)31. Four germline ICRs
overlapped with our differential allelic Acc regions, and all
showed corresponding differential allelic Acc patterns in at least
one preimplantation stage (Supplementary Fig. 5e). In the other
hand, six known germline ICRs overlapping with differential
allelic Met regions showed the expected differential allelic Met
patterns throughout preimplantation development, validating the
accuracy of our analysis (Supplementary Fig. 5f). Furthermore, we
assessed the correlations between allelic epigenetic modification
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levels and Expr in each individual cell. Both parental alleles
showed similar correlation patterns between allelic Acc and Expr,
mimicking the overall Acc vs Expr associations (Fig. 3e). Notably,
we observed clearly different correlation patterns between allelic
Met and Expr in parental alleles: the Met levels of the paternal
genome at the gene body regions showed no correlations with
Expr, unlike those in the maternal genome (Fig. 3f). To determine

whether the allele-specific correlations between Met and Expr at
gene bodies were caused by inherent correlations from maternal
factors, we further compared the correlations between allelic Met
and the Expr of maternal genes (transcript per million mapped
reads (TPM) ≥ 1 in the zygote) with nonmaternal genes. The Met
levels at gene body regions were clearly higher for maternal genes
than for nonmaternal genes in maternal alleles throughout
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preimplantation stages (Fig. 3g). As expected, major Met
differences between parental alleles were observed in maternal
genes but not in nonmaternal genes (Fig. 3g). Furthermore, we
found that the correlations between maternal Met and Expr at
gene body regions were clearly weaker in nonmaternal genes than
in maternal genes, indicating that the observed positive correla-
tions between maternal Met and Expr at gene body regions were
mainly inherited from oocytes (Fig. 3h and Supplementary
Fig. 5g).

scNOMeRe-seq reveals a ZGA-associated regulome. To reveal
ZGA-associated CREs, we measured the correlations between the
Acc of each promoter/distal NDR and the Expr of its corre-
sponding ZGA gene (2-cell vs zygote, fold change ≥4, FDR < 0.01;
Supplementary Data 3) across single cells during the transition
from the zygote to the 2-cell stage. We found that 338 promoter
NDRs and 7,822 distal NDRs were positively linked to 301 and
2,239 ZGA genes, respectively, while 356 promoter NDRs and
2,728 distal NDRs were negatively linked to 317 and 1,226 ZGA
genes, respectively (Fig. 4a, b; Supplementary Data 4). The overall
Met levels of these positively correlated CREs were lower in 2-cell
embryos than in zygotes (Supplementary Fig. 6a and c). Notably,
the Acc of these positively correlated CREs was specifically
increased in each individual cell in 2-cell embryos, but this
increase was accompanied by a drastic global Acc decrease during
this period (Supplementary Fig. 6b and d). These results suggest
that robust chromatin reprogramming occurs during ZGA to
remove regulatory memory from gametes and rebuild the zygotic
regulatory network.

To explore how ZGA is regulated in early embryos, we further
comprehensively analyzed the enrichment of repeat elements and
histone modifications in ZGA-associated CREs. The positively
correlated CREs, but not the negatively correlated CREs, were
preferentially enriched with Alu, B2, B4 and ERVL repeat classes
as well as active histone modifications (H3K4me3 and H3K27ac)
in both promoter and distal regions (Fig. 4c, d). H3K4me3 was
gradually established at the majority of positively correlated CRE
loci from the MII oocyte stage to the 2-cell stage and was
colocalized with H3K27ac in both promoter and distal regions,
while repressive histone modifications (H3K27me3 and
H3K9me3) were gradually removed from these regions (Supple-
mentary Fig. 7a–c). Moreover, the positively correlated CREs
were clustered in regions enriched with active histone modifica-
tions and deficient in repressive histone modifications, implying a
high-dimensional regulatory structure of ZGA CREs (Supple-
mentary Fig. 7d, e). Furthermore, we investigated which TFs
might be responsible for the establishment of ZGA-associated
CREs. Notably, both positively correlated promoter CREs and
distal CREs were highly enriched with Arnt, Bcl6, Klf5, Nkx3-2,
Nr5a2, Rara, Rarg, Pitx1, and Thrb motifs; however, the
negatively correlated CREs showed no enrichment with TFs in

either promoter or distal regions (Fig. 4e). We next calculated TF
activity (see Methods) in each individual cell (Fig. 4f). Notably,
we found that Klf4, Nkx3-2, Nr5a2 and Rarg showed high TF
activity and high expression levels in 2-cell embryos compared to
zygotes (Fig. 4g). More importantly, the TF activity of Rarg,
Nr5a2 and Klf4 was strongly positively correlated with the
expression levels of these genes, further supporting their potential
roles in regulating ZGA-associated CREs (Fig. 4h, i). It is worth
noting that among these three TFs, Klf4 already showed high
expression levels and high TF activity at the zygote stage, while
both Rarg and Nr5a2 showed almost no TF activity at the zygote
stage, implying that Klf4, as a maternal factor, might contribute to
initiating the ZGA process as early as the zygote stage (Fig. 4f, i).

Mutually exclusive regulome confers ICM/TE lineage segregation.
Along with gradual increases in heterogeneity among blastomeres in
preimplantation embryos, establishment of cell lineage-specific
transcription regulatory networks occurred beginning in unified
totipotent zygotes that generated ICM and TE cells to enable further
embryo development. To reveal the potential active CREs during
this process, we determined the correlations between the Acc of each
promoter/distal NDR and the Expr of its corresponding ICM/TE-
specific expressed genes (specifically expressed in ICM: 766 genes,
TE: 930 genes; Supplementary Data 5) across single cells during
preimplantation development (Fig. 5a, b). The NDRs significantly
correlated with ICM- or TE-specific expressed genes were termed
ICM.CREs (positive: 497 in promoters, 4,086 in distal regions;
negative: 210 in promoters, 1,559 in distal regions) or TE.CREs
(positive: 774 in promoters, 5,109 in distal regions; negative: 424 in
promoters, 3,445 in distal regions), respectively (Fig. 5a, b;
Supplementary Data 6). Consistent with the ZGA-associated CREs,
the positively correlated ICM/TE CREs also showed strong enrich-
ment for active histone markers and depletion of repressive histone
markers (Supplementary Fig. 8a, b). Notably, all of the known
enhancers for three key ICM/TE TFs (Pou5f1, Nanog, and Cdx2)
that we analyzed were revealed to be present in preimplantation
embryos or in embryonic stem cells, confirming that the CREs
identified by our correlation analysis could cover known active
enhancers (Fig. 5c, d, Supplementary Fig. 8c–f)32–34. Specifically, we
found three positively correlated CREs (#2, #3, and #4) corre-
sponding to three known enhancers of Pou5f1; importantly, CRE
#4 showed the highest positive correlation coefficient in our analysis,
consistent with previous findings that the known enhancer corre-
sponding to CRE #4 is the dominant enhancer regulating Pou5f1
expression during preimplantation development (Fig. 5c, d)32. Thus,
these results validate the accuracy of our analysis.

To explore how ICM/TE-associated regulatory networks are
regulated in early embryos, we comprehensively analyzed
different epigenetic molecular layers in these CREs. First, we
calculated the correlations between Met and Expr for each CRE-
gene pair. We observed mainly negatively correlated Met vs Expr

Fig. 2 Reconstruction of genetic lineages reveals the source of heterogeneity in early embryos. a–c Heat map showing the Pearson correlation

coefficients in representative 4-cell embryo (a), late 4-cell embryo (b), and 8-cell embryo (c) from the same embryo. The numbers in white color showing

the Pearson correlation coefficients. d Distribution of the pairwise Pearson correlation coefficients for DNA methylation level of 1 Mb bins in individual

blastomere from the same 4-cell embryo (n= 10 embryos, top), late 4-cell embryo (n= 5 embryos, middle) and 8-cell embryo (n= 3 embryos, bottom).

Blue arrows indicate the pairs of blastomeres from the same 2-cell blastomere, and the red arrow indicates the pairs of blastomeres from the same 4-cell

blastomere. e–g Heat map showing the Pearson correlation coefficients in representative 4-cell embryo (e) and 8-cell embryos (f, g). In e and f, #3-4

(green labeled) cells divided from the same 2-cell blastomere (e) and 4-cell blastomere (f), respectively; in g, #1-4 (green labeled) cells divided from the

same 2-cell blastomere. The numbers in white color showing the Pearson correlation coefficients. h Box plot showing the pairwise Spearman correlation

coefficients of RNA expression level (top), DNA methylation level of 200 kb bins (middle) and chromatin accessibility of NDRs (bottom) at indicated

stages. Each box showing median levels and the first and third quartile, whiskers indicate minimum and maximum values. Points showing outliers, > 1.5 × of

the interquartile range from the box. intra-embryonic, within the same embryo; inter-embryonic, in different embryos of the same stage; same mother, the

blastomeres origin from a same mother blastomere; same grandmother, the blastomeres origin from a same grandmother blastomere. The sample size of

each group for h is provided in Supplementary Fig. 3g. Source data for h are provided as a Source Data file.
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CRE-gene pairs (27 positive vs 324 negative pairs in promoters;
1,119 positive vs 4,194 negative pairs in distal regions) for the
positively correlated Acc/Expr CREs, while we observed mainly
positively correlated Met vs Expr CRE-gene pairs (105 positive vs
15 negative pairs in promoters; 1,504 positive vs 388 negative

pairs in distal regions) for the negatively correlated Acc/Expr
CREs (Fig. 5e). These results not only reveal the complex
interplay between Met and Acc in regulating ICM/TE lineage-
associated regulatory networks during preimplantation develop-
ment but also confirm our speculation that the CREs with Acc/
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Expr positive and negative correlations might be bound by
activators and repressors, respectively. Regardless, the Met levels
of both ICM.CREs and TE.CREs were lower in TE cells than in
ICM cells, reflecting the more extensive erasure of genome-wide
Met in TE cells (Fig. 5f). Next, we measured the dynamics of
different molecular layers in these CREs during preimplantation
development. Clearly, Acc and active histone modifications
(H3K4me3 and H3K27ac) gradually increased in both positively
and negatively correlated Acc/Expr CREs beginning at the 2-cell
stage, while repressive epigenetic modifications (Met, H3K9me3
and H3K27me3) were already depleted in zygotes and remained
depleted throughout preimplantation development in these
regions, suggesting an overall priming of the epigenetic environ-
ment during ICM/TE lineage differentiation (Supplementary
Fig. 9a–f). We also noticed that ICM.CREs were activated earlier
than TE.CREs, as we observed clearly higher levels of active
epigenetic modifications in ICM.CREs than in TE.CREs at the 2-
cell stage (Supplementary Fig. 9a, b, e and 10a, b). Subsequently,
TE.CREs were quickly activated and showed higher levels of
active epigenetic modifications than ICM.CREs at the 8-cell stage,
suggesting a stepwise activation of ICM.CREs and TE.CREs
during preimplantation development (Supplementary Fig. 9a, b, e
and 10a, b).

Finally, we investigated which TFs might be responsible for the
establishment of differential regulatory networks in ICM and TE
lineages. Notably, we found that the commonly enriched TFs in
positively correlated ICM/TE CREs were ZGA drivers that
showed high TF activity as early as the 2-cell embryo stage, such
as Nr5a2, Rarg, Rara, Bcl6, etc., indicating that the earliest
initiation of both ICM and TE programs occurs during the ZGA
process (Fig. 5g and Supplementary Fig. 10c). In addition, three
TFs, Crx, Arnt and Pitx1, were more enriched in ICM.CREs,
while Ctcf, Klf3/4/6/9/10, Gata1/2/4/6, Tead1/2/3/4, Sfpi1, Tcfap2a
and Sp1/2 were more enriched in TE.CREs (Fig. 5g). We observed
that TE lineage-specific TFs, such as Tcfap2a and Gata family
TFs, were enriched in the negatively correlated ICM.CREs,
suggesting their repressive roles in regulating the ICM program
(Fig. 5g). Moreover, most TE.CRE-specifically enriched TFs
showed higher activity and expression levels in TE cells than in
ICM cells, while ICM.CRE-associated TFs showed higher
expression levels in ICM cells than in TE cells (Fig. 5h, i and
Supplementary Fig. 10c). Together, these results suggest that a
mutually exclusive regulatory network is adopted to gradually
establish and stabilize the different ICM and TE lineage fates,
especially for the TE lineage; specific drivers of this lineage
establish a TE program while repressing the ICM program,
forcing the TE lineage to separate from the ICM lineage (Fig. 5j).

Discussion
In conclusion, we have developed a single-cell multiomics
sequencing technology, scNOMeRe-seq, that can be used to
profile transcriptomes, DNA methylomes and chromatin acces-
sibilities in parallel in the same individual cell with high accuracy,
sensitivity and genome coverage. Taking advantage of this pow-
erful tool, we have also characterized multiple molecular layers of

mouse preimplantation embryos at single-cell resolution and have
explored the associations between different epigenome layers and
transcriptional output, providing insights to enhance functional
understanding of epigenetic reprogramming during mouse pre-
implantation development. Specifically, our results reveal that PG
blastomeres show delayed development and abnormal DNA
methylomes, in contrast to aneuploid blastomeres. The changes
in Acc not only reflect the dynamic regulatory landscape but also
may be substantially derived from asynchronous cell cycles of
blastomeres that are irrelevant with transcriptional regulation,
highlighting the importance of functional interpretations of epi-
genetic reprogramming at single-cell resolution. Using the DNA
methylomes of all the individual cells within individual embryos,
we reconstructed genetic lineages from zygotes to 8-cell embryos
and revealed that asymmetric cleavage might be the major driver
of the gradual increases in transcriptome heterogeneity among
blastomeres that occur during the first three cleavages. Despite
global demethylation in early embryos, allele-specific Met pat-
terns inherited from oocytes and sperm are maintained
throughout preimplantation development. The associations
between Acc/Met and Expr at promoter regions in single cells are
consistent with the findings from bulk samples; however, the
positive correlations between Met and Expr at gene body regions
are largely inherited from maternal genomes and are absent in the
paternal genomes of early embryos. The Acc of parental memory-
related regions appears to be substantially erased during the ZGA
process and reconfigured in concert with the influences of histone
modifications, Met, repeats, TFs, and possible high-dimensional
chromatin structures to ensure proper activation of the zygotic
genome (Fig. 4j). The overall-primed ICM/TE lineage-associated
CREs are partially activated as early as the 2-cell stage and are
asynchronously activated in the following preimplantation stages.
Intriguingly, TE lineage-specific TFs seem to play dual roles in
activating the TE program and repressing the ICM program,
thereby segregating the TE fate from the ICM fate (Fig. 5j). Taken
together, our findings not only provide insights into the func-
tional regulatory landscape in preimplantation development but
also elucidate the fundamental mechanisms of epigenetic
regulation.

Methods
Embryo collection. All animal-related experimental procedures were carried out
under ethical guidelines set forth by the Animal Care and Use Committee of
Peking University Health Science Center (no. LA2018261). The female mice used
in this study were 6- to 8-week-old B6D2F1/J (BDF1) mice, and the male mice were
12-week-old 129S1 mice. All mice were in good health. For preimplantation
embryo collection, female mice were superovulated by injection of 7.5 IU of
pregnant mare serum gonadotropin (PMSG) followed by 7.5 IU human chorionic
gonadotropin (hCG) 42–48 h later. Immediately after hCG injection, the female
mice were placed in a cage with males. After vaginal plugs appeared, zygotes were
collected from the mouse oviducts, and the embryos were further cultured in
KSOM medium (Zenith Biotech). Embryos at different stages were collected 24–26
h (zygotes), 36–40 h (2-cell embryos), 52–54 h (4-cell embryos), 58–60 h (late 4-cell
embryos), 66–70 h (8-cell embryos), 78–82 h (morulae) and 94–98 h (blastocysts)
after hCG injection. The embryos were exposed to acidic solution (0.5% con-
centrated HCl) to remove the zona pellucidae and were then washed with 0.5%
HSA/DPBS (Vitrolife, Gibco) to remove polar bodies and somatic cells. The
embryos were further dissociated into single cells by incubating them in a trypsin

Fig. 3 Allele-specific regulation of gene expression in early embryos. a, b Bar plot showing differences of global chromatin accessibility (a) and DNA

methylation level (b) between paternal and maternal genomes in each individual cell of preimplantation embryos. c, d Allelic chromatin accessibility (c) and

DNA methylation level (d) around genic regions of each stage. Mat, maternal allele; Pat, paternal allele. e, f The Pearson correlations between chromatin

accessibility (e) and DNA methylation level (f) around genic regions of maternal allele or paternal allele vs gene expression level of each stage. g Allelic

DNA methylation level around genic regions of maternal (TPM≥ 1 in zygote stage) and nonmaternal genes in each single cell. Solid black lines display the

mean value of each stage. h The Pearson correlations between DNA methylation level around genic regions of maternal allele or paternal allele vs

expression level of maternal and nonmaternal genes in each single cell. Solid black lines display the mean value of each stage. The sample size of each

group is provided in Supplementary Fig. 3g.
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(Sigma-Aldrich) and Accutase (Millipore) solution (at a 1:1 volume ratio) for
15–50 min. Then, the embryos were washed with 0.5% HSA/DPBS three times.

Lineage tracing with FITC injection. One blastomere of each 2-cell stage mouse
embryo (n= 4 embryos) was microinjected with FITC-coupled dextran (Sigma-
Aldrich) to indicate its daughter cells at the 4-cell stage (n= 3 embryos) or its

granddaughter cells at the 8-cell stage (n= 1 embryo). To indicate which blas-
tomeres of 8-cell embryos were from the same mother cells of 4-cell embryos, one
blastomere of the 4-cell stage embryo (n= 1 embryo) was microinjected with
FITC-coupled dextran. After those embryos developed to the desired stage, each
embryo was dissociated into single cells as mentioned above. The FITC-labeled
cells were identified under a fluorescence microscope before library preparation. All
available single cells were processed for scBS-seq35.
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Library preparation and sequencing. Single cells were picked by mouth pipetting,
and each was transferred into a 200 μl PCR tube containing 3 μl of cell lysis buffer
(1x RT buffer (Invitrogen), 0.5% NP40, 5 mM DTT, 2 U RNase OUT (Invitrogen),
and 0.2 μl of magnetic beads (Invitrogen, cat. # 65001)). The cells were lysed on ice
for 10 min and vortexed for 30 s. Then, the tubes were placed on a magnet for 5
min to separate the beads (containing the intact nuclei) and supernatant (con-
taining the RNA transcripts). The supernatant was transferred to a new PCR tube,
and RNA libraries were prepared following the MATQ-seq protocol28. External
RNA Controls Consortium (ERCC) spike-ins (Ambion) were added to the
supernatant at dilutions of 1:10000-100000. For the split RNA libraries, the
supernatant was split into 2 aliquots before first-strand synthesis, and the libraries
were prepared separately. In parallel, the precipitated beads (containing the intact
nuclei) were resuspended in 5 μl of GpC methylase reaction buffer (1× M.CviPI
reaction buffer (NEB), 5 U M.CviPI (NEB), 160 μM S-adenosylmethionine (NEB),
0.25 mM EDTA (Thermo), 0.25 mM phenylmethylsulfonyl fluoride (Sigma-
Aldrich), and 1 pg of lambda DNA (NEB)) and incubated in a thermocycler at 37 °
C for 60 min to methylate GpC before heat inactivation for 25 min at 65 °C. After
in vitro GpC methylation, 0.5 μl of protease (Qiagen, 20 mg/ml) and 10 ng of
carrier RNA (Qiagen) were added into the mixture, which was incubated at 50 °C
for 3 h in a thermocycler to release genomic DNA before heat inactivation at 75 °C
for 30 min. Then, the genomic DNA was bisulfite-converted (Thermo), and the
scBS-seq protocol was followed to prepare DNA libraries35. For the FITC-tracing
experiments, the dissociated single cells were transferred into a 200 μl PCR tube
containing 5 μl of RLT plus (Qiagen) to release genomic DNA, and then the scBS-
seq protocol was followed to prepare DNA libraries. All primers used in this study
can be found in Supplementary Data 1. All the libraries in this study were
sequenced on an Illumina HiSeq X Ten platform with 150 bp paired-end reads.
With scNOMeRe-seq, we detected 3.49 million unique WCG sites, 31.04 million
unique GCH sites and the expression of 14416 (TPM > 0) GENCODE genes per
cell on average.

scRNA-seq data processing. The raw reads were trimmed with Trim Galore
(v0.4.4) to remove the primer sequences and low-quality bases (parameters:
trim_galore --paired --quality 20 --phred33 --stringency 3 --gzip --length 36). The
trimmed reads were aligned to the GENCODE NCBIM37 reference genome
(corresponding to the University of California, Santa Cruz (UCSC) mm9 genome)
with STAR software36 with the default settings, and only the unique mapped reads
with MAPQ values ≥ 50 were retained for further analysis. The reads mapped to
rRNA were filtered out with RSeQC37. The coverages of the transcripts were
evaluated with RSeQC. The reads mapped to each gene were counted with fea-
tureCounts38 (parameters: featureCounts -p -t exon -g gene_id), and the gene
expression levels were calculated using TPM values. Samples were discarded for
subsequent Expr analysis that had (1) less than 9500 genes detected, (2) the library
size less than 0.1 million counts, (3) reads for mitochondrial genes accounted for
over 30%, or (4) reads with a fraction of the top 50 features over 40%. Then, the
split cell libraries that passed quality control were merged using the DESeq239 R
package. In total, 221 single-cell RNA libraries were retained in this study.

Principal component analysis and hierarchical clustering of individual cells

using RNA expression data. PCA and hierarchical clustering were performed to
analyze cell populations with the Expr data. Genes expressed in fewer than 6 cells
were discarded. PCA was performed with the expression matrix of high variable
genes (coefficient of variation ≥ 1) using the pcaMethods40 R package. The hclust
function with the ward.D2 method was used for unsupervised hierarchical
clustering.

SC3 clustering. To assign single cells from the blastocyst stage into ICMs and TEs
and to identify markers of the two types of cells, we used the SC341 R package on
the scRNA-seq data. The quality-controlled expression matrix was passed into SC3,

and the clusters were plotted with the sc3_plot_consensus function. The marker
genes were further identified with the sc3_plot_markers function.

Preimplantation embryo developmental pseudotime analysis. Although PCA
clustered the individual cells into their biological developmental stages, the cells
within each group were not ordered by their developmental time points. Therefore,
individual cells were further ordered with the destiny42 R package using the top
2000 variable genes in the individual cells.

Differential RNA expression. Differential Expr between groups and stages was
analyzed using the R package DESeq2.

Copy number variation estimation using scRNA-seq data. To evaluate the CNV
effect on Expr, we inferred the CNV status of each cell by averaging the expression
of the ordered genes across the genome43. In brief, genes were ordered along the
genome by their genomic locations, and the expression of each gene was adjusted
to the average expression of the 50 upstream and downstream genes. The adjusted
expression values were further centered to infer the CNV status.

scNOMe-seq and scBS-seq data processing. The paired-end FASTQ reads were
processed as two single-end FASTQ files because chimeric reads were produced
during library preparation44. The raw paired-end FASTQ reads were trimmed to
remove the first 11 bp of the random primer sequences, Illumina adapter sequences
and low-quality bases with Trim Galore in single-end mode (parameters: trim_-
galore --clip_R1 11 --quality 20 --stringency 3 --length 30). The trimmed reads
were aligned to the lambda and UCSC mm9 genome with Bismark45 in single-end
mode (parameters: bismark --bowtie2 --non_directional). The single-end-mode
mapped reads were merged, and PCR duplicates were removed (PICARD) for
downstream analysis. The bismark_methylation_extractor function was used to call
the methylation value for each cytosine site in the genome (parameters: bis-
mark_methylation_extractor -s --multicore 4 --gzip --cytosine_report --CX), which
required at least 1x coverage at the cytosine sites. WCG (W includes A and T) and
GCH (H includes A, C, and T) Met levels were calculated to represent the Met
levels and Acc levels, respectively. The samples with less than 0.5 million covered
WCG and 5 million covered GCH sites were discarded before downstream analysis.
In total, 218 scNOMe-seq and 26 scBS-seq libraries passed the quality control steps.

Quantification of DNA methylation and accessibility. The Met and Acc levels
were calculated as the sum of methylated reads (C) divided by the total covered
reads (sum of the methylated reads and unmethylated reads (T)) for each WCG
and GCH site, respectively. The Met and Acc levels of the genomic regions and
single cells were measured as the average WCG and GCH levels, respectively. The
TSS Met level was measured as the average WCG level within 1 kb upstream and
0.5 kb downstream of the TSS. TSS Acc was measured as the average GCH level
within 200 bp upstream and 100 bp downstream of the TSS.

Nucleosome-depleted region identification. To identify NDRs4, the GCH data of
each single cell from the same developmental stage were first aggregated. The
number of C and T reads in the GCH context within a 120 bp window with 20 bp
spacing was calculated, and the significance of the difference from the genomic
background was analyzed with the Chi-square test. Regions with significantly
elevated GCH methylation with P-values ≤ 10−15, lengths ≥ 140 bp and covered
GCH sites ≥ 5 were defined as NDRs. The NDRs that overlapped with the
ENCODE blacklist (mm9, http://mitra.stanford.edu/kundaje/akundaje/release/
blacklists/) were removed before downstream analysis. The defined NDRs were
further classified as Promoter_NDRs (within 2 kb of the TSS; NDRs that over-
lapped with the TSS termed TSS_NDRs, while those that did not overlap with the
TSS were termed Proximal_NDRs) and Distal_NDRs (at least 2 kb away from the
TSS) in downstream analysis.

Fig. 4 scNOMeRe-seq reveals a ZGA associated regulome. a, b Volcano plot showing the weighted Pearson correlations between chromatin accessibility

of promoter-NDRs (a) / distal-NDRs (b) and the expression level of corresponding ZGA genes across cells from zygote to 2-cell stage. Significant

associations (FDR < 0.1) are in red (positive) and blue (negative). The number of CREs and unduplicated genes are labeled. c, d Heat map showing the

enrichment of ZGA associated CREs in repeats (c) and histone modifications (d) (refs. 7–9) of early embryos. e TF motifs identified from ZGA associated

CREs. Only TFs with the P-value <1 × 10−10 and TPM≥ 5 at least at one stage were included. P-value, binomial test in HOMER. f Heat map showing the TF

activity (left) and expression level (right) of ZGA enriched TFs in each individual cell of zygote and 2-cell embryos. g Scatter plot showing the difference of

TF activity (left) and expression level (right) between zygote and 2-cell stage. The genes labeled in red indicate the TFs showing significantly differential

activity (left, FDR < 0.1) or expression level (right, FDR < 0.01). h Volcano plot showing the Pearson correlations between TF activity and expression level

across cells from zygote to 2-cell stage. Significantly correlated (FDR < 0.1) TFs that enriched in ZGA associated CREs and showed higher TF activities and

expression level in 2-cell embryos are labeled. i Scatter plot showing TF activity and expression level of Rarg, Nr5a2 and Klf4 in each single cell of zygote

and 2-cell embryos. The corresponding enriched DNA-binding motifs are shown at the bottom of each TF. j A model showing ZGA process regulated by

multiple epigenetic layers, transcription factors and repeat elements. The sample size of each group is provided in Supplementary Fig. 3g. Source data for e

are provided as a Source Data file.
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Copy number variation detection using scBS-seq data. To detect the CNV in
each cell based on the scBS-seq data, we inferred the CNVs using the HMMcopy46

R package. First, the sequenced reads were counted with readCounter in 1Mb bins
across the mouse genome, and the read count of each bin was adjusted by correcting
for the GC content and genomic mappability. Then, the median adjusted read
counts of the consecutive bins were used to infer the CNVs of the genomic regions.

Median values of more than 1.36 and less than 0.67 observed in >10 consecutive
bins were defined as gains and losses, respectively.

Principal component analysis and hierarchical clustering of blastomere DNA

methylation and chromatin accessibility. To analyze cell populations with the
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Met and Acc datasets, we performed PCA and hierarchical clustering using the
WCG levels of genome-wide 5 kb tiles and the GCH levels of merged NDRs.
Genomic regions that covered fewer than 3 sites were discarded. Spearman cor-
relation coefficients were calculated with the parameter pairwise.complete.obs. PCA
was performed using the pcaMethods R package. The hclust function with the ward.
D2 method was used for unsupervised hierarchical clustering.

Profiling of DNA methylation and chromatin accessibility. To profile the Met
and Acc levels around genic regions (from 2.5 kb upstream of the TSS through the
gene body to 2.5 kb downstream of the transcription end site (TES)), the average
GCH levels and WCG levels within predefined running windows were computed
for each gene in each single cell23. The running window was defined as a 150 bp
window with a 50 bp step for the TSS upstream and the TES downstream. The gene
body (from the TSS to TES) of each gene was divided into 100 equal fractions, and
the running window was defined as a 2-fraction window with a 1-fraction step. To
profile the Met and Acc levels around NDRs (from 3 kb upstream of each NDR to
3 kb downstream), the average GCH levels and WCG levels within a 150 bp run-
ning window with a 50 bp step were computed for each NDR in each single cell.
The values of all the same genomic locations from individual cells were combined
to plot the average profile for single cells. The values from cells at the same stage or
in the same group were combined to plot the average profile for the stage or group,
respectively.

Correlation analysis. To profile the relationship between Met/Acc and Expr
around the genic regions, the Pearson correlation was calculated between the
average WCG/GCH level within the running window (described above) and the
Expr of its corresponding gene across different genes in a single cell. To calculate
the associations between Met/Acc and Expr at specific genomic regions (the TSS
and gene body), the Pearson correlation was calculated between the average WCG/
GCH level within the region and the Expr across different genes in a single cell.

To infer the functional CREs with associated genes, we computed the
correlation between the dynamic Met/Acc level of each NDR and the expression of
its corresponding gene across cells during preimplantation development. All
possible relationships between NDRs and genes within 100 kb of the gene
(upstream of the TSS and downstream of the TES) were considered. NDRs with a
coverage of fewer than 3 sites in a single cell were discarded. NDRs covered in less
than 25% of the cells and nonvariable NDRs were discarded. Genes expressed at
low levels (expressed (TPM > 0) in fewer than 5 cells) and nonvariable genes were
discarded. We calculated a weighted Pearson correlation coefficient (using the
unique WCG or GCH sites covered within the NDRs in each single cell as a weight)
and tested the significance of the coefficients with two-tailed Student’s t-tests. The
P-values were further adjusted by the Benjamini-Hochberg approach.

Allele-specific analysis of RNA expression, DNA methylation and accessi-

bility. The embryos in this study are from 129S1 (paternal) mice × B6D2F1/J (F1 of
C57BL6NJ × DBA2J, maternal) mice. Thus, these embryos should have back-
grounds of 129S1 with mixed C57BL6NJ and DBA2J. The pipeline used to
determine the parental origin assignment of sequencing data from the hybrid
embryos was constructed as reported, which based on traceable hybrid SNP
information47. Specifically, we downloaded the SNPs of 129S1 (paternal in this
study), C57BL6NJ and DBA2J (C57BL6NJ × DBA2J, maternal in this study) from
the website of Mouse Genome Project (ftp://ftp-mouse.sanger.ac.uk/REL-1211-
SNPs_Indels/). Only the informative SNPs could distinguish the paternal (129S1)
and maternal (C57BL6NJ × DBA2J) genome (homozygous in parental alleles and
paternal is different with maternal) were used in our analysis. For each mapped
read covered the informative SNP site, the read was parsed according to the specific
base at the SNP position, if the base matched the paternal allele, the read was
assigned to paternal origin; if the base matched the maternal allele, the read was
assigned to maternal origin. For RNA-seq data, 172,319 SNPs within the exon

regions were used to split the RNA mapped reads. The splitted allelic reads were
further used to calculate the paternal and maternal expression level of each gene.
For DNA data, 896,161 SNPs (SNP sites with C or T were discarded) in the whole
genome were used to split the mapped reads to paternal and maternal origin. The
splitted reads were further processed to calculate the paternal and maternal DNA
methylation and chromatin accessibility level.

To profile the allelic Met and Acc levels around genic regions (from 2.5 kb
upstream of the TSS through the gene body to 2.5 kb downstream of the TES), the
average allelic WCG levels and GCH levels within predefined running windows
(500 bp window with a 100 bp step for the TSS upstream and the TES downstream;
10-fraction window with a 2-fraction step for the gene body (100 equal fractions))
were computed for each gene in each single cell. Local correlations were calculated
between the average allelic WCG/GCH level within the running window and the
total Expr of its corresponding gene across different genes in a single cell.

The epigenetic modification levels of 500 bp tiles were extracted from the
parental alleles of each single cell separately. The tiles retained in each stage were
required to cover at least 3 cells per allele. The numbers of methylated sites (C) and
unmethylated sites (T) were summed in each 500 bp tile per allele for each stage.
Fisher’s exact test was used to examine the differences between two alleles for each
tile. Tiles with FDR values less than 0.01 were considered to differ significantly
between alleles.

Integrative analysis of public data and resources. Repetitive elements (such as
LINEs, SINEs, Alu elements, etc.) and related genomic annotations (such as the TSS,
TES, gene body, etc.) were downloaded from the UCSC. Promoters were defined as
the regions from −1.5 kb to +0.5 kb relative to the TSS. Histone modification data
for mouse preimplantation embryos were downloaded from the Gene Expression
Omnibus (GEO) database (GSE71434 for H3K4me3 modifications; GSE97778 for
H3K9me3 modifications; GSE72784 for H3K27ac modifications; GSE73952 for
H3K27me3 modifications) and integrated into our analysis. The peaks were
downloaded from the GEO database. The enrichment analysis was calculated as
log2 ratio for the number of observed CREs that overlap with repeats or histone
modification peaks divided by the number of random regions that overlap with
repeats or histone modification peaks. The signal intensity of each histone mod-
ification was calculated with an identical procedure. In detail, the downloaded raw
FASTQ reads were trimmed with Trim Galore (parameters: trim_galore --paired
--quality 20 --phred33 --stringency 3 --length 36). The processed clean reads were
mapped to the UCSC mm9 genome using BWA with the default settings48. The
duplicated reads were removed with PICARD software, and only unique mapped
reads with MAPQ values ≥ 30 were retained. The sequencing coverage was further
normalized, and the histone modification signal intensity of the investigated regions
was calculated with the Deeptools package49.

Transcription factor analysis. To find the enriched TF motifs in different CRE
data sets, findMotifsGenome.pl in HOMER50 was used (parameters: -size given
-len 8,10,12). Only TFs with the P value < 1 ×10−10 and TPM ≥ 5 at least at one
stage were included.

To further infer the TF activity in each single cell, we calculated background-
corrected z-scores for the average Acc of the TF-binding sites (TFBSs) for each TF
in each single cell. A similar strategy has been developed for single-cell ATAC-
seq51. More precisely, all stage-defined distal NDRs were scanned to find TFBSs
using FIMO52. Position frequency matrices were converted from 413 Homer
motifs. We kept the motif TFBSs with P-values less than 1 ×10−4. The overlapping
motifs for each TF were merged. The average Acc of the TFBSs (extended from the
center to+− 50 bp) in each single cell for each TF was calculated as the raw TF
activity (ACCTF). Then, we permuted the data 1,000 times for the TFBSs for each
TF in each single cell and calculated the average Acc (ACCbg) for each
permutation. For each TF in each cell, TF activity was calculated as (ACCTF-mean
(ACCbg))/sd(ACCbg).

Fig. 5 Mutually exclusive regulome confers ICM/TE lineage segregation. a, b Volcano plot showing the weighted Pearson correlations between Acc of

NDRs and Expr of corresponding ICM/TE specific expressed genes across preimplantation development. Significant associations (FDR < 0.1) are in red

(positive) and blue (negative). The number of CREs are labeled. c (top) Heat map showing Acc of Pou5f1 surrounding NDRs, and Expr of Pou5f1 in early

embryos; #, the labels of positive-correlated CREs. (bottom) IGV snapshot showing the distribution of NDRs, H3K27ac and H3K4me3 peaks. Three known

enhancers of Pou5f1 are shaded. d Scatter plot showing the Expr of Pou5f1 and Acc of CREs labeled in c in early embryos. The genomic coordinates of CREs

and the correlation coefficients are shown. e Volcano plot showing the weighted Pearson correlation between Met and Expr of positive-correlated (top)

and negative-correlated (bottom) CREs. f Scatter plot showing the differential Acc and Met of ICM.CREs and TE.CREs between ICM and TE cells. g TF

motifs identified from ICM.CREs and TE.CREs. Only TFs with the P value < 1 ×10−10 and TPM≥ 5 at least at one stage were included. P value, binomial test

in HOMER. h Scatter plot showing the difference of TF activity (left) and Expr (right) between ICM and TE. The genes labeled in red showing significantly

differential activity (left, FDR < 0.1) or Expr (right, FDR < 0.01). i Scatter plot showing the TF activity and Expr in each individual cell of ICM and TE. I, the

TFs showing higher activity and Expr in TE cells; II, the TFs showing higher activity in TE cells but showing higher Expr in ICM cells; III, the TF showing

higher activity in TE cells but showing no difference in gene expression level; IV and V, the TFs showing no difference in activity but showing higher Expr in

TE cells (IV) or in ICM cells (V). j A model showing potential TFs in driving ICM and TE lineage fates. The sample size of each group is provided in

Supplementary Fig. 3g. Source data for g are provided as a Source Data file.
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Reporting summary. Further information on experimental design is available in

the Nature Research Reporting Summary linked to this paper.

Data availability
All sequencing data in the current study have been deposited in the GEO with the

accession number GSE136718. Publicly available datasets were downloaded from the

GEO database GSE71434 for H3K4me3 modifications; GSE97778 for H3K9me3

modifications; GSE72784 for H3K27ac modifications and GSE73952 for H3K27me3

modifications). All other relevant data supporting the key findings of this study are

available within the article and its Supplementary Information files or from the

corresponding author upon reasonable request. A reporting summary for this Article is

available as a Supplementary Information file. Source data are provided with this paper.

Code availability
Custom scripts used in this study can be downloaded from https://github.com/yang2sc/

scNOMeRe-seq.
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