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Abstract 

Background: N6-methyladenosine  (m6A) RNA methylation plays a critical role in key genetic events for various can-
cers; yet, how  m6A functions within the tumor microenvironment (TME) remains to be elucidated.

Methods: A total of 65,362 single cells from single-cell RNA-seq data derived from 33 CRC tumor samples were 
analyzed by nonnegative matrix factorization (NMF) for 23  m6A RNA methylation regulators. CRC and Immunotherapy 
cohorts from public repository were used to determine the prognosis and immune response of TME clusters.

Results: The fibroblasts, macrophages, T and B cells were respectively grouped into 4 to 5 subclusters and then 
classified according to various biological processes and different marker genes. Furthermore, it revealed that the  m6A 
RNA methylation regulators might be significantly related to the clinical and biological features of CRC, as well as 
the pseudotime trajectories of main TME cell types. Bulk-seq analysis suggested that these  m6A-mediated TME cell 
subclusters had significant prognostic value for CRC patients and distinguished immune response for patients who 
underwent ICB therapy, especially for the CAFs and macrophages. Notably, CellChat analysis revealed that RNA  m6A 
methylation-associated cell subtypes of TME cells manifested diverse and extensive interaction with tumor epithelial 
cells. Further analysis showed that ligand-receptor pairs, including MIF −  (CD74 + CXCR4), MIF −  (CD74 + CD44), 
MDK–NCL and LGALS9 − CD45, etc. mediated the communication between  m6A associated subtypes of TME cells and 
tumor epithelial cells.

Conclusions: Taken together, our study firstly revealed the  m6A methylation mediated intercellular communication 
of the tumor microenvironment in the regulation of tumor growth and antitumor immunomodulatory processes.
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Introduction
Colorectal cancer (CRC) ranks third in incidence and 
second in mortality. Although tremendous efforts have 
been made to facilitate screening strategies, the preva-
lence of CRC has been increasing, and 1.9 million new 
cases were estimated in 2020. Among them, a large 
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population is diagnosed at an advanced stage; neverthe-
less, the efficacy of current therapies for late-stage CRC is 
limited [1]. Thus, a deeper understanding of the molecu-
lar mechanisms of CRC might help to bring novel strate-
gies to CRC prevention and therapy.

While DNA-related aberrations are widely studied in 
the literature, post-transcriptional alterations have been 
relatively less studied. Yet, these changes play a critical 
role in regulating the initiation and progression of CRC 
[2, 3]. Among these post-transcriptional alterations, 
N6-methyladenosine  (m6A) is the most common internal 
modification in transcripts, comprising more than 50% 
of eukaryote methylations now identified as a new level 
of crucial epigenetic regulation for mRNA stability, splic-
ing, and translation [4], as well as the generation of small 
and long non-coding RNAs [5]. Dynamic and reversible 
 m6A methylation consists of readers  (m6A-binding pro-
teins), writers (methyltransferases), and erasers (dem-
ethylases) responsible for  m6A’s functions, methylation, 
and demethylation, respectively [6]. Importantly,  m6A 
mRNA regulation plays a vital role in tumorigenesis, 
tumor development, and metastasis, and the dysregula-
tion of  m6A is closely correlated with the development 
and pathogenesis of CRC [7–9].

Nowadays, emerging evidence has proven the criti-
cal role of tumor microenvironment (TME) in the pro-
gress and metastasis of tumor. In addition, single-cell 
transcriptomics further revealed the complex intercel-
lular communication between diverse subtypes of TME 
cells and tumor cells [10, 11]. The TME cells consists of 
multiple cell types in addition to tumor cells, such as 
cancer-associated fibroblasts (CAFs), tumor-associated 
macrophages (TAMs), T cells, and B cells. Recently, Hui-
long et al. discovered that ablation of Mettl3 in myeloid 
cells promotes tumor growth and metastasis in vivo [12]. 
Dali et al. reported that loss of YTHDF1 in dendritic cells 
can lead to enhanced cross-presentation of tumor anti-
gens and the cross-priming of  CD8+ T cells in vivo [13]. 
However, less research was performed to investigate the 
cell–cell interaction between  m6A mRNA modification 
associated subtypes of TME cells with tumor cells.

Here, we investigated the influence of  m6A mRNA 
methylation on the main TME cells, including stro-
mal cells, myeloid cells, T cells, and B cells, based on 
65,362 single-cell sequencing data derived from 33 CRC 
tumor samples [14]. By nonnegative matrix factoriza-
tion (NMF) clusters of 23  m6A RNA methylation regu-
lators, as described previously [15, 16], it was observed 
that different patterns of  m6A mRNA methylation in each 
CRC TME cell type subpopulations manifested exten-
sive and diversity communication with tumor epithelial 
cells, and associated with different immune character-
istics, metabolic pathways, transcription characteristics 

and prognosis. To the best of our knowledge, the present 
study reveals, for the first time, that  m6A mRNA may 
guide intercellular communication of TME cells with 
tumor cells to contribute to colorectal cancer progression 
based on our comprehensive single-cell analysis.

Materials and methods
Study design and data collection
Single-cell mRNA sequence (scRNA-seq) data from 23 
CRC patients with 33 samples in the SMC dataset, 23 
tumor tissues, and 10 normal adjacent tissues were col-
lected to analyze the landscape of 23  m6A RNA methyla-
tion modification regulators. After preliminary sample 
integration, we generated a gene expression and phe-
notype matrix for 65,362 scRNA-seq datasets. Full data 
were downloaded from GSE132465 in the Gene Expres-
sion Omnibus (GEO) database (www. ncbi. nlm. nih. 
gov/ geo). In addition, 11 public datasets of bulk mRNA 
sequence or microarray data for 2653 CRC patients were 
also obtained from The Cancer Genome Atlas (TCGA) 
and GEO databases (Additional file 1: Table S1). All data 
generated or analyzed during this study are freely avail-
able in previous publications or the public domain.

Visualization of TME cell types and subtypes in CRC 
Using the Seurat package in R software, we created Seu-
rat objects for total and individual cell types belong-
ing to the scRNA-seq gene expression matrix based on 
acquisition. Then, the top 2000 genes, selected as the 
top variable features, were used as the basis for normal-
izing the scRNA-seq data for each cell by using the Find-
VariableFeatures of the Seurat package. Furthermore, we 
performed ScaleData and RunPCA functions to obtain 
the number of principal components (PC) based on the 
Seurat objects. We used “t-SNE (t-distributed stochastic 
neighbor embedding)” dimensionality reduction to fur-
ther summarize the top principal components. Finally, 
with the annotated information for each cell in CRC sup-
ported by the previous article, the Idents and DimPlot 
functions were used to annotate and visualize the cells of 
the major TME cell types or subtypes.

Pseudotime trajectory analysis of  m6A mRNA regulators 
for TME cells
To investigate the relationship of cell pseudotime tra-
jectories with  m6A regulators, we employed the Mono-
cle R package for single-cell RNA data for all cell types 
in CRC [17]. Highly variable genes were set according to 
the following filtering criteria: mean expression  ≥  0.1 
and dispersion_empirical ≥ 1* dispersion_fit. The DDR-
Tree method was used  for dimensionality reduction. 
Then we used the ‘plot_pseudotime_heatmap’ function 
to visualize heatmaps showing the dynamic expression of 
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 m6A regulators in the pseudotime trajectories of different 
TME cell types in CRC.

Non‑negative matrix factorization of  m6A mRNA regulators 
in TME cells
To best observe the effect of  m6A-mediated regulator 
expression on TME cell types, we carried out a dimen-
sion reduction analysis for 23  m6A regulators in all TME 
cell types, using the non-negative matrix factorization 
algorithm (NMF R package, version 0.20.6), and identi-
fied different cell subtypes for these cell types, depend-
ing on the scRNA expression matrix. All these steps were 
performed in a manner similar to the previous studies 
[10, 18].

Identification of the marker genes of  m6A‑related cell 
subtypes in TME cells
We used the FindAllMarkers function to list the mark-
ers of each NMF cluster of each cell type in CRC. The 
parameters for min.pct and logfc.threshold were set as 
0.15, and then we filtered the genes by using the adjusted 
p value < 0.05 for further research. The Dotplot function 
was performed to show the top highest gene expressions 
in each NMF cluster. The AddModuleScore function 
calculated the signature scores based on differentially 
expressed genes (DEGs) among these NMF cell clusters. 
The FeaturePlot function was used to show the distribu-
tion of specific signatures of NMF cluster scores in the 
TME of CRC. The special gene sets used in the compari-
sons among  m6A-related clusters were listed in Addi-
tional file 1: Table S2.

Functional Enrichment Analysis for NMF  m6A‑related 
subtypes
Based on these marker genes among NMF clusters in 
different TME cell types, the clusterProfiler R package 
was used to detect Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and the Reactome pathway database. 
Ctyoscape enrichment map function was used to cluster 
the pathways. Only gene sets with adjusted p-value < 0.05 
were considered significantly enriched. In addition, 
50 hallmark signatures and 113 metabolic pathways 
were collected from the molecular signature database 
(MSigDB) and a previous study [19], followed by per-
forming gene set variation analysis (GSVA) to calculate 
the enrichment scores for these NMF clusters.

SCENIC analysis for NMF  m6A‑related subtypes
The pySCENIC package (version 0.9.0), a Python-based 
implementation of the SCENIC pipeline was used to 
investigate the gene regulatory network of transcrip-
tion factors (TFs) in CRC [20]. Two gene-motif rankings 
(hg19-tss-centered-10  kb and hg19-500  bp-upstream) 

from the RcisTarget database were used to detect the 
transcription start site (TSS) and the gene regulatory net-
works in the scRNA-seq data in CRC. TFs with adjusted 
by Benjamini–Hochberg false discovery rate (BH-
FDR) < 0.05 were considered for further research.

Cell–cell communication analysis for NMF  m6A‑related 
subtypes
CellChat, an R package described previously, contains 
ligand-receptor interaction databases for human and 
mouse that can analyze the intercellular communication 
networks from scRNA-seq data annotated as different 
cell clusters [21]. First, we used CellChat to evaluate the 
major signaling inputs and outputs among all NMF TME 
cell clusters using CellChatDB.human. Then, we used the 
netVisual_circle function to show the strength or weak-
ness of cell–cell communication networks from the target 
cell cluster to different cell clusters in all NMF clusters. 
Finally, the netVisual_bubble function shows the bubble 
plots of significant ligand-receptor interactions between 
the target cell cluster and other TME NMF clusters.

Survival analyses with  m6A‑related signatures in public 
bulk RNA‑sequence datasets
Based on the FindAllmarker function in the Seurat R 
package, we generated  m6A-related gene signatures for all 
NMF cell clusters. Also, the main cell type of CRC TME 
were also calculated based on the scRNA data. Then the 
GSVA function was used to calculate these gene signa-
ture scores in all 12 public datasets of CRC. The log-rank 
test and Cox proportional hazard regression were con-
ducted to explore the relationship between  m6A-related 
NMF signatures and patients’ prognosis, including over-
all survival (OS) rate and recurrence-free survival (RFS) 
rate. The cutoff values of different NMF cell signatures 
in the different public datasets were determined by the 
survminer R package used to plot Kaplan–Meier curves. 
To obtain the prognosis of NMF  m6A-related signatures, 
we used the RMA function from the metafor R package 
to pool the Cox-regression results of the same signatures 
from all available public datasets. Finally, the forestplot R 
package was used to show meta-analysis results.

Collection of immunotherapy transcriptomic
12 Immune checkpoint blockade immunotherapeutic 
(ICB) cohorts with FPKM or CPM transcriptomic were 
collected from the public database, included 8 mela-
noma datasets (Ulloa et al. (2013, MAGE A3,Melanoma 
[22]);Gide et  al. (2019, anti-PD1 or anti-PD1 + CTLA4, 
Melanoma [23]); Nathanson (2017 CTLA4, Melanoma 
[24]); Hugo et al. (2016, anti-PD1, Met Melanoma [25]); 
Lauss et  al. (2017, ACT, Melanoma [26]); Liu et  al. 
(2019, anti-PD1, Met Melanoma [27]); Riaz et  al. (2017, 
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anti-PD1, Melanoma [28]); VanAllen (2016, CTLA4, 
MetMelanoma [29])), and other 4 non-melanoma 
cohorts (IMvigor210 (2018, anti-PDL1,Urothelial Cancer 
[30]); Braun et al. (2020, anti-PD1, CCRCC [31]); JaeWon 
et al. (2020, anti-PD1, NSCLC [32]);and Rose et al. (2021, 
ICB, Bladder Cancer [33])). All patients had the immune 
response in these cohorts.

Statistical analysis
Standard tests included Student’s t-test, Wilcoxon rank-
sum test, Kruskal–Wallis test, and Chi-square test for 
the differences of continuous target or category vari-
ables in these cell subgroups. Pearson analysis was used 
to show the correlation of different cell signatures or 
gene expressions among TME CRC cell types. To com-
pare the biological features of each  m6A-related subtype 
for each TME cell type in CRC, we collected many cur-
rent CRC-related gene signatures or TME cell function-
related gene lists from the previous public publication. 
Then, we used the ComplexHeatmap or pheatmap pack-
ages to visualize the different expressions of the scale 
data of target variables among the NMF clusters from the 
TME CRC cell types. Routine statistical analyses of the 
present study were performed in R 4.0 software, and a 
two-sided p-value below 0.05 was considered statistically 
significant.

Results
The landscape of  m6A regulators in TME cells in CRC 
Overall, the scRNA-seq dataset of CRC, as described 
previously, was used to explore the landscape of  m6A 
RNA methylation regulators (Fig. 1A). The SMC dataset 
contained 65,362 TME cells annotated with major cell 
types, including epithelial cells, mast cells, myeloid cells, 
stromal cells, T cells, and B cells, in 33 samples from 23 
CRC patients (Fig. 1B). Cell-chat analysis showed diverse 
and distinct interactions among these cell types (Fig. 1C). 
Here, we then fully evaluated the significant different 
expression between the mean RNA expression of  m6A 
regulators and common variables of the CRC samples 
by using the AverageExpression function of Seurat, such 
as class type (normal vs. tumor), MSI status (MSI-H vs. 
MSS), age group (older > 60 vs. young <  = 60), AJCC stage 
(I, IIA, IIIA, IIIB IIIC, and IVA) and gender (female vs. 
male) (Fig. 1D). Obviously, the expression of  m6A regu-
lators was indeed different among six cell types in CRC 
from the SMC dataset (Fig. 1E). The heatmap also shows 
the differential expression of  m6A regulators in 33 CRC 
samples with significantly different percentages of major 
cell types (Additional file  2: Figure S1A). Furthermore, 
to assess the relationship between  m6A regulators and 
immunologic state in TME cells, we also estimated the 
ImmuneScore using the “estimate” R package [34] for 

65,362 TME cells of CRC. Among six TME cell types, we 
found different strong associations of writer and eraser 
regulators using ImmuneScore (Additional file  2: Figure 
S1B).

Lastly, Fig. 1F showed the proportions of the  m6A spe-
cial NMF clusters for the interested four cell types (Fibro-
blasts, Macrophages, T cells, and B cells) by using the 
expression of 23  m6A regulators in scRNA data, respec-
tively. All of their marker genes of these  m6A related 
clusters were listed in the Additional file 1: Table S2 in all 
special TME cells.

Novel  m6A‑mediated fibroblasts contributed to the TME 
of CRC 
Stromal cells in the CRC dataset could be grouped into 
fibroblast and non-fibroblast cells in both tumor and 
normal tissues of CRC (Additional file  2: Figure S2A, 
B). By combining TCGA-COAD and TCGA-READ 
into one dataset, we used the xCell algorithm to calcu-
late tumor infiltration of fibroblast cells, and their high 
abundance showed a poor prognosis for CRC patients 
(Additional file 2: Figure S2C, p = 0.014). Also, the pseu-
dotime analysis revealed that the  m6A RNA regulators 
had a critical role in the trajectory process of TME cells 
including fibroblasts, NK cells, macrophages, CD4 + T 
cells, and CD8 + T cells, etc. (Fig.  2A, and Additional 
file  2: Figures  S2D, S3). Thus, by the cell-chat analysis, 
we found that there were different number of ligand-
receptor links between these  m6A-related fibroblast 
clusters (named as HNRNPA2B1 + CAF-C1 (n = 1939), 
WTAP + CAF-C2 (n = 245), HNRNPC + CAF-C3 
(n = 1194), and NoneMethy-CAF-C4 (n = 84)) and epi-
thelial cells (Fig.  2B and Additional file  2: Figure S2E). 
Among them, the WTAP + CAF-C2 population had a 
higher percentage in tumor samples (n = 1501) than that 
in normal samples (n = 1961, Chi-square test p < 0.001) 
(Fig.  2C). Enrichment analysis with KEGG showed that 
the WTAP + CAF-C2 cell cluster exhibited IL-17 activity, 
TNF signaling, and neutrophil-related functions based 
on DEGs (Additional file  1: Table  S3). Pan-CAF signa-
tures, originated from a previous study [35], were also 
calculated, and we found that the WTAP + CAF-C2 score 
was strongly associated with inflammatory CAF (pan-
iCAF) (Fig. 2E).

Next, gene regulatory network analysis showed the 
expression of 26 TFs was significantly different among 
the four clusters. It is noteworthy that TFs of REL, 
CEBPB, FOSL1, POU2F2, NFKB1, IRF1, and ETS1 were 
upregulated in the WTAP + CAF-C2 cluster (Fig.  2F). 
We additionally compared the expression of some sur-
face protein genes among the four  m6A-mediated CAF 
NMF clusters and found that CD34, LRRN3, BAMB1, 
P2RY6, CLDN1, and ICAM1 were higher in the 
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WTAP + CAF-C2 (Additional file  2: Figure S2F). From 
the pathway heatmap (Fig. 2G), these the WTAP + CAF-
C2 and NoneMethy-CAF-C4 had significantly different 
expressions of these pathway genes. Lastly, the enrich-
ment map revealed that the HNRNPA2B1 + CAF-C1, 
WTAP + CAF-C2, and NoneMethy-CAF-C4 had differ-
ent REACTOME pathway features (Fig. 2H).

m6A‑mediated macrophages resembled classical features
A total of 5822 macrophages were extracted from 
myeloid cells and divided into tumor-associated mac-
rophages (5586 cells) and normal macrophages (236) 
(Additional file  2: Figure S4A). Then, we obtained five 
main  m6A-mac clusters (Additional file 2: Figure S4B, C), 
including four clusters with the expression of  m6A regu-
lators (WTAP + mac-C1, n = 1432; HNRNPC + mac-C2, 
n = 1538; HNRNPA2B1 + mac-C3, n = 2169; YTHDC1 
& YTHDF3 + mac-C4, n = 442) and one cluster with-
out expression of  m6A regulators (NoneMethy-mac-C5, 
n = 241) (Fig. 3A). The average number and cell propor-
tion of  m6A-mac NMF clusters showed a significant dif-
ference between normal and tumor (Chi-squared test 
p < 0.001, Additional file 2: Figure S4D). Similar to fibro-
blasts, we also observed different number of ligand-
receptor links between these  m6A related macrophage 
clusters to tumor epithelia cells.

Next, using the AddModulScore function of Seurat 
for these signatures (Fig. 3B, C, Additional file 2: Figure 
S4E and F) among TAMs, we found that WTAP + mac-
C1 were significantly related to proinflammatory mac-
rophages and HNRNPA2B1 + mac-C3 were significantly 
related to SPP1 + and C1q + macrophages [14]. Check-
points expression also showed significantly different 
expression among five  m6A-mac clusters (Additional 
file 2: Figure S4G). Furthermore, the SCENIC analysis of 
macrophages showed different activation of potential TFs 
among WTAP + mac-C1 and HNRNPA2B1 + mac-C3 
clusters (Fig. 3D).

To assess the relationship between our  m6A-mac clus-
ters and special pathways, we used GSVA and detected 
that 41 out of 113 metabolic pathways were significantly 
different among the five  m6A-mac clusters (Fig.  3E). 
Then, the 50 hallmark pathways showed broadly differ-
ent activity among the five clusters (Additional file  2: 
Figure S4H). The enrichment map also revealed that the 
WTAP + mac-C1, HNRNPA2B1 + mac-C3 and TTHDC1 
& YTHDF3 + mac-C4 had the different REACTOME 
pathway features (Fig. 3F).

m6A‑mediated T/B cell phenotypes underscored 
the antitumor immune response in CRC 
Among the detected 23,115  T cells, 8 main cell types, 
including CD4+, CD8+, Treg, NK, T helper 17, T 

follicular helper, etc., were identified to further analysis 
(Fig. 4A). A total of 5  m6A-related cell clusters were rec-
ognized by the NMF algorithm, and named as methy-T-
C1 to methy-T-C5 (Fig. 4B), with the different numbers 
of ligand-receptor links between these  m6A-related T 
cell clusters and tumor epithelia cells (Fig.  4C). Check-
points expression analysis also showed significantly 
different expression among these  m6A-related T cell clus-
ters (Additional file  2: Figure S5A). Network regulatory 
analysis showed significant differential expression of TFs 
among these  m6A clusters of T cells (Fig. 4D). In addition, 
to assess the overall effects of  m6A-related T clusters on 
T cells, we found many differences in the average expres-
sion of immune genes of co-stimulation, co-inhibition, 
and some function-related markers. We also found many 
differences in the average expression of signatures among 
these  m6A clusters of CD4 + T, CD8 + T, Treg, and NK T 
cells, including T exhaustion score, T cytotoxic score, T 
effector score, and T evasion score (Fig. 4E). Also, accord-
ing to the DEGs, as listed in Additional file 1: Table S3, 
the enrichment map releveled that CD8 + T-C1, Treg-C1, 
CD8 + T-C4 and Treg-C4 had more immune function 
related terms (Additional file 2: Figure S5B). For 9146 B 
cells, NMF  m6A clusters had similar ligand-receptor links 
to epithelial cells. No significant relationship was found 
between  m6A-related B cell groups with IgG + plasma B 
cells, IgA + plasma B cells, and CD19 + CD20 + B cells, 
respectively (Fig.  4F–H). However, the heatmap still 
revealed the significantly different TFs among the  m6A 
clusters (Fig. 4I).

m6A‑mediated TME patterns contributed the CRC 
prognosis and immunotherapy
To obtain the signature of main CRC TME cell types, 
we re-calculated the DEGs of them in the CRC scRNA 
data and extracted the top 30 as the cell markers. Then, 
according to all DEGs of  m6A-mediated TME cells (Addi-
tional file 1: Table S3), we used the GSVA to calculate the 
 m6A sub-score, and to explore the prognosis of them in 
the CRC patients and pan-cancer by using the meta-anal-
ysis for OS and RFS in the 1892 and 2315 CRC patients 
from 8 and 11 CRC cohorts, as listed in the Fig. 5, respec-
tively. All score were divided into two groups to conduct 
the cox regression analysis. Interestingly, along with the 
changing of the main dominated  m6A genes in special 
 m6A-mediated sub-cell types, we found that the recur-
rence-free survival (Fig.  5A, Additional file  2: Table  S6) 
and overall survival (Fig. 5B, Additional file 2: Table S7) 
rates of them were significantly different among these 
sub-clusters, including CAF, macrophages, CD8 + T, Treg 
and B cells. In addition, we used the logistic regression 
method to observe the same meaningful phenomena of 
m6A sub TME cells for predicting the immune response 



Page 8 of 14Gao et al. Journal of Translational Medicine          (2022) 20:197 

for patients who underwent the immunotherapy in the 13 
public cancer cohorts, including clear cell renal cell car-
cinoma (ccRCC), non-small cell lung cancer (NSCLC), 
met-melanoma, melanoma, urothelial cancer, and 

bladder cancer (Fig. 5C, and Additional file 1: Table S8). 
Finally, we inspected the prognosis of m6A sub clusters 
in the pan-cancer patients which were listed in Addi-
tional file 2: Figure S6A and B, and found that different 
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cell sub clusters contributed to different cancers with the 
significant prognosis.

m6A‑mediated TME patterns enhanced the intercellular 
communication
By the cell-chat analysis, we listed all ligand-receptor 
pairs of intercellular communication, including MIF −  
(CD74 + CXCR4), MIF −  (CD74 + CD44), MDK–NCL, 
LGALS9 − CD45, CLEC2D − KLRB1, CLEC2C − KLRB1, 
CLEC2B − KLRB1, APP − CD74, CD99 − CD99, and 
ADGRE5 − CD55, were existed from  m6A sub clusters to 
the tumor epithelial cells (Fig.  6A and Additional file  1: 
Table  S4). Herein, the hypothesis of potential mecha-
nism between them was demonstrated in Fig.  6B. Each 
 m6A subtypes might have different strengths and ligand-
receptor pairs with tumor epithelial clusters, which sug-
gests that  m6A-mediated TME cells might have more 
interactions with tumor cells and thus contribute to the 
progress of CRC.

Discussion
To date, several studies have revealed the correla-
tion between RNA  m6A modification and the patho-
genesis of colorectal cancer [36–40]. However, only a 
few have investigated the potential tumorigenic role of 
 m6A-modified single cells. In the present study, we, for 

the first time, have comprehensively explored  m6A modi-
fication regulators of main cell types in the TME of colo-
rectal cancer and further identified the diversity cell–cell 
interaction between  m6A associated TME cell subtypes 
and tumor cells at the 10X Genomic single-cell sequence 
level. This unique and new perspective allowed us to 
understand how RNA  m6A modification of these diverse 
cellular components of TME affects the fate of individual 
CRC patients.

Cancer epithelial cells constitute the majority of tumor 
tissue and drive tumor development. Meanwhile, the 
heterogeneity of cancer epithelial cells indicates the 
responsiveness of patients to treatment and determines 
prognosis. Besides cancer epithelial cells, TME cells, such 
as multiple types of stromal cells, vascular endothelial 
cells and infiltrating immune cells, all support growth 
and promote immune evasion of solid tumors. In the 
study, we found that the TME cells, including stromal 
cells, macrophages, T cells and B cells all manifested 
the diverse  m6A regulatory patterns and the extensive 
communication with tumor epithelial cells based on 
the single-cell analysis. Furthermore, Cellphone analy-
sis showed that ligand-receptor pairs, including MIF −  
(CD74 + CXCR4), MIF −  (CD74 + CD44), MDK–NCL, 
LGALS9 − CD45, CLEC2D − KLRB1, CLEC2C − KLRB1, 
CLEC2B − KLRB1, APP − CD74, CD99 − CD99, and 
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ADGRE5 − CD55 mediated the communication between 
 m6A associated subtypes of TME cells and tumor epithe-
lial cells.

Cancer-associated fibroblasts (CAFs), as one of the 
critical components of stromal cells, were classified as 
pan-myCAFs, pan-dCAFs, pan-iCAFs, pan-nCAFs, and 
pan-pCAFs, according to specific molecular characteris-
tics [35]. To date, few studies have revealed the potential 
role of RNA  m6A modification in CAFs. In our study, we 
found that  m6A-mediated fibroblasts manifested more 
extensive communications with tumor epithelial cells 
compared with non-m6A-mediated fibroblasts. Fur-
thermore, WTAP-fibroblasts had a strong relationship 
with inflammatory-CAFs and the elevated expression 
of proinflammatory factors, such as CXCL1, CXCL2, 
CXCL3, CCL2, IL-6 and IL-7. Pathway analysis also 
revealed the participation of CAFs in IL-17 signaling 
pathway, TNF signaling pathway and the innate immune 
associated pathways. CAFs may shape an immunosup-
pressive microenvironment through the secretion of 
CXCL1, IL6 and CCL2 [41–44]. Therefore, we specu-
lated that RNA  m6A modification CAFs may form the 

immunosuppressive interaction with tumor cells to pro-
mote the progress and metastasis of tumor.

Nowadays, increasing research has revealed the signifi-
cant role of RNA  m6A methylation in the regulation and 
reprogramming of immune cells [12, 13, 45–47]. In the 
study of Lihui Dong and colleagues [45], C1q + TAMs, a 
subtype of TAMs, were found to be regulated by an RNA 
 m6A program and promote CD8 + T cell dysfunction by 
expressing Ebi3 transcript with decreased  m6A level. In 
addition, Lei Zhang et al. [48] reported that SPP1 + TAMs 
had a pro-angiogenic signature and weakened tumor 
immunity. By NMF clusters, we found that  m6A-mediated 
subtypes of macrophages all manifested extensive com-
munications with tumor cells. Correlation analysis showed 
that HNRNPA2B1 + mac-C3 was significantly related 
to SPP1 + and C1q + macrophages, and further progno-
sis analysis revealed the inverse correlation between the 
expression with survival probability. The metabolic pro-
cess had a profound influence on TAMs and thus modu-
lated cancer progression and immune responses, including 
glucose, glutamine and fatty acid metabolism [49]. Our 
research found that  m6A-mediated macrophage, especially 
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for HNRNPA2B1 + mac-C3 subtypes, manifested obvi-
ous activation of metabolism-related pathways, such as 
purine biosynthesis, gluconeogenesis, and cysteine and 
methionine metabolism et  al. Moreover, except for mac-
rophages, we found that  m6A-mediated T cells (CD8+, 
CD4+ and regulatory T cells), NK cells and B cells also 
showed extensive interaction with tumor cells. Further-
more,  m6A-mediated subtypes of four main T cells exhib-
ited variable T cell active and inactive characteristics. 
These findings all indicate the significant role of RNA  m6A 
methylation in immune escape and the tumor-promoting 
effect of macrophages and T cells.

To identify cell-specific gene regulatory networks, we 
performed an analysis of TFs at the single-cell level. In 
general, each subtype of CAFs, macrophages, B cells and 
various types of T cells all manifested distinct TFs char-
acteristics. For CAFs, WTAP-fibroblasts exhibited a 
unique TF gene signature, such as ETS1, CEBPB, IRF1, 
REL and NFKB1. Previous studies have revealed the rela-
tionship between  m6A modification and the expression 
of ETS1, CEBPB, IRF1 and REL, which suggests the role 
of  m6A in the regulation of CAFs [50–53]. In addition, 
for macrophages, we observed higher activity of SPI1 and 
STA1 on HNRNPA2B1-mac. Similarly, the correlation 
between  m6A modification and both SPI1 and STA1 was 
reported in previous research [52, 54–56]. Moreover, for 
B and T cells, we also found distinct TF characteristics of 
 m6A-mediated cell subtypes. To sum up,  m6A-mediated 
cell subtypes may modulate distinct TF regulatory net-
works to reshape and reprogram the TME. Finally, cell net-
work analysis revealed that these  m6A-mediated TME cells 
were closely connected and communicated with tumor 
cells. Notably, either  m6A-mediated CAFs or immune cell 
subtypes had more communication with cancer epithelial 
cells, indicating that formation of an immunosuppressive 
tumor microenvironment might partially be determined 
by RNA  m6A methylation.

Considering the complex intrinsic patterns of RNA 
 m6A methylation in TME cells, we comprehensive sum-
marized the relationships of these sub clusters’ scores 
with prognosis and immune response from the public 
bulk RNA-seq cohorts. Clearly, the patients with differ-
ent domination of m6A regulators of the TME cells had 
huge prognosis differences of CRC and exceedingly distin-
guished the immune response for patients who underwent 
ICB therapy, especially for the CAFs and macrophages, 
which revealed that the critical role of TME  m6A for CRC 
patients in further research.

As a preliminary study, the major limitations of our 
analysis were that the low depth of scRNA-seq and the 
inadequate samples, and our conclusion need to acquire 
verification in more patients. Compared with bulk RNA-
seq, the scRNA-seq of some  m6A regulators in CRC 

would typically be minor and had more zero observa-
tion, which might contribute to the bias of the clustering 
method in our study. Nonetheless, the scRNA-seq analy-
sis still provides us a novel view to reveal the characteris-
tics of  m6A methylation regulators in various TME single 
cells to reduce the tumor heterogeneity in CRC, which is 
a key forward step for clinical practice.

Conclusions
We, for the first time, identified specific RNA 
 m6A-modificated cell subtypes of TME cells by using the 
single-cell sequencing analysis method and revealed the 
 m6A methylation mediated intercellular communication 
of tumor microenvironment in the regulation of tumor 
growth and antitumor immunomodulatory processes.
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