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Lung cancer is a highly heterogeneous disease. Cancer cells and cells within the tumor

microenvironment together determine disease progression, as well as response to or escape

from treatment. To map the cell type-specific transcriptome landscape of cancer cells and

their tumor microenvironment in advanced non-small cell lung cancer (NSCLC), we analyze

42 tissue biopsy samples from stage III/IV NSCLC patients by single cell RNA sequencing

and present the large scale, single cell resolution profiles of advanced NSCLCs. In addition to

cell types described in previous single cell studies of early stage lung cancer, we are able to

identify rare cell types in tumors such as follicular dendritic cells and T helper 17 cells.

Tumors from different patients display large heterogeneity in cellular composition, chro-

mosomal structure, developmental trajectory, intercellular signaling network and phenotype

dominance. Our study also reveals a correlation of tumor heterogeneity with tumor asso-

ciated neutrophils, which might help to shed light on their function in NSCLC.
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T
umor ecosystems are comprised of cancer cells, infiltrating
immune cells, stromal cells, and other cell types together
with noncellular tissue components, which interact and

collectively determine disease progression as well as response to
therapy1,2. It is well known that cancer patients elicit very indi-
vidualized responses to different treatments, demanding better
characterization of the whole tumor ecosystem beyond currently
applied clinical typing of somatic mutations in cancer cells.
Furthermore, precisely targeted therapies against well-defined
oncogenic drivers reveal a wide spectrum of responses in different
settings. For example, the KRAS G12C inhibitors seemed to
induce tumor responses in the majority of lung cancers but much
less in pancreatic cancers, which differ in their tumor micromilieu
dominated by cancer-associated fibroblasts3. Antibodies targeting
PD1 or PD-L1 have achieved substantial overall survival
improvements in advanced non-small cell lung cancer (NSCLC).
The 5-year survival rate could be prolonged from less than
5–29.6% in PD-L1-positive patients4,5. However, major chal-
lenges still remain, including low response rate in unselected
patients, lack of reliable predictive biomarkers, and identification
of more immunotherapeutic targets. Thus, comprehensive
understanding of NSCLC ecosystems holds the promise to
improve personalized treatment strategies6.

Conventional ‘bulk’ RNA-sequencing methods process a mixture
of all cells, averaging out underlying differences in cell-type-specific
transcriptomes. In contrast, single-cell RNA-sequencing (scRNA-
seq) profiles the gene expression pattern of each individual cell and
decodes its intercellular signaling networks. This unbiased char-
acterization provides clear insights into the entire tumor ecosystem,
such as mechanisms of intratumoral and intertumoral hetero-
geneity, as well as cell–cell interactions through ligand-receptor
signaling7. Thus, several studies deeply characterized the lung
tumor microenvironment (TME) at single-cell resolution. An
extensive taxonomy of stromal cells with different pathway activities
in NSCLC patients presented a first-ever lung cancer TME cell
atlas8. Isolated infiltrating T cells in NSCLC were classified
according to their functional states and dynamics and a subset of
regulatory T cells (Tregs) was found to correlate with the poor
prognosis in lung adenocarcinoma9. Tumor-infiltrating myeloid
cells (TIMs), including monocyte, macrophage, dendritic, and
granulocyte cell lineages, were categorized into at least 25 different
states by scRNA-seq10. Subsets of TIMs defined by unique markers
have been associated with patient prognosis. Heterogeneity of
tumor endothelial cells was also studied for both human and
mouse11. All reports mentioned above focused on early stage,
resectable lung cancers, which may not reflect the cellular profiles of
tumors at advanced stages that have undergone intense and
exhaustive interactions with stromal and immune cells. Focusing on
the evolutional dynamics of lung adenocarcinoma, Kim’s study was
performed on the lung adenocarcinoma samples from early-stage
tissues to advanced stage biopsies including both primary and
metastatic sites12. Another recent study uncovered transcriptional
signatures specific to various targeted therapies and clinical states
on primary and metastatic lung biopsies by low throughput Smart-
seq2 technology, which only included one squamous carcinoma
patient13. Until now, the late-stage landscape of lung squamous
carcinoma was mostly absent.

In this study, we apply scRNA-seq to analyze the cancer and
TME landscape of advanced NSCLC for both lung adenocarci-
noma and squamous carcinoma. We identify distinct cell popu-
lations and cellular signals that are differentially enriched in
tumors depending on the pathological types, presence or absence
of driver mutations, and degree of tumor heterogeneity. Our data
provide a comprehensive scRNA-seq profiling on a large number
of small biopsies and may be used to improve diagnostics and
prognosis in clinical settings.

Results
Establishment of advanced NSCLC cell atlas. We applied
scRNA-seq analyses to biopsy samples from 42 advanced NSCLC
patients with diverse histological and molecular phenotypes and
treatment history (Fig. 1a, Supplementary Table 1). Following
multiple quality control and filtering steps, a total of 90,406 cells
were analyzed with respect to their transcriptomes. By char-
acteristic canonical cell markers, eleven major cell types were
detected, classified as carcinoma cell types, epithelial cells others
than carcinoma cells, immune cell types (T cells, B lymphocytes,
myeloid cells, neutrophils, mast cells, and follicular dendritic
cells) and stromal cell types (fibroblasts and endothelial cells)
(Fig. 1b, c and Fig. S1). Similar to the observations in previous
studies, stromal and immune cells of different patients clustered
together by cell types, while cancer cells showed higher hetero-
geneity and patient-specific expression signatures (Fig. 1d)14,15.
Similar to the observations from previous studies8,12, the portions
of cancer, stromal, and immune cells varied greatly among
samples, which could be intrinsic to different tumor phenotypes
or related to locations within the tumor where biopsies were
taken (Fig. 1e and Supplementary Data 1). For example, tumor
specimen P42 (lung adenocarcinoma mixed with sarcomatoid
carcinoma) and P7 revealed a strongly inflammatory micromilieu
with almost 50% T cells in contrast to specimen P2, P3, and P17,
which were practically T cell depleted.

Lung Squamous Carcinoma has higher inter- and intratumor
heterogeneity than lung adenocarcinoma. Based on single-cell
expression levels of genes commonly used as markers for
immunohistochemistry-based NSCLC classification, namely NAPSA,
TTF-1 (NKX2-1) for lung adenocarcinoma (LUAD), and TP63, CK5
(KRT5) for lung squamous carcinoma (LUSC), subtype classifica-
tions aligned well with the histopathological classifications (Fig. S2).
Next, we used the scRNA-seq data to infer copy number alterations
(CNAs) in cancer cell populations. The inferred CNA profiles of 42
patients showed both interpatient and intrapatient heterogeneity
(Fig. 2a). For LUAD patients, prominent arm-level insertions were
found in chromosome 7 and 8q, with deletions in chromosome 10.
Noteworthy, LUAD with known driver mutations have additional
amplifications in the 1q and 5p arms. In contrast, LUSC patients
mostly have 3q insertions and 5q deletions. Interestingly, some of the
LUAD patients without driver mutations have similar CNA profiles
to LUSC. Although expression profiles and composition of the
cancer cell transcriptomes were largely patient-specific, carcinoma
cells from some patients were more similar than others (Fig. 2b and
Fig. S3A, B). In most cases, cancer cells from LUAD and LUSC
patients partitioned into separate clusters. More than half of the
LUAD patients clustered into one group, while most LUSC tumors
formed patient-specific clusters, indicating higher intertumor dif-
ferences in LUSC than in LUAD. Most patients, especially patients
with LUAD e.g., P16, P20, and P32, had dominant clones, while in a
few LUSC such as P27 and P37 the malignant cells spread across
multiple clusters (Fig. 2b and Fig. S3C). LUSC patients showed
significantly higher clonality than LUAD patients (Fig. S3D).

To quantify the intratumoral heterogeneity, we defined both a
CNA-based and an expression-based intratumor heterogeneity
score, denoted as ITHCNA and ITHGEX (see Methods for their
definitions). We observed various degrees of heterogeneity within
the tumor (Fig. S4A, B). ITHCNA and ITHGEX showed a moderate
correlation (Fig. 2d), potentially due to the nondriver genomic
alternations or the microenvironment shaped tumor phenotypes.
We further divided patients into three groups according to both
the cancer type and mutation: LUAD patients with driver
mutation (n= 12), denoted as LUADm, LUAD patients without
driver mutation (n= 6), denoted as LUADn, and LUSC patients
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without driver mutation (n= 16), denoted as LUSCn. Interest-
ingly, LUSCn patients have significant higher ITHCNA comparing
to patients of LUADm, while there was no statistical significance
in terms of ITHGEX (Fig. 2e). This finding also suggested patients
with driver mutations may be phenotypically influenced beyond
genomic alternations. The comparison between this cohort and a
cohort from public data revealed increased ITHGEX scores of late-
stage patients12 (Fig. S4C).

Plasticity of lung epithelial cells and their developmental tra-
jectories into malignant tumor cells. All identified alveolar
cells express the canonical markers (CLDN18, SFTPA1,
SFTPC) of Alveolar Type 2 cells (AT2) without expressing
Alveolar Type 1 cell markers (CAV1, AGER). Further clus-
tering analysis unveiled two distinct cluster of AT2 cells,
denoted as AT2-1 and AT2-2 (Fig. 3a). AT2-2 resembled a
normal AT2 phenotype with common AT2 markers SFTPA
and transporter ABCA3 upregulated (Fig. 3b). In contrast,

AT2-1 expressed cell proliferation and cell migration related
genes, such as CEACAM6, KITLG, and FOXC1, implying a
phenotypic change towards malignancy. Epithelial cells could
be further separated into ciliated epithelial cells, club cells, and
basal cells (Fig. 3c, d).

Previous studies showed that AT2 cells and club cells could
both develop into LUAD cells, while basal cells and club cells
are potential progenitors of LUSC16,17. Therefore, we orga-
nized AT2 cells, club cells and LUAD cancer cells according to
their developmental trajectories (Fig. 3e). The inferred
pseudotime paths showed AT2 cells and club cells transited
into LUAD tumors independently. In contrast, basal cells
seemed to act as a transitional state between club cells and
LUSC tumor cells (Fig. 3f). Besides such distinct signatures,
we found tumor cells of some patients clustered closely at the
end of the branches, implying a homogeneous and terminal
phenotype, while others have more diverse and heterogeneous
profiles spreading along cancer developmental trajectories.

Fig. 1 Advanced NSCLC single-cell atlas. a Graph illustration of the baseline information of the 42 patients, including subtypes, stages, mutation status,

and smoking history. b UMAP plot of 90,406 cells from 42 patients, colored by their 11 major cell types. c Heatmap of canonical cell-type markers of 11

major cell types. d UMAP plot of all cells, colored by patients. e Major cell-type composition of each patient. Biopsies were all taken from the primary lung

tumors. Source data are provided as a Source Data file.
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Advanced NSCLC TME revealed a rich program of stromal and
immune components. To further identify subgroups of each
stromal and immune cell types, we clustered and annotated them
individually. We identified five subtypes of endothelial cells (EC)
including lymphatic, venous, and arterial endothelial cells (LEC,
VECs, and AECs), tip cells, and an EC cluster enriched with
interferon induced genes (Fig. S5 and Supplementary Data 2).
Furthermore, we divided fibroblasts into pericytes and fibroblasts,
including six subclusters of fibroblasts (Fig. S6 and Supplemen-
tary Data 3). For immune cells, our data revealed two B cell
subgroups and seven different plasma cells (Fig. S7). Myeloid
cells, especially macrophages, have a broad range of phenotypes
and could be divided into 10 different groups (Fig. S8). Dendritic
cells (DCs), including plasmacytoid dendritic cells (pDCs), con-
ventional type 1 and 2 DCs (cDC1 and cDC2), and mature DCs
were also discovered. Neutrophils have two distinct clusters,
expressing potential polymorphonuclear myeloid-derived sup-
pressor cells (PMN-MDSCs) related genes such as LOX-1 (OLR1)
to different extents (Fig. S9).

Detailed analysis of T cells uncovered Th17-like cells and their
potential interconversion with Tregs. Within tumor-infiltrating
T cells, we identified CD4+ naïve T cells, CD4+ Tregs, CD4+ T
helper 17-like T cells (Th17-like), CD8+ effector T cells, CD8+
exhausted T cells, and Natural Killer (NK) cells according to
expression of their respective markers (Fig. 4a). T cell subtypes were
confirmed by supervised cell-type annotation based on previously
studied T subtype expression profiles9 (Fig. 4a). To further char-
acterize two NK clusters (CD3D−, KLRD1+, NKG7+), we referred
to the CD16+ (FCGR3A) cluster as NK-1 and CD16− cluster as
NK-2 (Fig. 4b). NK-1 contains upregulated transcripts encoding
fractalkine receptor (CX3CR1) and fibroblast growth factor binding
protein 2 (FGFBP2), both involved in lymphocyte cytotoxic func-
tions. NK-2 had higher expression of tissue-resident markers such
as CD49a (ITGA1), CD103 (ITGAE), and ZNF683. Co-inhibitory
immune checkpoints including CTLA4 and TIGIT were enriched in
CD4+ Tregs and CD8+ exhausted T cells (Fig. 4c). However,
LAG3 was mainly expressed in CD8+ exhausted T cells, which is
consistent with previous findings9.

Fig. 2 Inter- and intratumor heterogeneity of cancer cells. a Heatmap of CNA profiles inferred from scRNA-seq of tumor cells of patients. Red indicated

genomic amplifications and blue indicated genomic deletions. The x-axis showed all chromosomes in the numerical order. The y-axis was marked by both

patient subgroups. b Heatmap displaying proportions of cancer cells of each patient in cancer clusters. The clustering results of cancer cells were generated

using resolution 0.4 in Seurat. The arrangement of the patients on the y-axis were based on their similarities using hierarchical clustering. c UMAP

visualization of cancer cell clusters. The cluster IDs corresponded to cluster IDs shown in b. d Correlation between ITHCNA and ITHGEX for 42 patients.

Shaded areas corresponded to the 0.95 confidence interval analyzed by two-sided t-test. e Statistical tests of ITHCNA and ITHGEX between patients in

different groups, LUSCn, LUADm and LUADn (LUSCn: n= 16, LUADn: n= 6, LUADm: n= 12 biological independent samples. *p≤ 0.05; ns: p > 0.05). Two-

sided unpaired Wilcoxon test was performed to compare between groups. The lower hinge, middle line, and upper hinger of boxplots represented the first,

second, and third quartiles of the distributions. The upper and lower whiskers corresponded to the largest and smallest data points within the 1.5

interquartile range. All actual data values were also plotted as dots alongside the boxplots.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22801-0

4 NATURE COMMUNICATIONS |         (2021) 12:2540 | https://doi.org/10.1038/s41467-021-22801-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


We then performed trajectory analysis on CD4+ T cells to
determine their developmental pathways within TME using both
Slingshot18 and Monocle19. Slingshot revealed a transitional
relationship between Tregs and Th17-like cells, originated from
naïve cells (Fig. 4d). Uncovered by Monocle, naïve cells
differentiated into two major branches, Tregs and a proliferating
population (Fig. 4e, f). Interestingly, Th17-like cells, confirmed by
expression of their master transcription factor RORC, showed a
transitional phenotype spreading along the developmental path-
way from naïve cells to Tregs (Fig. 4f). The CD4+ Th17-like
population marked by high expression of gene KLRB120 is, to our
knowledge, the first report of Th17-like cells identified in NSCLC
tumor environments by scRNA-seq. As supported by literature21,
natural Tregs (nTregs), a subset of Tregs, are believed to
interconvert with Th17-like cells. This result revealed a complex
and delicate interplay between Tregs and Th17-like cells and
highlighted the importance of their balance in adaptive immune
responses to tumor antigens22.

Both NSCLC subtypes and ITH shaped the immune landscape
in TME. To investigate if tumor subtypes and their ITH levels
affect their microenvironment, we compared the cell-type com-
position of NSCLC by their histology and their driver mutation
status. We found that neutrophils were significantly depleted in
all LUAD patients (Fig. 5a). While comparing LUAD patients
with and without oncogenic driver mutations, a macrophage
cluster with highly expressed CCL13 was enriched in the group of
mutated tumors (Fig. 5b). The proportions of the tissue-resident

macrophage cluster expressing the scavenger receptor MARCO
and CXCL5, and cDCs also exhibited significant differences
among the three groups (Fig. 5b). Interestingly, cDC2 displayed
Langerin (CD207) expression, which was inferred to be dictated
by the environment23. TCGA survival analysis revealed that
CD207 is a prognostic marker for LUAD, but not for LUSC
(Fig. 5c). However, MARCO is not associated with clinical out-
comes of both LUSC and LUAD. Since we identified two subtypes
of MARCO+ alveolar macrophages, these results combined
implied the multifunctional roles of tissue-resident myeloid cells.
We next investigated the correlation between ITH scores and the
immune cell compositions. We found neutrophils and two sub-
types of macrophages were positively correlated with ITHGEX,
while plasma cells were negatively correlated with ITHGEX

(Fig. 5d). This finding potentially suggested high immunosup-
pressive environment and low cancer killing ability for patients
with high ITHGEX. Overall, we found the myeloid compartment is
the mostly affected by tumor subtypes and ITH levels instead of
tumor-infiltrating lymphocytes.

Divergent intercellular networks observed among LUADn,
LUADm, and LUSC. In order to explore the interplay among cell
types within the tumor microenvironment, we performed a
cell–cell interaction analysis and showed a prominent interaction
between cancer cells and endothelial cells, fibroblasts and mac-
rophages (Fig. 6a). Analysis of the interacting molecules across
cells showed a complex network with the interplay of oncogenic
pathways as EGFR, NOTCH, WNT, with PDGF and

Fig. 3 Phenotypes of lung epithelial cells and their evolutionary trajectory into cancer cells. a UMAP projection of alveolar cells. Alveolar cells could be

further divided into two clusters, both of which are AT2 cells. They were denoted as AT2-1 and AT2-2. b Volcano plot of differentially expressed genes between

AT2-1 and AT2-2 cells. Difference between percentage of cells expressed in two clusters was plotted against log fold change of average expressions. c UMAP

visualization of epithelial cell subtypes. Epithelial cells could be further annotated into basal cells, club cells, and ciliated cells. d Heatmap of canonical marker

genes of epithelial lung subtypes. e Developmental trajectories of AT2 cells, club cells, and LUAD tumor cells. Normal cells were shown as a whole for each

type, and cancer cells were shown separately for each patient. f Developmental trajectories of basal cells, club cells, and LUSC tumor cells.
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inflammatory signaling pathways, in particular affecting TNF-a
and chemokine responsive pathways (Fig. 6b). Notably, VEGFA-
mediated protein–protein interactions and two analogous immune
checkpoint pathways CD226-TIGIT-CD96 and CD274 (PD-L1)-
CTLA4-CD28 were also identified within the interaction network.

Cancer cells expressed high levels of ligands CXCL1, CXCL2,
CXCL3, and CXCL8, signaling to the receptors CXCR1 and
CXCR2 expressed by neutrophils (Fig. 6c). Some of the LUSCn
and LUADn patients showed increased interactions between DCs
and T cells, including CXCR3 and its partners, suggesting strong
effector T cell trafficking and recruiting24. We also confirmed
activation of the CXCL12-CXCR4 pathway between tumor and
sprouting endothelial cells (AECs and tip cells) described in Fig.
S5. Regarding growth factors, the majority of tumors, regardless
of subtypes, had very strong signals of VEGF interactions between
tumor and various types of endothelial cells (Fig. 6d). PDGF
signaling, on the other hand, was activated between tumor and
cancer-associated fibroblast (CAF) cells. A distinct pattern for
LUSC patients is the activation of FGF pathways among stromal
cells and tumor cells, also supported by previous studies25. Since
only a portion of LUSC patients have FGF pathways activated,
patient stratification may be important for the usage of drugs
targeting FGF pathways.

For patients’ immune environment, we found macrophages,
instead of cancer cells, played a major role in inhibiting T cell
functions through checkpoint pathways (Fig. 6e). Different

subgroups showed different dominant pathways. For example,
LUADm have high levels of activation of the TIGIT pathway but
low levels of activation of TIM3 (HAVCR2) pathway. We did not
detect any significant activation of the PD1/PD-L1 axis except for
a few LUSC patients, potentially due to the low expression of
PD1/PD-L1 on the transcriptomic level. Interaction analysis
performed on a public dataset confirmed the similar activation
state of checkpoint pathways for late-stage LUAD (Fig. S10A).
Interestingly, an early-stage LUAD patient in the same dataset
showed opposite activation status of TIGIT and TIM3 with
respect to the late-stage patient (Fig. S10B). Nevertheless, by
cellular network analysis of the scRNA-seq data, we generated a
comprehensive view of patients’ TME including angiogenesis,
CAF activation, recruitment of immunosuppressive cells, T cell
activation, and detailed activation profiles of checkpoint path-
ways. Therapeutics related interactions were heterogeneous even
within the same subtype of lung cancer, highlighting the needs for
more precise biomarkers to increase the drug efficacies.

Discussion
In this study, we present the valuable comprehensive landscape of
cancer cells, immune cells, and stromal cells in advanced NSCLC
by scRNA-seq analysis. We were able to identify 11 major cell
types from advanced NSCLC, including 48 subtypes besides
cancer cells, the majority of which are consistent with previous

Fig. 4 Subtypes and developmental trajectory of T cells. a UMAP visualization of 6 T cell subtypes and 2 NK cell subtypes (left) and predicted T cell

subtypes by singleR (right). b Heatmap of selected markers for 2 NK clusters. c Heatmap of T subtype markers and selected functional genes.

d Transitional relationship among CD4 T cells predicted by Slingshot. Rainbow coloring from red to blue represented the begin to end of the trajectory.

e Illustration of CD4 T cell differentiation pathways inferred by Monocle and the relative locations of each CD4 T subtypes along the development

pathways. The red and blue arrows indicated the two pseudotime directions of cell development. The grey section represented the beginning of the

trajectory before the branching point. f Heatmap showing relative expressions of canonical markers of CD4 T cells along inferred trajectories. The red and

blue branches correspond to the two developmental directions in e.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22801-0

6 NATURE COMMUNICATIONS |         (2021) 12:2540 | https://doi.org/10.1038/s41467-021-22801-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


studies. We focused on the cancer cells, which were not studied
extensively at single-cell level in the previous literature. The
shared arm-level CNAs were consistent with the observations
from previous genomic sequencing data26, indicating a repre-
sentative cohort of advanced NSCLC tumor types. Based on a
quantitative approach to define inter- and intratumor hetero-
geneity, we unmasked a broad range of clonality, homogeneity,
and the complexity beyond current classification systems of
advanced NSCLC. In general, LUSC has higher ITH than LUAD.
However, our data call for a more precise profiling of individual
patients on the cellular levels beyond the traditional pathological
definitions. For example, specimen P7 is a LUSC tumor with
strong TP63/CK expressions and weak NAPSA expression (Fig.
S2A). Interestingly, the major clone of this patient only represents
less than 75% of its cancer cells (Fig. S3C). Further investigation
showed one of its minor clones clustered together with many
LUAD patients.

We also identified rare cell types such as FDC and Th17-like
lymphocytes. The existence of FDC indicated the formation of
lymphoid follicles, which usually correlates with favorable clinical
outcomes27. In tumor-infiltrating CD8+ T cells, there are more
exhausted T cells than cytotoxic T cells, which is opposite to what
is observed in early stage, resectable NSCLC patients9. Notably,
the myofibroblast to fibroblast ratio in our study was remarkably
high compared to healthy or asthma lungs28. Thus, CAFs with
myofibroblast characteristics may act as an important malignant
signature for advanced stage lung cancer. Certain cell subtypes
identified in this study were previously determined to be asso-
ciated with drug responses. For example, CXCL9+ Mac was
enriched in patients responding to immunotherapy29.

From the cellular composition analysis, we showed neutrophils
to be enriched in LUSC. This phenomenon has been demon-
strated by previous studies in NSCLC that neutrophils are more
abundant in human LUSC compared to LUAD due to differences

Fig. 5 Correlation analysis of cellular composition, tumor subtypes, and ITH. Cellular composition analysis of cell type between patient groups for

a neutrophils and b macrophage subtypes. Two-sided unpaired Wilcoxon test was performed to compare between groups for tests in a and b (LUSCn: n=

16, LUADn: n= 6, LUADm: n= 12 for both a and b. **p≤ 0.01; *p≤ 0.05; ns: p > 0.05). The lower hinge, middle line, and upper hinger of boxplots

represented the first, second, and third quartiles of the distributions. The upper and lower whiskers corresponded to the largest and smallest data points

within the 1.5 interquartile range. All actual data values were also plotted as dots alongside the boxplots. c Survival analysis for tissue-resident macrophage

markers (MARCO and CD207) of LUAD and LUSC. d Correlation analysis between ITHGEX and the cellular composition of patients. Only significantly

associated cell types were shown. The tumor subtypes (LUAD, LUSC, and NSCLC) were shown in different colors and p-values were obtained by two-side

t-tests (LUAD: n= 18, LUSC: n= 22, and NSCLC: n= 2).
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in TME30. In a subsequent study, the master transcription factor
SOX2, a lineage-specific oncogene for squamous cell carcinomas,
was found to be overexpressed and to promote tumor associated
neutrophil (TANs)-accumulation by upregulating CXCL5 (the
mouse homolog of human CXCL6) expression31. Therefore,

different neutrophil infiltration features were proposed to be
regulated by tumor-intrinsic driver mechanisms. On the other
hand, cancer and neutrophils have stronger interactions in LUAD
patients. The combined observations suggested complex and
diverse functions of neutrophils within TME. Our study also

Fig. 6 Cell and gene interaction networks. a The cellular interaction network among cell types of NSCLC patients. The line width and color were

proportional to numbers of interactions between cell types. b Interacting molecular networks. Within each connected network, node (gene) sizes were

proportional to the number of neighbors (interacting genes) of each node. Heatmaps shown selected interacting pairs for selected cell types in LUADm,

LUADn, and LUSCn groups. Z-scores of expression levels were represented by color, and dot size displayed the proportion of patients who have significant

interaction for the given ligand-receptor pair. c chemokine and chemokine receptors between cancer cells, T cells and DCs. d selected growth factors

between cancer cells and stromal cells. e selected checkpoints between cancer cells, macrophages, and T cells.
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revealed a correlation of tumor heterogeneity and neutrophil
contents. Given that separate studies showed high neutrophil
contents and high tumor heterogeneity related to immunotherapy
failure respectively32–34, our data further bridged the gap between
high neutrophil contents and high tumor heterogeneity. The
mechanism of interplay between tumor heterogeneity and tumor-
infiltrating neutrophils might be a key element to explain the
difference in immunotherapy efficacy.

By mapping cells in TME and their possible functions, by
identifying more cell types and their marker genes, and by
highlighting intratumor cell–cell interactions, we presented here a
comprehensive collection of datasets, which provide deep insights
on advanced NSCLC. Some of our findings are unreported and
will need further functional validation. Despite this limitation, it
can serve as valuable resources and a proof-of-concept study for
future research to identify biomarkers and targets for treatment
and enable personally tailored therapeutic decisions for patients
with advanced NSCLC.

Methods
Patients. All specimens analyzed in this study were obtained from patients with
histologically proven advanced, unresectable NSCLC. Smoking habits were cate-
gorized into smokers (individuals smoke >20 packs/year or <10 years of smoking
cessation history prior to enrollment) and non-smokers (individuals smoke <100
cigarettes in their lifetime). All samples were collected from primary lung tumor by
diagnostic procedures including transcutaneous needle biopsy or bronchoscopy
from November 2018 to August 2019 and all subjects have provided their written
informed consent. Histopathological review of hematoxylin-eosin stained sections
was performed by senior lung pathologists. Immunohistochemistry was done for
further histological subtype classification. Reverse transcription PCR (RT-PCR)
was performed for testing of EGFR mutation, KRAS mutation, ALK fusion, ROS1
fusion, RET fusion, HER2 mutation, BRAF mutation, and MET exon14 skipping
for all adenocarcinoma, some squamous carcinoma and some NSCLC patients. The
study was approved by the Ethical Committee of Shanghai Pulmonary Hospital
(K18-089-1).

Characteristics of patients are summarized in Fig. 1a and Supplementary
Table 1. Of all 42 patients, 35 were biopsied before systemic treatment, 2 after
failure of TKI, 3 after failure of immunotherapy, and 2 after failure of
chemotherapy.

Tissue dissociation and single-cell suspension preparation. Fresh samples were
stored in the GEXSCOPE Tissue Preservation Solution (Singleron Biotechnologies,
Nanjing, China) at 2–8 °C immediately after being collected by needle biopsy or
bronchoscopy. Prior to dissociation, tissue samples were washed with Hanks
Balanced Salt Solution (HBSS) for three times, minced into small pieces, and
digested in 2 ml GEXSCOPE Tissue Dissociation Solution (Singleron Biotechnol-
ogies) following manufacturer’s instructions. Briefly, the specimens were digested
at 37 °C for 15 min with continuous agitation. A 40-micron sterile strainer
(Corning) was used to separate cells from impurities after digestion. The cells were
then centrifuged at 300 × g 4 °C for 5 min and cell pellets were resuspended in 1 ml
PBS (HyClone). Cell suspensions were counted with TC20 automated cell counter
(Bio-Rad) to determine cell concentration and viability.

Single-cell RNA-sequencing library preparation. The concentration of single-cell
suspension was adjusted to 1 × 105 cells/mL in PBS. Single-cell suspension was then
loaded onto a microfluidic chip (GEXSCOPE Single Cell RNA-seq Kit, Singleron
Biotechnologies) and scRNA-seq libraries were constructed according to the
manufacturer’s instructions (Singleron Biotechnologies). The resulting scRNA-seq
libraries were sequenced on an Illumina HiSeq X10 instrument with 150 bp paired
end reads.

Generation of single-cell gene expression matrices. Raw reads were processed
to generate gene expression matrices by scopetools (https://anaconda.org/
singleronbio/scopetools). First, read one without polyT tails were filtered, then cell
barcodes and unique molecular identifiers (UMI) were extracted. Adapters and
polyA tails were trimmed before aligning read two to GRCh38 with ensemble
version 92 gene annotation. Second, reads with the same cell barcode, UMI and
gene were grouped together to count the number of UMIs per gene per cell. Cell
number was then determined based on the ‘knee’ method.

Quality control, cell-type clustering, and major cell-type identification. We
removed cells that had either lower than 200 or higher than 5000 expressed genes.
Furthermore, we discarded cells with more than 30,000 UMIs and mitochondria
content higher than 30%. Finally, 90,406 cells were obtained for the downstream

analysis. We obtained 1673 genes and 5238 UMIs per cell on average. We opted out
the batch effect correction algorithm based on the highly consistent results among
patients and the undesirable removal of heterogeneity among cancer cells of
individual patients (Fig. S1b). Harmony was used as the batch effect removal
method.

We used Seurat 2.3 to first normalize expression matrices by function
NormalizeData and ScaleData. Then FindVariable function was applied to select
the top 600 variable genes and perform principle component analysis. The first 20
principle components and resolution 1.0 were used with FindClusters function to
generate 37 cell clusters. To assign one of the 11 major cell types to each cluster, we
scored each cluster by the normalized expressions of the following canonical
markers: Endothelial cells (CLDN5, VWF, PECAM1), Epithelial cells (CAPS,
SNTN), Alveolar cells (CLDN18, AQP4, FLOR1), Fibroblasts (COL1A1, COL1A2,
DCN), T cells (CD2, CD3D, CD3E, CD3G), B cells (CD79A, CD79B), Myeloid cells
(CD14, LYZ), Neutrophils (CSF3R, S100A8, S100A9), Follicular dendritic cells
(FDCSP), Mast cells (GATA2, TPSAB1, TPSB2). The highest scored cell type was
assigned to each cluster. Cancer cell clusters were negative for normal lung
epithelial markers and positive for EPCAM. The clusters assigned to the same cell
type were lumped together for the following analysis. The final results were
manually examined to ensure the correctness of the results and visualized by
Uniform Manifold Approximation and Projection (UMAP). The 11 major cell
types were chosen by initial exploratory inspection of the differentially expressed
genes (DEGs) of each cluster combined with literature study. The DEGs were
generated by Seurat FindMarkers function.

LUAD and LUSC classification based on scRNA-seq expression. We defined a
LUAD and a LUSC score for each patient. The score was calculated based on the
average percentage of marker expressions of tumor cells for LUAD (NAPSA and
TTF-1) or LUSC (KRT5, DSG, and TP63), and the higher scored subtype was
assigned to each patient. If both scores are less than 0.05, translating to 5% of cells
expressing given markers, we assigned the patient to NSCLC. Considering both
pathological subtype assignment and scRNA subtype assignment (Fig. S2A), we
determined a final classification upon the review of experts. All the following
grouping was based on the final classification of patients.

scRNA-seq-based CNA detection. We inferred CNAs of 42 patients by
InferCNV14 using single-cell transcriptomic profiles. As described in InferCNV, we
used non-malignant cells including immune cells and stromal cells as baselines to
estimate the CNA of malignant cells. Briefly, genes were sorted by their genomic
locations on each chromosome. We then used 101 genes as a slide window to
smooth the relative expression on each chromosome to remove gene-specific
expression influence. Gene expressed in less than 20 cells were filtered. We centered
the relative expression values to 1 and used 1.5 standard deviation of the residual
normalized expression values as the ceiling and floor for visualization using R
package Pheatmap. For visualization, randomly sampled 100 malignant cells of
each patient were shown as their representative CNA profiles.

Intratumoral heterogeneity scores based on CNAs and gene expressions. The
calculations of intratumoral heterogeneity scores were inspired by a previous study
and modified as follows35. First, to calculate ITHCNA, we used the relative
expression value matrix generated by inferCNV and calculated the pairwise
cell–cell distances using Pearson’s correlation coefficients for each patient. ITHCNA

was defined as interquartile range (IQR) of the distribution for all malignant cell
pairs’ Pearson’s correlation coefficients. Similarly, we also used gene expression
profiles of cancer cells of each patient to construct the distribution of the intra-
tumoral distances. ITHGEX was assigned as the IQR of the distribution. Public
single-cell lung cancer datasets GSE131907 and E-MTAB-6149 were used to cal-
culate the ITHGEX scores of early-stage and advanced stage lung cancer.

Cell subtype identification. We further clustered T cells, B cells, neutrophils,
myeloid cells, fibroblasts, endothelial cells, alveolar cells, epithelial cells, and cancer
cells individually. We set the resolution to 0.8 for T and B cells. For myeloid cells,
endothelial cells and alveolar cells, the resolution was 0.6. For fibroblasts, neu-
trophils and epithelial cells, we set resolution to 0.4, 0.2, and 1.2, respectively.
Within each lineage, we applied an iterative process to remove putative doublet
clusters, if any, and reclustered the remaining cells. Putative doublets were iden-
tified by double positive expressions of the canonical marker genes of 11 major cell
types discussed above. Within T lineage, we used the following markers for subtype
identification: CD8+ exhausted T (CD8A, LAG3, and TIGIT), CD8+ effector
T (CD8A, GNLY, GZMA, GZMK, GZMB, GZMH), CD4+ naïve T (CCR7, LEF1,
IL7R, and SELL), CD4+ Tregs (FOXP3, IL2RA, and IKZF2), CD4+ proliferating
(TOP2A, MKI67), and CD4+ Th17-like (KLRB1, RORC). Note that CD4 itself has
low RNA expression levels and CD4 T cells were deducted by CD3 positive and
CD8 negative. KLRC1, KLRD1, and NKG7 were used as the markers of NK cells.
T cell subtypes were also predicted by singleR based on T cell annotations of public
dataset GSE992549,36. Similarly, we distinguished follicular B cells (MS4A1, MHC-
II, CXCR4) from plasma cells (MZB1, JCHAIN, IgH) among the B cell lineage.
Plasmacytoid DC (IL3RA, LILRA4, CLEC4C) was clustered in the B cell lineage. For
the myeloid clusters, macrophages were positive for canonical marker CD68, and
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M2-like macrophage markers CD163 and MRC1/CD206. Other myeloid cell types
were confirmed by specific marker genes including classical monocytes (CD14,
LYZ, VCAN), cDC1 (XCR1, CLEC9A), cDC2 (FCER1A, CD1C), and mature DC
(LAMP3).

Within fibroblasts (DCN and COL1A1), RGS5 and CSPG4 was used to mark the
pericytes. Myofibroblasts were identified by upregulation of ACTA2 and MYH11.
For endothelial cells (PECAM1, VWF and ENG), tip cells are characterized by their
markers and angiogenesis-related genes (KCNE3, ESM1, ANGPT2, and APLN).
Vascular cells mainly consisted of VECs and AECs, respectively identified by their
markers ACKR1 and GJA5. A subset of the cells expressing lymphatic markers such
as PDPN and PROX1 were defined as LECs-like. Using representative markers for
classical airway epithelial cell types, we identified alveolar Type 2 cells (SFTPC,
SFTPA1, and ABCA3), club cells (SCGB1A1 and SCGB3A1), basal cells (KRT5,
KRT6A, and KRT14), and ciliated cells (FOXJ1, TPPP3, and PIFO) for alveolar cells
and other lung epithelial cells. Specific genes for cell-type identification are
provided in Supplementary Table 2. For cancer clusters, clustering resolutions 0.2,
0.4, and 0.6 were all used to test the robustness of cell grouping.

Trajectory analysis. We applied Monocle2 to determine the lineage differentiation
of cell subtypes with potential developmental relationship. For CD4+ T cells, we
used Seurat 2.3 FindVariableFeatures function to select top 1500 high variable
genes of four CD4 clusters to order cells. DDRTree was used to learn tree-like
trajectories. The heatmap along the developmental trajectory was only shown for
marker genes of T subtypes. For Cancer cells and normal epithelial cells, we used
AT2 cells, club cells, and LUAD cancer cell clusters to infer the evolutional paths
for LUAD tumors. For LUSC tumors, we selected basal cells, club cells, and LUSC
cancer cell clusters. Top 1000 high variable genes were used for both LUAD and
LUSC trajectories. We also applied Slingshot to uncover the CD4+ T cell devel-
opment trajectory. The identified paths were mapped to UMAP projection for
visualization.

Cellular composition analysis between patient groups. To assess whether cell-
type compositions were significantly different between groups of patients, we used
R package ggpubr for the statistical testing and visualization. For the comparison of
two groups, t-test was applied to test the statistical significance. P-values <0.05 were
considered statistically different. To assess the correlation between ITH and cellular
composition, ggscatter function in ggpubr was applied to calculate the Pearson
correlation coefficients and the associated p-values.

Intercellular interaction analysis. We used CellphoneDB37 to perform the
interaction analysis between cell types in each sample. We set the iteration to 1000
and otherwise followed the default settings of the software. The cellular network
was constructed based on interactions existing in more than five patients. The
interaction pairs with rank larger than 0.1 were discarded to increase the specificity.
For cell interaction network, cell types were considered nodes, and the number of
interactions between two cell types were treated as edge weights. The network was
visualized by Cytoscape38. For the cell-type interaction networks, we filter the cell
types with interaction lower than 500. The line width and color scale were pro-
portional to the edge weights. Gene interaction networks were generated as fol-
lowing. First, a master network containing both cell types and genes was
constructed. Both ligand-receptor relationship between genes and expression
relationship between cell types and genes were considered edges. From the master
network, cell nodes were then removed to generate the gene only networks. The
first four major connected components were extracted to represent the intercellular
gene interaction networks. Next, we analyzed important intercellular signals
including cytokines, growth factors, and immune checkpoints. We showed the
relative expression levels (z-scores) of ligands or receptors, against the percentages
of patients with significant interactions for each group between cell-type pairs. We
used public dataset GSE131907 to compare cellular interaction between early-stage
and late-stage LUAD.

TCGA survival analysis. We use the web server of Gene Expression Profiling
Interactive Analysis (GEPIA)39 for TCGA survival analysis. Specifically, an inter-
ested gene name and cancer subtype were chosen as the inputs to generate the
survival curves for patient overall survival (OS) and the statistical testing results.
We used ‘median’ as the group cutoff metric to assign the lower and higher half of
the patients as the low and high group, respectively. P-values <0.05 was considered
statistically significant.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The raw sequencing data were deposited at Gene Expression Omnibus GSE148071. The

published data used for validation or comparation in this study were retrieved from the

NCBI Gene Expression Omnibus database accession code GSE13190712, GSE992549, and

ArrayExpress under Accessions E-MTAB-61498. The remaining data are available within

the Article, Supplementary Information or available from the authors upon request.
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