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ABSTRACT 

Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by 
differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, 
respectively), which are associated with distinct therapeutic vulnerabilities. To define the 
heterogeneity of tumors and their associated microenvironments across subtypes, we 
sequenced 54,523 cellular transcriptomes from 21 human biospecimens. Our single-cell 
SCLC atlas reveals tumor diversity exceeding lung adenocarcinoma, driven by canonical, 
intermediate, and admixed subtypes. We discovered a PLCG2-high tumor cell population with 
stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall 
survival, and manipulation of PLCG2 expression in cells confirms correlation with key 
metastatic markers. Treatment and subtype are associated with substantial phenotypic 
changes in the SCLC immune microenvironment, with greater T-cell dysfunction in SCLC-N 
than SCLC-A.  Moreover, the recurrent, PLCG2-high subclone is associated with exhausted 
CD8+ T-cells and a pro-fibrotic, immunosuppressive monocyte/macrophage population, 
suggesting possible tumor-immune coordination to promote metastasis.  
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INTRODUCTION 

Small cell lung cancer (SCLC) is the most aggressive lung cancer subtype, responsible for 
approximately 25,000 deaths annually in the US and an estimated quarter million deaths 
worldwide1,2. The prognosis for SCLC patients remains exceptionally poor: most patients 
present with metastatic disease, and the recent addition of immune checkpoint blockade to 
first-line chemotherapy has only modestly improved median survival to roughly one year3,4. 
The strong predilection for early metastasis and the rapid emergence of therapeutic resistance 
contribute to poor long-term outcomes, with 5-year survival of 15-30% for limited stage 
disease, and less than 1% for extensive disease1,2. 

Although SCLC appears morphologically homogeneous, recent data from both murine models 
and human tumors suggest the existence of SCLC subtypes with distinct therapeutic 
vulnerabilities5. These subtypes have been classified based on differential expression of four 
transcription factors (TFs): ASCL1, NEUROD1, POU2F3 or YAP15. The emerging consensus 
on SCLC subtypes5 has led to new questions, such as whether subtypes are associated with 
different disease stages, metastatic potential or immune microenvironments, and whether 
there is plasticity between subtypes5–7. 

Single cell RNA sequencing (scRNAseq) offers a unique opportunity to address these 
questions by dissecting the intratumoral heterogeneity and surrounding tumor 
microenvironment (TME) of SCLC. Efforts to apply this technology to human SCLC tumors 
have been limited, as surgical resections of primary tumors are performed in under 5% of 
SCLC patients8, and biopsied samples are not typically preserved in a manner amenable to 
single-cell profiling. Since resection is only clinically indicated for early stage de novo disease, 
these samples fail to capture the spectrum of disease progression.  

To address these limitations, we have optimized the processing of thoracenteses, core needle 
biopsies, and fine needle aspirates, and applied these approaches to construct the first single-
cell atlas of SCLC patient biospecimens, with comparative lung adenocarcinoma (LUAD) and 
normal lung data. Our analysis reveals unexpectedly high inter-patient transcriptomic 
heterogeneity of cellular states in SCLC tumor and immune cells. We delineate subtype-
specific gene programs, describe prevalent promiscuity between subtypes, and find a 
particularly immunosuppressed TME in SCLC compared to LUAD, with additional subtype-
specific changes in immune dysfunction. In the midst of substantial heterogeneity, we identify 
a remarkable stem-like pro-metastatic tumor subpopulation marked by high PLCG2 
expression that spans the full diversity of SCLC subtypes and predicts worse overall survival. 
Together, our analyses provide a deep characterization of the molecular features of SCLC, 
with clinical implications. 

 

RESULTS 

The human SCLC single-cell transcriptional landscape reveals unexpected tumor 

heterogeneity 

We profiled the transcriptomes of 155,098 cells from 21 fresh SCLC clinical samples obtained 
from 19 patients, as well as 24 LUAD and 4 tumor-adjacent normal lung samples as controls 
(Figures 1A and S1A). The SCLC and LUAD cohorts (Table S1) include treated and 
untreated patients (Figure 1B). Samples were obtained from primary tumors, regional lymph 
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node metastases, and distant metastases (liver, adrenal gland, axilla, and pleural effusion) 
(Figure 1C).  

All scRNA-seq data were merged, normalized, batch-corrected, and clustered to identify 
coarse cell types, including  epithelial, mesenchymal, lymphoid, and myeloid cells (Figure 1A, 

S1A; STAR Methods). Further clustering within the epithelial compartment identified cells 
comprising the respiratory epithelium (including alveolar epithelial types 1 and 2, ciliated, club, 
neuroendocrine and tuft cells) and hepatocytes derived from our liver metastases (Figures 

1A and S1A; STAR Methods).  

MSK-IMPACTTM targeted sequencing9 of 13 SCLC samples shows frequent  mutation or loss 
of RB1 and TP53, and recurrent mutations in CREBBP and KMT2B (Figure S1B and S1C). 
This information facilitated the identification of tumor cells that harbor reads bearing the 
genomic variant. We also inferred single-cell copy number to support tumor cell identification 
(STAR Methods). Inferred copy number variation (CNV) levels are higher in SCLCs than 
LUAD (Figures S1D and S1E), consistent with SCLC having a higher tumor mutation 
burden10. Based on previous studies investigating the most likely cell types of origin11, we 
consider neuroendocrine and alveolar epithelial type 2-like clusters to represent SCLC and 
LUAD tumor cells, respectively.  

Following cell type annotation, we characterized the tumor heterogeneity within our atlas. Of 
38 epithelial clusters (64,301 cells), we found that LUAD and SCLC clustered separately as 
expected, with 5 LUAD clusters comprised of 7,635 cells from 24 tumors and 25 SCLC clusters 
comprised of 55,815 cells from 21 tumors, consistent with lower tumor purity in LUAD (Figure 

S1F). To quantify the inter-patient heterogeneity of SCLC, we calculated the Shannon diversity 
of patients per cluster and compared the diversity of SCLC tumor cells to LUAD and normal 
stroma. For a given cluster, a low Shannon diversity signifies that the phenotype is rarely 
shared across patients, indicating high inter-patient heterogeneity. SCLC tumors showed 
significantly lower Shannon diversity compared to LUAD (Figure 1B). We also observed high 
Shannon diversity in stromal and immune cell populations, consistent with minimal batch 
effects across samples, and low Shannon diversity (high phenotypic diversity) in tumor cells 
compared to stroma, consistent with prior studies12,13. Our results suggest that, despite its 
homogeneous histological morphology, SCLC has a high degree of transcriptional tumor 
heterogeneity, exceeding that of LUAD and normal stroma. 
 
Tumor heterogeneity of canonical and non-canonical SCLC subtypes at single-cell 

resolution 

Next, we characterized cell states within the major SCLC subtypes14, including only the SCLC 
tumor compartment (54,523 cells) and restricting our feature selection to gene signatures of 
canonical SCLC subtypes that we identified from an independent bulk RNA-seq cohort 
(Tables S2, S3, S4 and S5; STAR Methods). 

SCLC subtypes are typically classified by the expression of canonical TFs (ASCL1, 
NEUROD1, POU2F3, YAP1), but a strategy dependent on a single gene is unreliable given 
the gene dropout prevalent in scRNA-seq. We therefore used a neighbor-graph-based 
approach to calculate the probability of a given SCLC subtype per cell15 (STAR Methods), 
which can harness the full complexity of each subtype composed of multiple gene programs. 
We identified the most likely subtype of each cell (Figure 2A) and used this information to 
categorize the major subclone of each sample as subtype SCLC-A (N = 14), SCLC-N (N = 6), 
or SCLC-P (N = 1) (Figure 2A, STAR Methods). We did not observe any YAP1-expressing 
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tumor cells, consistent with absence of SCLC-Y. Our classification is supported by the relative 
expression of canonical TFs (Figure 2B) and matched immunohistochemistry (IHC) when 
available (Figure S1G). However, unlike single-gene expression or IHC, our strategy is also 
able to classify “double-positive” cases (ASCL1-high NEUROD1-high Ru1231 as SCLC-N) 
and “double-negative” cases (ASCL1-low NEUROD1-low Ru1293A as SCLC-N; notably, 
Ru1293A retains NEUROD2 and NEUROD4 expression).  

The vast majority of tumors are predominantly composed of a single SCLC subtype (Figure 

S1H). However, most samples also include a minority of cells that fall along a continuous 
spectrum from SCLC-A to SCLC-N (Figure 2C; STAR Methods). One sample (RU1215) 
harbors discrete populations of both SCLC-A and SCLC-N (Figure S2A). Our analysis 
identified cells in apparent transition between known subtypes (STAR Methods), which may 
represent non-canonical phenotypes or intermediate subtype states. These findings are 
consistent with our previous report of ASCL1+/NEUROD1+ cells in SCLC clinical samples16 
and other reports showing SCLC-A to SCLC-N transitions upon disease progression in SCLC 
preclinical models7,17.  
 
SCLC-N exhibits a pro-metastatic neuronal and EMT phenotype 

To understand the role of SCLC subtype in tumor progression, we assessed cell composition 
and gene expression differences across subtypes (Figure S2B). Consistent with observations 
in mouse models7,17, we found SCLC-A to be significantly overrepresented in primary tumors 
whereas non-SCLC-A subtypes are enriched in nodal and distant metastases  (Dirichlet 
regression, p<3.4x10-8; Figure S2C; STAR Methods). We also observed greater interpatient 
diversity in SCLC-N tumors as compared to SCLC-A (Figure 1D). These findings are 
consistent with preclinical models showing SCLC-N can progress from SCLC-A through 
discrete evolutionary bottlenecks.  

We performed differential expression (DE) and pathway analysis to determine subtype-
specific gene programs (Figures 3A and S2D; and Tables S6, S7, S8, S9, S10 and S11). 
We found that SCLC-A is enriched in expression of genes regulating cell cycle progression 
and DNA repair, as well as EZH2 target genes implicated in SCLC cell cycle18,19 (Figure S2D). 
In contrast, SCLC-N tumors exhibit a pro-metastatic phenotype with overexpressed markers 
of epithelial-mesenchymal transition (EMT) (VIM, ZEB1 and TWIST1)20 and hypoxia and 
angiogenesis (HIF1A, VEGFA or FOXO3) (Figures 3A, 3B and S2D). SCLC-N also 
overexpressed metastasis-related signaling pathways, including (1) TGF-β21 (upregulation of 
TGFB1 and TFGBR1/3); (2) BMP signaling20,22 (upregulation of ligands BMP2/7 and receptors 
BMPR1A/2)23; (3) STAT signaling, (upregulation of STAT3,  IL6R, IL11RA)20; and (4) TNFα-
mediated NFκB signaling (upregulation of TNF, SMAD3, PHLDA1)24,25  (Figures 3A, 3B and 

S2D). 

SCLC-N displayed a neuronal differentiation phenotype, with high expression of key 
neurogenesis factor TCF426,27 involved in BMP signaling and metastasis28,29, as well as a 
neuropeptide signaling signature (SSTR2, SST or MARCKS) (Figures 3A and 3B and Table 

S6). Interestingly, we found that SCLC-N was enriched in two main axonogenic signaling 
pathways: ephrin (EFNB1 and EPHB2, among others)30 and semaphorin (SEMA6A and 

NRP2, among others)31. Prior studies have shown that the axonogenesis program coordinates 
cell polarity with neuronal migration32; it has been implicated in SCLC metastasis33, but never 
before in SCLC-N specifically. We have shown that LUAD hijacks endodermal developmental 
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pathways in metastasis34; similarly, our findings here suggest that SCLC-N may adopt a 
neuronal developmental phenotype to achieve a metastatic state. 

We further assessed differentially expressed ligand-receptor pairs between subtypes (Figure 

3C; STAR Methods), and observed enrichment in homotypic (tumor-tumor) interactions in 
SCLC-N compared to SCLC-A. While one can not be certain of any individual hypothesized 
ligand-receptor interaction in such analysis, the difference in number of interactions between 
subtypes is striking. This enrichment is consistent with growth patterns observed in vitro; 
SCLC-A cell lines typically grow as loose floating aggregates, whereas SCLC-N lines more 
commonly grow as a tightly adherent monolayer in cell culture35. The biphenotypic sample, 
Ru1215, allowed us to explore interactions between SCLC-A and -N subtypes in the same 
tumor (Figures S2A and S2E; STAR Methods). Ligand-receptor analysis in this sample 
suggested multiple interactions between the two subtypes that recapitulated findings 
previously shown only in preclinical models35,36. 
 
A novel stem-like, pro-metastatic cell cluster recurs across patients and SCLC 

subtypes 

The transcriptomic diversity of SCLC contrasts with the uniformly poor prognosis of patients. 
We analyzed phenotypes spanning multiple patients to determine whether any shared cell 
types may account for the universal aggressiveness of SCLC. Unsupervised clustering of the 
SCLC tumor compartment identified 25 clusters, most of which are specific to a single sample. 
However, cluster 22 is the most highly recurrent cluster across samples (Mann-Whitney p < 
2.2x10-16) , spanning a range of treatment statuses, tissue sites (Figures 4A and 4B; Table 

S1; STAR Methods), and major subclonal subtypes (Figure 4C). Cells in the recurrent cluster 
exhibit significantly higher uncertainty in subtype assignment than those in any other cluster 
(Mann-Whitney p < 2.2x10-16), suggesting a dedifferentiated phenotype (Figure 4A; STAR 

Methods). DE and pathway analysis showed that this phenotype is enriched in gene programs 
related to metastasis and stemness (Figures 4D and 4E, Table S12). 

Within Cluster 22, phospholipase C gamma 2 (PLCG2) is the top upregulated gene (Figures 

4E and S3A, Tables S13 and S14). PLCG2 has been previously implicated in Alzheimer’s 
disease37,38 and its paralog PLCG1 promotes metastasis39,40. We used knnDREMI41, which is 
well suited to handle data sparsity and rare cell populations, to explore the full gene program 
that covaries with PLCG2 (STAR Methods), and grouped results into three gene modules 
corresponding to low (module 1), medium (module 2) and high PLCG2 expression (module 3) 
(Figure S3B and Table S15). Candidate genes in module 3 included FGFR1 (implicated in 
SCLC through frequent amplifications42, and MTRNR2L8 and MTRNR2L12 (humanin family 
genes shown to inhibit apoptosis43, to be neuroprotective in Alzheimer’s disease44, and to 
promote tumor progression in triple-negative breast cancer45). Among the top 5% of pathways 
most correlated to module 3 were those related to stemness (including OCT4 and SOX2 
targets), metastatic gene signatures, and pro-metastatic signaling pathways (including Wnt 
and BMP signaling)20 (Figures S3B,C and Table S16). 

 

The PLCG2+ recurrent cluster is associated with reduced overall survival in SCLC 

patients 

While our recurrent SCLC cluster was characterized by the overexpression of multiple genes 
(Figure S3A), we investigated the role of PLCG2 expression as a proxy of this subpopulation 
in our analyses, as this gene showed striking overexpression in this subpopulation. Consistent 
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with the pro-metastatic phenotype of the shared cluster, we found that PLCG2 alone is 
significantly upregulated in metastatic sites compared to lung, and rises further in the liver, the 
most common metastatic location for SCLC (Figure 5A). These observations prompted us to 
test PLCG2 function directly by knocking out PLCG2 in a high-PLCG2 SCLC cell line 
(DMS114) and overexpressing PLCG2 in an SCLC cell line with relatively low expression 
(H82). In a transwell assay, overexpression increases migration (p = 0.030) and invasion (p = 
0.019) in H82 cells, and knockout suppresses migration (p = 0.019) and invasion (p = 0.002) 
in DMS114 cells (Figures 5B and 5C; STAR Methods). PLCG2 expression in these cell lines 
is associated with higher Wnt and BMP signaling (Figure S3D), pro-metastatic pathways20 
that we found are highly correlated with PLCG2-high cells (Figures S3B and S3C). In line 
with these results, PLCG2 induction upregulates EMT markers in H82 (Figure S3D). No 
expression of any of the EMT markers tested was detected in DMS114 (data not shown). 

To determine the clinical significance of PLCG2 expression, we performed IHC in an 
independent cohort of SCLC tumor specimens (N = 31; Table S17; Figure 5E). Kaplan-Meier 
analysis revealed worse overall survival in patients with tumors exhibiting high PLCG2 
expression (>15% of tumor cells with high PLCG2 intensity; p < 0.002; Figure 5D). An adjusted 
Cox proportional hazards model not only confirmed decreased overall survival, but also 
showed that high PLCG2 positivity was a stronger predictor of worse outcome than treatment 
history, presence of metastatic disease, or SCLC subtype (Figure S3E).  

Since PLCG2 expression is only proxy to the recurrent cluster 22 cell phenotype, we also 
assessed within our scRNA-seq cohort if the fractional representation of this subpopulation 
had prognostic significance. Patients with a subclonal population representing >0.75% of total 
tumor cells had significantly decreased overall survival relative to others (p = 0.008; Figure 

5E; Table  S18). An adjusted Cox proportional hazards model confirmed worse overall survival 
with a greater hazard ratio than PLCG2 positivity in the IHC analysis (19.98 vs 8.22), 
suggesting that while PLCG2 positivity is a strong predictor, it may have reduced specificity 
for this recurrent tumor population relative to the full transcriptional phenotype (Figure S3F). 
Taken together, these data support that a small stem-like, pro-metastatic subclone with 
selectively high expression of PLCG2 has a remarkably large prognostic impact across SCLC 
subtypes. 
 
Treatment and subtype drive phenotypic shifts in the SCLC immune TME 

SCLC is recognized as a particularly immune-cold cancer46, and the addition of immune 
checkpoint blockade to standard-of-care chemotherapy only modestly improves median 
survival4,47. Understanding the specific effects of therapies and the role of both canonical and 
novel SCLC subtypes in shaping the immune environment will be key to developing effective 
interventions. However, a comprehensive characterization of the SCLC immune compartment 
has not been feasible due to limited biospecimen availability and the inaccuracy of low-
abundance cell type deconvolution from bulk RNA-seq data. 

To address the impact of therapies and SCLC subtype on the immune TME, we analyzed flow 
cytometry data from our single-cell cohort as well as an independent SCLC cohort (n = 11, 
Table S19). Beyond confirming that the CD45+ population is lower in SCLC than LUAD, our 
analysis reveals strong reductions specifically in SCLC-N and NEUROD1-positive tumors 
(Figures S4A and S4B). Moreover, we find that the immune population decreases 
significantly in chemo-treated tumors but is evidently rescued by the addition of 
immunotherapy (Figure S4C). 
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To assess impacts on cell phenotypes, we pooled immune cells across 21 SCLC samples in 
our cohort (n = 16,475 cells), using immune cells from LUAD (n = 45,535 cells) and normal 
adjacent lung (n = 10,934 cells) as a reference (Figure S4D), and split the myeloid and T-cell 
compartments to facilitate cell type annotation (Figures 6A, S4E–G and S5A–C; STAR 

Methods). Our cohort includes 1 SCLC-P, 14 SCLC-A and 6 SCLC-N tumors that are 
balanced with respect to treatment history (7 untreated, 6 treated with chemotherapy and 8 
treated with chemotherapy and immunotherapy). Consistent with flow cytometry (Figure 

S4C), we found that chemotherapy-treated tumors demonstrate lower total immune cell 
abundance, and that immunotherapy appears to successfully recruit immune cells, particularly 
T cells, to the tumor (Figure 6B). We also see decreased representation of SCLC-N in immune 
cell phenotypes compared to SCLC-A, suggesting a relatively immune-cold TME (Figure 6C). 
To quantify the impact of treatment and subtype on immune phenotype, we used a measure 
of entropy based on the k-nearest neighbors of each cell (Figure 6D). A comparison of 
normalized entropies by cell type (Figures 6D and 6E) indicates that treatment produces 
significantly lower entropies (ie, greater phenotypic impact) in the T-cell compartment (CD4+ 
Tconv, CD4+ Tregs, CD8+ Tmem, CD8+ Texh) compared with subtype effects, consistent 
with previous reports that treatment heavily influences T-cell phenotypes in other cancers48–

50, whereas subtype generates significantly lower entropies than treatment for NK cells, cDCs, 
pDCs, and mast cells (Figure 6E). Our results reveal subtype- and therapy-specific 
differences within the suppressed immune microenvironment of SCLC. 
 
Increased T-cell dysfunction in SCLC in metastases and SCLC-N subtype 

Next, we assessed how treatment and subtype impact T-cell phenotype in SCLC. Given 
challenges of low library size and low CD4 transcripts, we included T-cells from LUAD and 
normal lung to provide increased power for T-cell phenotype annotation. Additionally, to score 
T-cell phenotypes, we used non-negative matrix factorization51–53, which excels in settings of 
continuous phenotype, where cluster boundaries are less certain (STAR Methods). This 
approach identified 30 factors that associate scores, or loadings, to each cell as well as each 
gene. For each factor, we associate genes with high loadings to the corresponding cells with 
high loadings, thus facilitating phenotypic annotation for each cell. Of 30 factors, 7 
corresponded to specific T-cell phenotypes: CD4+ regulatory (Tregs, factor 4), CD4+ 
conventional (Tconv, factors 19 and 23), CD8+ exhausted (Texh, factor 7), CD8+ memory 
(Tmem, factor 12), CD8+ effector (Teff, factor 28), and CD8+ gamma delta T-cells (Tgd, factor 
29) (Figures 6F and S5A; STAR Methods). A parallel cluster-based approach to phenotyping 
confirmed the annotation of these factors (Figures S5B–E; STAR Methods).  

To assess changes in T-cell phenotype between SCLC subtypes, we compared factor 
loadings between SCLC-A vs SCLC-N while adjusting for treatment and tissue. We found that 
compared to SCLC-A, SCLC-N was significantly increased in Treg factor 4 and CD8+ 
exhausted factor 7, as well as significantly decreased in CD8+ effector-like factor 28 and Tgd 
factor 29 (Figure S5F). A decreased ratio of CD8+ effector to Treg cells has been correlated 
with poor prognosis in cancer patients in a variety of contexts54–56. The ratio of CD8+ effector 
to Treg factor loadings was significantly decreased in SCLC-N compared to SCLC-A (p = 
0.001; Figure 6G; STAR Methods). This measure of immunosuppression was consistent with 
a parallel cluster-based CD8+ effector/Treg ratio (p = 0.001; Figure 6H; STAR Methods) and 
validated by Vectra imaging in an independent SCLC cohort (n = 35) with a similarly reduced 
ratio in NEUROD1+ samples (p = 0.009; Figures 6I and 6J; Table S20; STAR Methods). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406363doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406363


Our findings thus identify multiple modes of T-cell dysfunction in SCLC, including the depletion 
of cytotoxic T-cells in metastases and SCLC-N, and the increase of Tregs in SCLC-N. 
 
Populations resembling fibrosis-associated macrophages are enriched in SCLC 

metastases 

We next examined the myeloid compartment (n = 2,951 cells), which comprises 13 clusters, 
including 7 monocyte/macrophage (Mono/Mφ), 4 neutrophil, and 2 dendritic cell populations 
(Figures 7A, S6A and S6B; STAR Methods). Clusters  1, 7, 9, and 12 represent a subset of 
THBS1+ VCAN+ Mono/Mφ cells that overexpress genes related to the extracellular matrix 
(ECM), including VCAN, FCN1, S100A4, S100A6, S100A8 and S100A9 (Figures S6A–D; 

Table S21, STAR Methods). This phenotype resembles monocytic myeloid-derived 
suppressor cells (MDSCs) in mice57 and MDSC-like Mφ expressing THBS1+ S100 proteins in 
human hepatocellular carcinoma58.  

We compared these SCLC-associated Mono/Mφ to those in LUAD. Unsupervised clustering 
of the full myeloid compartment of SCLC, LUAD, and normal lung reveals that SCLC clusters 
1 and 7 group with other LUAD-associated Mono/Mφ cells, suggesting a shared myeloid 
phenotype in the TME of these cancers (Figures S7A-C). Interestingly, this shared phenotype 
was absent in normal lung and metastatic LUAD and signficantly enriched in SCLC 
metastases compared to either primary SCLC or primary LUAD.  Only treated primary LUAD 
harbored this myeloid population at all (Figure 7B). 

We hypothesized that the underlying gene programs of clusters 1 and 7 may facilitate SCLC 
metastasis. Given that they belong to a Mono/Mφ subset secreting ECM-related proteins, we 
compared these populations to those in idiopathic pulmonary fibrosis (IPF)59. We found that 
this subset and in particular clusters 1 and 7 closely resemble previously defined IPF-
associated macrophage populations (Figure 7C). Cluster 1 scores highest for a pro-fibrotic 
macrophage signature within IPF, and cluster 7 scores highest for a monocytic signature within 
IPF. (Figures 7D and 7E).  
 
Differential expression and pathway analysis (Figures S7D and S7E,  Table S22) identifies 
cluster 1 as a CD14+ ITGAX+ CSF1R+ subpopulation that secretes specific pro-fibrotic, pro-
metastatic growth factors involved in ECM deposition and remodeling60, including  fibronectin 
1 (FN1)61,62, cathepsins (CTSB and CTSD)63,64, and osteopontin (SPP1)65,66, suggesting a role 
in promoting metastasis.  

In addition, cluster 1 overexpressed genes related to immune inhibition, including (1) SPP1, 
implicated in T-cell suppression and tumor immune evasion in colon cancer67 and NSCLC68; 
(2) CD74, implicated in both immune suppression in metastatic melanoma69 and migration 
inhibitory factor-induced pulmonary inflammation70; and (3) VSIG4, implicated in macrophage 
suppression71. Collectively, these findings suggest that cluster 1 is a pro-fibrotic, 
immunosuppressive Mono/Mφ subpopulation that may facilitate SCLC metastasis. 

 
The recurrent PLCG2-high tumor subclone is associated with a pro-fibrotic, 

immunosuppressive Mono/Mφ subpopulation and CD8+ T-cell exhaustion  

We next hypothesized that the pro-fibrotic, immunosuppressive Mono/Mφ subset may interact 
with specific tumor subclones to facilitate progression. Although we did not detect an 
association with canonical SCLC subtypes, we found that cluster 1 is significantly enriched in 
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samples also enriched for the recurrent PLCG2-high subpopulation (p = 0.018) (Figures S7F 

and S7G; STAR Methods). 

Beyond the association between these myeloid and tumor subsets, we also assessed whether 
the recurrent PLCG2-high tumor subclone correlated with other subpopulations of the TME. 
We confirmed that the PLCG2-high subpopulation is significantly correlated not only with 
Mono/Mφ cluster 1 (p = 0.004, Figures 7F), but also with exhausted CD8+ T cells (p = 0.001, 
Figures 7G; STAR Methods). Notably, the recurrent tumor subclone is also significantly anti-
correlated to MHC class I expression of the bulk tumor, suggesting a possible escape 
mechanism from CD8+ T-cells (Figure 7G). Our findings demonstrate that the novel, recurrent 
SCLC subpopulation exists in an immunosuppressed TME characterized by a pro-fibrotic, 
immunosuppressive Mono/Mφ and exhausted CD8+ T-cells in the setting of MHC class I 
downregulation of the bulk tumor.  

DISCUSSION 

The paucity of substantial fresh SCLC clinical specimens has been a barrier to capturing SCLC 
tumor diversity. By optimizing techniques to generate scRNAseq data from both surgical 
resections and biopsies, we constructed the first extensive single-cell atlas of human SCLC 
by transcriptomic profiling. With this dataset, we have dissected the biology of SCLC tumor 
and TME compartments, distinguished features separating LUAD and SCLC subtypes, 
discovered a novel recurrent SCLC subpopulation with stem-like characteristics, and 
described its unique TME. 

SCLC has been classically considered a homogeneous disease based on a highly consistent 
microscopic appearance, but recent comprehensive analyses of these tumors has revealed 
the existence of distinct transcriptomic subtypes5 with potential prognostic and therapeutic 
implications17,72. Here, we show that SCLC tumors--particularly SCLC-N--exhibit tumor 
heterogeneity that exceeds LUAD, highlighting a biological complexity not adequately 
described by canonical subtyping. 

In particular, we found that variant (non-SCLC-A) SCLC subtypes are enriched in local/distant 
SCLC metastases in humans, with SCLC-N upregulating pathways in EMT, axonogenesis, 
and metastasis20. These findings are consistent with 1) a previously reported mouse model 
with invasive and metastatic SCLC tumors overexpressing NEUROD117 and 2) cell lines with 
an axonogenic phenotype that correlates with NEUROD1 expression and promotes 
metastasis33. In contrast to SCLC-A, we found an enrichment of ligand-receptor interactions 
in SCLC-N. One biphenotypic tumor identified ligands secreted from the SCLC-A compartment 
that activate Notch, Wnt, TGFβ/Activin and pro-axonogenic signaling in SCLC-N. While this 
finding in just one tumor should be interpreted with caution, these results reflect preclinical 
SCLC models describing two discrete intratumoral subpopulations that interact to facilitate 
metastasis: a high-neuroendocrine subset expressing Notch ligands, and a low-
neuroendocrine subset expressing Notch receptors and downstream Notch activation35,36. Our 
data supports this model. Several of these cases support laboratory data suggesting plasticity 
of SCLC tumors to interconvert between subtypes, and in particular between SCLC-A and -N.  

In the search for biological processes that may be universal in SCLC, we found a novel 
subpopulation that was shared among tumors across subtypes, treatments, and tissue 
locations. This population demonstrated a pro-metastatic, stem-like phenotype marked by 
profound PLCG2 overexpression. Signaling by another phospholipase C gamma family 
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member, PLCG1, has been implicated in promoting metastasis in other tumor types39,40, 
suggesting that PLCG2 overexpression may have biological relevance in SCLC. Compared to 
primary tumor, we observed increased PLCG2 expression in local and distant metastases. 
Direct genetic manipulation validated that PLCG2 expression correlates with key markers of 
metastatic potential. Both prevalence of the recurrent tumor subpopulation and PLCG2 
positivity by IHC were stronger predictors of poor survival than treatment, metastasis, or SCLC 
subtype. These results indicate a novel subtype-independent mechanism that promotes 
metastasis and worse survival in SCLC, driven by a PLCG2-overexpressing subpopulation 
that exhibits stem-like features.  

Analysis of the TME confirmed an immune-cold phenotype in SCLC compared to LUAD with 
reduced immune infiltrate, consistent with previous reports73,74. Within SCLC, we noted 
increased Tregs and decreased CD8+ T-cells in SCLC-N, indicating greater suppression of 
adaptive immunity75–77 compared to SCLC-A.   

Analysis of the myeloid milieu of SCLC revealed a group of immunosuppressive Mono/Mφ 
resembling IPF-associated macrophages enriched in metastatic SCLC, suggesting a possible 
tumor-extrinsic mechanism of metastasis through ECM deposition and remodeling. One 
specific cluster displayed a mixed pro-fibrotic, immunosuppressive phenotype. Interestingly, 
our analysis of the SCLC cohort identified a constellation of immune and tumor phenotypes 
(this pro-fibrotic Mono/Mφ, exhausted CD8+ T-cells, and MHC class I depletion of the major 
tumor subclone), all having significant correlation to the PLCG2-high recurrent tumor 
subclone. These associations raise the possibility that CD8+ T-cells in the TME of the PLCG2+ 

tumor subclone are rendered ineffectual due to immunosuppressive Mono/Mφ’s and a lack of 
MHC class I in the major tumor subclone. This same Mono/Mφ cluster may also provide the 
fibrotic substrate that facilitates mobility of the pro-metastatic PLCG2-high tumor subclone. 
Targeting these different mechanisms of immune suppression--in SCLC relative to other 
tumors, among major SCLC subtypes, and within the TME of the recurrent SCLC subclone--
may represent a platform for the design of novel subtype-specific and subtype-agnostic 
immunotherapies.   

In conclusion, this atlas of SCLC illustrates how canonical subtypes and a novel PLCG2-high 
recurrent tumor subclone enlist diverse gene programs to create tumor heterogeneity and 
facilitate metastasis in a profoundly immunosuppressed TME. Our dataset provides further 
insight into tumor and immune biology in SCLC at single-cell resolution, with potential 
implications for the design of novel targeted therapies and immunotherapeutic approaches. 
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CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources should be directed to and will be fulfilled by the 
Lead Contact, Charles Rudin (rudinc@mskcc.org). 

  

STAR METHODS 

Patient cohorts 

Patients with NSCLC or SCLC undergoing a surgical resection or tissue biopsy at Memorial 
Sloan Kettering Cancer Center (MSKCC) were identified and collected prospectively from 
2017 to 2019. The current work leveraged four patient cohorts. Single cell RNAseq were 
performed on 19 clinical specimens with SCLC, 24 clinical specimens with lung 
adenocarcinoma, and 4 tumor-adjacent normal lung tissue samples (Table S1). IHC for 
subtyping TFs was performed on the SCLC samples as previously described16 and reviewed 
by a pathologist at MSKCC. 

IHC and Vectra analyses were performed on a TMA constructed with an additional 
independent SCLC cohort. 23 cases were amenable for IHC evaluation (Table S17) and 27 
for Vectra analyses (Table S20). For TMA construction, archival formalin-fixed, paraffin-
embedded (FFPE) samples were identified and collected retrospectively from SCLC and 
NSCLC cases between 2007 and 2017. Human kidney samples were used as a positive 
control in both TMAs.  

Flow cytometry analysis of CD45 positive cells was performed on an independent cohort of 
SCLC patients (Table  S19) collected prospectively from 2017 to 2019. 

Informed consent was obtained for patients in all cohorts (IRB protocol 14-091), reviewed, and 
accepted by the IRB. Clinical, demographic, pathologic, and molecular data using MSK-
IMPACT were identified by retrospective review of the electronic medical record. 

 

Sample handling 

Clinical samples were received in the lab immediately after extraction (Median delivery 
time±SEM, 0.75±0.72 hours) and processed rapidly (Median ±SEM processing time from 
delivery until 10x protocol started, 1.75±0.27 hours) to ensure high sample viability and quality 
for single cell RNAseq.  
 

Sample processing: Resection and small biopsies dissociation 
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Upon delivery to the lab, samples were mechanically/enzymatically dissociated using the 
tumor dissociation kit (#130-095-929, Miltenyi) and the GentleMACS Octo Dissociator with 
Heaters (Miltenyi, # 130-096-427). Resection samples were chopped and added to 7.5 mL of 
enzyme mix in the GentleMACS tube, while core needle biopsies/fine needle aspiration 
samples were added to 2.5 mL of enzyme mix in the GentleMACS tube. After 15-30 minutes 
dissociation, depending on sample size and consistency, bigger size samples were filtered 
with MACS SmartStrainers (70 μm) (Miltenyi, #130-098-462) into 50 mL tubes, and smaller 
samples were filtered with 35 uM stainer cap FACS tube (Corning # 352235). Then, samples 
were centrifuged (800g, 1 minute) and supernatant was discarded. Pelleted cells were then 
stained as indicated below. 

  

Sample processing: Pleural effusions cell collection 

Upon delivery to the lab, samples were centrifuged at 800g, 10 minutes. The supernatant was 
discarded and the pellet resuspended in 40 mL of 1X PBS containing 2.5% FBS. Next, 15 mL 
of Ficoll Paque (GE healthcare, #17-1440-03) was added per tube to two SepMate tubes 
(STEMCELL Technologies, #85450). Then, 20 mL of pleural fluid was added onto each 
SepMate tube, slowly, drop by drop, to avoid mixing of the sample and Ficoll, followed by 
centrifugation at 1200g for 20 minutes at RT. After centrifugation, 15 mL of the upper fluid 
layer were discarded, and the remaining 5 mL above the dividing plastic surface in the tube 
were collected, resuspending the cells located in it. Finally, cells were pelleted by 
centrifugation at 800g, 2 minutes and stained with anti-CD45 antibody and calcein dye as 
indicated below. 

  

Sample processing: staining for sorting and CD45+ composition analyses 

Cell pellet was resuspended in 200-3000 uL of Red Blood Cell Lysis Solution (ACK lysis 
buffer), depending on the pellet size. After incubation for 2 minutes at room temperature the 
ACK buffer was diluted 10-times with 1X PBS containing 2.5% FBS and pelleted again. Cell 
pellet was resuspended in 100 uL of 1X PBS + 2.5% FBS, mixed with 5 uL of Human TruStain 
FcX (Biolegend #422302), 3 uL of PE CD45 antibody (Biolegend # 368510 and 0.1 uL of 
calcein (1μg/μL, Calcein (Biolegend #425201)), and left for 15 minutes on ice. Stained 
samples were washed twice with 2 ml of 1X PBS + 2.5% FBS, and finally resuspended in the 
same buffer supplemented with DAPI dye. Using BD FACSAria (BD Biosciences) or Sony 
MA900 (Sony) flow cytometers, cells were sorted on DAPI-, Calcein+ (FITC+) to select for live 
cells. In addition, we sorted CD45+ (immune cells) and CD45- (cell population enriched in 
tumor cells) populations into separate tubes, and mixed them back in an artificial ratio to 
balance the compartmental representation (1:5-1:10 ratio, depending on cell availability). To 
define the percentage of immune cells in each sample, we registered the fration of CD45+ and 
CD45- in the live cell (DAPI-, Calcein+) population. 

  

Sample processing: single-cell RNA-seq 
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FACS sorted cells were subjected to scRNA-Seq protocol using Chromium (10X genomics) 
instrument and Single Cell 3’ Reagent Kit (v3). Each sample, containing approximately 3000-
8000 cells was encapsulated and barcoded following the manual (CG000183 Rev B). The 
viability of samples varied between 80-93%, as confirmed with 0.2% (w/v) Trypan Blue 
staining. The final sequencing libraries were double-size purified (0.6–0.8X) with SPRI beads 
and sequenced on Illumina Nova-Seq platform (R1 – 26 cycles, i7 – 8 cycles, R2 – 70 cycles 
or higher). Sequencing depth was between ~160-200 million reads per sample (~50.000 reads 
per cell). 

 

Cell lines and PLCG2 overexpression/CRISPR knock out 

H82 and DMS-114 were purchased from ATCC and regularly tested for Mycoplasma. Both 
cell lines were cultured in RPMI 1640 supplemented with 10% FBS. 
 
Lentiviral plasmids were used for PLCG2 overexpression (GeneCopoeia, #EX-A8643-Lv201) 
and for PLCG2 CRISPR knock out (Sigma-Aldrich, #HSPD0000031727). Lentiviral particles 
were produced by standard protocols, transfecting HEK293T cells using JetPrime reagent 
(Polyplus, #114-15) and concentrated viruses using Lenti-X Concentrator (Takara Bio, 
#631232)  and SCLC cells were transduced at high multiplicity of infection in a spin 
transduction protocol (Centrifugation of cells at 800xg, 30 minutes with 8ug/mL polybrene). 

Immunoblotting 

Protein extraction was performed by pelleting cells and resuspending in cold RIPA buffer 
(ThermoFisher, #89901) supplemented with phosphatase/protease inhibitors (ThermoFisher, 
#78446) and incubating for 1 hour on ice. Then, protein extracts were were clarified at 14,000 
rpm for 10 min in a refrigerated benchtop centrifuge (Eppendorf, #5340 R). Protein lysates 
were quantified using a micro BCA protein assay kit (Pierce, #23235) and then diluted with 
extraction buffer, NuPAGE® LDS sample buffer and reducing reagent (Life Technologies) 
prior to resolving on 4-12% Bis-Tris gradient gels. Gels were wet-transferred to 0.45 μm 
Immobilon-FL PVDF membrane (Millipore, #IPFL00010). All primary antibodies were 
incubated overnight with membranes in TBS Odyssey blocking buffer supplemented with 0.1% 
Tween-20 (LI-COR, #927-50000), while secondary antibodies (donkey anti-rabbit IRDye 
800CW (LI-COR, #926-32213) and donkey anti-mouse IRDye 680LT (LI-COR, #926-68022) 
were incubated at room temperature with agitation for 1 hr in primary blocking buffer 
supplemented with 0.01% SDS. Membranes were dried at 37ºC and protected from light 
before imaging (LI-COR; Odyssey Sa). Antibodies for PLCG2 (#3872, Cell Signaling 
Technology),  Beta-catenin (#8480, Cell Signaling Technology), pSMAD1/5 (#9576, Cell 
Signaling Technology), SMAD1 (#6944, Cell Signaling Technology), SMAD5 (#12534, Cell 
Signaling Technology), N-cadherin (#14215, Cell Signaling Technology), Vimentin (#5741, 
Cell Signaling Technology), Twist (#46702, Cell Signaling Technology) and actin (#3700, Cell 
Signaling Technology) were used. Immunohistochemistry was performed as previously 
described16, using antibodies for ASCL1 (#556604, BD), NEUROD1 (#ab205300, Abcam), 
POU2F3 (Santa Cruz, #6D1) and PLCG2 (#HPA020100, Sigma-Aldrich). 
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In vitro metastasis surrogate analyses 

Migration and invasion assays were performed using Cultrex BME Cell invasion assay kit 
(#3455-096-K, R&D Systems), following manufacturer’s instructions. 50.000 cells were 
seeded per chamber on day 0 on 0% FBS media, with 10% FBS media in the bottom well,  
and results were collected on day 4 using a luminescent assay (CellTiter-Glo 2.0 assay, 
#G9242, Promega). Each experiment was replicated a minimum of three times in independent 
assays, and the experimental condition was normalized to control condition, which was 
assigned a value of 1. Analysis of invasion/migration capacity was performed by averaging 
values in the independent replicates and by performing a two-tailed Student’s t-test to assess 
for statistical significance. 

Pre-processing of scRNA-seq data 

Fastq files from patient samples were individually processed using the SEQC pipeline12 based 
on the hg38 human genome reference and default parameters for the 10x single-cell 3’ library. 
The SEQC pipeline performs read alignment, multi-mapping read resolution, as well as cell 
barcode and UMI correction to generate a (cells x genes) count matrix. The pipeline further 
performs the following initial cell filtering steps: true cells are distinguished from empty droplets 
based on the cumulative distribution of total molecule counts; cells with a high fraction of 
mitochondrial molecules are filtered (> 20%); and cells with low library complexity are filtered 
(cells that express very few unique genes). In addition, we performed additional filtering of 
empty droplets using the CB2 package with parameter “lower” set at 100 to estimate the 
background distribution of ambient RNA and an FDR threshold of 0.01 for calling real cells78 . 
Putative doublets were removed using the DoubletDetection package (DOI 
10.5281/zenodo.2658729). Genes that were expressed in more than 10 cells were retained 
for further analysis. Combining samples in the entire cohort of samples from SCLC, LUAD, 
and normal adjacent lung yielded a filtered count matrix of 155,098 cells by 23,628 genes, 
with a median of 5,654 molecules per cell and a median of 3,041 cells per sample. The count 
matrix was then normalized by library size, scaled by median library size, and log2 transformed 
with a pseudocount of 0.1 for analysis of the combined dataset. Principal Component Analysis 
(PCA) was performed with the top 50 principal components (PCs) retained with 42% variance 
explained.  

Batch correction of the combined dataset 

We performed batch correction in the combined dataset of clinical samples including SCLC, 
LUAD, and normal adjacent lung using fastMNN with cosine distance applied to the log2-
transformed of the library-size normalized count matrix with pseudocount of 1, reduced to top 
50 PCs. We favored fastMNN due to the ability to perform hierarchical merging among 
samples first from the same patient, then from the same histology, with samples containing a 
greater number of cells merged first. To evaluate the effect of batch correction, we used an 
entropy-based measure that quantifies how much normalized expression mixes across 
patients12. We constructed a k-nearest neighbors graph (k=30) from the normalized dataset 
using Euclidean distance and computed the fraction of cells qT derived from each tumor 
sample T in the neighborhood of each cell j. We then calculated the Shannon entropy Hj of 
sample frequencies within each cell’s neighborhood as: 
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High entropy indicates that the most similar cells come from a well-mixed set of tumors, 
whereas low entropy indicates that most similar cells derive from the same tumor.  This sample 
entropy was projected on the UMAP (Figure S1A). As expected, immune cells generally had 
the highest entropy consistent with shared phenotypes across tumors, whereas SCLC and 
LUAD tumor cells had the lowest entropy consistent with increased inter-tumoral diversity. 
These results indicate that batch effect was corrected while maintaining true biological 
heterogeneity.  Calculating robust clusters 

In all cell type compartments, we performed Phenograph clustering79 over a range of values 
for the parameter knn to ensure that subsequent cell typing is consistent. To ensure 
robustness, we used the adjusted Rand index to evaluate the consistency of clusterings 
across different k (from 5 up to 100). We then chose knn from the window where the rand 
index is the consistently highest, indicating stable clusterings. Ultimately we chose knn = 30 
for clustering in all cell compartments, with the exception of the T-cell compartment (described 
below). 

Gene imputation 

Given the sparse nature of single-cell sequencing that arises from gene dropout, we used 
gene imputation using MAGIC (knn = 30, t=3)80  when performing knnDREMI calculations 
(described below) and for visualizing gene expression on both UMAPs and heatmaps 
(Figures 2B, S2B, S3B). 

Single-cell visualization  

To visualize single cells of the global atlas as well as epithelial, SCLC, immune, T-cell, and 
myeloid subsets, we used UMAP projections81 to generate lower dimensional representations 
using knn = 15 and min_dist = 0.3-0.5 (Figure 1A-C, 2A-B, 4B, 5A-D, 6A, 6D, S1A, S1F, 

S2A, S3A, S4D-E, S6A, S6C, S7A-C).  

Coarse cell type identification and subsetting 

We used a hierarchical strategy to identify cell types, starting at coarse resolution (epithelial 
versus immune) and then fine resolution (basal versus NE cell). At the global level, we first 
performed unsupervised clustering on the batch-corrected count matrix (described below) to 
identify 58 clusters. Similar to other single-cell studies in lung82, we annotated clusters by 
coarse cell type based on expression of tissue compartment markers (for example, PTPRC 
for immune cells, EPCAM for epithelial cells, COL1A1 for fibroblasts, and CLDN5 for 
endothelial cells) (Figure 1A, Table S23). We subsetted the data based on these coarse cell 
types for downstream analysis.  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406363doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406363


Measuring inter-patient heterogeneity per cell type 

Similar to our evaluation of patient mixing following batch effect, we used an entropy-based 
measure of inter-patient diversity for each cell type. Here, we use the above PhenoGraph 
clusters at the batch-corrected global dataset, where each cluster C represents a discrete 
phenotype. We annotate each cluster by cell type (detailed below). To account for any 
differences in the number of cells per cluster and cell type, we subsampled 100 cells from 
each cluster 100 times with replacement and calculated the Shannon entropy of patient 
frequencies P in each subsample HC as: 
 

𝐻# =	$−𝑞$	𝑙𝑜𝑔	𝑞$
$

 

 
We then compared the distribution of Shannon entropies bootstrapped from clusters between 
cell types using Bonferroni-adjusted Mann-Whitney U test (Figure 1D). 

Cell type annotation of the epithelial compartment 

We subsetted the EPCAM+ epithelial cells (n=64,301 cells). We projected normalized counts 
without log transform onto the first 45 PCs selected by detecting the knee-point (minimum 
radius of curvature in eigenvalues), corresponding to 85.3% variance explained. We identified 
38 clusters (described below). We considered a cell cluster to be  neuroendocrine based on 
expression of canonical markers (CHGA, CHGB, NCAM1, SYP, ASCL1, ASCL2, BEX1, also 
see Table S23). Using this classification, we further divided the epithelial compartment into a 
neuroendocrine subset (n=54,523 cells) and a non-neuroendocrine subset (n=9,778 cells).  

Cell type annotation of the non-neuroendocrine epithelial 

compartment 

We subsetted the non-neuroendocrine epithelial cells. We projected the normalized counts 
without log transform onto the first 30 PCs selected by knee-point detection, corresponding to 
90.5% variance explained. We then curated multiple recent publications for specific canonical 
markers for a range of cell types, including epithelial lineages in the lung82–84, and liver85 (see  
Table S23). Using these cell type-specific gene sets, we first transformed the data by z-score 
and calculated the average expression of each curated gene set per cell type subtracted from 
the average expression of a reference set of genes using the score_genes function in scanpy. 
The subsequent cell type scores were transformed again by z-score, with cell types ultimately 
annotated by maximum cell type score (Figure 1A)   

Tumor cell identification using single-cell SNV and CNV calls 

We identify cancer cells in the epithelial compartment by ensuring that all putative tumor cell 
populations cluster separately from cells derived from normal lung samples. Additionally, we 
identify tumor cells harboring genomic mutations including single nucleotide variants (SNVs) 
and copy number variants (CNVs) based on matched bulk DNA-sequencing from MSK 
IMPACT, downloaded from cBioPortal. To account for the sparsity of scRNA-seq, as well as 
confounding gene fragments from lysed tumor cells that contaminate normal single-cell 
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droplets, we consider cell clusters to be cancer if they are enriched in reads calling SNVs 
compared to immune and mesenchymal cells as a negative control, based on Fisher’s p-value 
adjusted by Bonferroni calculation for multiplicity with a threshold of < 0.05. We reasoned that 
any cluster with a significant enrichment of variant alleles above a null distribution of normal 
immune and mesenchymal cells likely represents a cluster of tumor cells.  

We also identify CNVs at the single-cell level using InferCNV86 using a sliding window of 200 
genes, with a diploid mean and standard deviation determined by available normal adjacent 
tumor samples. We considered any deviations from the diploid mean of at least two standard 
deviations to be a copy number change.  

We noted that the fraction of the genome altered by CNV followed a bimodal distribution across 
cells, consistent with normal and tumor cells having low and high CNV burden, respectively. 
We noted that CNV burden was higher in SCLC tumors compared to LUAD (Figures S1E-F), 
consistent with SCLC having a higher tumor mutation burden10. We use two different 
measures of CNV burden: fraction of the genome changed and Pearson’s correlation between 
single-cell and bulk CNV profiles, both of which have a bimodal distribution in tumor samples, 
with a lower peak corresponding to normal stromal cells and a higher peak corresponding to 
mutated tumor cells. On the other hand, the normal samples have a unimodal distribution that 
coincides with the normal stromal peak in tumor samples. Based on the bimodal distribution, 
we identify tumor cells using a threshold of >10% fraction of genome altered and Pearson’s 
correlation to bulk CNV profile rho >0.2. Of the epithelial cell compartment (n=64,301 cells), 
clusters that were identified as both tumor and neuroendocrine were therefore subsetted as 
the SCLC tumor compartment (n=54,523 cells). Epithelial cell clusters identified as tumor but 
not neuroendocrine (n=7,635 cells) were considered LUAD.  

Differential expression in bulk reference datasets 

To facilitate annotation of our single cells by tumor histology and SCLC subtype, we used 
available reference RNA-sequencing of bulk tumors. These datasets included SCLC subtypes 
(SCLC-A, SCLC-N, SCLC-P, and SCLC-Y from George, et al.87 and Rudin, et al.88. We 
performed differential expression using limma89 based on log transcripts per million (TPM) 
counts (Tables S2, S3, S4 and S5). We considered only DEGs with absolute value of log2 
fold-change > 1.5 and Benjamini-Hochberg adjusted p-values < 0.05.  

Subtype classification and deconvolution in the SCLC tumor 

compartment 

We aimed to characterize inter-patient tumor heterogeneity of the SCLC tumor compartment 
within the context of canonical and non-canonical subtypes. To discriminate known SCLC 
subtypes, we performed feature selection on bulk DEGs between each SCLC-subtype (SCLC-
A, SCLC-N, SCLC-P, SCLC-Y) vs rest (described above, Tables S2, S3, S4 and S5), and 
excluded genes from cell cycle, hypoxia, and apoptosis pathways that are non-specific to 
SCLC subtype and might confound classification. These filtered genes included pathways 
from REACTOME_CELL_CYCLE_MITOTIC, REACTOME_MITOTIC_G1_G1_S_PHASES, 
HALLMARK_G2M_CHECKPOINT, HALLMARK_HYPOXIA, HALLMARK_APOPTOSIS 
downloaded from MSigDB. We projected the normalized counts without log transform onto the 
first 56 PCs selected by knee-point detection, corresponding to 78.8% variance explained.  
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We then consider the following semi-supervised classification problem of assigning SCLC 
subtype. For N cells where a subset of L cells has known subtype (training data), we must 
assign the remaining N-L cells (test data) the probability of represents subtype S 𝜖 {s1,s2,s3} = 

{SCLC-A, SCLC-N, and SCLC-P}. We excluded SCLC-Y, as we did not identify any YAP1-
expressing tumor cells in our SCLC cohort (Figure 2B). We want an approach that not only 
assigns probabilities of each subtype per cell, but is able to deconvolve the phenotype of 
SCLC tumor cells that reside on a continuum between different SCLC subtypes. 
 
We solve this problem by representing the dataset as an absorbing Markov chain, which is a 
stochastic model where each event depends only on the state of a previous event. The Markov 
chain can be represented as a graph where each node is a cell of the set X = {x1,…,xN}, the 
set Y = {y1,…,yN} represents the subtype assignments where y is an element in S, and each 
edge between nodes corresponds to the transcriptional similarity between cells. For cell x, we 
want to calculate the probability of a particular subtype s, or Pr(yx == s). Given the training 
data, we have prior knowledge of the subtype labels of the first Y1:L = {y1,...,yL} and must assign 
subtype labels the the remaining unassigned cells or test data YL+1:N = {yL+1,...yN}. A simplistic 
approach to classification of cell x would be a “majority vote” of the subset of Y1:L within the 
knn neighborhood. However, this neighborhood may have skewed or even no available 
training data due to sampling bias. A better approach would consider distant labeled nodes 
beyond the immediate neighborhood, connected to x through multiple edges in the graph. A 
“vote” of a labeled node would be weighted by the sum of the edge weights along the path 
from x to the labeled node. However, there may exist multiple paths in the graph from x to the 
labeled node, and so an optimal solution would account for all possible paths at once. An 
effective way to consider all possible paths is to perform a random walk from x, where each 
step is a traversal from one node to a neighboring node based on relative edge weights. Pr(yx 

== s) can then be reformulated as the probability that a random walk from x will reach a labeled 
node of subtype s first. Rather than simulate this process, Markov absorption probabilities 
represent an analytical solution for calculating these probabilities, which is implemented in the 
Phenograph package79.  
 
To implement this method, we first must have labeled training data available. To this end, we 
identify cells that can be confidently assigned to each subtype prior to calculating Markov 
absorption probabilities. Using reference RNA-sequencing of bulk tumors comparing SCLC 
subtypes (described above), we used the top 30 overexpressed DEGs per SCLC subtype and 
calculated the average Z-score over this gene set for each cell. The top 100 highest scoring 
cells were then used as training examples for Markov absorption calculations.  
 
Next, we constructed a Markov graph from the dataset. We first constructed a diffusion map 
based on the first 56 PCs to obtain the first 15 diffusion components (DCs) retained by 
eigengap. Using the Phenograph package, we transformed this diffusion graph additionally 
into a Jaccard graph between k-neighborhoods, which has been shown to be more robust to 
noise. The resulting graph represents a Markov chain where we can therefore calculate the 
Markov absorption probabilities for each unlabeled cell to reach a labeled cell of a given 
subtype. Based on the resulting probabilities for each subtype, we can then perform a hard 
classification of SCLC subtype by maximum likelihood, or consider the per-cell probabilities of 
SCLC-A, SCLC-N, and SCLC-P to be a deconvolution of mixed phenotype that can be readily 
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represented by a 3-coordinate ternary graph, as implemented in the ggtern package90(Figure 

2C).  
 
Of note, hard classification of SCLC subtypes on the UMAP shows that, unlike previously 
published visualizations of SCLC tumor cells that comprise discrete islands on the layout 
without clear relation to each other91, our feature selection facilitates a visualization that 
emphasizes patient diversity in the context of SCLC subtypes (Figure 1A, 2A).   
 

Continuity of mixed phenotypes between SCLC-A and SCLC-N 

Focusing on SCLC-A and SCLC-N which constituted the majority of our samples, we observed 
that while most cells were strongly associated with either SCLC-A or SCLC-N, a substantial 
minority of cells comprised a relatively continuous spectrum of cells from SCLC-A to SCLC-N 
(Figure 2C). This minority (8.9% of cells drawn from 20 samples) comprised a relatively 
uniform continuum of mixed cell-states with almost any proportion of SCLC-A/N probability. In 
comparison, cells from our single SCLC-P did not contain any such mixed phenotypes with 
either SCLC-A or SCLC-N (0.37% of cells). Cells at the transition between SCLC-A vs SCLC-
N may represent intermediate subtypes or non-canonical phenotypes.  

Visualizing phenotypic changes along the SCLC-A vs SCLC-N 

spectrum 

For better visualization of SCLC tumor cells along the SCLC-A vs SCLC-N spectrum (Figure 

3B), we excluded SCLC-P cells and renormalized the Markov absorption probabilities of 
SCLC-A and SCLC-N (described above). We ordered the cells by these probabilities from 
SCLC-A to SCLC-N along the X-axis and colored the corresponding subtype probability on 
the horizontal color bar. We rescaled marker expression or pathway scores from 0 to 1 along 
the Y-axis and plotted this value for each cell (grey dots) as subtype probability along the X-
axis increasing from SCLC-A to SCLC-N. We calculated pathway scores as the average of Z-
scored expression of genes belonging to a pathway. The average trend for each gene marker 
or pathway was computed by a generalized additive model of 8 splines with spline order 3 
using the python package pyGAM (DOI 10.5281/zenodo.1208723).  

Detailed Characterization of Canonical and Non-Canonical 

Subtypes in the SCLC cohort 

To characterize the canonical subtypes in our SCLC cohort, we performed DE analysis 
between each subtype vs the rest, as well as between the predominant subtypes in our cohort 
SCLC-A vs SCLC-N, using MAST on the non-imputed count matrix (detailed below, Tables 

S7, S8, S9 and S6). To visualize the gene signatures characterizing each subtype, we plotted 
the heatmap of imputed gene expression and performed hierarchical clustering to assess the 
separability and relative similarity of subtype gene signatures (Figure S2B). We found typical 
markers for SCLC-A (ASCL1, SOX4, STMN2, DOC, STMN2), SCLC-N (NEUROD1, 

ADCYAP1, NRXN1, SSTR2, ID1, ID3, SST, DLK1), and the one SCLC-P sample (POU2F3, 

ASCL2, CD44, MYC, KIT, YBX1).     
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Interestingly, sample Ru1108 had a strong subtype probability for SCLC-A but was 
transcriptionally distinct from the rest of the SCLC-A group (Figure 2A, S2B). This sample 
with wild type TP53 and RB1 had high expression of ASCL1, DLL3 and neuroendocrine 
markers consistent with SCLC-A subtype, but also overexpressed CDK4 and a NSCLC gene 
signature (average Z-score of the differentially overexpressed genes in NSCLC vs SCLC cell 
lines from the CCLE database, not shown). Together, our subtype classification demonstrated 
tumor diversity in canonical SCLC subtypes, but also identified additional non-canonical 
phenotypes in our cohort, including this TP53/RB1 wild-type SCLC and the recurrent PLCG2 

tumor subclone (described in main text and below).  

Modeling cell fraction of SCLC subtypes in primary vs metastatic 

sites  

We used several approaches to compare the fraction of tumor cells of different SCLC subtypes 
in primary lung vs lymph node vs distant metastasis (Figure S2C). We performed Dirichlet 
regression using the DirichletReg R package using common parameterization to adjust for 
treatment status (naive vs chemo-treated vs chemo-immunotherapy treated) and tissue status 
(primary vs regional lymph node vs distant metastasis). This method tests for differences in 
cell type composition between groups while accounting for proportions of all other cell subsets. 
In addition to the multivariate Dirichlet regression, we also used univariate Mann-Whitney as 
a parallel statistical test to ensure consistency.  

Differential expression of tumor and immune subsets 

We performed differential expression for the following comparisons: 1) each SCLC subtype vs 
rest (Tables S7, S8 and S9), 2) SCLC-A vs SCLC-N tumor cells (Table S6), 3) Mono/Mφ-A 
vs Mono/Mφ-B (Table S21 SAJ), and 4) each unsupervised cluster vs rest (Tables S14 and 

S24). All differential expression was performed using MAST (version 1.8.2)92, which provides 
a flexible framework for fitting a hierarchical generalized linear model to the expression data. 
We used a regression model that adjusts not only for cellular detection rate (cngeneson, or 
number of genes detected per sample), but also tissue status (primary vs LN vs distant 
metastasis) and treatment status (naive vs chemotherapy vs combined chemo-
immunotherapy in the first-line setting): 

Y_i,j ~ condition + tissue + treatment + cngeneson 
 
where condition represents the condition of interest and Yi is the expression level of gene i in 
cells in cluster j, transformed by natural logarithm with a pseudocount of 1. To homogenize 
cell sampling per batch, we downsampled such that the cell complexity (i.e. the number of 
genes per cell) was evenly matched across groups. In particular, we partitioned cells from 
each cluster into 10 equally-sized bins based on cell complexity and subsampled from each 
bin to match cell complexity distribution across samples. We downsampled to at most k cells 
per sample, where k is the median sample size. We verified that the mean expression levels 
from the full and downsampled datasets were strongly correlated. We considered genes to be 
significantly differentially expressed for Bonferroni-adjusted p-value < 0.05 and absolute log 
fold-change > 0.3. 
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Filtering ambient RNA from differential expression 

To remove candidate DEGs that likely represent ambient RNA, we follow a stepwise, 
regression-based approach that identifies likely contaminant genes per cell type93. For each 
general cell type (ingroup), expression of each gene is plotted against the expression of that 
gene in all other cells (outgroup). An initial Loess regression is fitted to the entire dataset. 
Genes are then binned by expression (number of bins = 25), and the 50 genes with the most 
negative residuals per bin are then assessed. A second linear regression is fit to genes with 
negative residuals. Finally, those genes with residuals for the second regression that are < 2 
are considered ambient RNA. Likely ambient RNA is colored in red, with known specific 
markers of other cell types highlighted in red boxes. For instance, PTPRC detected in epithelial 
cells is highly likely to be contaminant RNA from lysed immune cells. We excluded any genes 
representing ambient RNA from DEGs per cluster or SCLC subtype. 

Identifying gene signatures in single-cell data  

Enriched gene pathways were identified using pre-ranked GSEA, as implemented by the R 
package fGSEA94 using 10,000 permutations. Gene ranks were calculated using -log(p-
value)*logFC based on MAST10 differential expression (described above). To assess enriched 
pathways in SCLC subtypes and clusters, we used a curated set of pathways from MSigDB v 
7.1 (Table S25)95 . To assess enriched pathways in myeloid clusters, we used IPF-related 
gene sets (see Table S23) in addition to HALLMARK and KEGG subset of Canonical 
Pathways in MSigDB v 7.195. Using the same cutoff as in the original GSEA paper, we 
considered pathways with Benjamini-Hochberg adjusted p-values < 0.1 to be significant.  

Identifying the recurrent PLCG2+ tumor subclone  

A central question beyond canonical SCLC subtypes, was whether there existed any novel 
tumor phenotypes that are shared across patients. We identified 25 clusters corresponding to 
distinct SCLC phenotypes. We first assessed whether any of these clusters poorly matched 
canonical SCLC subtypes and could therefore represent a novel tumor phenotype. Having 
assigned probabilities for each SCLC subtype s for each cell j using Markov absorption 
probabilities psj (described above), we identified cells with high uncertainty for any SCLC 
subtype by calculating the entropy over the cell probabilities for each subtype Uj = Σs pj(s) log 

pj(s). Cells that have high entropy do not bear clear similarity to any SCLC subtype. We 
compared the distribution of subtype uncertainties per cluster and found that cluster 22 had 
significantly higher subtype uncertainties than all other clusters by Mann-Whitney U test, 
suggesting a novel subtype.   

Having identified a possibly novel SCLC phenotype, we next assessed if it arose beyond a 
single patient. We used a similar approach to assessing inter-patient diversity per cell type 
(described above), except instead of stratifying by cell type the bootstrapped entropies of 
patient labels from each cluster, we directly compared the bootstrapped entropies of each 
cluster versus the rest using Bonferroni-adjusted Mann-Whitney U test. We again identified 
cluster 22 as the most highly recurrent cluster across patients (Figure 4A).    
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Recurrent gene markers of the PLCG2+ tumor subclone  

To assess the gene program of the recurrent PLCG2+ tumor subclone, we performed 
differential expression of cluster 22 vs the rest of the tumor cells using MAST (Table S14). To 
assess for recurrence of overexpressed genes across samples harboring cluster 22, we 
perform differential expression within each tumor sample between cells in cluster 22 and the 
outgroup. For each gene, we have an adjusted FDR of differential expression in the ingroup 
vs outgroup, and we calculate a combined p-value p by the Edgington’s method to score the 
recurrence of each gene. In this way, we can avoid pseudoreplication bias that emerges from 
variably sequenced number of cells per sample96,97. We rank the recurrence of each gene by 
significance -log(p) and find PLCG2 to be the most highly recurrent DEG (Table S13).  

Identifying the PLCG2-related gene module 

To better characterize the PLCG2 pathway in the context of SCLC, we used knnDREMI 
(conditional-Density Resampled Estimate of Mutual Information)80 to estimate the functional 
relationship of PLCG2 expression to other genes across the dynamic range of expression. To 
this end, knnDREMI estimates mutual information between two genes by using conditional 
density instead of joint density. The key feature of knnDREMI is replacing the heat diffusion 
based kernel-density estimator (KDE)98 with a knn-based density estimator99, which is robust 
and scales well in sparse, high-dimensional data. For two genes x and y, knnDREMI performs 
a coarse-grained mutual information calculation on a KDE of p(x,y).  
 
First, the KDE is calculated by constructing a knn graph from a fine-grained grid of points. The 
density at each grid point is computed as: 
 

𝑘	
𝑁 ∗ 𝑉(𝑟, 𝑑) 

 
Where N is the total number of data points, k is the number of nearest neighbors, and r is the 
distance to the kth nearest neighbor. V(r,d) is then the volume of a d-dimensional ball of radius 
r: 
 

𝑉(𝑟, 𝑑) 	= 	𝜋
%/' 	 ∗ 	𝑟%
𝛤(𝑑2 	+ 	1)

 

 
Here, we use d = 2 for considering pairwise relationships between genes and k = 10 to be 
robust against outliers.  
 
Second, we coarse-grain the KDE to calculate discrete mutual information. While KDE is 
calculated at fine resolution to smooth and fill in gaps in sparse data, mutual information is 
calculated over a coarse scale for robustness to noise and any irregularities in partitioning. 
The conditional density estimate, which is a column-normalized joint density estimate, better 
captures the functional relationship across the entire dynamic range of expression robust to 
density sampling.  
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Finally, we calculate mutual information for gene expression x and y based on the conditional 
density estimate. In general, mutual information is defined as  
 

I (x : y) = H(y) - H(y|x) 

 
where H(y) is Shannon entropy: 
 

𝐻(𝑦) = 	$−𝑝(𝑦)	𝑙𝑜𝑔	𝑝(𝑦) 
 
and H(y|x) is conditional Shannon entropy: 
 

𝐻(𝑦|𝑥) = 	$−𝑝(𝑦|𝑥)	𝑙𝑜𝑔	𝑝(𝑦|𝑥) 
 
On the other hand, knnDREMI uses the conditional density estimate to calculate mutual 
information above, which effectively adds another level of conditioning: 
 

knnDREMI(X : Y) = H(y|x) - H(y|x|x) 

 

In the SCLC cohort, we identify genes functionally related to PLCG2 by calculating knnDREMI 
of each gene y conditioned on x fixed as PLCG2 expression. We applied knnDREMI to the 
MAGIC (t=3) imputed count matrix (described above) and identified genes with the highest 
knnDREMI > 1. We plotted the z-scored expression of the genes with the highest knnDREMI 
on a heatmap, ordering column by PLCG2 expression (top row) (Figure S3B). We then 
performed hierarchical clustering to find three gene modules corresponding to low, 
intermediate, and high PLCG2 (Table S15).  
 

To identify other pathways associated with the PLCG2-high gene module m, we calculated for 
each cell x a score Zm, which is the average Z-score of expression for all genes within the 
PLCG2-high gene module. We similarly calculated for each cell a score Zn the average Z-
score of expression for all genes in each pathway n from a curated set of MSigDB. We then 
calculated Pearson’s correlation between Zm and each Zn to identify gene pathways that 
correlate with the PLCG2-high gene module. We considered pathways among the top 5% 
correlated, corresponding to a minimum correlation threshold of ρ = 0.341 (Figure S3C, Table 

SAO). The remaining set therefore represents candidate gene pathways that are also 
increased in cells that have increased expression of the PLCG2-high gene module.    

Survival analysis 

To assess the prognostic impact of the recurrent PLCG2+ subpopulation, we performed 
survival analyses in our single-cell SCLC cohort and validated these findings in an 
independent cohort with IHC staining for PLCG2. Both cohorts were balanced in number of 
different covariates, including treatment history and tissue type (Tables S17 and S18). For 
both analyses, we considered samples with extensive-stage ES-SCLC or limited-stage LS-
SCLC that recurred (ever had extensive-stage disease). OS was defined as time of biopsy to 
death or censoring. To separate cohorts under analyses into two subgroups, we used a 
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threshold of  (1) at least 0.75% of SCLC tumor cells comprising the recurrent PLCG2+ 
subpopulation as assessed by scRNAseq, or (2) >15% of cells exhibiting high PLCG2 protein 
expression (Intensity 3). For our validation cohort with IHC, samples were divided based on 
NEUROD1 protein expression into ASCL1+ NEUROD1- and ASCL1(+/-) NEUROD1+ 
subgroups, due to the minimal number of ASCL1- NEUROD1+ samples and no ASCL1- 

NEUROD1- samples in the cohort. 
 
We then performed Kaplan-Meier (univariate) and Cox proportional hazards (multivariate) 
survival analysis using the survival R package100. In the Cox proportional hazards model, we 
adjusted for presence of classical vs variant SCLC subtype, treated vs naive, and distant 
metastasis vs primary/regional lymph node. Our adjusted covariates were dichotomized to 
ensure a stable fit for the adjusted Cox regression. In general, the corresponding Schoenfeld 
residuals were invariant to time, but for completeness, we also performed Kaplan-Meier 
univariate analysis that is independent of the proportional hazards assumption. P-values were 
calculated using Wald test and were also consistent with bootstrapped p-values.  

Cell-cell interaction analysis 

We sought to identify cell-cell interactions among tumor subclones of the same SCLC subtype 
and between tumor subclones of different subtype. For this analysis, we used CellPhoneDB101, 
which efficiently identifies outlying co-expression of ligand-receptor (L-R) pairs compared to a 
null distribution generated from permuted cell type labels. We first considered whether tumor-
tumor L-R interactions are enriched in SCLC-A vs SCLC-N. Given a list of significant 
interactions based on CellPhenoDB, we assessed enrichment of interactions using Fisher’s 
exact test and found that all significant interactions were found in SCLC-N rather than SCLC-
A, consistent morphological descriptions of SCLC-N as tightly adherent cells in contrast to 
SCLC-A (Figure 3C).     
 
We then assessed for intratumoral interactions across SCLC-A and SCLC-N subtypes within 
tumor Ru1215. We identified bidirectional interactions in programs related to neuron 
development, including axonogenesis and activin signaling102. Interestingly, SCLC-A 
expressed Notch ligands (JAG2, DLK1103,104) and WNT, whereas SCLC-N subclones 
expressed Notch receptors (NOTCH1, NOTCH2) and FZD1. These results are supported by 
preclinical model data showing (1) that combined neuroendocrine and non-neuroendocrine 
subpopulations within the same SCLC tumor increase metastatic potential35; (2) the 
neuroendocrine subpopulation may promote Notch signaling in the non-neuroendocrine 
subset105; and (3) enrichment of homotypic interactions in neuronal and EMT programs may 
increase the metastatic potential of the SCLC-N subtype. 

Cell type annotation in the immune compartment 

We subsetted the CD45+ immune cells from all SCLC patients (n=16,098 cells). We projected 
the log2-transformed, normalized counts onto the first 40 PCs based on knee-point detection, 
corresponding to 26% variance explained. We identified 21 clusters, annotated as B/plasma, 
T, Myeloid and NK cells using marker genes curated from multiple publications for canonical 
markers for major immune cell types (including CD79A, CD3D, CD3E, CD14, ITGAM, ITGAX, 

MS4A2, SDC1, FCGR3A; also see Table S23). Using these cell type-specific gene sets, we 
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transformed the data by z-score and calculated the average expression of each curated gene 
set per cell type subtracted from the average expression of a reference set of genes using the 
score_genes function in scanpy. The subsequent cell type scores were transformed again by 
z-score and cells annotated by maximum cell type score. Cell type labels were smoothed by 
cluster after manual inspection to ensure accurate separation of cells.  

Assessing impact of treatment and SCLC subtype on immune 

phenotype 

Similar to our evaluation of inter-tumoral diversity (described above), we use an entropy-based 
measure for assessing impact of treatment and SCLC subtype on the phenotype of each 
immune cell type (annotation described below). Here, we consider treatment status (naive vs 
chemo-treated vs chemo-immunotherapy treated) and SCLC subtype (SCLC-A vs SCLC-N). 
Of note, immune infiltrate from the single SCLC-P sample was only 50 cells and was 
disregarded. To account for any differences in the number of cells per cell type, we 
subsampled 100 cells from each cell type P 100 times with replacement and calculated the 
Shannon entropy of the frequencies for a particular condition of interest C (treatment or 
subtype) within each subsample HP = -ΣC qC log qC. To facilitate comparison between 
treatment and subtype, we normalized the entropy HP by the maximum entropy possible, 
which is -3 log ⅓ for treatment and -2 log ½ for subtype. We then compared the distribution of 
normalized entropies bootstrapped per cell type using Bonferroni-adjusted Mann-Whitney U 
test (Figure 6E). 

Cell type annotation in the T cell compartment 

Defining SCLC T-cell subsets was complicated by the relatively lower T-cell infiltrate in 
SCLC and lower average library size of T-cells in general, both of which can prevent clean 
separation of subsets based on poorly captured markers like CD4 and CD8. We found that 
two changes greatly facilitated T-cell phenotyping and separation of CD4+ and CD8+ T-cells. 
First, we included LUAD and normal lung samples with our SCLC samples to boost the 
number of T-cells (n=46,140 cells). Second, we z-scored the log2-transformed, normalized 
counts of each gene, projected onto the first 65 PCs based on knee-point detection, 
corresponding to 7% variance explained (the relatively lower explained variance is expected 
given the z-score and log transformation). We then performed annotation of T-cell 
phenotypes using two following parallel approaches.  
 
Non-negative matrix factorization of immune cells 

Matrix factorization has been previously used in single-cell analysis51,106] and excels in settings 
of continuous phenotypes which are less amenable for robust partitioning by clustering. In this 
class of methods, cells and genes are projected into the same lower-dimensional space. The 
resulting latent factors are associated with weights or loadings for each cell and each gene. 
These cell and gene loadings can be used to associate gene programs to different cells.     
 
We used non-negative matrix factorization (NMF) implemented in scikit-learn (version 20.0) 
with default parameters except for tolerance for stopping condition 10-4, maximum number of 
iterations 500, and number of factors k = 30. To facilitate comparison across factors, gene 
loadings were first scaled by standard deviation across genes, then z-scored across factors. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406363doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406363


Each factor was then annotated by genes with the highest loadings. By comparing to a 
reference set of gene markers (Table S23), we annotated 7 factors with  T-cell phenotypes (2 
Tconv, 1 Treg, 1 effector-like, 1 memory-like, 1 exhausted, and 1 Tgd factor). The complete 
set of NMF loadings are provided in the adata made available for download.  
 
To show robustness of matrix factorization with respect to the number of factors k, we repeated 
the analysis using k=10-50 (data not shown). All 7 T-cell phenotypes could be readily identified 
with each value of k. k=30 was ultimately chosen based on knee-point of reconstruction error.  
 
Cluster-based approach 

In parallel to our factor-based approach, we also performed a cluster-based approach to 
annotating T-cell phenotypes, similar to our strategy in other cell type compartments. 
However, given the challenges of T-cell clustering, we performed an additional test of 
robustness. In addition to confirming robustness of clusterings by adjusted Rand index 
(described above), we also ensured that clustering was not driven by individual samples. To 
this end, we repeated clustering with each sample left out and confirmed that the ultimate 
clustering was robust to dropping samples based on rand index. With these steps, we used 
Phenograph with knn=40 to ensure robustness, identifying 34 clusters of T-cells pooled from 
SCLC, LUAD, and normal lung. 
 
We then performed differential expression between each cluster and the rest (described 
above) and compared DEGs to curated markers of T-cell phenotype (Table S23) (Figure S5B-

C). Finally, we confirmed agreement of our cluster-based cell typing with NMF factors, by 
calculating the mean cell loadings of each T-cell annotated factor within each cluster (Figure 

S5D) and each cluster-based cell type (Figure S5E). Having successfully identified T-cell 
subsets at the combined level, we confirmed that these annotations restricted to SCLC were 
also consistent with known gene markers (Table S23). 

Comparing T-cell phenotype between SCLC-A vs SCLC-N 

To analyze the phenotypic shifts in T cell compartment across SCLC subtypes, we considered 
NMF factors associated with T-cell phenotype (described above). Using NMF, we compared 
the distribution of factor loadings across T cells in SCLC-A and SCLC-N. To ensure that factors 
are assessed on the same scale, we first log2-transformed cell loadings with a pseudocount 
of 0.0001, shifted the minimum of each factor to 0, and scaled each factor by standard 
deviation across cells. We accounted for the effect of treatment and tissue site by fitting a 
linear model between the factor loadings and the treatment and tissue status of cells. We then 
performed a Bonferroni-adjusted two-sample t-test on the residuals of the factor loadings 
(Figure S5F). We used tissue status (primary vs LN vs distant metastasis) and treatment 
status (naive vs chemo vs chemo-IO in the first-line setting) as covariates in the model.  

Analysis of CD8+ T cell/Treg ratio in SCLC subtypes 

As a measure of immune response in tumor-infiltrating lymphocytes that can be readily 
calculated from both scRNA-seq and Vectra imaging platforms, we used the ratio of CD8+ T-
cells to Tregs in SCLC-A versus SCLC-N. We first compared the ratio of CD8+ T effector/Tregs 
phenotypes using NMF factors (described above). Specifically, we compared the ratio of the 
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averaged loadings of factor 28 (effector-like) and factor 4 (Tregs) across T cells per sample in 
SCLC-A and SCLC-N. We accounted for the effect of treatment and tissue site by fitting a 
linear model between the ratio of CD8+ T effector factor loading/Treg factor loading and the 
treatment status and tissue site of the samples (similar to correlation analysis described 
below), and comparing the model residuals. We accounted for the difference in numbers of 
cells collected per sample using a weighted one-sided t-test (as implemented by ttest_ind in 
the python library statsmodels). Within each SCLC subtype, the weight of the i-th sample was 
given by:  

𝑛(	 ∗ 𝑃/$𝑛!
$

!*+

 

 
with 𝑛!denoting the total number of T cells in patient i and P being the total number of patients 

in that group (SCLC-A or SCLC-N). We calculated FDR by generating a null distribution using 
a permutation test on cell type labels. We also performed Goodman-Kruskal’s test as a parallel 
statistical test to ensure consistency. To ensure the results are not driven by individual 
samples, we performed leave-one-sample-out cross-validation and verified that the result 
remains significant for every case.  
 
We verified the same difference in factor-based ratio of CD8+ T-cell/Treg abundances 
between SCLC-A vs SCLC-N using several approaches. We first performed the same analysis 
by using cells labeled with cluster-based T-cell phenotyping (described above).  
 
Finally, we used Vectra imaging to validate these findings. We restricted analysis to 12 
treatment-naive, primary SCLC samples. We then compared the ratio of CD8+ T cells/Tregs 
in NEUROD1- and NEUROD1+ subtypes to quantify the immune response of tumor-infiltrating 
lymphocytes (described below).  

Analysis of Vectra imaging 

Batch normalization  
To compare different markers across samples, we normalized intensity values of each marker. 
We first applied a Gaussian kernel with σ=3 to smooth intensity over the target image. We 
considered the maximum intensity value M of a marker in a given sample to be an initial value 
for intensity normalization. We then assessed the distribution of maximum intensity values of 
each marker across samples, which generally follows a bimodal distribution. This bimodal 
distribution allows for an intensity threshold that readily separates signal from noise. We 
therefore considered the filtered distribution of intensities greater than this threshold. Finally, 
we constrained the value for intensity normalization M to be greater than the minimum but less 
than the maximum of the filtered intensity values across samples.    
 
 

Noise removal 

We used the following procedure to remove noise introduced by non-specific staining in our 
fluorescence multiplexed imaging data. First, we applied a median filter with size 2 to remove 
outliers, and then a Gaussian kernel with σ=1 was applied to smooth the image. We automated 
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remaining noise removal using either Otsu or Triangle thresholding. For a specific channel, if 
the 80th percentile intensity is ⋧5, we use the Otsu method. Otherwise we used the Triangle 
method. To guide automatic noise removal, we manually set a lower boundary (to remove 
obvious noise) and an upper boundary (to retain obvious signal) per sample. We then combine 
batch normalization and noise removal to generate a quality check report to further guide 
preprocessing. This initial automation facilitates manual correction of parameters for image 
processing.  

 
Single-cell instance segmentation  
To obtain single-cell information, we adapted Mask R-CNN 
(https://github.com/dpeerlab/MaskRCNN_cell), a deep learning framework for object instance 
segmentation to perform cell instance segmentation on our multiplexed imaging data. This 
model generates bounding boxes and segmentation masks for each instance of an object in 
the image. We optimized the parameters of this framework for the single-cell segmentation 
task, characterized by high object density, small but consistent object size. To avoid cropping 
TMA images into small pieces and cutting cells overlying boundaries into two, we developed 
seamless stitching features that allow segmentation on very large images. To generate the 
training data, we manually annotated 24 sample images with nuclear and cell membrane 
markers (DAPI, CD8, FOXP3, INSM1, et al.) at ImageJ107. Training images were augmented 
by random horizontal flips, random vertical flips, random rotation, random gaussian blur, 
random zoom in and zoom out, random brightness changes, and random shear. Training was 
performed using a step per epoch of 1000 and was run for 10 epochs for heads layers thraning 
and 30 epochs on all layers. To segment images of interests, we visualize the images with the 
same color pattern that was used in training.   
 
Cell typing  
The image dataset was subject to segmentation, normalization, and noise-removal, as 
described above, yielding a 7-dimensional single-cell protein marker expression profile with 
sum of marker expression, expression area, cell size et al information. Cells with low nuclear 
area (lower than 16 pixels) were removed prior to analysis. A marker was considered positive 
when the average expression (total expression divided by cell size) is above 0.1 (0.06 for lowly 
expressed markers Perforin, FOXP3, CTLA4) and expression area is above 4 pixels. For 
markers that do not co-express, we classified cells into double-negative, 1 marker positive 
only and 2 markers positive only, based on the distribution of average expression. 

Cell type annotation in the myeloid compartment 

We subsetted the myeloid cells from SCLC patients (n=2,951 cells). We projected the log2-
transformed, normalized counts onto the first 50 PCs based on knee-point detection, 
corresponding to 30% variance explained. We identified 13 clusters, including 7 clusters of 
monocyte-derived myeloid cells, 4 clusters of granulocyte-derived myeloid cells, and 2 clusters 
of dendritic cells (Figure S6A-B). To annotate myeloid subsets, we identified DEGs between 
each cluster vs the rest and compared these genes to curated markers of each myeloid subset 
(Table S23).  
 
We sought to further characterize Mono/Mφ in the SCLC cohort. We performed hierarchical 
clustering of Mono/Mφ clusters using correlation distance based on the mean gene expression 
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profile of each cluster (Figure S6A). Based on the resulting dendrogram, we defined an 
optimal distance threshold that merged clusters into two general groups Mono/Mφ-A and 
Mono/Mφ-B (Figure S6B). Differential expression between each between Mono/Mφ-A vs 
Mono/Mφ-B was performed using MAST adjusted for treatment and tissue type (Figure S6C-

D). In line with a more immature phenotype, Mono/Mφ-A overexpressed markers typical of 
blood monocytes that are also related to the extracellular matrix (ECM), including VCAN, 

FCN1, and S100 proteins (S100A4, S100A6, S100A8, S100A9), as well as AP1 transcription 
factors (JUNB, FOS, DUSP1). THBS1 and VCAN expression in Mono/Mφ-A have also been 
noted in monocytic myeloid-derived suppressor cells (m-MDSCs) in mice, with VCAN driving 
EMT in lung metastases57. On the other hand, Mono/Mφ-B was relatively more heterogeneous 
(Figure S6C) and displayed non-overlapping, specialized gene programs (Figure S6D), 
suggesting a more differentiated group of tumor-associated macrophages (TAMs). 
Specifically, cluster 4 overexpressed C1 complex (C1QA, C1QB, C1QC) and reactive oxygen 
species (SOD2, GPX1) cluster 6 overexpressed inflammatory cytokines (IL1B, CXCL8, CCL3, 
CCL4). The dichotomous Mono/Mφ-A and Mono/Mφ-B phenotypes mirror tumor-enriched 
macrophages in other cancers, including MDSC-like THBS1+ macrophages (expressing S100 
proteins) and TAM-like C1QA+ macrophages in hepatocellular carcinoma58.  

Detailed characterization of pro-fibrotic Mono/Mφ cluster 1 

Given the high expression of ECM-related genes in Mono/Mφ-A, we compared our dataset to 
gene signatures from a single-cell atlas of IPF59 and found that cluster 1 stood out as having 
an outlying pro-fibrotic signature as well as increased inflammatory macrophage signature 
(Figures 7B, 7D, 7E). Differential expression and pathway analysis (Figures S7C and S7D) 
identifies cluster 1 as a CD14+ ITGAX+ CSF1R+ subpopulation. While cluster 1 shared 
monocytic features with the rest of Mono/Mφ-A, it also overexpressed scavenger receptor 
(MARCO, MSR1, CD36, CD68, CD163) and scavenger binding protein (APOE, APOC1) 
genes, suggesting that cluster 1 represents a monocyte-derived but tissue-enriched myeloid 
subset. In addition, cells from this cluster express secrete pro-fibrotic, pro-metastatic growth 
factors involved in ECM deposition and remodeling60, including  FN161,62, cathepsins (CTSB 
and CTSD)63,64, and SPP165,66, suggesting a role in promoting metastasis. In addition, cluster 
1 overexpressed genes related to immune inhibition, including (1) SPP167 and NSCLC68]; (2) 
CD7469,70; and (3) VSIG471. While this cluster did overexpress some markers of immune 
activation like C1 complex compared to other Mono/Mφ-A clusters (Figure S7D), the 
expression was far decreased compared to activated TAM-like Mono/Mφ-B (Figure S6E).  

Correlation analysis of immune subset abundance and tumor 

phenotypes 

We aimed to identify significant correlations between any immune subset and tumor 
phenotype in SCLC while adjusting for any clinical covariates. To this end, we first consider 
cell abundance X and cell abundance Y of interest, as well as clinical covariates Z. We fit 
separate linear regression models between X and Z, and between Y and Z. We then compute 
the Spearman’s rank correlation between model residuals of X and Y. For this analysis, we 
adjusted for tissue status (primary vs lymph node vs distant metastasis) and treatment status 
(naive vs chemo vs chemo-immunotherapy in the first-line setting). We calculated the false 
discovery rate (FDR) by generating a null distribution using a permutation test on the cell type 
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labels. To test robustness, we performed a leave-one-sample-out validation and confirmed 
that the result remains significant even after excluding any sample. 
  

DATA AND SOFTWARE AVAILABILITY 

Software and tools used for the enclosed data analysis will be provided open source at 
http://github.com/dpeerlab. In collaboration with the NIH-funded HTAN Data Coordinating 
Center (U24), single-cell analysis at time of publication will be made available as an 
interactive, online platform for independent visualization and analysis.      

 

FIGURE LEGENDS 

Figure 1: The single-cell transcriptional landscape of SCLC. 
Related to Supplementary Figure S1 and Supplementary Table S1. 

LUAD and normal adjacent lung serve as reference tissues. 
(A) UMAP projections of iterative subsets of cells from the global level (left, n=155,098 cells) 
to the epithelial compartment (middle, n=64,301 cells) to SCLC tumor cells (right, n=54,523 
cells). Each dot represents a single cell colored by cell type.  
(B) UMAP projection of SCLC tumor cells annotated by treatment history. 
(C) UMAP projection of SCLC tumor cells annotated by tissue site. 
(D) Inter-patient heterogeneity, as measured by the Shannon entropy of samples for each cell 
type, computed by bootstrapping to correct for the number of cells in each cluster and cell type 
(STAR Methods). Cell types are ordered by median Shannon diversity and significant 
differences in entropy between neighboring cell types are shown (Mann-Whitney test). 
DC = dendritic cells, LN = lymph node, Chemo_1L = chemotherapy in first line, ChemoIO_1L 
= chemotherapy plus immunotherapy in first line, IO_2L = Immunotherapy in second line, later-
line therapy = multiple lines of treatment. p-values: *<0.05, **<0.01, ***<0.001. 
 

Figure 2: Single-cell sequencing resolves SCLC subtypes in 

patient samples at high resolution 

Related to Supplementary Figures S1-2 and Supplementary Table S1. 
(A) UMAP projection of SCLC cells colored by subtype (red = SCLC-A, green = SCLC-N, blue 
= SCLC-P), based on maximum likelihood computed by our classifier (STAR Methods). 
Sample RU1108a is labeled as a TP53/RB1 wild-type SCLC-A outlier. 
(B) UMAP projection of MAGIC-imputed108 expression of ASCL1, NEUROD1, POU2F3 and 
YAP1 in the SCLC cohort (STAR Methods). Expression in units of log2(X+1) where X = 
normalized counts. 
(C) Ternary plot of SCLC subtype probability per cell, calculated by Markov absorption 
probabilities (STAR Methods). Cell color is assigned by the likelihood of SCLC-A (red), SCLC-
N (green), and SCLC-P (blue). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 2, 2020. ; https://doi.org/10.1101/2020.12.01.406363doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.01.406363


Figure 3: Gene programs and cell-cell interactions enriched in 

each SCLC subtype 

Related to Supplementary Figure S2 and Supplementary Table S1. 
(A) Dot plot showing selected DEGs between each SCLC subtype versus the rest, as well as 
between SCLC-A vs SCLC-N. DEGs are grouped by enriched gene pathways as assessed 
by GSEA (NES > 1, FDR < 0.1) (STAR Methods, Table S6). Dot size = % cells expressing 
gene; dot color = mean expression scaled from 0 to 1.  
(B) Scaled expression of canonical markers, or scaled average Z-score of select enriched 
pathways in SCLC-N (Y-axis), versus SCLC subtype probability (X-axis). Solid lines represent 
average gene/pathway trend (STAR Methods). 
(C) Enrichment of tumor-tumor interactions within SCLC-A vs SCLC-N. Significant interactions 
are first assessed using CellPhoneDB109. Enrichment of interactions within SCLC-A vs SCLC-
N is then plotted as significance (-log2 of Fisher’s test) versus frequency (STAR Methods). 
Dashed line corresponds to nominal p < 0.05. 

Figure 4: A subpopulation with metastatic, stem-like phenotype 

recurs broadly across SCLC tumors. 

Related to Supplementary Figure S3 and Supplementary Table S1. 
(A) Box plot of subtype uncertainty per SCLC tumor cluster, ordered by recurrence across 
patients. For each cell, uncertainty is scored as entropy of SCLC subtype probabilities. The 
distribution of cellular uncertainties in each cluster is shown. Recurrence across patients is 
scored as Shannon entropy of patients within the cluster (STAR Methods).  
(B) UMAP projection highlighting cells in recurrent cluster 22 (black). 
(C) Proportion of samples comprising the recurrent cluster (9 of 23 profiled patients harboring 
at least 3% of the cluster). Outer ring indicates the major subclonal subtype of a sample. 
(D) Gene programs significantly enriched in cluster 22. Bar plot of NES from GSEA for each 
pathway. Significantly enriched pathways have FDR < 0.05 and NES > 1 (Table S12). 
(E) Genes ordered from most to least recurrently overexpressed along the X-axis, with 
recurrence score plotted on the Y-axis. The recurrence score is calculated as follows. Within 
each sample, DEGs were assessed between the recurrent cluster versus the rest of the tumor. 
The associated adjusted p-values for differential expression within each tumor are combined 
using Edgington’s method. The recurrence score is the -log of the combined p-value (Table 

S14) (STAR Methods).  

Figure 5: A role for the PLCG2+ recurrent cluster in metastasis 

and patient outcome partially mediated by PLCG2 expression 

Related to Supplementary Figure S3 and Supplementary Tables S1-3. 
(A) Violin plot with PLCG2 expression in our SCLC samples, grouped by tissue site. 
Bonferroni-adjusted p-values were calculated using Mann-Whitney test. Expression is plotted 
as log2(X+1) where X is the normalized count, imputed using MAGIC with k=30, t=3.  
(B) Migration assays for PLCG2-overexpressing H82 and PLCG2-downregulated DMS-114 
cell lines. Migration capacity was measured with a luminometric method in a minimum of 3 
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independent experiments, and normalized to control condition, which takes the value of 1. 
Differences in migration capacity were assessed by two-tailed Student’s t-test. 
(C) Invasion assays for PLCG2-overexpressing H82 and PLCG2-downregulated DMS-114 
cell lines. Invasion capacity was measured with a luminometric method in a minimum of 3 
independent experiments (3 technical replicates/experiment), and normalized to control 
condition, which takes the value of 1. Average +/- SD values of all experiments are shown.   
Differences in invasion capacity were assessed by two-tailed Student’s t-test. 
(D) Kaplan-Meier analysis of OS in an independent cohort of SCLC patients (Table S17) in 
patients with high vs low PLCG2 positivity (>15% vs ≤15% of tumor cells with high PLCG2 
staining intensity), as assessed by IHC performed on a TMA. 
(E) Kaplan-Meier analysis of overall survival (OS) in patients with detectable PLCG2+ 
recurrent cluster cells by scRNA-seq (>0.75% versus ≤0.75% of tumor cells) (Table S18).  

Figure 6: Analysis of therapy and subtype-specific changes in 

immune phenotype indicate suppressed T-cell activity in SCLC-

N 

Related to Supplementary Figures S4-5 and Supplementary Tables S4-5. 
(A) UMAP projections of SCLC immune subsets (see Figures S4E-G). Tconv = conventional 
T-cell; Treg = regulatory T-cell; Teff = effector T-cell; Tmem = memory T-cell; Tgd = γδ T-cell; 
Mono/Mφ = monocyte/macrophage; PMN = neutrophil; cDC = conventional dendritic cell; pDC 
= plasmacytoid dendritic cell.  
(B) UMAP projections of immune cells from SCLC tumors that were treatment-naive or 
previously treated with either chemotherapy alone or combined with immunotherapy (IO). 
(C) UMAP projections of SCLC immune cells from tumors that were predominantly SCLC-A 
or SCLC-N. 
(D) UMAP projection of entropy based on treatment (top) or SCLC subtype (bottom). Entropy 
was normalized based on maximum entropy possible given treatment or subtype labels (STAR 

Methods). 
(E) Barplot showing normalized entropy based on treatment or SCLC subtype per immune 
subset  (STAR Methods). *<0.05, **<0.01, ***<0.001. 
(F) Heatmap of NMF gene loadings for factors associated with T-cell phenotype. Genes are 
grouped by T-cell function. Each factor is z-scored across genes, and loadings are 
subsequently scaled from 0 to 1 across factors (STAR Methods).  
Barplot comparing CD8+ Teff/Treg log ratio for based on (G) NMF factors and (H) clusters 
associated with T-cell phenotype in SCLC-A versus SCLC-N in our single-cell cohort (n=19), 
adjusted for treatment and tissue site (weighted t-test, STAR Methods). 
(I) Bar plot comparing CD8+ T/Treg log ratio in NEUROD1- versus NEUROD1+ SCLC in an 
independent cohort with Vectra multiplexed fluorescent imaging (n=12) (weighted t-test, STAR 

Methods). 
(J) Selected Vectra imaging of NEUROD1- versus NEUROD1+ SCLC (2 samples each). 
Fluorescent markers include CD8 (cytotoxic T-cells), Foxp3 (Tregs), INSM1/CK7 (epithelial 
and tumor cells), and DAPI (DNA). CD8 (green) or Foxp3 (pink) positivity of segmented cells 
are shown (STAR Methods).     
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Figure 7: A mixed pro-fibrotic, immunosuppressive Mono/Mφ 

subset is associated with the recurrent PLCG2-high tumor 

subclone  

Related to Supplementary Figures S6-7 and Supplementary Table S5.  
(A) UMAP projection of SCLC myeloid cells (n = 2,951 cells) annotated by Phenograph clusters. 
(B) Box plot showing the proportion of pro-fibrotic Mono/Mφ of the combined myeloid 
compartment (cluster 6) in different histologies for all samples (n=50) and treatment-naive 
samples (n=23). (Mann-Whitney test). 
(C) Heatmap showing the normalized mean expression of markers in the IPF-associated 
profibrotic macrophage gene signature (n = 143 genes with logFC > 0.3) per Mono/Mφ 
subsets, and values are subsequently scaled from 0 to 1 across clusters. Left barplot shows 
the average of z-scored gene expression across the gene signature per cluster. Expression 
values are imputed using MAGIC (k=30, t=3). 
(D) UMAP projections of SCLC myeloid cells depicting gene signature scores for IPF-
associated pro-fibrotic macrophages and monocytes.  
(E) Heatmaps showing normalized mean imputed expression of IPF-associated pro-fibrotic 
macrophage and monocytic gene signatures per SCLC Mono/Mφ cluster. Expression is 
imputed using MAGIC (k=30, t=3) and scaled from 0 to 1 across clusters. Rows are ordered 
by average expression across genes per cluster, as depicted in left bar plots.  
Heatmaps showing covariate-adjusted Spearman’s correlation of SCLC tumor phenotypes 
with (F) coarse immune cell types and (G) Mono/Mφ subsets. Asterisks denote significant 
correlation (p < 0.01).   
 

SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure S1. Related to Figures 1 and 2 and to 

Supplementary Table S1. 

(A) UMAP projection of the SCLC cohort at the global level (n=155,098 cells) colored by cell 
type (top) and by Shannon entropy of patients in a k-nearest neighborhood of each cell (k=30, 
STAR Methods) (bottom).    
(B) Oncoprint showing mutational information of SCLC samples subjected to MSK-IMPACT 
bulk targeted DNA sequencing, arranged by genes (rows, sorted by most to least recurrent) 
and patients (columns). Point mutations are depicted by bars, copy number changes by full 
squares. Bar plot shows tumor mutation burden (TMB). Annotations at bottom include early-
line and later-line treatment history, with treatment order specified in the order of full square, 
thin rectangle, and small square. Other annotations include smoking status, tissue, stage, 
disease status, and SCLC subtype of the major subclone. 
(C) TMB of SCLC samples, grouped by subtype. 
(D)  Single-cell CNVs, inferred from scRNA-seq data using InferCNV86), arranged by cells 
(rows) and genomic position (column). Cells are grouped by SCLC, LUAD, and normal lung. 
(E) CNV burden of SCLC, LUAD, and normal lung samples. CNV burden is estimated by 
percent of genome altered by CNV (left) or Pearson’s correlation to CNV profiles of the 
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matched MSK-IMPACT data where available (right). Tumor cells were called based on a 
threshold of either percent of genome with CNV > 0.1, or bulk correlation ρ > 0.2 (see STAR 

methods). 
(F) Clusters comprised by the SCLC (left) or NSCLC (right) samples in our cohort. Each cluster 
was assigned a different color. 
(G) Immunohistochemistry data available for staining of ASCL1, NEUROD1, POU2F3 and 
YAP1 transcription factors in the SCLC cohort. 
(H) Statistics of SCLC subtype representation in samples. Top: SCLC subtype uncertainty per 
cell as measured by Shannon entropy of SCLC subtype probabilities. Bottom: SCLC subtype 
fractions in each sample, as determined by maximum likelihood of Markov absorption 
probabilities. 

Supplementary Figure S2. Related to Figures 2 and 3 and to 

Supplementary Table S1. 

(A) UMAP of sample Ru1215 showing admixed SCLC-A and SCLC-N subtyping, supported 
by MAGIC-imputed ASCL1 and NEUROD1 expression (STAR Methods). 
(B) Single-cell gene signatures of SCLC subtypes, with scaled expression (z-score) of 
differentially expressed genes (DEGs) per SCLC subtype (rows) for each cell (columns). 
Representative DEGs including canonical TFs are labeled. Top dendrogram produced by 
hierarchical clustering using Pearson’s correlation as a distance metric with complete linkage. 
Top annotations include patient and probability of SCLC subtype. 
(C) Bar plot of frequency of SCLC subtype per tissue site (primary lung vs regional lymph node 
(LN) vs distant metastasis). The frequency of each subtype per sample was first determined 
and then summed by tissue site. A final frequency was normalized by number of samples to 
produce the stacked bar plot. In this way, each sample was considered with equal weight. 
SCLC-A was significantly enriched in primary lung  whereas non-SCLC-A subtypes are 
enriched in nodal and distant metastases (Dirichlet regression, p<3.4x10-8, STAR Methods).   
(D) Gene programs significantly enriched in SCLC-A (red bars) or SCLC-N (green bars) using 
Gene Set Enrichment Analysis (Benjamini-Hochberg adjusted FDR < 0.05, absolute value of 
normalized enrichment score (NES) > 1) (Table S6). 
(E) Intratumoral interactions between SCLC-A and SCLC-N subclones in sample Ru1215. Dot 
size = % cells expressing gene; dot color = mean expression log2(X+1), where X is the 
normalized count. Arrows indicate directionality of interaction (Ligand→Receptor). 
Bidirectional arrows indicate interactions for which genes can serve as both ligand and 
receptor. 
 

Supplementary Figure S3. Related to Figures 4 and 5 and to 

Supplementary Table S2. 

(A) Unimputed PLCG2 expression vs log library size in recurrent cluster 22. Library size is 
transformed by natural log with pseudocount of 1. PLCG2 expression is mapped on the SCLC 
UMAP in units of log2(X+1) where X are counts (right). 
(B) Scaled expression (z-score, imputed by MAGIC with k = 30, t = 3) of genes with high 
knnDREMI conditioned on PLCG2 > 1 (rows), with cells ordered by PLCG2 expression 
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(columns). For visualization, expression was smoothed over the ordered cells with a rolling 
window of 100 cells. Hierarchical clustering of genes on the unsmoothed, imputed expression 
was performed with complete linkage and Pearson correlation as a distance metric, identifying 
3 gene modules that predict low, medium, and high PLCG2 (purple, gray, and yellow 
respectively) (Table S15). Top annotations include PLCG2 expression and SCLC subtype. 
(C) Pathways with average z-scores of gene expression that are highly correlated (>95th 
percentile, indicated by red line) with the average z-score of gene expression in the high-
PLCG2 gene module (STAR Methods, Table S16). 
(D) Western blots  showing PLCG2 overexpression in H82 and downregulation in DMS114, 
as well as the activation of Wnt and BMP signaling pathways and expression of indicated 
markers (PLCG2 = PLCG2 overexpression, sgPLCG2 = CRISPR knock out). 
(E) Multivariate analyses (Cox regression) for overall survival in samples included in an 
independent cohort of SCLC samples, including the comparison between tumors with >15% 
cells with high PLCG2 high intensity (defined as intensity >2) versus the rest. 
(F) Multivariate analyses (Cox regression) for overall survival in samples included in the single 
cell cohort, including the comparison between tumors with >0.75% composition of high 
PLCG2-expressing recurrent cluster versus the rest. 

Supplementary Figure S4. Related to figure 6 and to 

Supplementary Table S1. 

(A) Boxplot of CD45+ infiltrate in LUAD vs SCLC-A vs SCLC-N samples in our single-cell 
cohort (Mann-Whitney test).  
(B) Boxplot of CD45+ infiltrate in ASCL1+ NEUROD1- vs ASCL1+ NEUROD1+ samples in an 
independent IHC cohort of SCLC tumors (Mann-Whitney test). No ASCL1- NEUROD1+ 
samples were available.  
(C) Boxplot of CD45+ infiltrate in untreated tumors and tumors treated with first-line 
chemotherapy alone or chemotherapy plus immunotherapy (IO) (Mann-Whitney test).  
(D) UMAP projections of the immune subsets of SCLC with LUAD and adjacent normal lung 
reference at the global level (left, n=73,047 cells), T-cell compartment (middle, n=46,140 
cells), and myeloid compartment (right, n=14,072 cells).  
(E) UMAP projection of all immune cells from 21 SCLC samples (n = 16,475 cells), annotated 
by Phenograph clusters.  
(F) Dot plots show relative frequency and expressing cells, and mean normalized expression 
of canonical immune cell type markers per Phenograph cluster. 
(G) Dot plots show relative frequency and expressing cells, and mean normalized 
expression of canonical immune cell type markers per coarse cell type. 
 

Supplementary Figure S5. Related to figure 6 and to 

Supplementary Table S5. 

(A) Heatmap of gene loadings of all 30 NMF factors, grouped by T-cell phenotype. The weight 
of each factor loading is scaled across factors from 0 to 1.   
Dot plots show gene markers of each cluster (B) and T-cell phenotype (C). Dot size = % cells 
expressing gene; dot color = mean expression scaled from 0 to 1.  
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Heatmap of cell loading of select NMF factors averaged within each cluster (D) and T-cell 
phenotype based on clusters (E). The resulting averaged loading was z-scored across factors 
(STAR Methods). 
(F) Bar plot comparing scaled NMF cell loadings for factors related to T-cell phenotype 
between SCLC-A and SCLC-N (two-sample t-test adjusted for treatment and tissue site, STAR 

Methods). *** p <0.001. 

Supplementary Figure S6. Related to figure 7. 

(A) UMAP projection of SCLC myeloid compartment, annotated by the different clusters 
identified. 
(B) Heatmap of Pearson’s correlation between the mean expression profile of Mono/Mφ 
subsets in SCLC, ordered by hierarchical clustering.  
(C) UMAP projection of SCLC myeloid compartment, annotated by tumor-associated subsets 
of THBS1+ VCAN+ Mono/Mφ-A representing a more immature, monocytic, MDSC-like 
phenotype and Mono/Mφ-B representing more activated, differentiated phenotypes (STAR 

Methods).  
(D) Volcano plots show the top DEGs in Mono/Mφ-A and Mono/Mφ-B (STAR Methods, Table 

S21) highlighting significantly differentially expressed secreted factors (left) and all genes 
(right). 
(E)  Dot plot of SCLC myeloid subsets and expression of relevant markers. Myeloid subsets 
are ordered based on hierarchical clustering of the first 50 principal components (STAR 

Methods). Dot size = % cells expressing gene; dot color = mean expression scaled from 0 to 
1.  
 

Supplementary Figure S7. Related to figure 7. 

UMAP projections of combined myeloid compartment (SCLC, LUAD, and normal adjacent 
lung), annotated by (A) tumor histology, (B) Mono/Mφ clusters identified from the SCLC-
restricted myeloid compartment, and (C) clusters identified from the combined myeloid 
compartment. 
(D) Volcano plot of differentially expressed genes in SCLC Mono/Mφ cluster 1 of the SCLC 
myeloid compartment versus other Mono/Mφ subsets (Table S22I).  
(E) Gene programs significantly enriched in SCLC Mono/Mφ cluster 1. Bar plot of NES from 
GSEA for each pathway. Significantly enriched pathways have FDR < 0.25 and NES > 1 
(Table S24). 
(F) Boxplots showing the composition of Mono/Mφ clusters stratified by PLCG2+ tumor 
subclone fraction > 0.75%. We show significant overrepresentation of Mono/Mφ cluster 1 in 
samples harboring the recurrent PLCG2-high tumor subclone.  
(G) Bar plot showing robustness of covariate-adjusted Spearman correlation p-values using 
leave-one-sample-out cross-validation.  
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SUPPLEMENTARY TABLE LEGENDS 

Supplementary Table S1. Clinical characteristics of samples analyzed by single-cell RNA-
seq. 
 
Supplementary Table S2. Differentially expressed genes of SCLC-A versus rest in bulk 
RNA-seq data from George, et al.87 and Rudin, et al.88 using limma. 
 
Supplementary Table S3. Differentially expressed genes of SCLC-N versus rest in bulk 
RNA-seq data from George, et al.87 and Rudin, et al.88 using limma. 
 
Supplementary Table S4. Differentially expressed genes of SCLC-P versus rest in bulk 
RNA-seq data from George, et al.87 and Rudin, et al.88 using limma. 
Supplementary Table S5. Differentially expressed genes of SCLC-Y versus rest in bulk 
RNA-seq data from George, et al.87 and Rudin, et al.88 using limma. 
 
Supplementary Table S6. Differentially expressed genes comparing SCLC-A versus SCLC-
N in single-cell RNA-seq of the SCLC tumor compartment using MAST. 
 
Supplementary Table S7. Differentially expressed genes comparing SCLC-A versus rest in 
single-cell RNA-seq of the SCLC tumor compartment using MAST. 
 
Supplementary Table S8. Differentially expressed genes comparing SCLC-N versus rest in 
single-cell RNA-seq of the SCLC tumor compartment using MAST. 
 
Supplementary Table S9. Differentially expressed genes comparing SCLC-P versus rest in 
single-cell RNA-seq of the SCLC tumor compartment using MAST. 
 
Supplementary Table S10. Pathway enrichment in SCLC-A versus SCLC-N in the SCLC 
tumor compartment using GSEA. 
 
Supplementary Table S11. Pathway enrichment in SCLC-P versus rest in the SCLC tumor 
compartment using GSEA. 
 
Supplementary Table S12. Pathway enrichment in the recurrent, PLCG2-high  SCLC cluster 
versus rest in the SCLC tumor compartment using GSEA. 
 
Supplementary Table S13. Differentially expressed genes that are recurrently 

overexpressed in the recurrent tumor subclone across samples, ranked by the Bonferroni-

adjusted Edgington’s combined p-value. 
 
Supplementary Table S14. Differentially expressed genes of SCLC recurrent subclone 

(cluster 22) versus rest in single-cell RNA-seq using MAST. 
 
Supplementary Table S15. Gene modules with high knnDREMI conditioned on PLCG2, 
divided by low, medium, and high PLCG2 expression. 
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Supplementary Table S16. Pathways with average z-scores of gene expression correlated 
with the average z-score of gene expression in the high-PLCG2 gene module. 
 
Supplementary Table S17. Survival data and clinical covariates of an independent tissue 
microarray stained by immunohistochemistry for PLCG2. 
 
Supplementary Table S18. Survival data and clinical covariates of samples analyzed by 
single-cell RNA-seq and stratified by fraction of the recurrent, PLCG2-high SCLC cluster. 
 
Supplementary Table S19. Clinical characteristics, CD45+ percentage, and 
ASCL1/NEUROD1 positivity on immunohistochemistry for an independent SCLC cohort 
analyzed by flow cytometry. 
 
Supplementary Table S20. Clinical characteristics and ASCL1/NEUROD1 positivity on 
immunohistochemistry for an independent SCLC cohort analyzed by Vectra. 
 
Supplementary Table S21. Differentially expressed genes of Mono/Mφ-A vs Mono/Mφ-B 

in single-cell RNA-seq using MAST. 

 
Supplementary Table S22. Differentially expressed genes of Mono/Mφ cluster 1 vs other 

Mono/Mφ subsets in single-cell RNA-seq using MAST. 

 

Supplementary Table S23. GMT file of markers used for cell type annotation, curated 

from literature. 

 

Supplementary Table S24. Pathway enrichment in Mono/Mφ cluster 1 vs other Mono/ Mφ 

subsets using GSEA. 

 

Supplementary Table S25. GMT file of curated set of pathways for GSEA analysis of 

SCLC subtypes and clusters. 
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