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Single-cell reconstruction of the human early maternal-fetal interface  
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During early human pregnancy, the fetal placenta implants into the uterine mucosa (decidua) 

where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-

decidual interactions underlie common diseases of pregnancy including pre-eclampsia and 

stillbirth. Here, we profile transcriptomes of ~70,000 single cells from first trimester placentas 

with matched maternal blood and decidual cells. The cellular composition of human decidua 

reveals new subsets of perivascular and stromal cells, which are located in distinct decidual layers. 

There are three major subsets of decidual NK cells, with distinctive immunomodulatory and 

chemokine profiles. We develop a repository of ligand-receptor complexes 

(https://cellphonedb.org/) and a statistical tool to predict the cell-type specificity of cell-cell 

communication via these molecular interactions. This identifies many regulatory interactions that 

prevent any damaging innate or adaptive immune responses in this environment. Our single cell 

atlas of the maternal-fetal interface reveals the cellular organization and interactions critical for 

placentation and reproductive success. 

During early pregnancy, the uterine mucosal lining, the endometrium, is transformed into decidua under 

the influence of progesterone. Decidualisation results from a complex and well-orchestrated 

differentiation program that involves all cellular elements of the mucosa: stromal, glandular, and 

immune cells, including the distinctive decidual Natural Killer cells (dNK)1,2. The blastocyst implants 

into the decidua and initially, before arterial connections are established, uterine glands are the source 

of histotrophic nutrition in the placenta3,4. Following implantation, placental extravillous trophoblast 

cells (EVT) invade through the decidua and move towards the spiral arteries, where they destroy the 

smooth muscle media and transform the arteries into high conductance vessels5. Balanced regulation of 

EVT invasion is critical to pregnancy success: arteries must be sufficiently transformed, but excessive 

invasion prevented, to ensure correct allocation of resources to both mother and baby6. The pivotal 

regulatory role of the decidua is obvious from the life-threatening, uncontrolled, trophoblast invasion 

that occurs when the decidua is absent as when the placenta implants on a previous cesarean section 

scar7.  

EVT have a unique HLA profile: they do not express the dominant T cell ligands, class I HLA-A and 

HLA-B or class II molecules8,9, but do express HLA-G and HLA-E and polymorphic HLA-C class I 

molecules. These trophoblast HLA ligands have receptors expressed by the dominant decidual immune 

cells, dNK, including maternal killer immunoglobulin-like receptors (KIR), that bind HLA-C 

molecules10,11. Certain combinations of maternal KIR and fetal HLA-C genetic variants are associated 

with pregnancy disorders such as pre-eclampsia, where trophoblast invasion is deficient12. However, 

detailed understanding of the cellular interactions in the decidua supporting early pregnancy is lacking. 

In this study, we used single-cell transcriptomics to comprehensively resolve cell states involved in 

maternal–fetal communication in the decidua during early in pregnancy when the placenta is 

established. We then used a computational framework to predict cell-type specific ligand–receptor 

complexes and present a new database: CellPhoneDB.org. By integrating these predictions with spatial 
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in situ analysis, we construct a detailed molecular and cellular map of the human decidual–placental 

interface. 

 

Results 

  

Maternal and fetal cells in early pregnancy 

  

We combined droplet-based encapsulation (10x Genomics Chromium)13 and plate-based Smart-seq2 

(SS2)14 single cell transcriptome profiles from the maternal-fetal interface (eleven decidua and five 

placenta from 6-14 gestational weeks) and six matched peripheral blood mononuclear cells (PBMC) 

(Fig. 1a-b, Supplementary Table 1-2, Extended Data Fig. 1).  After computational quality control and 

integration of transcriptomes from both technologies, we performed graph-based clustering (see 

Methods) of the combined dataset and used cluster-specific marker genes to annotate the clusters (Fig. 

1c, Extended Data Fig. 2-3, Supplementary Table 2). We studied T cell composition and clonal 

expansion using full-length transcriptomes from SS2 and reconstructed the T-cell receptor (TCR) 

sequences from this data showing CD8 T cell expansion in the decidua (Fig. 1d).  

We aligned scRNA-seq reads from each cell with overlapping single nucleotide polymorphisms (SNPs) 

called from maternal and fetal genomic DNA to assign cells as fetal or maternal (Fig. 1g, Extended 

Data Fig. 3e). As expected, decidual samples contained mostly maternal cells with a few fetal HLA-G+ 

EVT.  Fetal cells dominate the placental samples, with the exception of maternal macrophages (M3 

cluster) that express CD14, S100A9, CD163, CD68, CSF1R. These are probably derived from blood 

monocytes incorporated into the syncytium (Extended Data Fig. 3f)15 . 

  

Cell communication predicted by CellPhoneDB  

To systematically study the interactions between fetal and maternal cells in the decidual–placental 

interface, we developed ‘CellPhoneDB.org’, a repository of ligand-receptor interacting pairs that 

accounts for their subunit architecture, representing heteromeric complexes accurately (Extended Data 

Fig. 4a). Both secreted and cell surface molecules are considered, so this encompasses ligand-receptor 

interactions mediated by diffusion of secreted molecules. Our repository forms the basis of a 

computational approach to identify biologically relevant ligand-receptor complexes. We consider the 

expression levels of ligands and receptors within each cell type, and using empirical shuffling, calculate 

which ligand-receptor pairs display significant cell type specificity (Extended Data Fig. 4b, see 

Methods). This predicts molecular interactions between cell populations via specific protein complexes, 

and generates a potential cell-cell communication network in the decidua and placenta (Extended Data 

Fig. 4c-e, Supplementary Table 3-4).   

Trophoblast differentiation by scRNAseq 
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To investigate maternal–fetal interactions at the decidual–placental interface we first analysed fetal 

trophoblast cells isolated from placental and decidual samples; the latter contain invasive EVT 

(Extended Data Fig. 5a-b). Consistent with previous results16,17, we resolved two distinct trophoblast 

differentiation pathways (Fig. 2a). As expected, decidual EVT are at the end of the trajectory, have high 

HLA-G expression, and no longer express cell cycle genes (Extended Data Fig. 5c). In villous 

cytotrophoblasts (VCT), CellPhoneDB predicts interactions between receptors involved in cellular 

proliferation and differentiation (EGFR, NRP2 and MET) with HBEGF expressed by Hofbauer cells, 

and PGF and HGF expressed by different placental fibroblast subsets (Supplementary Table 5, Fig. 

2b).  

In contrast, during EVT differentiation, there is upregulation of receptors involved in 

immunomodulation, cellular adhesion and invasion, whose ligands are expressed by decidual cells (Fig. 

2b). For example, ACKR2 is a decoy receptor for inflammatory cytokines produced by maternal immune 

cells18 and CXCR6 is a chemokine receptor binding CXCL16 expressed by the maternal macrophages. 

Expression of TGFβ and its receptor, whose function is to suppress immune responses19 and activate 

epithelial-mesenchymal transition (EMT), increases as EVT differentiate. Components involved in the 

EMT program are upregulated at the end of the trajectory20 (Extended Data Fig. 5d); these include 

metalloproteinases PAPPA and PAPPA2, known to be involved in cellular invasion. In pregnancy, 

decreased PAPPA levels is a biomarker for disorders of pregnancy associated with defective EVT 

invasion (pre-eclampsia and fetal growth restriction)21. 

  

Stromal cells in the two decidual layers 

  

EVT initially invade through the surface epithelium into the decidua compacta. Beneath this is the 

decidua spongiosa that contains hypersecretory glands providing histotrophic nutrition to the early 

conceptus. Markers distinguishing the different decidual fibroblast populations identify two clusters of 

perivascular cells, PV1/PV2, that share expression of the smooth muscle marker (MGP) and are 

distinguished by different levels of MCAM and MMP11 (higher in PV1 and PV2 respectively) (Fig. 3a, 

Supplementary Table 6). There are three clusters of stromal cells, dS1/dS2/dS3, all expressing the WNT 

inhibitor DKK1. dS1 shares the expression of ACTA2 and TAGLN with PV1/PV2 and lacks expression 

of classical decidual markers prolactin (PRL) and IGFBP1. In contrast, dS2/dS3, express IGFBP1/2/6 

and share markers with two recently described in vitro decidualised stromal cell subsets22. The dS3 

subset expresses PRL, as well as genes involved in steroid biosynthesis (e.g. CYP11A1) (Extended Data 

Fig. 6).  

To locate the different perivascular and stromal populations in situ, we used immunohistochemistry 

(IHC) and multiplexed single molecule fluorescent in situ hybridisation (smFISH) for selected markers 

on serial sections of decidua parietalis. These experiments confirm that cells expressing ACTA2 and 

MCAM are present in the media of the spiral arteries23 and show that MMP11 is also present, 
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demonstrating that both PV1 and PV2 are perivascular (Fig. 3b, Extended Data Fig. 7). ACTA2+ dS1 

stromal cells are present between glands in decidua spongiosa whilst IGFBP1+ and PRL+ dS2/dS3 cells 

are located in decidua compacta (Fig. 3c-d, Extended Data Fig. 7). CYP11A1 is also expressed more 

abundantly in decidua compacta compared to spongiosa (Extended Data Fig. 6b).  

Our CellPhoneDB tool predicts that the cognate receptors for angiogenic factors expressed by PV1/2 

(e.g. ANGPT1, VEGFA) are located in endothelium (Fig. 3e). EVT first invade the decidua compacta 

where dS2/3 express high levels of LGALS9 and CLEC2D. These molecules could interact with their 

inhibitory receptors, TIM3 and KLRB1, expressed by dNK subsets, enabling the stroma to suppress 

inflammatory reactions in the decidua. 

 

Three decidual NK cell states 

  

We identified three main dNK subsets which all co-express the tissue-resident markers, CD49a and 

CD9 (Extended Data Fig. 8). dNK1 express CD39, CYP26A1 and B4GALNT1 while the defining 

markers of dNK2 cells are ANXA1 and ITGB2; the latter is shared with dNK3 (Fig. 4a, Supplementary 

Table 7). dNK3 cells express CD160, KLRB1 and CD103, but not the ILC marker CD127 (Extended 

Data Fig. 8a).  

KIR genes are polymorphic and highly homologous making quantification of mRNA expression of 

individual KIR genes challenging12. We therefore developed KIRid, a method that uses full-length 

transcript SS2 data to map each donor’s single cell reads to the corresponding donor-specific reference 

of KIR alleles (see Methods).  We find that dNK1 cells express higher levels of KIR that can bind to 

HLA-C molecules: activating KIR2DS1/S4 and inhibitory KIR2DL1/L2/L3 (Fig. 4b-c, Supplementary 

Table 8). LILRB1, the receptor for the dimeric form of HLA-G molecules, is only expressed by the 

dNK1 subset. Both dNK1 and dNK2, but not dNK3, express activating (NKG2C, NKG2E) and 

inhibitory (NKG2A) receptors for HLA-E molecules (Fig. 4c).  These results predict a likely function 

of dNK1 in the recognition and response to EVT. 

To investigate these three dNK populations further, we analysed six decidual samples by flow cytometry 

using CD49a (resident dNK), combined with markers for each dNK subset predicted from our 

transcriptomics data (CD39, ITGB2, CD103, KIR2DL1) (Fig. 4d). We confirmed the presence of the 

three dNK populations by flow cytometry and the preferential expression of KIR2DL1 in dNK1 (Fig. 

4d, Supplementary Table 9). We analysed the morphology of dNK subsets by Giemsa staining of cells 

isolated by flow cytometric sorting (Extended Data Fig. 8c). dNK1 contain more cytoplasmic granules 

than dNK2 and dNK3, consistent with our scRNAseq data showing higher levels of PRF, GNLY, 

GZMA, GZMB RNA expression in this subset (Fig. 4e). Higher levels of expression of the granule 

proteins (PRF1, GNLY, GZMA and GZMB) are found in KIR+ compared to KIR- dNK cells by flow 

cytometry (Fig. 4f). dNK1 also express high levels of enzymes involved in glycolysis (Fig. 4g). Thus, 

the features of dNK1 are: active glycolytic metabolism, higher expression of KIR, LILRB1 and 

cytoplasmic granule proteins, suggesting that it is dNK1 that particularly interact with EVT.  
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First pregnancies are associated with lower  proportions of dNK cells expressing LILRB124, lower birth 

weights, and increased occurrence of disorders such as pre-eclampsia25. Metabolomic programming of 

mature “memory” NK cells also occurs in chronic human cytomegalovirus (HCMV) infection26. 

Together, these findings are consistent with ‘priming’ of dNK1 during first pregnancy so they can 

respond more effectively to the implanting placenta in subsequent pregnancies. 

  

Immunomodulation during early pregnancy 

 

We next used CellPhoneDB to identify expression of cytokines and chemokines by dNK and predict 

their interactions with other cells at the maternal–fetal interface (Extended Data Fig. 9a, Fig. 5a). We 

find no evidence, however, for significant VEGFA or IFNG expression by dNK in vivo24,27, probably 

because these previous studies used dNK cells cultured with IL-2 or IL-15 in vitro.  

dNK1 cells express higher levels of CSF1 whose receptor, CSF1R, is expressed by EVTs and 

macrophages (Fig. 5a-b). Secretion of CSF1 by dNK cells, and interaction with the CSF1R on EVT 

have been previously described28,29, and we now pinpoint this interaction specifically to the dNK1 

subset. In contrast, dNK2-3 express high levels of XCL1 and CCL5 is highly expressed by dNK3 (Fig. 

5a-b, Extended Data Fig. 9b). The receptor for CCL5, CCR1, is expressed by EVT, suggesting a role 

for dNK3 in regulating EVT invasion30. The expression pattern of XCL1-XCR1 ligand-receptor complex 

suggests functional interactions between dNK2/3 and both EVT and DC1. NK cell-mediated DC1 

recruitment to induce T cell anergy occurs in tumour microenvironments31. We find an increased 

proportion of DC1 compared to DC2, possibly leading to decidual CD8+ T cell expansion (Fig. 1d), but 

coexpression of PD1 suggests that local T cell activation is limited. 

Our results collectively suggest that in the decidua microenvironment all damaging maternal T or NK 

responses to fetal trophoblasts are prevented. There is high expression of PDL1 in EVT, confirmed in 

situ using IHC on serial sections of decidua basalis (site of trophoblast invasion) stained for PDL1 and 

HLA-G (Extended Data Fig. 9c). We also identify putative inhibitory interactions between dNK and 

EVT, in addition to the previously discussed KIR2DL1/2/3 and HLA-C receptor-ligand complexes. 

These include KLRB1 and TIGIT highly expressed by dNK3, potentially binding CLEC2D and PVR, 

expressed by EVT (Fig. 5a).   

We predict that the decidua immune microenvironment prevents inflammatory responses potentially 

triggered by trophoblast invasion and medial destruction of the spiral arteries by trophoblast (Fig. 5c). 

Macrophage subsets (dM) expresses immunomodulatory molecules like IL10 whose receptor is 

expressed by EVT and maternal endothelial, stromal and myeloid cells. dNK1 cells and dNK2/3 express 

high levels of SPINK2 and ANXA1 respectively. Both have anti-inflammatory roles such as inhibiting 

kallikreins32. The dNK1 subset expresses CD39, which together with CD73 converts ATP to adenosine 

to prevent immune activation33 (Fig 5c, Extended Data Fig. 9b). Expression of CD73 is high in epithelial 

glands and EVT, and the adenosine receptor (ADORA3) is present in macrophages (Fig.5c, Extended 

Data Fig. 9b). KIR2DL1+ dNK1 are in close physical contact with HLA-G+ EVT (Extended Data Fig. 



 7 

9d), suggesting they could together convert extracellular ATP, an inflammatory signal released upon 

cell death, to adenosine34. 

  

Discussion 

  

Reproductive success depends on events occurring during placentation in the first-trimester decidua35. 

Other scRNAseq studies of uterine cells in pregnancy have analysed cells at the end of gestation16,36 or 

are restricted to fetal placental populations17. Ours is the first comprehensive single-cell transcriptomics 

atlas of the maternal–fetal interface between 6-14 weeks of gestation (Extended Data Fig. 10). Similar 

to previous scRNAseq analyses36–39, we predict possible ligand-receptor interactions, and have 

developed a new open repository for this purpose: CellPhoneDB.org. This database accounts for the 

multimeric nature of ligands and receptors and is integrated with a statistical framework that predicts 

enriched cellular interactions between two cell types. 

 

We show the differentiation trajectory of trophoblast cells to either SCT (nutrient exchange) or EVT 

(invade and remodel the spiral arteries) and predict the ligand–receptor interactions likely to control 

these processes. Our findings also suggest an environment where any adaptive or innate immune 

responses damaging to the placenta or to the uterus are minimised. This is critical for the peaceful 

compromise needed to define the territorial boundary between mother and fetus. The environment has 

striking parallels with that around tumours, where inflammatory and adaptive immune responses are 

also dampened40. dNK cells comprise ~70% of immune cells in first trimester decidua 41,42 and we now 

define three major dNK subsets and predict that their likely function is to mediate the extent of 

trophoblast invasion in addition to coordinating multiple immunomodulatory pathways involving 

myeloid cells, T cells and stromal cells. Maternal immune responses are restrained by diverse classes 

of signalling molecules: cell surface expression of checkpoint inhibitors such as PD1/PDL1 or TIGIT, 

tethered ligand-receptor complexes, secreted proteins, as well as small molecules (e.g. adenosine and 

steroid hormones). We also show that the dNK1 express receptors for trophoblast HLA-C and HLA-G 

molecules, and can be primed metabolically through increased expression of glycolytic enzymes. Their 

increased expression of glycolytic enzymes (metabolic priming) suggests they could be responsible for 

the different reproductive outcomes found in first compared to subsequent pregnancies 

 

In summary, we identify many novel molecular and cellular mechanisms that are operating to generate 

a physiologically peaceful decidual environment. This cell atlas of the early maternal-fetal interface 

provides an essential resource for understanding normal and pathological pregnancies.  
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Online content Any Methods, including any statements of data availability and Nature Research 
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Fig. 1 | Identification of novel cell types at the maternal-fetal interface. a, Diagram illustrating the 

decidual–placental interface in early pregnancy. b, Workflow for single cell transcriptome profiling of 

decidua, placenta and maternal PBMC. c, Placental and decidual cell clusters from 10x and SS2 scRNA-

seq analysis visualised by UMAP. Colors indicate cell type/state. Decidua (n=11), placenta (n=5) and 

blood (n=6). d, UMAP visualisation of T cell clonal expansion and clusters by integrating SS2 and 10x 

T cell data on clusters 4, 8, 10, 15 from Fig.1c e, Origin of droplet cells in Fig 1c by tissue (above) or 

genotype (below). Purple circle = maternal cells in placenta; green circle = fetal cells in decidua.   

 

Fig. 2 | Ligand–receptor expression during EVT differentiation. a, Pseudotime ordering of 

trophoblast cells reveals EVT and SCT pathways. Enriched EPCAM+ and HLA-G+ cells on placental 

and decidual isolates are included. Placenta (n=5) and decidua (n=11). b, Violin plots showing log-

transformed normalized expression levels for selected ligand-receptor pairs which change during 

pseudotime and predicted significant by CellPhoneDB (EGFR, HBEGF, NRP2, PGF, MET, HGF, 

ACKR2, CCL5, CXCR6, CXCL16, TGFb, TGFBR2, TGFBR1). Cells from Fig. 1c are used for the violin 

plots. 

 

Fig. 3 | Stromal distribution in the two distinct decidual layers. a, Heatmap showing relative 

expression (z-score) of selected genes for perivascular (PV) and decidual stromal (dS) cells (n=11; adj 

p-value<0.1; Wilcoxon rank-sum test with bonferroni correction) b, IHCs of a spiral artery in serial 

sections of the decidua stained for CD34 (endothelial cells), ACTA2 (perivascular -PV and decidual 

stromal 1-dS1), MCAM (PV1) and MMP11 (PV2) (biological n=2). Scale bar =100μm. c, IHC of 

decidual sections stained for ACTA2 which distinguishes ACTA2+ dS1 in decidua spongiosa vs. 

ACTA2- dS2/3 in decidua compacta. Right panels are higher magnification of inset. Scale bar = 50μm. 

(biological n=3). d, multiplexed smFISH of decidua parietalis showing two decidual layers. ACTA2+ 

dS1 in decidua spongiosa; IGBP1+ and PRL+ dS2/3 confined to decidua compacta (biological n=2). e, 

Heatmap shows selected significant ligand-receptor interactions (n=6, p-value<0.05, permutation test, 

see Methods) between PV and dS (left) and decidual cells (right) (n=11). 

   

Fig. 4 | Three dNK populations. a, Heatmap showing relative expression (z-score) of markers defining 

the three dNK subsets (n=11; pct.1>10%, pct.2<60%; p-value<0.1 after bonferroni correction, 

Wilcoxon rank-sum test). b, KIRid method workflow c, z-scores of KIR receptors (mean expression 
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levels). Expression values were generated using SS2 data and the KIRid approach (n=5) d, FACS gating 

strategy to identify dNK subsets (biological n=6; Supplementary table 9). e, z-scores of expression of 

granule molecules PRF1, GNL1, GZMA, GZMB in dNK subsets, (n=11). f, Flow cytometry to compare 

staining of granule components in NKG2A+KIR+ vs. NKG2A+KIR- dNK (PRF1 n=9; GNLY n=7; 

GZMA n=8; GZMB n=10; Supplementary table 9). Non-parametric paired Wilcoxon test (*p < 0.05, 

**p < 0.01); g, z-scores of glycolysis enzymes (mean expression), where only differentially expressed 

enzymes are plotted (n=11; p-value<0.1 after bonferroni correction, Wilcoxon rank-sum test).  

  

Fig. 5 | Multiple regulatory immune and inflammatory responses at the site of placentation, a, 

Overview of selected ligand–receptor interactions, p-values indicated by circle size, scale on right 

(permutation test, see Methods). The means of the average expression level of interacting molecule 1 

in cluster 1 and interacting molecule 2 in cluster 2 are indicated by colour. Only droplet data was used 

(n=6). b, Diagram of the main receptors and ligands expressed on the three dNK subsets that are 

involved in cellular recruitment or immunomodulation.  

 

Methods 

  

Patient samples 

  

All tissue samples used for this study were obtained with written informed consent from all participants 

in accordance with the guidelines in The Declaration of Helsinki 2000 from multiple centres. 

Human embryo, fetal and decidual samples were obtained from the MRC/Wellcome-funded Human 

Developmental Biology Resource (HDBR43, http://www.hdbr.org) with appropriate maternal written 

consent and approval from the Newcastle and North Tyneside NHS Health Authority Joint Ethics 

Committee (08/H0906/21+5). HDBR is regulated by the UK Human Tissue Authority (HTA; 

www.hta.gov.uk) and operates in accordance with the relevant HTA Codes of Practice. Decidual tissue 

for smFISH (Extended Data Fig. 7c) was also covered by this ethics. 

Peripheral blood from woman undergoing elective terminations were under appropriate maternal 

written consent and approvals from the Newcastle Academic Health Partners (reference NAHPB-093) 

and HRA NHS Research Ethics committee North-East-Newcastle North Tyneside 1 (REC reference 

12/NE/0395) 

Decidual tissue for immunohistochemistry (Fig. 3b-c, Extended Data Fig.7a and Extended Data Fig. 

9c-d) were obtained from elective terminations of normal pregnancies at Addenbrooke’s Hospital 

between 6 and 12 weeks gestation, under ethical approval from the Cambridge Local Research Ethics 

Committee (04/Q0108/23). 
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Decidual tissue for smFISH (Fig. 3d, Extended Data Fig. 6b and Extended Data Fig. 7b) were obtained 

from the Newcastle Uteroplacental Tissue Bank and Ethics numbers are Newcastle and North Tyneside 

Research Ethics Committee 1 Ref:10/H0906/71 and 16/NE/0167. 

  

Isolation of decidual, placental and blood cells 

  

Decidual and placental tissue were washed in HAMS F12 medium, macroscopically separated and then 

washed for at least 10 mins in RPMI or HAMS F12 medium respectively before processing. 

Decidual tissues were chopped using scalpels into approximately 0.2 mm3 cubes and enzymatically 

digested in 15ml 0.4mg/mL collagenase V (Sigma, C-9263) solution in RPMI 1640 medium 

(ThermoFisher Scientific, 21875-034)/10% FCS (Biosfera, FB-1001) at 37°C for 45 min. The 

supernatant was diluted with medium and passed through 100um cell sieve (Corning, 431752) and then 

40um cell sieve (Corning, 431750). The flow-through was centrifuged and resuspended in 5ml of red 

blood cell lysis buffer (Invitrogen, 00-4300) for 10min. 

Each first trimester placenta was placed in a petri dish and the placental villi were scraped from the 

chorionic membrane using a scalpel. The stripped membrane was discarded and the resultant villous 

tissue was enzymatically digested in 70 ml 0.2% trypsin 250 (Pan Biotech P10-025100P)/0.02% EDTA 

(Sigma E9884) in PBS with stirring at 37°c for 9 min. The disaggregated cell suspension was passed 

through sterile muslin gauze (Winware food grade) and washed through with Hams F12 medium 

(Biosera SM-H0096) containing 20% FBS (Biosera FB-1001). Cells were pelleted from the filtrate by 

centrifugation and re-suspended in Hams F12. The undigested, gelatinous tissue remnant was retrieved 

from the gauze and further digested with 10-15 ml collagenase V at 1.0mg/ml (Sigma C9263) in Hams 

F12 medium/10% FBS with gentle shaking at 37°C for 10 min. The disaggregated cell suspension from 

collagenase digestion was passed through sterile muslin gauze and the cells pelleted from the filtrate as 

before. Cells obtained from both enzyme digests were pooled together and passed through 100um cell 

sieve (Corning, 431752) and washed in Hams F12. The flow-through was centrifuged and resuspended 

in 5ml of red blood cell lysis buffer (Invitrogen, 00-4300) for 10min. 

Blood samples were carefully layered onto a Ficoll-paque gradient (Amersham, Buckinghamshire, UK) 

and centrifuged at 2,000 rpm for 30 min without breaks. Peripheral blood mononuclear cells (PBMCs), 

from the interface between the plasma and the Ficoll–Paque gradient, were collected and washed in ice-

cold phosphate-buffered saline (PBS), followed by centrifugation at 2,000 rpm for 5 min. The pellet 

was resuspended in 5ml of red blood cell lysis buffer (Invitrogen, 00-4300) for 10min. 

  

Assignment of fetal developmental stage 

  

Up to 8 post conception weeks (PCW), embryos are staged using the Carnegie staging method44 . At 

fetal stages beyond 8 PCW, age was estimated from measurements of foot length and heel to knee 

length. These were compared with a standard growth chart45. 
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Flow cytometry staining, cell sorting and single-cell RNA sequencing 

  

Decidual and blood cells were incubated at 4°C with 2.5ul of antibodies in 1% FBS in DPBS without 

Calcium and Magnesium (ThermoFisher Scientific, 14190136). DAPI was used for live/dead 

discrimination. We used an antibody panel designed to enrich for certain populations for single-cell 

sorting and single-cell RNA sequencing (scRNA-seq). Cells were sorted using a Becton Dickinson (BD) 

FACS Aria Fusion with 5 excitation lasers (355nm, 405nm, 488nm, 561nm and 635nm Red), and 18 

fluorescent detectors plus forward and side scatter. The sorter was controlled using BD FACS DIVA 

software (version 7). The antibodies used are listed in Supplementary Table 10. 

For single-cell RNA-seq using the plate-based SS2 protocol, we created overlapping gates that 

comprehensively and evenly sampled all immune cell population in the decidua (Extended Data Fig 1). 

B cells (CD19+ or CD20+) were excluded from our analysis, due to their absence in decidua46 . Single 

cells were sorted into 96-well full-skirted Eppendorf plates chilled to 4C, prepared with lysis buffer 

consisting of 10 ul of TCL buffer (Qiagen) supplemented with 1% b-mercaptoethanol. Single-cell 

lysates were sealed, vortexed, spun down at 300g at 4°C for 1 min, immediately placed on dry ice, and 

transferred for storage at -80°C. The SS2 protocol was performed on single cells as described 

previously47,48, with some modifications49. Libraries were sequenced aiming at an average depth of 1 

million reads/cell, on an Illumina HiSeq 2000 with v4 chemistry (paired-end 75-bp reads). 

For the droplet scRNA-seq methods, blood and decidual cells were sorted into immune (CD45+) and 

non-immune (CD45-) fractions. B cells (CD19+ or CD20+) were excluded from blood analysis, due to 

their absence in decidua46. Only viable cells were considered. Placental cells were stained for DAPI and 

only viable cells were sorted. In order to improve trophoblast trajectories, an additional enrichment of 

EPCAM+ and HLA-G+ was performed for selected samples (Fig. 2 only). Cells were sorted into an 

Eppendorf tube containing PBS with 0.04% BSA. Cells were immediately counted using a Neubauer 

hemocytometer and loaded in the 10x-Genomics Chromium. 10x-Genomics v2 libraries were prepared 

as per the manufacturer's instructions. Libraries were sequenced aiming at a minimum coverage of 

50,000 raw reads per cell on an Illumina HiSeq 4000 (paired-end, Read 1: 26 cycles; i7 index:8 cycles, 

i5 index: 0 cycles. Read 2: 98 cycles). 

  

Flow cytometry staining for granule proteins 

  

For intracellular staining of granule proteins, dNK were surface stained for 30 mins in FACS buffer 

with antibodies (listed in Supplementary Table 10).  Cells were washed with FACS buffer followed by 

staining with dead cell marker (DCM Aqua) and strepavidinQ605. dNK were then treated with FIX & 

PERM (Thermofisher) and stained for granule proteins. Samples were run on an LSRFortessa FACS 

analyser (BD Biosciences) and data analysed using FlowJo (Tree Star). dNK were gated as CD3-CD14-

CD19-, live cells then CD56+NKG2A+ and then KIR+ and KIR- subsets generated using Boolean 
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functions with the gates for all the different KIRs stained (KIR+), and its inverse gate (KIR-). Wilcoxon 

test was used to compare granule protein staining between paired dNK subsets from the same donor. A 

p value <0.05 was considered statistically significant.  

 

Immunohistochemistry (IHC) 

  

4um tissue sections from formalin-fixed paraffin wax-embedded human decidual and placental 

tissueswere dewaxed with Histoclear, cleared in 100% ethanol and rehydrated through gradients of 

ethanol to PBS. Sections were blocked with 2% serum (of species in which the secondary antibody was 

made) in PBS, incubated with primary antibody for overnight at 4 RT°C and slides washed in PBS. 

Biotinylated horse anti-mouse or goat anti-rabbit secondary antibody were used, followed by vectastain 

ABC-HRP reagent (Vector, PK-6100) and developed with di-aminobenzidine (DAB) substrate (Sigma, 

D4168). Sections were counterstained with Carazzi’s haematoxylin and mounted in glycerol/gelatin 

mounting medium (Sigma, GG1-10). Primary antibody was replaced with equivalent concentrations of 

mouse or rabbit IgG for negative controls. See Supplementary Table 10 for antibody information. Tissue 

sections were imaged using a Zeiss Axiovert Z1 microscope and Axiovision imaging software SE64 

V4.8. 

  

smFISH 

  

Samples were fixed in 10% NBF, dehydrated through an ethanol series and embedded in paraffin wax.  

5mM were cut, baked at 60°C for 1 hour and processed using standard pre-treatment conditions, as per 

the RNAScope multiplex fluorescent reagent kit v2 assay protocol (manual) or the RNAScope 2.5 LS 

fluorescent multiplex assay (automated). TSA-plus fluorescein, Cy3 and Cy5 fluorophores were used 

at 1:1500 dilution for the manual assay or 1:300 dilution for the automated assay.  Slides were imaged 

on different microscopes: Hamamatsu Nanozoomer S60 (Extended figure 7c). Zeiss Cell Discoverer 7 

(Figure 4d, Extended Figure 7c, Extended Figure 6). Filter details: DAPI: Ex 370-400, BS 394, Em 

460-500; FITC: Ex 450-488, BS 490, Em 500-55; Cy3: Ex 540-570, BS 573, Em 540-570; Cy5: Ex 

615-648, BS 691, Em 662-756. Camera Hamamatsu ORCA-Flash4.0 V3 sCMOS camera. 

  

Whole genome sequencing 

  

Tissue DNA and RNA were extracted from fresh frozen samples using the AllPrep DNA/RNA/miRNA 

kit (Qiagen) following the manufacturer’s instructions. Short insert (500bp) genomic libraries were 

constructed, flowcells prepared and 150 base pair paired-end sequencing clusters generated on the 

Illumina HiSeq X platform according to Illumina no-PCR library protocols to an average of 30× 

coverage. Genotype information is provided in Supplementary Table 1. 
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Single cell RNA-seq data analysis 

  

Droplet-based sequencing data was aligned and quantified using the Cell Ranger Single-Cell Software 

Suite (version 2.0, 10x Genomics Inc)50 against the GRCh38 human reference genome provided by Cell 

Ranger. Cells with fewer than 500 detected genes and for which the total mitochondrial gene expression 

exceeded 20% were removed. Genes that were expressed in fewer than 3 cells were also removed. 

SmartSeq2 sequencing data was aligned with HISAT251, using the same genome reference and 

annotation as the 10x data. Gene-specific read counts were calculated using HTSeq-count52. Cells with 

fewer than 1,000 detected genes and more than 20% mitochondrial gene expression content were 

removed. Further, mitochondrial genes and genes expressed in fewer than 3 cells were also removed. 

To remove batch effects due to background contamination of cell free RNA, we also removed a set of 

genes that had a tendency to be expressed in ambient RNA (PAEP, HBG1, HBA1, HBA2, HBM, AHSP, 

HBG2). 

Downstream analysis such as normalisation, SNN graph-based clustering, differential expression 

analysis and visualisation, were performed using the R package Seurat53 (version 2.3.3). Droplet-based 

and SmartSeq2 data were integrated using Canonical Correlation Analysis (CCA) implemented in the 

Seurat alignment workflow54. Cells whose expression profile could not be well-explained by low-

dimensional CCA, compared to low-dimensional PCA were discarded, as recommended by the Seurat 

alignment tutorial. Clusters were identified using the community identification algorithm as 

implemented in the Seurat "FindClusters" function. The SNN graph was constructed using between 5 

and 40 canonical correlation vectors as determined by the dataset variability; the resolution parameter 

to find the resulting number of clusters was tuned so that it produced a number of clusters large enough 

to capture most of the biological variability. UMAP analysis was performed using the RunUMAP 

function with default parameters. Differential expression analysis was performed based on the 

Wilcoxon rank-sum test. The p-values were adjusted for multiple testing using the bonferroni 

correction. Clusters were annotated using canonical cell type markers. Two clusters of peripheral blood 

monocytes represented the same cell type and were therefore merged. 

We further remove contaminating cells: i) maternal stromal cells that were gathered in the placenta for 

one of the fetuses; ii) a shared decidual/placental cluster with fetal cells mainly present in two fetuses 

which we think is likely to be contaminating cells from other fetal tissues due to the surgical procedure. 

This can occur due to the source of the tissue, and the trauma of surgery. We also removed a cluster for 

which the top markers were genes associated with dissociation-induced effects55. Each of the remaining 

clusters contained cells from multiple different fetuses, indicating that the cell types and states we 

observed are not impacted by batch effects. 

We found further diversity within the T cell clusters, as well as the clusters of endothelial, epithelial 

and perivascular cells, which we then reanalysed and partitioned separately, using the same alignment 

and clustering procedure. 
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The trophoblasts clusters (clusters 1, 9, 20, 13 and 16 from Fig 1.d) were taken from the initial analysis 

of all cells and merged with the enriched EPCAM+ and HLA-G+ cells. The droplet-based and SS2 

datasets were integrated and clustered using the same workflow as described above. Only cells that 

were identified as trophoblasts were considered for trajectory analysis. 

Trajectory modelling and pseudotemporal ordering of cells was performed with the monocle 2 R 

package56 (version 2.8.0). The most highly variable genes were used for ordering the cells. To account 

for the cell cycle heterogeneity in the trophoblast subpopulations, we performed hierarchical clustering 

of the highly variable genes and removed the set of genes clustering with known cell cycle genes such 

as CDK1. Genes which changed along the identified trajectory were identified by performing a 

likelihood ratio test using the function differentialGeneTest in the monocle 2 package.  

Network visualisation was done using Cytoscape (version 3.5.1). The decidual network was created 

considering only edges with more than 30 interactions. The networks layout was set to force-directed 

layout. 

  

KIR typing 

  

Polymerase chain reaction-sequence-specific primer (PCR-SSP) was performed to amplify the genomic 

DNA for presence or absence of 12 KIR genes (2DL1, 2DL2, 2DL3, 2DL5, 3DL1, 2DS1, 2DS2, 2DS3, 

2DS4, 2DS5, and 3DS1) and the pseudogene 2DP1. KIR2DS4 alleles were also typed as being either 

full length or having the 22-bp deletion that prevents cell surface expression. Two pairs of primers were 

used for each gene, selected to give relatively short amplicons of 100–800 bp, as previously described57. 

Extra KIR primers were designed using sequence information from the IPD-KIR database (release 2.4.0) 

to detect rare alleles of KIR2DS5 and KIR2DL3 (KIR2DS5, 2DS5rev2: TCC AGA GGG TCA CTG 

GGA and KIR2DL3, 2DL3rev3: AGA CTC TTG GTC CAT TAC CG)58. KIR haplotypes were defined 

by matrix subtraction of gene copy numbers using previously characterized common and contracted 

KIR haplotypes using the KIR Haplotype Identifier software 

(www.bioinformatics.cimr.cam.ac.uk/haplotypes). 

  

Inferring maternal/fetal origin of single cells from droplet-based scRNA-seq using whole-genome 

sequencing variant calls 

  

To match the processing of the whole-genome sequencing datasets, droplet-based sequencing data from 

decidua and placenta samples were realigned and quantified against the GRCh37 human reference 

genome using the Cell Ranger Single-Cell Software Suite (v.2.0)50. The fetal or maternal origin of each 

barcoded cell was then determined using the tool demuxlet59. Briefly, demuxlet can be used to 

deconvolve droplet-based scRNA-seq experiments in which cells are pooled from multiple, genetically 

distinct individuals. Given a set of genotypes corresponding to these individuals, demuxlet infers the 

most likely genetic identity of each droplet by estimating the likelihood of observing scRNA-seq reads 
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from the droplet overlapping known SNPs. Demuxlet inferred the identities of cells in this study by 

analyzing each Cell Ranger-aligned BAM file from decidua and placenta in conjunction with a VCF 

containing the high-quality WGS variant calls from the corresponding mother and fetus. Each droplet 

was assigned to be maternal, fetal, or unknown in origin (ambiguous or potential doublet), and these 

identities were then linked with the transcriptome-based cell clustering data to confirm the maternal and 

fetal identity of each annotated cell type. 

  

TCR analysis by TraCeR 

  

The TCR sequences for each single T cell were assembled using TraCeR60 which allowed the 

reconstruction of the TCRs from scRNA-seq data and their expression abundance (transcripts per 

million, TPM), as well as identification of the size, diversity and lineage relation of clonal 

subpopulations. In total, we obtained the TCR sequences for 1,482 T cells with at least one paired 

productive αβ or gamma-delta chain. Cells for which more than two recombinants were identified for a 

particular locus were excluded from further analysis. 

  

Whole-genome sequencing alignment and variant calling 

  

Maternal and fetal whole-genome sequencing data were mapped to the GRCh37.p13 reference genome 

using BWA-MEM v.0.7.1561. The SAMtools62 fixmate utility (v.1.5) was used to update read pairing 

information and mate-related flags. Reads near known indels from the Mills63 and 1000G64 gold 

standard reference set for hg19/GRCh37 were locally realigned using GATK IndelRealigner v.3.763. 

Base calling assessment and base quality scores were adjusted with GATK BaseRecalibrator and 

PrintReads v.3.762,65. PCR duplicates were identified and removed using Picard MarkDuplicates 

v.2.14.165,66. Finally, bcftools mpileup and call v.1.667 were used to produce genotype likelihoods and 

output called variants at all known biallelic SNP sites overlapping protein-coding genes. For each 

sample, variants called with phred-scale quality score (QUAL) >= 200, at least 20 supporting reads (DP 

>= 20), and mapping quality (MQ) >= 60, were retained as high-quality variants. 

  

Quantification of KIR gene expression by KIRid 

  

The KIR locus is highly polymorphic both in terms of numbers of genes and alleles68. Including a single 

reference sequence for each gene can lead to reference bias for donors that happen to match the 

reference sequence better. To address these issues, we used a tailored approach in which we first built 

a total cDNA reference by concatenating the Ensembl coding and non-coding transcript sequences, 

excluding transcripts belonging to the KIR genes (GRCh38, v.90), and the full set of known KIR cDNAs 

sequences from the IPD-KIR database69 (release 2.7.0). For each donor, we removed transcript 

sequences for KIR genes determined to be absent in that individual, which decreases the extent of multi-
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mapping/quantification. Each donor's single cell reads were then mapped to the corresponding donor-

specific reference using Kallisto70 (v0.43.0 with default options). Expression levels were quantified 

using the multi-mapping deconvolution tool MMSEQ71, and gene level estimates were obtained by 

aggregating over different alleles for each KIR gene. 

  

Cell-cell communication analysis 

  

To enable a systematic analysis of cell-cell communication molecules, we developed CellPhoneDB, a 

public repository of ligands, receptors and their interactions. Our repository relies on the use of public 

resources to annotate receptors and ligands. We include subunit architecture for both ligands and 

receptors, in order to accurately represent heteromeric complexes. 

Ligand-receptor pairs are defined based on physical protein-protein interactions (PPI) (see 

CellPhoneDB annotation). We provide CellPhoneDB with a user-friendly web interface at 

CellPhoneDB.org, where the user can search for ligand–receptor complexes and interrogate their own 

single-cell transcriptomics data. 

To assess cellular crosstalk between different cell types, we used our repository in a statistical 

framework for inferring cell-cell communication networks from single cell transcriptome data. We 

derived enriched receptor-ligand interactions between two cell types based on expression of a receptor 

by one cell type and a ligand by another cell type, using the droplet-based data. In order to identify the 

most relevant interactions between cell types, we looked for the cell-type specific interactions between 

ligands and receptors. Only receptors and ligands expressed in more than 10% of the cells in the specific 

cluster were considered. 

We performed pairwise comparisons between all cell types. First, we randomly permuted the cluster 

labels of all cells 1000 times and determined the mean of the average receptor expression level of a 

cluster and the average ligand expression level of the interacting cluster. For each receptor-ligand pair 

in each pairwise comparison between two cell types, this generated a null distribution. By calculating 

the proportion of the means which are "as or more extreme" than the actual mean, we obtained a p-

value for the likelihood of cell type-specificity of a given receptor-ligand complex. We then prioritized 

interactions that are highly enriched between cell types based on the number of significant pairs and 

manually selected biologically relevant ones. For the multi-subunit heteromeric complexes, we required 

that all subunits of the complex are expressed (using a threshold of 10%), and therefore we used the 

member of the complex with the minimum average expression to perform the random shuffling. 

  

CellPhoneDB annotation: Membrane, secreted and peripheral proteins 

  

Secreted proteins were downloaded from Uniprot using KW-0964 (secreted). Secreted proteins were 

annotated as cytokines (KW-0202), hormones (KW-0372), growth factors (KW-0339) and immune-
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related using Uniprot keywords and manual annotation. Cytokines, hormones, growth factors and other 

immune related proteins were annotated as “secreted highlight” proteins in our lists. 

Plasma membrane proteins were downloaded from Uniprot using KW-1003 (cell membrane). 

Peripheral proteins from the plasma membrane were annotated using the Uniprot Keyword SL-9903, 

and the remaining proteins were annotated as transmembrane proteins. We completed our lists of plasma 

transmembrane proteins by doing an extensive manual curation by literature mining and Uniprot 

description of proteins with transmembrane and immunoglobulin-like domains. 

Plasma membrane proteins were annotated as receptors and transporters. Transporters were defined by 

the Uniprot keyword KW-0813. Receptors were defined by the Uniprot keyword KW-0675. The list of 

receptors was extensively reviewed and new receptors were added based on Uniprot description and 

bibliography revision. Receptors involved in immune cell communication were carefully annotated. 

Protein lists are available at https://www.cellphonedb.org/downloads. Three columns indicate whether 

the protein has been manually curated: “tags”, “tags_description”, “tags_reason”. 

“tags” is related to the manual curation of a protein. Three options: i) N/A: the protein has not been 

manually curated; ii) To_add: Secreted and/or plasma membrane protein annotation is added; iii) 

To_comment: the protein is either secreted (KW-0964) or membrane-associated (KW-1003), but we 

manually added a specific property of the protein (i.e. the protein is annotated as a receptor) 

“tags_reason” is related to the protein properties. Five options: i) “extracellular_add”: the protein is 

manually annotated as plasma membrane; ii) “peripheral_add”: the protein is manually annotated as 

peripheral protein instead of plasma membrane; iii) “secreted_add”: the protein is manually annotated 

as secreted; iv) “secreted_high”: the protein is manually annotated as secreted highlight. Cytokines, 

hormones, growth factors and other immune-related proteins; v) “receptor_add”: the protein is manually 

annotated as a receptor. 

“tags_description” is a brief description of the protein, function or property related to the manually 

curated protein. 

  

CellPhoneDB annotation:  heteromeric receptors and ligands 

  

Heteromeric receptors and ligands (i.e. proteins that are complexes of multiple gene products) were 

annotated by reviewing the literature and Uniprot descriptions. Cytokine complexes, TGF family 

complexes and integrin complexes were carefully annotated. 

If heteromers are defined in PDB (http://www.rcsb.org/), structural information is included in our 

CellPhoneDB annotation. Heteromeric complex lists are available at CellPhoneDB.org. 

  

CellPhoneDB annotation: Interactions 

The majority of ligand–receptor interactions were manually curated by reviewing Uniprot descriptions 

and PubMed information on membrane receptors. Cytokine and chemokine interactions are annotated 

following the “International Union of Pharmacology annotation”72. Other groups of cell surface proteins 
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whose interactions were manually reviewed include the TGF family, integrins, lymphocyte receptors, 

semaphorins, ephrins, notch and TNF receptors. 

In addition, we considered interacting partners as: 

i) Binary interactions annotated by IUPHAR 

(http://www.guidetopharmacology.org/) 

ii)           Cytokines, hormones and growth factors interacting with receptors annotated by 

the iMEX consortium (https://www.imexconsortium.org/)73 

We excluded from our analysis transporters and a curated list of proteins including: i) Co-receptors; ii) 

Nerve-specific receptor like those related to ear-binding, olfactory receptor, taste receptor and salivary, 

iii) Small molecule receptors, iv) Immunoglobulin chains; v) Pseudogenes; vi) Viral and retroviral 

proteins, pseudogene, cancer antigens and photoreceptors. These proteins are annotated as “others” in 

the “protein list”. We also excluded from our analysis a list of interacting partners not directly involved 

in cell-cell communication. The “remove_interactions” list is available in 

https://www.cellphonedb.org/downloads . 

Lists of interacting protein chains are available in https://www.cellphonedb.org/downloads. The column 

“source” indicates the curation source. Manually curated interactions are annotated as “curated”, and 

bibliography used to annotate the interaction is stored in “comments_interaction”. “Uniprot” means that 

the interaction has been annotated using UniProt descriptions. 

  

Linking Ensembl and Uniprot id 

  

We assigned to the custom curated interaction list all the Ensembl gene id’s by matching information 

from Uniprot and Ensembl by the gene name. 

  

Database structure 

  

Information is stored in a PostgreSQL relational database (www.postgresql.org). SQLAlchemy 

(www.sqlalchemy.org) and Python 3 was used to build the database structure and the query logic. All 

the code is open source and uploaded in the webserver. 

  

Data and materials availability 

  

Our expression data for different tissues is also available for user-friendly interactive browsing online 

at http://data.teichlab.org (Maternal-Fetal Interface). The raw sequencing data, expression count data 

with cell classifications and the WGS data are deposited at ArrayExpress: experiments: E-MTAB-6701 

(for droplet-based data), E-MTAB-6678 (for SS2 data), E-MTAB-7304 (for the WGS data). 

Our CellPhoneDB repository is available in cellphonedb.org. 
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Code availability 

  

CellPhoneDB code is available in github.org/Teichlab/. The code can be downloaded also from: 

https://cellphonedb.org/downloads. 

KIRid can be downloaded from https://github.com/Teichlab/KIRid 
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Extended Data Fig. 1 | Gating strategy for SS2 data. a, Gating strategy for a panel of 14 antibodies 

to analyse immune cells in decidual samples by SS2 (CD3, CD4, CD8, CD9, CD14, CD16, CD19, 

CD20, CD34, CD45, CD56, CD94, DAPI, HLA-DR, HLA-G). Cells isolated for SS2 data were gated 

on: live; CD19/20-ve, singlets, and the following cell types sorted: i) CD45+, CD14++ , HLA-DR++; ii) 

CD45+, HLA-DR+; iii) CD45+, HLA-DR-, CD56-, CD3+, CD4+; CD8- iv) CD45+, HLA-DR-, CD56-, 

CD3+, CD8+; v) CD45+, HLA-DR-, CD56-, CD3+, CD4-, CD8-; vi) CD45+, HLA-DR-, CD3-, CD56-, 

CD94- (all -); vii) CD45+, HLA-DR-, CD3-, CD56+, CD94-; viii) autofluorescence; ix) CD45+, HLA-

DR-, CD3-, CD56+, CD94+, CD9-; x) CD45+, HLA-DR-, CD3-, CD56+, CD94+, CD9+; xi) CD45-, 

HLA-G+; xii) CD45-, HLA-G-.  Sample F9 is shown as an example. Cells from different gates were 

sorted in different plates: T cells  (gates i and ii); Myeloid (gates iii, iv, v) ; NK cells (gates vi, vii, viii, 

ix, x) ; CD45- (gates xi, xii). Antibody information in Supplementary Table 10. 

  

Extended Data Fig. 2 | Quality control of droplet & SS2 datasets. a, Histograms show distribution 

of the cells from the SS2 dataset ordered by number of detected genes and mitochondrial gene 

expression content; b, Histograms show distribution of the cells from the droplet-based dataset ordered 

by number of detected genes and mitochondrial gene expression content;  c, Total numbers of cells that 

passed the quality control, processed by SS2 and droplet scRNA-seq. Each row is a separate donor. d, 

CC1 and CC2 canonical correlation vectors of integrated analysis of decidual and placental cells from 
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the SS2 (decidua n = 5, PBMC n = 2) and droplet-based datasets (placenta n = 5, decidua n = 6, blood 

n = 4), colored based on their assignment to clusters shows clear separation between the immune; 

decidual stromal and perivascular cells; fetal fibroblasts and trophoblast populations;   

  

Extended Data Fig. 3 | Overview of droplet & SS2 datasets. a, UMAP plot showing the integration 

of the SS2 and droplet-based dataset and the log-transformed expression of MKI67 (marking 

proliferating cells). b, UMAP plots showing the separate more detailed integration analysis of the cells 

from cluster 14 (perivascular cells), cluster 19 (endothelial cells) and cluster 25 (epithelial cells). 

Clusters are labelled as in Fig. 1c. c, UMAP visualisation of T cell clusters obtained by integrating SS2 

and droplets T cells subpopulations (4, 8, 10, 15 clusters) from Fig.1c. Cells are colored by the tissue 

of origin (upper panel) and the identified clusters (lower panel). d, Heatmap showing the z-score of the 

mean log-transformed normalised counts for each cluster of selected marker genes used to annotate 

clusters. For a more extensive set of genes see Supplementary Table 2 (adj p-value<0.1; Wilcoxon rank-

sum test with bonferroni correction). Acronyms: NK- NK cells; NKp - proliferating NK cells; ILC- 

Innate lymphocyte cells; M- macrophages; HB- Hofbauer cells; MO- monocytes; DC- dendritic cells; 

Granulo- granulocytes; CD4- CD4+ T cells; CD8- CD8+ T cells; MAIT- Mucosal associated invariant T 

cells; GD- gamma-delta T cells; CD8c- cytotoxic CD8+ T cells; Plasma- plasma cells; Endo- endothelial 

cells; Endo f - Fetal endothelial; Endo m - Maternal endothelial; Endo L- Lymphatic endothelial cells; 

Epi- epithelial cells; PV- perivascular cells; dS- decidual stromal cells; F- fibroblast; VCT- 

cytotrophoblast cells; VCTp- proliferative cytotrophoblast cells SCT- syncytiotrophoblast; EVT- 

extravillous trophoblast; EVTp - proliferative extravillous trophoblast. e, Log-likelihood differences 

between assignment to fetal vs. assignment to maternal origin of cells based on SNP calling from the 

droplet RNA-seq data. Cells are colored by their assignment as determined by Demuxlet.  For this figure 

we used placenta n = 5, decidua n = 6, blood n = 4.  f, UMAP visualisation of the log-transformed 

normalised expression of selected marker genes of the M3 subpopulation.  

 

Extended Data Fig. 4 | Cell-cell communication networks in the maternal–fetal interface using 

CellPhoneDB. a, Information aggregated within CellPhoneDB.org b, Statistical framework to infer 

ligand–receptor complex specific to two cell types from single cell transcriptomics data.  Predicted p-

values for ligand–receptor complex across two cell clusters are calculated using permutations, where 

cells are randomly re-assigned to clusters (see Methods) c, Networks visualising potential specific 

interactions in the decidua, where nodes are clusters (cell types) and edges represent the number of 

significant ligand–receptor pairs. The network was created for edges with more than 30 interactions and 

the network layouts were set to force-directed layout. Only droplet data was considered for the 

CellPhoneDB analysis (n = 6) d, Networks visualising potential specific interactions in the placenta, 

where nodes are clusters and edges represent the number of significant ligand–receptor pairs. The 

network layouts were set to force-directed layout. Only droplet data was considered for the analysis (n 

= 5) e, An example of significant interactions identified by CellPhoneDB. Violin plots show log-
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transformed normalized expression levels of the components of the IL6/IL6R complex in placental 

cells. IL6 expression is enriched in Fibroblast 2 cluster (dark brown, in panel d) and the two subunits 

of the IL6 receptors (IL6R and IL6ST) are co-expressed in Hofbauer cells.  

 

Extended Data Fig. 5 | Trophoblast analysis. a, UMAP visualisation of the integrated analysis of the 

trophoblast subpopulations that were used for pseudotime analysis, including the enriched EPCAM+ 

and HLA-G+ cells (see Methods). Cells that were excluded from the pseudotime analysis are colored in 

grey (placenta n = 5, decidua n = 11).  b, UMAP visualisation of the log-transformed normalised 

expression of selected canonical trophoblast marker genes (n = 5). c, Visualisation of log-transformed 

normalised expression of HLA-G, MKI67, LGALS13 across trophoblast differentiation. d, Heatmap 

showing genes involved in the EMT transition, identified as varying significantly as EVT differentiate 

(q-value<0.1, likelihood ratio test, p-values were adjusted for the False Discovery Rate). 

  

Extended Data Fig. 6 | Steroid synthesis. a, Heatmap showing relative expression of enzymes 

involved in cholesterol and steroid synthesis in the three stromal subsets (n = 11). b, multiplexed 

smFISH in two decidua parietalis sections from two different individuals showing an enrichment of 

CYP11A1 expression in the decidua compacta. Section stained by CYP11A1; LDLR and DAPI. 40x 

magnification. High resolution is needed to detect differences between the sections. (n = 2). 

  

Extended Data Fig. 7 | In situ staining for the different stromal cells. a, IHC of decidual serial 

sections stained for cytokeratin (uterine glands), CD34 (endothelial cells), ACTA2 (perivascular 

populations and decidual stromal 1) and IGFBP1 (biological n = 2). ACTA2+ stromal cells are confined 

to the stromal cells of the deeper decidua spongiosa whilst those in the decidua compacta are ACTA2-. 

IGFBP1+ stromal cells are enriched in the decidua compacta, whilst those stromal cells around the 

glands in the decidua spongiosa are IGFBP1-. Glandular secretions are IGFBP1+.  Acronyms: Epi = 

Epithelial glandular cells; dS = Decidual stromal cells. b, multiplexed smFISH for a decidua parietalis 

section showing the two decidual layers. ACTA2 = decidual stromal 1 (dS1) population, confined to 

decidua spongiosa; IGBP1 and PRL= decidual stromal 3 (dS2 and dS3) populations confined to decidua 

compacta. Samples from a different individual than Fig. 4d. Different individual from Fig. 4d 

(biological n = 2). c, multiplexed smFISH for a decidua parietalis section showing the two decidual 

layers. DKK1 = decidual stromal marker; ACTA2 = decidual stromal 1 (dS1) population, confined to 

decidua spongiosa; PRL= decidual stromal 3 (dS3) population confined to decidua compacta (n = 1). 

  

Extended Data Fig 8 | Lymphocyte populations in the decidua. a, Heatmap showing z-scores of the 

mean log-transformed normalised expression of selected genes in the lymphocyte populations. 

Proliferating dNK (dNKp) are excluded from the analysis (n = 11). b, FACS gating strategy in Figure 

5 applied in matched blood. Matched blood for sample shown in Figure 5 (n = 2). c, Morphology of 
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dNK1, dNK2 and dNK3 by Giemsa-Wright stain after cytospin, Scale bar, 10μm (biological n = 2, 

representative data from n=1 shown).  

 

Extended Data Fig 9 | Expression of ligands and receptors at the maternal–fetal interface. a, 

Heatmap showing z-scores of the mean log-transformed normalised expression of genes annotated as 

cytokines, growth factors, hormones and angiogenic factors with a log mean > 0.1 in the selected 

decidual immune populations (n = 11). b, Violin plots showing log-transformed normalized expression 

levels of selected ligands expressed in the three dNK cells and their corresponding receptors expressed 

on other decidual cells and EVTs (CD39, CD73, ADORA3, CSF1, CSF1R, CCL5, CCR1, XCL1, XCR1; 

n = 11) c, IHC images of serial decidual sections stained for the EVT marker, HLA-G, and the inhibitory 

ligand PDL-1. Lower panels are areas in white boxes at higher power. HLA-G+ cells are only present 

at the site of placentation (decidua basalis) and are absent elsewhere (decidua parietalis). SpA identifies 

spiral arteries. The EVT is strongly PDL1+ (biological n = 5, we show representative data from one 

individual). d, IHC images of decidual serial sections of the decidual implantation site (10 week’s 

gestation), stained for the trophoblast cell marker, Cytokeratin-7 (red arrow) and the inhibitory receptor, 

KIR2DL1 on an NK cell (black arrow). The asterisk (*) marks the lumen of a spiral artery that supplies 

the conceptus (n = 5). 

  

Extended Data Fig 10 | Encyclopaedia of cells at the maternal–fetal interface. a, Summary of 

populations from our scRNAseq data. Blue = Fetal, Red = Maternal. 
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