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Single cell regulatory landscape of the mouse
kidney highlights cellular differentiation programs
and disease targets
Zhen Miao 1,2,3,8, Michael S. Balzer 1,2,8, Ziyuan Ma 1,2,8, Hongbo Liu1,2, Junnan Wu 1,2,

Rojesh Shrestha 1,2, Tamas Aranyi1,2, Amy Kwan4, Ayano Kondo 4, Marco Pontoglio 5, Junhyong Kim6,

Mingyao Li 7, Klaus H. Kaestner2,4 & Katalin Susztak 1,2,4✉

Determining the epigenetic program that generates unique cell types in the kidney is critical

for understanding cell-type heterogeneity during tissue homeostasis and injury response.

Here, we profile open chromatin and gene expression in developing and adult mouse kidneys

at single cell resolution. We show critical reliance of gene expression on distal regulatory

elements (enhancers). We reveal key cell type-specific transcription factors and major gene-

regulatory circuits for kidney cells. Dynamic chromatin and expression changes during

nephron progenitor differentiation demonstrates that podocyte commitment occurs early and

is associated with sustained Foxl1 expression. Renal tubule cells follow a more complex

differentiation, where Hfn4a is associated with proximal and Tfap2b with distal fate. Mapping

single nucleotide variants associated with human kidney disease implicates critical cell types,

developmental stages, genes, and regulatory mechanisms. The single cell multi-omics atlas

reveals key chromatin remodeling events and gene expression dynamics associated with

kidney development.
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T
he mammalian kidney maintains fluid, electrolyte, and
metabolite balance of the body and plays an essential role
in blood pressure regulation and red blood cell home-

ostasis. The human kidney makes roughly 180 liters of primary
filtrate each day that is then reabsorbed and modified by a long
tubule segment. To perform this highly choreographed and
sophisticated function, the kidney contains close to 20 highly
specialized epithelial cells. The renal glomerulus acts as a 60 kD
size-selective filter. The proximal part of the tubules is responsible
for reclaiming more than 70% of the primary filtrate, which is
done via unregulated active and passive paracellular transport1,
while the loop of Henle plays an important role in concentrating
the urine. The distal convoluted tubule is critical for regulated
sodium reabsorption. The last segment of kidney tubules is the
collecting duct, where the final concentration of the urine is
determined via regulation of water channels, acid, or base
secretion. Understanding the development of these diverse cell
types in the kidney is essential to understand kidney homeostasis,
disease, and regeneration.

The mammalian kidney develops from the intermediate meso-
derm via a complex interaction between the ureteric bud and the
metanephric mesenchyme2. In the mouse kidney, Six2 marks the
self-renewing nephron progenitor population3. The nephron pro-
genitors commit and undergo a mesenchymal-to-epithelial trans-
formation giving rise to the renal vesicle3. The renal vesicle then
undergoes segmentation and elongation, giving rise to epithelia
from the podocytes to the distal convoluted tubules, while the
ureteric bud becomes the collecting duct. Unbiased and
hypothesis-driven studies have highlighted critical stages and dri-
vers of early kidney development4, that have been essential for the
development of an in vitro kidney organoid differentiation
protocols5–7 . However, cells in organoids are still poorly differ-
entiated, improving cellular differentiation and maturation of these
structures remains a major challenge8. Thus, the understanding of
late kidney development, especially the cell type-specific driver
transcription factors (TFs) is of great importance9–11. Alteration in
Wnt, Notch, Bmp, and Egf signaling significantly impacts cellular
differentiation, but only a handful of TFs that directly drive the
differentiation of distinct segments have been identified, such as
Pou3f3, Lhx1, Irx2, Foxc2, and Mafb12. Further understanding of
the terminal differentiation program could aid the understanding
of kidney disease development.

While single cell RNA sequencing (scRNA-seq) has improved
our understanding of kidney development in mice and
humans9,10,13,14, it provides limited information of TFs, which
are usually expressed at low levels. Equally difficult is to under-
stand how genes are regulated from scRNA-seq data alone.
Chromatin state profiles, on the other hand, determine the gene
expression potential and can pinpoint the availability of TF
binding sites. Together with gene expression, open chromatin
profiles can define the gene regulatory logic, which is the fun-
damental element of cell identity. However, there is a scarcity of
open chromatin information by Assay for Transposase-Accessible
Chromatin using sequencing (ATAC-seq) or chromatin immu-
noprecipitation (ChIP) data by ChIP-seq related to kidney post-
natal development. In addition, epigenetic changes observed in
bulk analyses mostly represent changes in cell composition, rather
than cell type-specific changes15, making it challenging to inter-
pret bulk ATAC-seq data. The publicly available mouse kidney
ATAC-seq data contain limited number of cells from adult tis-
sues, and therefore do not provide insight into chromatin changes
during development16,17.

Here, we generate a single cell open chromatin and corre-
sponding expression survey for the developing and adult mouse
kidney, which is available to the community via searchable websites
(susztaklab.com/developing_adult_kidney/snATAC/ for snATAC-

seq data, susztaklab.com/developing_adult_kidney/scRNA/ for
scRNA-seq data, and susztaklab.com/developing_adult_kidney/igv/
for IGV view of peak tracks). Using this atlas, we produce an
epigenome-based classification of developing and mature cells and
defined cell type-specific regulatory networks. We also investigate
key TFs and cell–cell interactions associated with developmental
cellular transitions. Finally, we use the single cell open chromatin
information to pinpoint putative target genes and cell types of
several chronic kidney disease noncoding genome-wide association
study (GWAS) loci.

Results
Single cell accessible chromatin landscape of the developing
and adult mouse kidneys. To characterize the accessible chro-
matin landscape of the developing and adult mouse kidneys at
single cell resolution, we performed single nuclei ATAC-seq
(snATAC-seq) on kidneys of mice on postnatal day 0 (P0), at 3
and 8 weeks (P21 and P56) of age (Fig. 1a). In mice at birth, the
nephron progenitors are still present and nephrons are formed
until around day 2113,18. In parallel, we also performed bulk
(whole kidney) ATAC-seq analysis at matched developmental
stages. Following sequencing, we aggregated all high-quality
mapped reads in each sample irrespective of barcode. The com-
bined snATAC-seq dataset from all samples showed the expected
insert size periodicity (Supplementary Fig. 1a) with a strong
enrichment of signal at Transcription Start Sites (TSS), indicating
high data quality (Supplementary Fig. 1b). The snATAC-seq data
showed high concordance with the bulk ATAC data (Spearman
correlation coefficient >0.84 between matched stages, see
“Methods” section, Supplementary Fig. 1c).

We next revealed cell type annotations from the open
chromatin information. After conducting stringent filtering of
the number of unique fragments, promoter ratio and mitochon-
dria ratio (see “Methods” section, Supplementary Fig. 2a), we kept
28,316 cells across the samples (Fig. 1b). Cells were then clustered
using SnapATAC19, which binned the whole genome into 5 kb
regions to address the sparsity of the data (see “Methods”
section). Prior to clustering, we used Harmony20, an iterative
batch correction method, to correct for variability across samples
(Supplementary Fig. 2b). Using batch-corrected low dimensional
embeddings, we retained 13 clusters, all of which had consistent
representation across the number of peaks, samples and read
depth profiles (Figs. 1b and S2c, d).

To determine the cell types represented by each cluster, we
examined chromatin accessibility around the TSS and gene body
regions of the known cell type-specific marker genes21. Based on the
accessibility of the known marker genes, we identified clusters
representing nephron progenitors, endothelial cells, podocytes,
proximal tubule segment 1 and segment 3 cells, loop of Henle, distal
convoluted tubule, connecting tubule, collecting duct principal cells,
collecting duct intercalated cells, stromal, and immune cells. Fig. 1d
and Supplmentary Fig. 3) show chromatin accessibility information
for key cell type marker genes, such as Uncx and Cited1 for nephron
progenitors, Nphs1 and Nphs2 for podocytes, Akr1c21 for both
segments of proximal tubules, Slc34a1 and Slc5a2 for proximal
convoluted tubules (PCT), Kap for proximal straight tubules (PST),
Slc12a1 and Umod for loop of Henle, Slc12a3, and Pvalb for distal
convoluted tubule, Trpv5 for connecting tubule, Aqp2 and Fxyd4 for
principal cells, Atp6v1g3 and Atp6v0d2 for intercalated cells, Egfl7
for endothelial cells, C1qb for immune cells and Col3a1 for different
types of stromal cells, respectively21. As expected, some clusters
such as nephron progenitors and stromal cells were enriched in the
developing kidney (P0).

In order to identify cell type-specific open chromatin regions,
we conducted peak calling using MACS222 on each cell type
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separately. The peaks were then merged to obtain a comprehen-
sive open chromatin set. We found that the single nuclei open
chromatin set showed good concordance with bulk ATAC-seq
samples, with most of the peaks in bulk ATAC-seq data captured
by the single nuclei data. On the other hand, single nuclei
chromatin accessibility data showed roughly 50% more accessible
chromatin peaks (total of 300,693 peaks) than the bulk ATAC-seq
data (Fig. 1e, see “Methods” section). As expected, in general, the
overlap with bulk samples was greater for common cell types, such
as PT and DCT, than rare cells, such as immune cells, indicating
that the snATAC-seq data was particularly powerful in identifying
open chromatin areas that are accessible in single cell types.

In parallel, we also generated a single cell RNA sequencing
(scRNA-seq) atlas for mouse kidney samples at P0 and P56.
Rigorous quality control yielded a set of 43,636 single cells
(Fig. 1b and Supplementary Data 1). Quality control metrics such
as gene counts, UMI counts, and mitochondrial gene percentage
along with batch correction results are shown in Supplementary
Fig. 4a–d. We obtained 17 clusters by unbiased clustering23 and
batch effect correction (Supplementary Fig. 4e, f). On the basis of
marker gene expression, we identified kidney epithelial, immune,
and endothelial cells (Fig. 1f and Supplementary Fig. 5a–c),
closely resembling the clustering obtained from snATAC-seq
analysis. We then conducted differential expression (DE) analysis
on the clusters and identified key marker genes for each cell type
(Supplementary Data 2). Correcting gene expression matrices for
ambient RNA with SoupX24 yielded very similar clusters. Average
gene expression was highly correlated before and after ambient
RNA correction (Supplementary Figs. 6 and 7, see “Methods”
section). DE genes for cell types retrieved after correction for
ambient RNA are accessible in Supplementary Data 3.

To compare the consistency between cluster assignment in the
snATAC-seq data and the scRNA-seq data, we next pooled each
snATAC cluster and derived gene activity scores for the top 3000
highly variable genes and computed the Pearson’s correlation
coefficient between each snATAC cluster and scRNA cluster (see
“Methods” section). This analysis indicated good concordance
between the two datasets (correlation for P0 samples see Fig. 1g,
for adult samples see Supplementary Fig. 8). While the correlation
between gene expression and inferred gene activity score was high,
we noted some differences in cell proportions, which was likely
related to the sample preparation-induced cell drop-out (Supple-
mentary Figs. 2d and 5a). Consistent with previous observations
that single cell preparations are more biased towards immune cells
than single nuclear preparations25, we noted that the immune cell
repertoire was limited in the snATAC-seq dataset; on the other
hand, stromal cells were better captured by the nuclear
preparation. Further sub-analysis of the stromal cluster indicated
a heterogenous stromal cell population in both P0 and adult
samples (Supplementary Figs. 9 and 10). Our data are in keeping
with recent findings highlighting considerable heterogeneity in the
developing kidney interstitium26. DE genes for stroma subclusters
are shown in Supplementary Data 4. Additional experimental
validation is needed to confirm and further delineate stromal cells.

To allow the interactive use of this dataset by the community,
we not only made the raw data available but also the processed
dataset via our searchable website (susztaklab.com/developin-
g_adult_kidney/snATAC/ for snATAC-seq data, susztaklab.com/
developing_adult_kidney/scRNA/ for scRNA-seq data, and
susztaklab.com/developing_adult_kidney/igv/ for IGV view of
peak tracks). Supplementary Fig. 11 shows an example of the
Ace2 locus in the website.

Characterization of the cell type-specific regulatory landscape.
To characterize different genomic elements captured by

snATAC-seq data, we first stratified the genome into promoters,
exons, 5′ and 3′ untranslated regions, introns, and distal regions
using the GENCODE annotation27 (see “Methods” section). We
noticed that concordant with bulk ATAC-seq data, most peaks in
snATAC-seq data were in regions characterized as distal elements
or introns, and relatively small portions (<10%) were in promoter
or 5′ untranslated regions (Supplementary Fig. 12a). Moreover,
there were more developmental stage-specific distal and intronic
regions (Supplementary Fig. 12b), which is consitent with
developmental stage-specific DNA demethylation of the kidney28.
In addition, around half of the open chromatin peaks overlapped
with previously published P0 or adult H3K27Ac ChIP-seq
signals29 (Supplementary Fig. 12c, see “Methods” section).
Taken together, these results indicated a critical role of enhancer
elements.

To study the open chromatin heterogeneity across cell types
and developmental stages, we derived a cell type-specific accessible
chromatin landscape by conducting pairwise Fisher’s exact test for
each peak between every cluster (Benjamini–Hochberg adjusted
q value ≤ 0.05, see “Methods” section). In total, we identified
60,684 differentially accessible open chromatin peaks (DAPs)
across the 13 cell types (Supplementary Data 5 and Fig. 2a).
Among these peaks, most showed high specificity for a single
cluster. However, we noticed overlaps between the PCT and PST
segments-specific peaks, as well as between the loop of Henle and
distal convoluted tubule segments, which is consistent with their
biological similarities. In addition to the cell type-specific peaks,
we also found some cell type-independent open chromatin areas
(present across nephron progenitors, podocytes, proximal tubule
and loop of Henle cells), likely consisting of basal housekeeping
genes and regulatory elements. (Supplementary Fig. 12d).

We noticed that many genes had strong cell type-specific DAPs
at their TSS. Other genes, however, had accessible chromatin at
their TSS in multiple cell types. For example, Umod, a marker
gene for loop of Henle, showed accessible chromatin at TSS in
multiple tubule cell types (Supplementary Fig. 12e). Rather than
with its TSS, cell type-specific chromatin accessibility of Umod
strongly correlated with an upstream peak, which is likely an
enhancer region, as indicated by the H3K27Ac ChIP-seq signal.
In addition, we noticed enrichment of intronic regions and distal
elements (Supplementary Fig. 13a, b) in cell type-specific DAPs,
indicating their role in cell type-specific gene regulation.

These observations motivated us to study cis-regulatory
elements using the snATAC-seq data and scRNA-seq data. We
reasoned that a subset of the cell type-specific regulatory elements
should correlate with cell type-specific gene expression. Inspired
by Zhu et al.30, we aligned DAPs and DEGs from our snATAC-
seq and scRNA-seq datasets, and inferred the putative regulatory
peak-gene pairs by their proximity (see “Methods” section). Such
cis-regulatory elements predictions were confirmed by comparing
with cis-regulatory elements inferred previously31, as we recapi-
tulated roughly 20% of elements from their analysis. In addition,
our analysis was able to identify several known enhancers such as
for Six2 and Slc6a1831,32 (Supplementary Fig. 13c).

To quantify the contribution of cis-regulatory elements, we
analyzed peak co-accessibility patterns using Cicero33. Using a
heuristic co-accessible score 0.4 as a cutoff, we identified 232,380
and 206,701 cis-regulatory element links in the P0 and adult data,
respectively. However, it is worth-noting that the interaction
between genomic elements is complex and is not limited to co-
accessible peaks.

Given the complex interaction between genomic regions, we
next looked into identifying key TFs that occupy the cell type-
specific open chromatin regions. Until now, information on cell
type-specific TFs in the kidney has been scarce. Therefore, we
performed motif enrichment analysis on the cell type-specific
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Fig. 1 snATAC-seq and scRNA-seq identified major cell types in developing and adult mouse kidney. a Schematics of the study design. Kidneys from P0

and adult mice were processed for snATAC-seq and scRNA-seq followed by data processing and analysis including cell type identification and peak calling;

artwork own production and from https://smart.servier.com, license https://creativecommons.org/licenses/by-sa/3.0/). b UMAP embeddings of

snATAC-seq data and scRNA-seq data. Using marker genes, cells were annotated into nephron progenitors (NP), collecting duct intercalated cells (IC),

collecting duct principal cells (PC), proximal convoluted and straight tubule (PCT and PST), loop of Henle (LOH), distal convoluted tubules (DCT), stromal

cells (Stroma), podocytes (Podo), endothelial cells (Endo), and immune cells (Immune). In scRNA-seq data, the same cell types were identified, with an

additional proliferative population and immune cells were clustered into neutrophils and macrophages. c UMAP embeddings of snATAC-seq and scRNA-

seq data colored by P0 and adult batches. d Genome browser view of read density in each snATAC-seq cluster at cell type marker gene transcription start

sites. Additional marker gene examples are shown in Supplementary Fig. 3a. e Comparison of peaks identified from snATAC-seq data and bulk ATAC-seq

data. Peaks that are identified in both datasets are colored blue, and peaks that are dataset-specific are gray. f Violin plots showing cell type-specific gene

expression in scRNA-seq data. g Heatmap showing Pearson’s correlation coefficients between snATAC-seq gene activity scores and gene expression

values in P0 data. Each row represents a cell type in scRNA-seq data and each column represents a cell type in snATAC-seq data. The correlation of the

adult dataset is shown in Supplementary Fig. 3b.
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corresponds to the motif enrichment in each cell type. b Heatmap of cell type-specific regulons, as inferred by SCENIC algorithm. Regulon activity was

binarized to “on” (black) or “off” (white). c tSNE representation of regulon density as a surrogate for stability of regulon states, as inferred by SCENIC

algorithm. d tSNE depiction of regulon activity (“on-blue”, “off-gray”) and TF gene expression (red scale) of exemplary regulons for proximal tubule (Hnf1a),

nephron progenitors (Uncx), loop of Henle (Ppargc1a), proliferating cells (Hmgb3), and podocytes (Mafb). Examples of target gene expression of the Uncx

regulon (Eye1, Hoxc8, Pax2, Spock2, and Wnt4) are shown in purple scale. Expression of target genes of Hnf1a, Six2, Ppargc1a, Hmgb3, and Mafb is shown in

Supplementary Fig. 15a.
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open chromatin regions using HOMER (see “Methods”
section)34. The full list of cell type-specific TF binding motifs is
shown in Supplementary Data 6. Since several TFs have identical
or similar binding sequences, we next correlated motif enrich-
ment with scRNA-seq TF expression. Using this combined motif
enrichment and gene expression approach, we have defined the
mouse kidney cell type-specific TF landscape. Examples include
Six2 and Hoxc9 in nephron progenitors, Wt1 and Mafb in
podocytes, Hnf4a, Ppara, and Bhle41 in proximal tubules, Esrrb
and Foxa1 in loop of Henle, Vdr in distal convoluted tubule, Elf5
in principal cells, Tcfcp2l1 in intercalated cells, Erg and Sox17 in
endothelial cells, Spi1 and Batf in immune cells, and Twist1 and
Nr2f2 in stromal cells (Fig. 2a and Supplementary Fig. 14).

In order to study the putative target genes of TFs, we examined
TF regulon activity using Single-Cell rEgulatory Network
Inference and Clustering (SCENIC)35. SCENIC was designed to
reveal TF-centered gene co-expression networks. By inferring a
gene correlation network followed by motif-based filtration,
SCENIC keeps only potential direct targets of each TF as modules
(regulons). The activity of each regulon in each cell was quantified
and then binarized to “on” or “off” based on activity distribution
across cells (see “Methods” section). SCENIC was also able to
conduct clustering based on the regulon states of each cell.
SCENIC results (Fig. 2b–d) indicated strong enrichment in Trps1,
Hnf1b, Maf, Hnf1a, and Hnf4a regulon activity in proximal
tubules, Hmga2, Hoxc6, Hoxd11, Meox1, Six2, Tcf4, and Uncx in
nephron progenitors, Esrrg, and Ppargc1a in loop of Henle,
Hmgb3 in proliferating cells and Foxc1, Foxc2, Foxd1, Lef1, and
Mafb in podocytes, respectively. As the expression of several of
these TFs was relatively low, possibly exacerbated further by
transcript drop-outs, they did not show strong cell type
enrichment. The regulon-based analysis, however, showed a very
clear enrichment. SCENIC also successfully inferred multiple
downstream target genes. The full list of regulons and their
respective predicted target genes can be found in Supplementary
Data 7, scaled and binarized regulon activity is available in
Supplementary Data 8. Examples of regulon activity, correspond-
ing TF expression, and predicted target gene expression are
depicted in Fig. 2d and Supplemenatary Fig. 15a. For example,
TFs such as Eya1, Hoxc8, Hoxc9, Pax2, Spock2, and Wnt4 are
important downstream targets within the regulon of nephron
progenitor-specific TF Uncx, indicating an important transcrip-
tional hierarchy of nephron development36. Corresponding
snATAC-seq tracks for these predicted target genes along with
the TF motif are depicted in Supplementary Fig. 15b. By
comparing the number of cell type-specific TFs reported by
HOMER and SCENIC to that from DEGs in RNA expression
data, it became evident that our integrative cis-regulatory analysis
with snATAC-seq and scRNA-seq datasets yielded significant
benefits in discovering the TF-regulatory network over analyzing
transcript data alone (Supplementary Fig. 16a, b).

The regulatory trajectory of nephron progenitor differentia-
tion. All cells in the body differentiate from the same genetic
template. Cell type-specific chromatin opening and closing events
associated with TF binding changes set up the cell type-specific
regulatory landscape resulting in cell type specification and devel-
opment. We found that closing of open chromatin regions was the
predominant event during the nephron progenitor differentiation
(Supplementary Fig. 12d). We then evaluated the cellular differ-
entiation trajectory in the snATAC-seq and scRNA-seq datasets
(see “Methods” section). We identified the multiple nephron pro-
genitor sub-groups (Fig. 3a, b), which will need to be carefully
mapped to prior gene expression-driven and anatomical location-
driven nephron progenitor sub-classification. Consistently, across

both data modalities, we identified that the podocyte precursors
differentiated early from the nephron progenitor pool (Fig. 3a, b).
The tubule cell trajectory was more complex with a shared inter-
mediate stage and later differentiation into proximal tubules and
distal tubules/loop of Henle (Fig. 3a, b and Supplementary
Fig. 17a–c). We also integrated snATAC-seq and scRNA-seq
data to obtain a single trajectory (see “Methods” section). The cell
types in this dataset were correctly mapped and the trajectory
resembled the path observed in individual analyses (Supplementary
Fig. 17e–g). The robustness of developmental trajectories was fur-
ther supported by RNA velocity analysis using Velocyto37 (Sup-
plementary Fig. 17d), and by comparing with previous human and
mouse kidney developmental studies9,13,14.

Building on both the SCENIC-generated gene regulatory
network and the robust differentiation trajectories of the
snATAC-seq and scRNA-seq datasets, we next aimed to under-
stand chromatin dynamics, identify TFs and driver pathways for
cell type specification. To this end, we first determined variation
in chromatin accessibility along the three differentiation trajec-
tories using ChromVAR38. ChromVAR estimates the accessibility
dynamics of motifs in snATAC-seq data (see “Methods” section).
The cell type-specific TF enrichment score matrix is shown in
Supplementary Fig. 18a and Supplementary Data 9. We observed
three different patterns when analyzing genes of interest (Fig. 3c):
(1) Decrease of TF motif accessibility in all lineages. For example,
Sox11 motif enrichment score was high in nephron progenitor
cells at the beginning of all three trajectories. It then decreased in
all three lineages in parallel, underlining the role of Sox11 in early
kidney development. Several other TFs followed this pattern such
as Six2 and Sox9. (2) Cell type-specific maintenance of chromatin
accessibility with advancing differentiation. We observed that
chromatin accessibility for the Wt1 motif was high initially
but declined in proximal tubule and loop of Henle lineages,
while its expression is increased in the podocyte lineage. This is
consistent with the important role of Wt1 in nephron progenitors
and podocytes39,40. Other TFs that followed this pattern
include Foxc2 and Foxl1. (3) A de novo increase in chromatin
accessibility with cell type commitment and advancing differ-
entiation. For example, the chromatin accessibility of Hnf4a and
Pou3f3 motif increased in proximal tubule and loop of Henle
trajectories, respectively, coinciding with the cellular differentia-
tion program41. A large number of TFs followed this pattern such
as Mafb (in podocytes), Hnf4a and Hnf1a (in proximal tubule),
Hnf1b (in both proximal tubule and loop of Henle) as well as
Esrrb and Tfap2b (in loop of Henle).

Next, we correlated changes in chromatin accessibility-based TF
motif enrichment with TF expression, and their respective predicted
target genes along the trajectories. To this end, we investigated TFs
and target genes differentially expressed over scRNA-seq pseudo-
time (Supplementary Data 10). We noticed a good concordance of
time-dependent changes of TF and predicted target gene expression
along with motif enrichment, including the lineages for podocytes
(e.g., Foxc2, Foxl1,Mafb,Magi2, Nphs1, Nphs2, Plat, Synpo, Thsd7a,
Wt1, and Zbtb7c), proximal tubule (e.g., Ace2, Atp1a1, Dab2,Hnf1a,
Hnf4a, Hsd17b2, Lrp2,Maf, Slc12a3, Slc22a12, Slc34a1, andWnt9b),
loop of Henle (e.g.,Cyfip2, Cytip, Esrrb, Esrrg, Irx1, Irx2, Mecom,
Pla2g4a, Pou3f3, Ppargc1a, Stat3, Sytl2, Tfap2b, Thsd4, and Umod),
as well as for both proximal tubule and loop of Henle (e.g., Bhlhe40,
Hnf1b, and Tmprss2), respectively (Fig. 3c and Supplementary
Fig. 18b). Most interestingly, we noticed two distinct patterns of
how gene expression was related to chromatin accessibility. While
gene expression of TFs increased over pseudotime, its correspond-
ing motif accessibility either increased in parallel (such as Hnf4a
and Pou3f3) or was maintained in a lineage-specific manner (such
as Wt1). This might indicate different regulatory mechanisms
during differentiation.
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Fig. 3 The cellular trajectory of nephron progenitor differentiation. a UMAP representation of snATAC-seq nephron progenitor differentiation trajectory

towards podocytes, proximal tubule, loop of Henle and distal convoluted tubule, respectively, as inferred by Cicero. Cells are colored by pseudotime.

b UMAP representation of scRNA-seq nephron progenitor differentiation trajectory towards podocytes, proximal tubule and loop of Henle, respectively, as

inferred by Monocle3. Cells are colored by pseudotime. c Pseudotime-dependent chromatin accessibility and gene expression changes along the proximal

tubule (red), podocyte (green), and loop of Henle (blue) cell lineages. The first column shows the dynamics of chromVAR TF enrichment score, the second

column shows the dynamics of TF gene expression values and the third and fourth column represent the dynamics of SCENIC-reported target gene

expression values of corresponding TFs, respectively. Error bars denote 95% confidence intervals of local polynomial regression fitting. Additional

examples are given in Supplementary Fig. 18b.
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We next aimed to interrogate the stage-dependent chromatin
dynamics along the identified differentiation trajectory. The
differentiation trajectory was binned into 15 developmental steps
based on the lineage specification in pseudotime inference
(Supplementary Fig. 17b, c). These stages were labeled as NP1-
3 (nephron progenitor), IM1-2 (intermediate cells), Podo1-3
(podocytes), PT1-3 (proximal tubule), LOH1-2 (loop of Henle),
and DCT (distal convoluted tubule). By studying gene activity
score enrichment of prior cell marker-based annotations, we
showed that NP3 matches with renal vesicle signatures, IM1-2
and Podo1 match with Comma-shaped and S-shaped body that
committed to tubule and podocyte fates, respectively (Fig. 4b). To
study the chromatin opening and closing, we conducted
differential chromatin accessibility analysis between subsequent
stages. To understand the biological processes controlled by the
epigenetic changes, we examined the nearby genes and performed
functional annotation of these peaks (see “Methods” section). We
found that open chromatin profiles were relatively stable in the
early precursor stages such as NP1 to NP3, with fewer than 70
DAPs identified (Supplementary Data 11 and Supplementary
Fig. 19). The podocyte differentiation branch was associated with
marked increase in the number of DAPs (796 DAPs between NP3
and Podo1). This mainly represented the closing of chromatin
areas around nephron progenitor-specific genes such as Osr1,
Gdnf, Sall1, Pax2 and opening of areas around podocyte-specific
genes and key TFs such as Foxc2 and Efnb2, both of which are
validated to be important for early podocyte differentiation42,43.
At later stages, there was a strong increase in chromatin
accessibility of actin filament-based processes and a significant
decrease in Notch1, Notch2, and Ctnnb1 in the podocyte lineages
(Supplementary Data 12). The chromatin changes from NP3 to
intermediate cells 1 (IM1) were mainly associated with closing of
the chromatin around Osr1 and opening around tubule cell-
specific TFs, such as Lhx1 and Pax3 (Fig. 4). The decrease in Six2
expression only occurred at the IM2 stage, at which we also
observed an increase in tubule specification genes such as Hnf1a.
Gene ontology results from the 820 up-regulated peaks between
PT1 and IM2 showed enrichment associated with typical
proximal tubule functions including sodium-dependent phos-
phate transport, maintenance of osmotic response in the loop of
Henle and active sodium transport in the distal convoluted tubule
(Supplementary Fig. 19, the full list can be found in Supplemen-
tary Data 11, 12, and 13).

In addition to analyzing changes along the trajectory, we also
examined cell-fate bifurcation events by comparing two descen-
dant lineages. We found that podocyte specification from
nephron progenitors was associated with differential opening of
Foxl1, Zbt7c, and Smad2 in the podocyte lineage and Lhx1, Sall1,
Dll1, Jag1, Cxcr3, and Pax3 in the other lineage, respectively.
While the role of several TFs has been established for podocyte
specification, the expression of Foxl1 has not been described in
the kidney until now (Fig. 4). Our analysis pinpointed that four
peaks in the vicinity of Foxl1 were accessible only in podocyte
lineage, which locate in +53,381 bp, +152,832 bp, +237,019 bp,
and +268,550 bp of the Foxl1 TSS, respectively. To confirm the
expression of Foxl1 in nephron progenitors and podocytes, we
performed immunofluorescence studies on developing kidneys
(E13.5, P0, and P6). Consistent with the computational analysis,
we found strong expression of FOXL1 in nephron progenitors
(E13.5). At later stages, FOXL1 expression in glomerular
podocyte was confirmed by co-localization with WT1 (Supple-
mentary Fig. 20). Early and late stage expression of Foxl1 were
also confirmed in scRNA-seq data (Supplementary Fig. 21).
While further experimental validation will be important, our
study has illustrated the critical role of open chromatin state
information and dynamics in cellular differentiation.

The intermediate cells (IM) gave rise to proximal and distal
branches representing the proximal tubules, and the loop of
Henle as well as distal convoluted tubule segments. The proximal
tubule region was characterized by chromatin opening around
Hnf4a, Maf, Tprkb, and Gpat2. The loop of Henle and distal
convoluted tubule segments were remarkable for multiple DAPs
in the vicinity of Tfap2a, Tfap2b, Cited4, Ephb2, Ephb3, Hoxd8,
Mecom, and Prmd16, indicating a critical role for these TFs in
distal tubule differentiation (Figs. 3c and 4 and Supplementary
Fig. 21). Consistently, we saw a reduction in chromatin
accessibility of Six2 promoters and enhancers along all three
trajectories (podocyte, proximal tubule, and loop of Henle)
(Supplementary Fig. 22). There was also a decrease in accessibility
of Jag1 and Heyl in the distal loop of Henle segment, concordant
with the putative role of Notch driving the proximal tubule fate44

(Supplementary Data 14). Another striking observation was that
tubule segmentation and specification occurred early by an
increase in chromatin accessibility around Lhx1, Hnf1a and
Hnf4a andMaf for proximal tubule and Tfap2b for loop of Henle.
Terminal differentiation of proximal tubule and loop of Henle
cells was strongly linked to nuclear receptors that regulate
metabolism, such as Esrra and Ppara in proximal tubules and
Esrra and Ppargc1a in the loop of Henle segment, once more
indicating the critical role of metabolism of driving gene
expression and differentiation45.

Stromal-to-epithelial communication is critical in the devel-
oping and adult kidneys. Previous studies indicated that the
survival, renewal, and differentiation of nephron progenitors is
largely regulated through its cross-talk with the adjacent ureteric
bud46. To investigate the complex cellular communication net-
work, we used CellPhoneDB47 to systematically infer potential
cell–cell communication in the developing and adult kidney.
CellPhoneDB provides a comprehensive database and a statistical
method for the identification of ligand–receptor interactions in
scRNA-seq data. Analysis of our scRNA-seq dataset indicated
that the number of cell–cell interaction pairs was larger in
developing kidney compared to the adult kidney (Fig. 5a). In the
developing kidney, the stroma showed the greatest number of
interactions among all cell types, coinciding with the well-known
role of epithelial–stromal interactions in driving kidney
development44. Of the identified interactions, many were related
to stroma-secreted molecules such as collagen 1, 3, 4, 6, and 14
(Fig. 5b). Interestingly, the nephron progenitor cluster showed
important ligand-receptor interaction between Fgf1, Fgf8 as well
as Fgf9 and the corresponding receptor Fgfr1, which is consistent
with the well-known role of FGF signaling in kidney
development48. Of the manifold identified interactions in the fetal
kidney, stromal interaction and the VEGF-involving interaction
remained significant in the adult data set, underscoring the
importance of endothelial-to-epithelial communication.

We next individually examined the expression of several key
pathways known to play important roles in kidney development,
such as Gdnf-Ret, sonic hedgehog, FGF, Bmp, Wnt, and others9.
Expression of these key ligand–receptor pairs showed strong cell
type specificity (Fig. 5c). For example, Robo2 of the Gdnf-Ret
pathway was expressed in nephron progenitors and in podocytes
of P0 and adult kidney49–51. Eya1, however, is genetically
upstream of Gdnf and acts as a positive regulator for its
activation52. Consistently, we noted distinct cell type specificity
of Eya1 expression only in nephron progenitors, which was also
true for other important signaling molecules such as Ptch1, Smo,
and Gli3 of the sonic hedgehog pathway. Fgfr1 showed the highest
expression in nephron progenitors as well as in fetal and adult
stroma, underscoring the importance of FGF signaling for
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Fig. 4 Chromatin dynamics of nephron progenitor differentiation. a Di-graph representing cell type and lineage divergence, as derived from Cicero

trajectory inference. Nephron progenitors (NP), podocytes (Podo), intermediate stage (IM), proximal tubule (PT), loop of Henle (LOH), and distal

convoluted tubule (DCT) are connected with their developmental precursor stages and represented by ascending numbering. Arrows represent cell

differentiation along respective trajectories. Genes listed next to the trajectories were derived from analyzing gene enrichment of differentially assessible

peaks (DAPs) between two stages. Genes colored red were derived from the opening DAPs between two stages, genes colored blue were derived from the

closing DAPs between two stages, and genes colored green were derived from opening DAPs between two branches. Three important genes, Foxl1, Hnf4a,

and Tfap2b are shown along with their cell type-specific accessibility peaks and immunostaining results. Peaks that were open during the development of

specific cell types are shown in red boxes. Immunofluorescence staining of P0 mouse kidney shows FOXL1 in red in the proximal part (Pr) of late S-shaped

bodies (cross) and in podocytes within primitive glomeruli (#); green staining denotes E-Cadherin, blue DAPI; Med, medial part of S-shaped body; Di, distal

part of S-shaped body; UE, ureteric epithelium; images are representative of three independent experiments, scale bars = 25 µm. HNF4A and TFAP2B in

human adult kidney samples (images CAB019417 and HPA034683, respectively, taken from the Human Protein Atlas version 19.3, http://www.

proteinatlas.org83, https://creativecommons.org/licenses/by-sa/3.0/) are visualized by immunohistochemistry in brown, scale bar = 25 µm. In addition,

gene expression changes along the three trajectories of genes that were identified by GREAT analysis to be nearby chromatin closing and opening events

demonstrated to be consistent to chromatin information, examples are visualized in the top right subpanel. b Heatmap showing normalized gene activity

scores of lineage marker genes in the 15 developmental stages.
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Fig. 5 Cell–cell communication analysis in the developing and adult mice highlighted the critical role of stroma in driving cell differentiation.

a Heatmaps showing the number of cell-cell interactions in the scRNA-seq dataset of P0 (top) and adult (bottom) kidneys, as inferred by CellPhoneDB.

Dark blue and dark red colors denote low and high numbers of cell–cell interactions, respectively. b CellPhoneDB-derived measures of cell–cell interaction

scores and p values. Each row shows a ligand-receptor pair, and each column shows the two interacting cell types, which is binned by cell type. Columns

are sub-ordered by first interacting cell type into stroma, podocytes, endothelial cells, proximal tubule, loop of Henle, and nephron progenitors. Color scale

denotes the mean values for all the interacting partners, where mean value refers to the total mean of the individual partner average expression values in

the interacting cell type pairs. Orange scale denotes P0, blue scale denotes adult. Dot size denotes corresponding p values of the (one-sided) permutation

test with 1000 permutations. c Dot plots of RNA expression of important cell–cell communication candidates within the Gdnf-Ret, Sonic hedgehog, Fgf,

Bmp, Wnt, and other pathways in both P0 (top) and adult (bottom) kidney. Dot size denotes percentage of cells expressing the marker. Color scale

represents average gene expression values, orange denotes P0, blue denotes adult. Arrows indicate ligand–receptor pairs.
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cell–cell interactions in both the developing and developed
kidney. Because not much is known about some of these markers,
the significance of these putative interactions requires further
investigation. For example, Rspo3 has been implicated in nephron
progenitor-associated interactions during nephrogenesis10. Muta-
tions in the Itga8 gene are known to cause isolated congenital
anomalies of kidney and urinary tract in humans50.

Murine single cell chromatin accessibility implicates potential
human kidney GWAS mechanisms, target regulatory regions,
genes, and cell types. Finally, we examined whether single cell
level chromatin accessibility data can help implicate cell and gene
targets for human kidney diseases. GWAS have been exceedingly
successful in identifying nucleotide variations associated with
specific diseases or traits. However, the majority of the identified
genetic variants are in the non-coding region of the genome.
Initial epigenome annotation studies indicated that GWAS hits
are enriched in tissue-specific enhancer regions. As there are
many different cell types in the kidney with differing function,
understanding the true cell type specificity of these enhancers is
critically important.

Here, we reasoned that murine single cell accessible chromatin
information could be useful in nominating potential cell type-
specific regulatory regions, and thereby the target cell type for the
GWAS hits. We combined three recent kidney disease
GWAS53–55, and obtained 26,637 single nucleotide polymorph-
isms (SNPs) that passed genome-wide significance level. After
lift-over, we identified 7923 variants by orthologous mapping
from human to mouse.

First, we examined eGFR GWAS loci where functional
validation studies reported conflicting results on target cell types
and target genes (Fig. 6). First, we examined the region around
Uncx, for which reproducible association with kidney function was
shown in multiple kidney function GWAS53,54. Interestingly, the
orthologous GWAS locus demonstrated a strong open chromatin
region in nephron progenitors but not in any other differentiated
cell types of the murine (Fig. 6a) or human (Fig. 6b) kidney.
Consistently, by examine epigenome data (including H3K27ac,
H3K4me1, H3K4me3, and ChIP-seq data across multiple stages),
we observed enrichment for H3K27ac, H3Kme1, and Six2 binding
at this locus. We also detected Uncx gene expression in the fetal
kidney samples, but not in the adult kidney (Fig. 6c).

Next, we analyzed the chromosome 15 GWAS region around
Dab2, where we identified open chromatin regions in multiple kidney
cells. Dab2 expression, on the other hand, strongly correlated with
open distal enhancer regions in proximal tubule cells (Fig. 6d). More
importantly, this region was also accessible in human proximal
tubule cells (Fig. 6e). This is consistent with earlier publications
indicating the role of proximal tubule-specific DAB2 expression in
kidney disease development56. Interestingly, while single cell analysis
indicated an additional distal enhancer in intercalated cells, the
GWAS-significant region coincided with the proximal tubule-specific
enhancer region and the open chromatin areas showed strong
coregulation (Fig. 6f). Bulk kidney (ChIP-Seq) regulatory annotation
indicated enhancer mark enrichment in the adult but not in the fetal
kidneys.

We also examined loci where functional validation studies
reported conflicting results on target cell types and target genes.
The SHROOM3 locus has shown a reproducible association with
kidney function in multiple GWAS55. While one study indicated
that the genetic variants were associated with an increase in
SHROOM3 levels in tubule cells inducing kidney fibrosis57, the
other suggested that the variant was associated with lower
Shroom3 levels in podocytes resulting in chronic kidney disease
development58. We noticed that the expression of Shroom3 in the

adult kidney was low (Fig. 6g). We observed open chromatin
areas in multiple cell types including nephron progenitors,
podocytes, and proximal tubule (Fig. 6g). The human kidney
cell type-specific open chromatin landscape showed consistent
overlap with multiple SNPs in multiple cell types (Fig. 6h).
Interesting to note that one SNP with strong nephron progenitor-
specific enrichment also coincided with the Six2 binding area
(Fig. 6i). While this finding is enticing, further experimental
validation is warranted in order to uncover mechanistic insights.
Closer views of all three loci are shown in Supplementary Fig. 23.

Lastly, we also overlapped all disease-associated SNPs (after
lift-over) with peaks in snATAC-seq data. The full table including
nearest genes is provided in Supplementary Data 15. These results
indicate that variants associated with kidney disease development
are located in regions with murine cell type-specific and
developmental stage-specific regulatory activity, and illustrate
the potential power of snATAC-seq in nominating target genes
and target cell types for GWAS variants.

Discussion
In summary, here we present the first cellular resolution open
chromatin map with both developing and adult mouse kidney.
Using this dataset, we identified key cell type-specific regulatory
networks for kidney cells, defined the cellular differentiation
trajectory, characterized regulatory dynamics and identified key
driving TFs for nephron development, especially for the terminal
differentiation of epithelial cells. Furthermore, our results shed
light on potential cell types and target genes for genetic variants
associated with kidney disease.

By performing massively parallel single cell profiling of chro-
matin state, we were able to define the key regulatory logic for
each kidney cell type by investigating cis-regulatory elements,
motif enrichment, and TF-target gene co-expression. These ana-
lyses helped the identification of key TFs for different kidney cell
types. TF identification is challenging in scRNA-seq data, since the
expression of several cell type-specific TFs is low59. We showed
that by extracting motif information, snATAC-seq data provided
critical complementary information for TF identification.

In our dataset, we also observed that the single cell open
chromatin atlas was able to define more distinct cell types even in
the developing kidney compared to scRNA-seq analysis. Given
the continuous nature of RNA expression, it has been exceedingly
difficult to dissect specific cell types in the developing
kidney9,10,13. In addition, it has been difficult to resolve the cell
type origin of transcripts expressed at low levels in scRNA-seq
data. However, in our snATAC-seq data, the low dimensional
embedding showed distinct clusters. In addition, snATAC-seq
data were able to capture the chromatin state irrespective of gene
expression magnitude. There were several examples where
accessible peaks were identified in specific cell types even for
genes expressed at low levels, such as Shroom3.

Our studies revealed dynamic chromatin accessibility that
tracks with renal cell differentiation. These states may reveal
mechanisms governing the establishment of cell fate during
development. We found a coherent pattern between gene
expression and open chromatin information, where the nephron
progenitors differentiated into two branches representing podo-
cytes and tubule cells60. We found that podocyte commitment
occurred earlier, while tubule differentiation was more complex.
The podocyte specification correlated with maintained expression
of Foxc2 and Foxl1, as evidenced by immunofluorescence. While
Foxc2 has been known to play a role in nephron progenitors and
podocytes, this is the first description of Foxl1 in kidney and
podocyte development. We confirmed the key role of Hnf4a in
proximal tubules and identified transcriptional regulators, such as
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Fig. 6 Single cell level chromatin accessibility highlighted human kidney GWAS target genes and cell types. a, d, g Genome browser view of Shroom3,

Dab2, and Uncx loci; from top to bottom: mouse orthologue of eGFR GWAS significant SNPs (after lift-over) mouse kidney single nuclei chromatin

accessibility for nephron progenitors (NP), podocytes (Podo), proximal convoluted and straight tubules (PCT and PST), loop of Henle (LOH), distal

convoluted tubule (DCT), collecting duct intercalated cells (IC), collecting duct principal cell types (PC), endothelial cells (Endo), immune cells (Immune)

and stromal cells (Stroma). Data range in all tracks is set to the same scale. Examples of cell type-specific accessible chromatin overlapped with significant

SNPs are highlighted with dashed lines. Right subpanel shows violin plots of cell type-specific gene expression in P0 (orange) and adult (blue) kidneys in the

scRNA-seq dataset. b, e, h Corresponding genome browser views in adult human (hg19) kidney snATAC-seq data; from top to bottom: eGFR GWAS

significant SNPs, adult human kidney single nuclei chromatin accessible landscape, whole kidney H3K27ac, H3K4me1, and H3K4me3 ChIP-seq tracks. The

genomic location in human was matched to the mouse orthologue. Note that for DAB2 (f), the image was mirrored to facilitate comparison along genomic

read direction. Alternative genome browser views at more zoomed-in locations are available in Supplementary Fig. 23. c, f, i Whole mouse kidney

epigenomics tracks from E14.5, E15.5, E16.5, P0, and adult mice. From top to bottom: H3K27ac, H3K4me1, H3K4me3, and Six2 ChIP-seq; whole genome

bisulfate sequencing (WGBS); and bulk RNA-seq. The bottom Refseq visualization corresponds to the Refseq track at the top in a, d, g, respectively. Six2

binding signal in nephron progenitor cells.
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Tfap2a for the distal portion of the nephron. Furthermore, the
terminal differentiation of proximal tubule cells correlated with
the increase in Ppara and Esrra expression, both of which are
known regulators of oxidative phosphorylation and fatty acid
oxidation45. Loop of Henle differentiation strongly correlated
with Essrb and Ppargc1a expression. These studies potentially
indicate that cell specification events occur early and metabolism
controls terminal differentiation of tubule cells61. Impaired
metabolic fitness of proximal tubules has been a key contributor
to kidney dysfunction, explaining the critical association with
tubule metabolism and function62.

Furthermore, we show that murine single cell-level and dif-
ferentiation stage-level epigenome annotation is potentially
powerful for the annotation of human GWAS. Data from human
kidney tissues are needed to understand whether the knowledge
from mouse ortholog is transferrable to human, however, our
analyses highlight the usefulness of murine analyses in the con-
text of ethical and practicability issues in obtaining human
samples, especially during developmental stages. Most identified
GWAS signals are in the non-coding region of the genome and
the target gene, as well as target cell type remain unknown. Our
results indicate that multiple GWAS regions are conserved
between mice and humans. Single cell open chromatin informa-
tion enables not only to infer the implication of affected cell types,
but also the understanding of co-regulation of the open chro-
matin area, which helps infer target genes. Here, we show that the
GWAS variants mapped only to those regions where chromatin
was open exclusively in nephron progenitors, whereas chromatin
became inaccessible as differentiation progressed during later
stages, such as for Uncx. This is an interesting and important
potential mechanism, indicating that the altered expression of this
gene might play a role in the development rewiring of the kidney.
This mechanism would be similar to genes associated with autism
that are known to be expressed in the fetal, but not in the adult
stages63, and highlights the critical role of understanding chro-
matin accessibility at multiple stages of differentiation.

While we have generated a large amount of high-quality data,
this information will need further experimental validation. In
addition, one needs to be aware of the limitations when interpreting
different computational analyses, for example, motif enrichment
analyses such as implemented by HOMER, SCENIC, and chrom-
VAR are not able to distinguish between TFs with similar binding
sites. Future high-throughput studies that analyze open chromatin
and gene expression information from the same cells will be
exceedingly helpful to correlate open chromatin, and gene expres-
sion information along the differentiation trajectory31,64,65.

In summary, our dataset provides critical insight into the cell
type-specific gene regulatory network, cell differentiation pro-
gram, and human complex diseases-associated genes.

Methods
Material table. Material table can be viewed in the Supplementary Data 16.

Research animals. Mice were housed in a temperature-controlled specific-pathogen-
free facility under 12 h light/dark cycles (lights on at 07:00 h, off at 19:00 h). The
animal experiments were reviewed and approved by the Institutional Animal Care
and Use Committee (IACUC) of the University of Pennsylvania in accordance with
the guidelines of the National Institutes of Health. All applicable international,
national, and institutional guidelines for the care and use of animals were followed.

Single cell RNA sequencing of P0 and adult mice. One-day-old wild type mouse
neonate and adult mouse (C57BL/6) kidneys were harvested and minced into
1 mm3 pieces and incubated with digestion solution containing Enzyme D, Enzyme
R, and Enzyme A from Multi Tissue Dissociation Kit 1 (Miltenyi, 130-110-201) at
37 °C for 15 min with agitation. Reaction was deactivated by adding FBS to 10%,
then solution was passed through a 40 μm cell strainer. After centrifugation at
500 × g for 5 min, cell pellet was incubated with 500 μL of RBC lysis buffer on ice
for 3 min. We centrifuged the cells at 500 × g for 5 min at 4 °C and resuspended the

cells in 1X PBS for further steps. Cell number and viability were analyzed using
Countess AutoCounter (Invitrogen, C10227). The cell concentration was 2.2 mil-
lion cells/mL with 92% viability. Ten thousand cells were loaded into the Chro-
mium Controller (10X Genomics, PN-120223) on a Chromium Single Cell B Chip
(10X Genomics, PN-120262), and processed to generate single cell gel beads in the
emulsion (GEM) according to the manufacturer’s protocol (10X Genomics,
CG000183). The library was generated using the Chromium Single Cell 3′ Reagent
Kits v3 (10X Genomics, PN-1000092) and Chromium i7 Multiplex Kit (10X
Genomics, PN-120262) according to the manufacturer’s manual. Quality control
for constructed library was performed by Agilent Bioanalyzer High Sensitivity
DNA kit (Agilent Technologies, 5067-4626) for qualitative analysis. Quantification
analysis was performed by Illumina Library Quantification Kit (KAPA Biosystems,
KK4824). The library was sequenced on Illumina HiSeq 4000 system with 2 × 150
paired-end kits using the following read length: 28 bp Read1 for cell barcode and
UMI, 8 bp I7 index for sample index and 91 bp Read2 for transcript.

Single cell ATAC sequencing. Kidneys from 3-week-old and 8-week-old mice
were harvested, minced and lysed in 5 mL lysis buffer (10 mM Tris HCl pH 7.4,
10 mM NaCl, 3 mM MgCl2, and 0.1% NonidetTM P40 Substitute in nuclease-free
water) for 15 min. Kidneys from P0 mice were minced and lysed in 2 mL lysis
buffer for 15 min. Tissue lysis reaction was then blocked by adding 10 mL 1× PBS
into each tube, and solution was passed through a 40 μm cell strainer. Cell debris
and cytoplasmic contaminants were removed by Nuclei PURE Prep Nuclei Isola-
tion Kit (Sigma, NUC-201) after centrifugation at 30,000 × g for 45 min. Nuclei
concentration was calculated with Countess AutoCounter (Invitrogen, C10227).
Diluted nuclei suspension was loaded and incubated in transposition mix from
Chromium Single Cell ATAC Library & Gel Bead Kit (10X Genomics, PN-
1000110) by targeting 10,000 nuclei recovery. GEMs were then captured on the
Chromium Chip E (10X Genomics, PN-1000082) in the Chromium Controller
according to the manufacturer’s protocol (10X Genomics, CG000168). Libraries
were generated using the Chromium Single Cell ATAC Library & Gel Bead Kit and
Chromium i7 Multiplex Kit N (10X Genomics, PN-1000084) according to the
manufacturer’s manual. Quality control for constructed library was perform by
Agilent Bioanalyzer High Sensitivity DNA kit. The library was sequenced on
Illumina HiSeq 4000 system with 2 × 50 paired-end kits using the following read
length: 50 bp Read1 for DNA fragments, 8 bp i7 index for sample index, 16 bp i5
index for cell barcodes and 50 bp Read2 for DNA fragments.

Bulk ATAC sequencing

Nuclei preparation. Bulk ATAC sequencing was performed with previously pub-
lished methods66,67. Kidneys were minced and lysed in 5 mL lysis buffer (10 mM
Tris HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, and 0.1% NonidetTM P40 Substitute
in nuclease-free water) for 15 min. The reaction was then blocked by adding 10 mL
1× PBS into each tube, and solution was passed through a 40 μm cell strainer. The
nuclei were centrifuged down at 500×g at 4 °C, resuspended in the resuspension
buffer (10 mM pH = 7.5 Tris-HCl, 10 mM NaCl, 3 mM MgCl2). Nuclei numbers
were estimated with Countess AutoCounter (Invitrogen, C10227).

Transposition. Fifty thousand nuclei/sample were tagmented with Tagment DNA
TDE1 Enzyme and Buffer Kit (Illumina, 20034198) in 50 μL reaction volume of
transposition buffer (25 μL 2× TD buffer (Tagment DNA Buffer), 2.5 μL Tn5
transposase (Tagment DNA Enzyme 1), 0.5 μL 10% Tween-20, 0.5 μL 1% Digito-
nin, 16.5 μL 1× PBS, 5 μL nuclease-free water). The reaction was carried out at
37 °C for 30 min in a thermomixer.

DNA purification and library construction. Isolated DNA was purified by MinElute
Reaction Cleanup Kit (Qiagen, 28204) by following the manufacturer’s manual.
The purified DNA was finally eluted in 10 μL elution buffer. The DNA was then
amplified by NebNext High-Fidelity 2× PCR Master Mix (NEB, M0541S) and
quantified by qPCR to make libraries. The libraries were purified by AMPure XP
beads (Beckman Coulter, A63880). Quality control for constructed library was
perform by Agilent Bioanalyzer High Sensitivity DNA kit. Libraries were submitted
to 150 bp PE sequencing with Illumina HiSeq 3000 system.

snATAC-seq data analysis
Data processing and quality control. Raw fastq files were aligned to the mm10
(GRCm38) reference genome and quantified using Cell Ranger ATAC (v. 1.1.0).
We only kept valid barcodes with number of fragments ranging from 1000 to
40,000 and mitochondria ratio less than 10%. One of the important indicators for
ATAC-seq data quality is the fraction of peaks in promoter regions, so we did
further filtration based on promoter ratio. We noticed the promoter ratio seemed
to follow a binary distribution, with most of cells either having a promoter ratio
around 5% (background) or more than 20% (valid cells) (Supplementary Fig. 2a).
We therefore filtered out cells with a promoter ratio <20%. After this stringent
quality control, we obtained 11,429 P0 single cells (5993 in P0_batch_1 and 5436 in
P0_batch_2) and 16,887 adult single cells (7129 in P56_batch_3, 6397 in
P56_batch_4, and 3361 in P21_batch_5).
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Preprocessing. Since snATAC-seq data are very sparse, previous methods either
conducted peak calling or binarization before clustering. Here, we chose to do
binarization instead of peak calling for two reasons: 1) Peak calling is time con-
suming; 2) Many peaks are cell type-specific, open chromatin regions in rare
populations are more likely to be treated as background. After binning fragments
into 5 kb windows and removing the fragments not matched to chromosomes or
aligned to the mitochondria, we binarized the cell–bin matrix. In order to keep only
bins that were informative for clustering, we removed the top 5% most accessible
bins and bins overlapping with ENCODE blacklist. The 484,606 remaining bins
were used as input for clustering.

Dimension reduction, batch effect correction, and clustering. Clustering was con-
ducted using snapATAC19, a single-cell ATAC-seq algorithm scalable to large
dataset. Previous benchmarking evaluation has shown that snapATAC was one of
the best-performing methods for snATAC-seq clustering68. Diffusion map was
applied as a dimension reduction method using function runDiffusionMaps. To
remove batch effect, we used Harmony20, in which the low dimensional embed-
dings obtained from the diffusion map were used as an input. Harmony iteratively
pulled batch-specific centroid to cluster centroid until convergence to remove the
variability across batches. After batch correction, a graph was constructed using k-
Nearest Neighbor (kNN) algorithm with k= 15, which was then used as input for
Louvain clustering. We used the first 20 dimensions for the Louvain algorithm. The
number of dimensions was chosen using a method recommended by snapATAC,
although we noticed that the clustering results were similar among a series of
dimensions from 18 to 30.

Cell type annotation. We used a published list of marker genes9,21 to annotate
kidney cell types. In order to infer gene expression of each cell type, we built a cell-
gene activity score matrix by integrating all fragments that overlapped with gene
transcript. We used GENCODE Mouse release VM1627 as reference annotation.

Comparison with mouse ATAC Atlas dataset. We compared our cell type anno-
tations and QC procedures with previously published sciATAC-seq data17 with
mouse adult kidney samples included. As for the QC procedure, in the published
mouse ATAC atlas, cells were kept with at least 500 UMIs and less than 10%
mitochondria reads, while in our analysis, we kept cells with at least 1000 UMIs
and less than 10% mitochondria reads. In addition, we also filtered out cells with
promoter ratio below 20%. Despite the more stringent QC step, the median
number of accessible peaks per cell is comparable, with 4413 in our dataset and
4333 in the Mouse ATAC Atlas dataset.

Our dataset contains larger number of cells (28,346 in our dataset vs. 6299 in
the mouse atlas dataset), allowing us to improve the cell type resolution of the prior
map. For example, we were able to identify immune and CNT cells and separate
the PCT and PST segments of the proximal tubules and IC and PC cells in the
collecting duct. Thus, our dataset includes 13 annotated cell types while the
previous dataset has 6. In addition, the different resolution may also result in the
difference in experimental technologies.

Among the annotated cells, the cell type proportion is mostly consistent. By
investigating the cell type-specific marker genes reported in the Mouse ATAC Atlas
dataset, we observe good consistency between the cell type-specific peaks,
indicating a consistent cell type annotation.

Peak calling and visualization. Peak calling was conducted for each cell type
separately using MACS222. We aggregated all fragments obtained from the same
cell types to build a pseudo-bulk ATAC data and conducted peak calling with
parameters “–nomodel–keep-dup all–shift 100–ext 200–qval 1e−2 -B–SPMR–call-
summits”. By specifying “–SPMR”, MACS2 generated “fragment pileup per million
reads” pileup files, which were converted to bigwig format for visualization using
UCSC bedGraphToBigWig tool.

We also visualized public chromatin ChIP-seq data and RNA-seq data obtained
from ENCODE Encyclopedia with the following identifiers: ENCFF338WZP,
ENCFF872MVE, ENCFF455HPY, ENCFF049LRQ, ENCFF179NTO, ENCFF071PID,
ENCFF746MFH, ENCFF563LOO, ENCFF184AYF, ENCFF107NQP, ENCFF465THI,
ENCFF769XWI, and ENCFF591DAX. The Six2 ChIP-seq data were obtained from
the ref. 69 and the WGBS data were obtained from ref. 70.

Genomic elements stratification. Mouse mm10 genome annotation files were
download from UCSC Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables)
using GENCODE VM23. TSS upstream 5 kb regions were included as promoter
regions, but the results were similar when using 2 kb upstream regions as promoters.
We then studied the number of overlapped regions between open chromatin regions
identified from the snATAC-seq and bulk ATAC-seq dataset and genome anno-
tations. Since one open chromatin region could overlap with multiple genomic
elements, we defined an order of genomic elements as exon > 5′-UTR > 3′-UTR >
intron > promoter > distal elements. To be more specific, if one peak overlapped
with both exon and 5′-UTR, the algorithm would count it as an exon-region peak.

Identification of differentially accessible regions. Peaks identified in each cell type
were combined to build a union peak set. Overlapping peaks were then merged to

one peak using reduce function from the GenomicRanges package. This resulted in
300,755 peaks, which were used to build binarized cell-by-peak matrix. Differen-
tially accessible peaks (DAPs) for each cell type were identified by pairwise peak
comparison.

Because of the binary nature of the single cell peak matrix, Fisher’s exact test has
been widely used to compute differentially accessible peaks65,71–73. To define cell
type-specific peaks, we required the peaks to be stringently expressed in one
specific cell type. Specifically, for each peak we conducted a Fisher’s exact test
between a cell type and each of the other cell types. Peaks with corrected p values
(Benjamini–Hochberg approach) below significance level (0.05) in all pairwise tests
were defined as cell type-specific peaks. This approach was inspired by our previous
experience on scRNA-seq data differential expression analysis21, and similar to
another published snATAC-seq paper73. In total, we obtained 60,683 highly
specific DAPs, which were used for motif enrichment analysis.

Motif enrichment analysis. Motif enrichment analysis was conducted using DAPs
by HOMER34 with hypergeometric test for enrichment (one-sided). We used the
parameters background= “automatic” and scan.size= 300. We noticed that de
novo motif identification only generated few significant results, so we focused on
known motifs for our following study. We used the significance level of 0.05 for
Benjamini–Hochberg (BH) corrected p-value to determine the enriched results.
The motif enrichment results are provided in Supplementary Data 6.

Peak–peak correlation analysis. Peak–peak correlation analysis was conducted
using Cicero33. In order to find developmental stage-specific peak-peak correla-
tions, the analysis was conducted for P0 and adult separately. Cicero uses Graphic
Lasso with distance penalty to assess the co-accessibility between different peaks.
Cicero analysis was conducted using the run_cicero function with default para-
meters. A heuristic cutoff of 0.25 score of co-accessibility was used to determine the
connections between two peaks.

snATAC-seq trajectory analysis. snATAC-seq trajectory was conducted using
Cicero, which extended Monocle3 to the snATAC-seq analysis. We obtained the
preprocessed P0 snATAC-seq cell-peak matrix from snapATAC as input for Cicero
and conducted dimension reduction using latent semantic indexing (LSI) and
visualized using UMAP. Trajectory graph was built using the function learn_graph.
Batch effect was not observed between the two P0 batches, and the trajectory graph
was consistent with cell type assignment with clustering analysis (Fig. S17a, b).

In order to study how open chromatin changes are associated with the cell fate
decision, we first binned the cells into 15 groups based on their pseudotime and cell
type assignment. Next, we studied the DAPs between each group and its ancestral
group using the same methods described above. The number of newly open and
closed chromatins were reported using pie charts. The exact peak locations are
provided in the Supplementary Data 11.

Genes and gene ontology terms associated with snATAC-seq trajectory. Based on the
binned trajectory graphs and DAPs between each group and its ancestral group, we
next used GREAT tool v4.0.474 to study the enrichment of associated genes and
gene ontology (GO) terms along the trajectory. We used the newly open or closed
peaks as test regions and all the peaks from peak-calling output as the background
regions for the analysis. The output can be found in the Supplementary Data 13
and 14.

Predict cis-regulatory elements. We implemented two methods to study cis-reg-
ulatory elements in the snATAC-seq data. The first method was inspired by Zhu
et al.30, which was based on the observation that there was co-enrichment in the
genome between the snATAC-seq cell type-specific peaks and scRNA-seq cell type-
specific genes. This method links a gene with a peak if (1) they were both specific in
the same cell type, (2) they were in cis, meaning that the peak is in ±100 kb region
of the TSS of the corresponding gene, and (3) the peak did not directly overlap with
the TSS of the gene. This method successfully inferred several known distal ele-
ments such as for Six2 and Slc6a18 (Supplementary Fig. 13c).

Alternatively, we assessed the co-accessibility of two peaks. We implemented
Cicero33, which aggregates similar cells to obtain a set of “meta-cells” and address
the issue with sparsity in the snATAC-seq data. We used run_cicero function with
default parameters to predict cis-regulatory elements (CREs). Although it is
recommended to use 0.25 as a cutoff for co-accessibility score, we noticed that this
resulted in a great amount of CREs, which could contain many false positives.
Thus, we used a more stringent score of 0.4 for the cutoff and retained 232,380 and
206,701 CRE links in the P0 and adult data, respectively.

Bulk ATAC sequencing analysis. Bulk ATAC-seq raw fastq files were processed
using the end-to-end tool ENCODE ATAC-seq pipeline (Software and Algo-
rithms). This tool provided a standard workflow for ATAC-seq data quality con-
trol, adapter removal, alignment, and peak calling. To obtain high quality ATAC-
seq peaks, peak calling results from two biological replicates were compared and
only those peaks that were present in both replicates were kept, which were further
used to compare with snATAC-seq peaks.
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Correlation of bulk and single nuclei ATAC sequencing data. snATAC-seq
reads were aggregated to a pseudo-bulk data for the comparison purpose. To
prevent the effect of sex chromosome and mitochondria chromosome, reads from
chromosome X, Y and M were excluded from our analysis. We used multi-
BigwigSummary tool from deeptools75 to study the correlation between different
samples. Specifically, the whole genome was binned into equally sized (10 kb)
windows, and the reads in each bin were aggregated, generating a bin-read count
vector for each of the sample. The correlation of these vectors was computed as a
measure of pairwise similarity between samples.

To compare the number of peaks in these two datasets, we used as input the
narrowpeak files from the snATAC-seq and bulk ATAC-seq analysis. We filtered
out bulk ATAC-seq peaks with q value > 0.01 to be consistent with the snATAC-
seq setting. Since the snATAC peaks were called after merging different time
points, we also took the union set of bulk ATAC-seq peaks from different time
points. We then used findoverlap function in GenomicRanges package76 to identify
overlapping peaks.

Comparison between single nuclei ATAC sequencing data and single cell RNA

sequencing data. In order to compare the cluster assignment between snATAC-
seq data and scRNA-seq data, we obtained the average gene expression values and
peak accessibility in each cluster for P0 and adult samples separately. We next
transformed snATAC-seq data by summing up the reads within gene body and
2 kb upstream regions to build gene activity score matrix, as suggested in Seurat23.
Then, we normalized the data and computed the mean expression and mean gene
activity scores in each cell type, and calculated z-scores of each gene. Pearson’s
correlation coefficient was then calculated among top 3000 highly variable genes
between snATAC-seq data and scRNA-seq data. We found high concordance
between these two datasets in terms of cell type assignment (Fig. 1g and Supple-
mentary Fig. 3b).

Single cell RNA sequencing data analysis
Alignment and quality control. Raw fastq files were aligned to the mm10 (Ensembl
GRCm38.93) reference genome and quantified using CellRanger v3.1.0. Seurat R
package v3.0 was used for data quality control, preprocessing, and dimensional
reduction analysis. After gene-cell data matrix generation of both P0 and adult
datasets, matrices were merged and poor-quality cells with <200 or >3000
expressed genes and mitochondrial gene percentages >50 were excluded, leaving
25,138 P0 and 18,498 adult cells for further analytical processing, respectively
(Supplementary Fig. 4a, b).

Pre-processing, batch effect correction, and dimension reduction. Data were nor-
malized by RPM following log transformation and 3000 highly variable genes were
selected for scaling and principal component analysis (PCA). Harmony R package
v1.020 was used to correct batch effects. The top 20 dimensions of Harmony
embeddings were used for downstream uniform manifold approximation and
projection (UMAP) visualization and clustering (Supplementary Fig. 4c, d).

Cell clustering, identification of marker genes, and differentially expressed genes.
Louvain algorithm with resolution 0.4 was used to cluster cells, which resulted in
18 distinct cell clusters. A gene was considered to be differentially expressed if it
was detected in at least 25% of one group and with at least 0.25 log fold change
between two groups and the significant level of Benjamini–Hochberg (BH)
adjusted p value < 0.05 in Wilcoxon rank sum test was used. We used a list of
marker genes9,21 to manually annotate cell types. Two distal convoluted tubule
clusters were merged based on the marker gene expression, resulting in a total of
17 clusters (Supplementary Fig. 5a–c).

Ambient RNA quantification. As in droplet based scRNA-seq experiments, there is
always a certain amount of background mRNAs present that get distributed into
droplets and sequenced along with cells77. In order to quantify the net effect of
ambient RNA contamination, we used R package SoupX24. Function autoEstCount
was used to estimate the contamination fraction in P0 and adult batches separately.
We visualized the change in expression due to soup correction in UMAP space.
Function adjustCounts was used to correct the count expression matrices for
downstream processing. We then used the corrected matrices and reran the whole
Seurat pipeline with the same parameters. The average expression of genes per
cluster were used for Pearson correlation coefficient analysis to compare between
matrices with and without ambient RNA correction. As results with and without
ambient RNA were similar (Supplementary Figs. 6 and 7), results without ambient
RNA correction are shown throughout the manuscript.

Subclustering of stroma populations. To investigate the heterogeneity within the
stroma clusters, we conducted subclustering analysis on P0 (Supplementary Fig. 9)
and adult (Supplementary Fig. 10) stroma cells. Using recently reported marker
genes, we were able to recapitulate some cell types including mesangial cells,
fibroblasts, smooth muscle cells, and juxtaglomerular cells. We also found some
subpopulations with various signatures. Further experimental validation is needed
to determine whether these populations are due to artifacts in single cell data
(doublets or contaminated reads) or real populations.

scRNA-seq trajectory analysis
Monocle3
To construct single cell pseudotime trajectory and to identify genes whose expression

changed as the cells underwent transition, Monocle3 v0.1.378 was applied to P0 cells of

the following Seurat cell clusters: nephron progenitors (NP), proliferating cells, stroma-

like cells, podocytes, loop of Henle (LOH), early proximal tubule (PT), proximal con-

voluted tubule (PCT), and proximal straight tubule (PST) cells.

To show cell trajectories from both small (nephron progenitors) and large cell popula-

tions (proximal tubule), an equal number of 450 cells per cluster was randomly sub-

sampled. Cells were re-clustered by Monocle3 using a resolution of 0.0005 with kNN k=

29. Highly variable genes along pseudotime were identified using differentialGeneTest

function and cells were ordered along pseudotime trajectory. NP cluster was defined as

earliest principal node. In order to find genes differentially expressed along pseudotime,

trajectories for podocytes, loop of Henle, and proximal tubule clusters were analyzed

separately with the fit_models function of Monocle3. Genes with a q value < 0.05 in the

differentialGeneTest analysis were kept. In an alternate approach, graph_test function of

Monocle3 was used and trajectory-variable genes were collected into modules at a

resolution of 0.01.

RNA velocity
To calculate RNA velocity, Python-based Velocyto command-line tool as well as Velo-

cyto.R package were used as instructed37. We used Velocyto to calculate the single-cell

trajectory/directionality using spliced and unspliced reads. From loom files produced by

the command-line tool, we subset the exact same cells that were previously selected

randomly for Monocle trajectory analysis. This subset was loaded into R using the

SeuratWrappers v0.1.0 package. RNA velocity was estimated using gene-relative model

with kNN cell pooling (k= 25). The parameter n was set at 200, when visualizing RNA

velocity on the UMAP embedding.

Gene regulatory network inference. In order to identify TFs and characterize cell
states, we employed cis-regulatory analysis using the R package SCENIC v1.1.2.235,
which infers the gene regulatory network based on co-expression and DNA motif
analysis. The network activity is then analyzed in each cell to identify recurrent
cellular states. In short, TFs were identified using GENIE3 and compiled into
modules (regulons), which were subsequently subjected to cis-regulatory motif
analysis using RcisTarget with two gene-motif rankings: 10 kb around the TSS and
500 bp upstream. Regulon activity in every cell was then scored using AUCell.
Finally, binarized regulon activity was projected onto Monocle3-created UMAP
trajectories.

Ligand–receptor interactions. To assess cellular crosstalk between different cell
types, we used the CellPhoneDB repository to infer cell–cell communication net-
works from single cell transcriptome data47. We used the Python package Cell-
PhoneDB v2.1.2 with the database v2.0.0 to predict cell type-specific
ligand–receptor interactions as per the authors’ instructions. Only receptors and
ligands expressed in more than 5% of the cells in the specific cluster were con-
sidered. Thousand iterations of permutation test were conducted and p values were
corrected using FDR methods.

Human kidney tissue processing. Ten adult human kidney samples were
obtained from the non-tumor tissue of six partial or radical nephrectomy patients
from the Hospital of the University of Pennsylvania. Institutional Review Boards at
the University of Pennsylvania reviewed this study. This project utilized de-
identified kidney biospecimens collected via CHTN (Cooperative Human Tissue
Network), and therefore was considered “exempt” by the local IRB. The work was
completed in compliance with all relevant ethical regulations. Fresh tissues were
shipped to the lab in RPMI on ice the same day after nephrectomy. Nuclei pre-
paration, library construction, and sequencing methods were the same as for mouse
kidneys described above.

snATAC-seq data analysis of human kidneys

Data processing and quality control. Raw fastq files were aligned to the b37
(GRCh37) genome, quantified using Cell Ranger ATAC (v. 1.2.0). The quality
control and barcodes filtration steps were similar as mice samples described above.
Briefly, we only keep cells with promoter ratio between 20 and 60%, UMIs between
103 and 105, and mitochondria ratio below 10%. In total, we obtained 61,440 single
cells across ten adult human kidney samples after quality control.

Preprocessing, dimension reduction, batch effect correction, clustering, and cell type
annotation. Filtered barcode-by-cell matrices were processed with SnapATAC
pipeline similar to that in mouse samples described above. Specifically, we used
5 kb bin size to create cell-by-bin matrices, following dimension reduction, we
removed batch effect by Harmony. We used k= 15 for the k-nearest neighbor
algorithm and used the first 24 dimensions and resolution = 0.8 for clustering with
the Louvain algorithm.

Peak calling and visualization. We used MACS2 for peak calling of each cell type
with the same parameters as for mouse samples described above. To visualize the
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chromatin ChIP-seq data for H3K4me3, H3K4me1, and H3K27ac, we used public
data from GEO with the following identifiers: GSM1586397, GSM3716711, and
GSM371671479.

Immunofluorescence staining. Mouse kidneys were fixed with 4% paraformalde-
hyde overnight, rinsed in PBS, and dehydrated for paraffin embedding. Antigen
retrieval was performed using Tris-EDTA buffer pH 9.0 with a pressure cooker
(PickCell Laboratories, Agoura Hills, CA) and antibody staining performed as
described80. Antibodies used were as follows: guinea pig FOXL1 (1:1500)81, mouse E-
cadherin (1:250; BD Transducton 610182, Franklin Lakes, NJ), goat WT1 (clone F6)
(1:50; Santa Cruz sc-7385). Cy2-conjugated, Cy3-conjugated, and Cy5-conjugated
donkey secondary antibodies (1:2000) were purchased from Jackson ImmunoResearch
Laboratories, Inc, AlexaFluor 488-conjugated donkey secondary antibodies were from
LifeSciences (1:1000). Fluoresecence images were collected on a Keyence microscope.

Statistical information. The differential accessible analysis was conducted by
pairwise Fisher’s exact test. The differential expression analysis was conducted
using Wilcoxon rank sum test. The motif enrichment was based on hypergeometric
test. All statistical tests were multitest corrected using FDR method and a sig-
nificance level of 0.05 was used throughout the manuscript.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Raw data, processed data, and metadata from mouse samples have been deposited in

GEO with the accession codes GSE157079. The processed data and metadata can also be

viewed, analyzed, and downloaded at susztaklab.com/developing_adult_kidney/

snATAC/, susztaklab.com/developing_adult_kidney/scRNA/, and susztaklab.com/

developing_adult_kidney/igv/. The raw data, processed data, and metadata from human

samples are available at https://www.diabetesepigenome.org. In this study, we

downloaded public data from the following database with accession numbers: GUDMAP

(RID:Q-Y4CY); ENCODE (ENCFF338WZP, ENCFF872MVE, ENCFF455HPY,

ENCFF049LRQ, ENCFF179NTO, ENCFF071PID, ENCFF746MFH, ENCFF563LOO,

ENCFF184AYF, ENCFF107NQP, ENCFF465THI, ENCFF769XWI, ENCFF591DAX);

GEO (GSM1051156, GSM3716711, GSM3716714, GSM1586397). Further information

and requests for resources and reagents should be directed to and will be fulfilled by the

lead contact: Katalin Susztak. email: ksusztak@pennmedicine.upenn.edu.

Code availability
Codes are available at https://github.com/Zhen-Miao/dev-kidney-snATAC. (https://doi.

org/10.5281/zenodo.4421623)82.
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