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Abstract (160 words) 

Large-scale sequencing of RNAs from individual cells can reveal patterns of gene, isoform and 

allelic expression across cell types and states1. However, current single-cell RNA-sequencing 

(scRNA-seq) methods have limited ability to count RNAs at allele- and isoform resolution, and 

long-read sequencing techniques lack the depth required for large-scale applications across 

cells2,3. Here, we introduce Smart-seq3 that combines full-length transcriptome coverage with 

a 5' unique molecular identifier (UMI) RNA counting strategy that enabled in silico 

reconstruction of thousands of RNA molecules per cell. Importantly, a large portion of counted 

and reconstructed RNA molecules could be directly assigned to specific isoforms and allelic 

origin, and we identified significant transcript isoform regulation in mouse strains and human 

cell types. Moreover, Smart-seq3 showed a dramatic increase in sensitivity and typically 

detected thousands more genes per cell than Smart-seq2. Altogether, we developed a short-

read sequencing strategy for single-cell RNA counting at isoform and allele-resolution 

applicable to large-scale characterization of cell types and states across tissues and organisms. 
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Most scRNA-seq methods count RNAs by sequencing a UMI together with a short part of the 

RNA (from either the 5' or 3' end )4. These RNA end-counting strategies have been effective in 

estimating gene expression across large numbers of cells, while controlling for PCR 

amplification biases, yet RNA-end sequencing has seldom provided information on transcript 

isoform expression or transcribed genetic variation. Moreover, many massively parallel 

methods suffer from rather low sensitivity (i.e. capturing only a low fraction of RNAs present 

in cells)5. In contrast, Smart-seq2 has combined higher sensitivity and full-length coverage6, 

which e.g. enabled allele-resolved expression analyses7, however at a lower throughput, 

higher cost and without the incorporation of UMIs. Sequencing of full-length transcripts using 

long-read sequencing technologies could directly quantify allele and isoform level expression, 

yet their current depths hinder their broad application across cells, tissue and organisms2,3. 

To overcome these shortcomings, we sought to develop a sensitive short-read sequencing 

method that would extend the RNA counting paradigm to directly assign individual RNA 

molecules to isoforms and allelic origin in single cells. 
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Results 

We systematically evaluated reverse transcriptases and reaction conditions that could 

improve the sensitivity, i.e. the number of RNA molecules detected per cell, compared to 

Smart-seq26. Our efforts were focused on improving a Smart-seq2 like assay that retains full-

length transcript coverage, thus consisting of oligo-dT priming, reverse transcription followed 

by template switching, full cDNA amplification using PCR and finally Tn5-based tagmentation 

and library construction (Figure 1a).  After assessing hundreds of different reaction conditions 

in HEK293T cells, with the 96 most notable conditions sequenced (Figure S1 and Table S1), 

the highest sensitivity was obtained using Maxima H-minus reverse transcriptase (hereafter 

called Maxima), in line with recent work8. We noted that switching the salt during reverse 

transcription from KCl to NaCl or CsCl improved sensitivity in Maxima-based single-cell 

reactions compared to standard KCl conditions (Figure S2), likely due to reduced RNA 

secondary structures9. Moreover, performing reverse transcription in 5% PEG improved 

yields, as recently demonstrated8, and we added GTPs10 or dCTPs to stabilize or promote the 

template switching reaction (Figure S2). We tested a number of DNA polymerase enzymes, 

however KAPA HiFi Hot-Start polymerase remained most compatible with the reaction 

chemistry and yielded highest sensitivity. Importantly, we constructed a template-switching 

oligo (TSO) that harbored a primer site consisting of a partial Tn5 motif11 and a novel 11 bp 

tag sequence, followed by a 8bp UMI sequence and three riboguanosines, the latter hybridizes 

to the non-templated nucleotide overhang at the end of the single-stranded cDNA. After 

sequencing, the 11 bp tag can be used to unambiguously distinguish 5' UMI-containing reads 

from internal reads (Figure 1a). Therefore, we obtain strand-specific 5' UMI-containing reads 

and unstranded internal reads spanning the full-transcript without UMIs in the same 

sequencing reaction (Figure 1b). The proportions of 5' to internal reads could be tuned by 
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altering the Tn5-based tagmentation reaction (Figure 1c). We termed the final protocol Smart-

seq3, and it significantly improved the detection of polyA+ protein-coding (Figure 1d) and non-

coding RNAs (Figure S3) in HEK293FT cells. Compare to Smart-seq2, the cell-to-cell 

correlations in gene expression profiles improved significantly with Smart-seq3 (Figure 1e) 

and we uncovered remarkable complexity in the HEK293T cell transcriptomes with up to 

150,000 unique molecules detected (Figure 1f). Strikingly, comparison of  Smart-seq3 to 

single-molecule RNA-FISH revealed that Smart-seq3 detected up to 80% of the molecules 

detected by smRNA-FISH per cell12, and on average 69% of smRNA-FISH molecules across the 

four genes tested (Figure 1g,h). Altogether, this demonstrated that Smart-seq3 has 

significantly increased sensitivity compared to Smart-seq2 and is even approaching the 

sensitivity of smRNA-FISH. 

 

We next developed a strategy for the in silico reconstruction of RNA molecules. Importantly, 

the PCR preamplification of full-length cDNA in Smart-seq3 is followed by Tn5 tagmentation, 

so copies of the same cDNA molecule with the same UMI obtain variable 3' ends that map to 

different parts of the specific transcript (Figure 2a). Therefore, paired-end sequencing of these 

libraries results in 3' end sequences that span different parts of the initial cDNA molecule that 

we computationally can link to the specific molecule based on the 5’ UMI sequence, thus 

enabling parallel reconstruction of the RNA molecules (Figure 2a). To experimentally 

investigate the RNA molecule reconstructions, we created Smart-seq3 libraries from 369 

individual primary mouse fibroblasts (F1 offspring from CAST/EiJ and C57/Bl6J strains) that we 

subjected to paired-end sequencing. Aligned and UMI-error corrected read pairs13 were 

investigated and linked to molecules by their UMI and alignment start coordinates. An 

example of read pairs that were derived from a particular molecule transcribed from the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2019. ; https://doi.org/10.1101/817924doi: bioRxiv preprint 

https://doi.org/10.1101/817924
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

Cox7a2l locus in a single fibroblast is visualized in Figure S4. We then explored how often the 

reconstructed parts of the RNA molecules covered strain-specific single-nucleotide 

polymorphisms (SNPs). Strikingly, unambiguous identification of allelic origin by direct 

sequencing of SNPs in reads linked to the UMI was observed for 61% of all detected molecules 

(Figure 2b), with increasing assignment percentage with increasing SNP density within 

transcripts (Figure 2c). Previous single-cell studies estimated allelic expression as the product 

of the RNA quantification (in molecules or RPKMs) and fraction SNP-containing reads 

supporting each allele7,12,14, and we next investigated how those estimates compared to the 

direct allelic RNA counting made possible with Smart-seq3. Reassuringly, allelic expression 

estimates and direct allelic RNA counting showed good overall correlation when aggregated 

over cells (Figure 2d). Moreover, using a linear model to quantify the agreement of the two 

measures across genes within cells revealed a strong correlation (Spearman rho=0.82±0.08 

and slope=0.88±0.06) without any apparent bias (intercept=0.06±0.03) (Figure 2e). Thus, 

direct allelic RNA counting is feasible in single cells and validates previous efforts to estimate 

allelic expression from separated expression and allelic estimates in single cells7,12,14. 

 

We have previously shown that allele-resolved scRNA-seq can be used to infer bursting 

kinetics of gene expression that are characteristic of transcription12. Strikingly, Smart-seq3 

based analysis enabled kinetic inference for thousands more genes than using Smart-seq2 

alone with a 5' UMI  (11,766 using Smart-seq3; 8,464 using Smart-seq2-UMI) and with 

significantly improved correlation between the CAST and C57 alleles (0.94 and 0.75 for Smart-

seq3 and 0.79 and 0.68 for Smart-seq2-UMI, respectively for burst frequency and size) (Figure 

2f and Figure S5). We conclude that Smart-seq3 enables more sensitive reconstruction of 

transcriptional bursting kinetics across single cells. 
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We investigated the lengths of RNAs reconstructed to what extent they contained information 

on transcript isoform structures. In our experiment with 369 cells, we observed in total 22,196 

molecules reconstructed to a length of 1.5kb or longer, and around 200,000 molecules 

reconstructed to 1kb or longer (Figure 2g). Per cell, 8,710 molecules were reconstructed to a 

length of 500 bp or longer. Importantly, reconstructed molecules could often be assigned to 

specific transcript isoforms, here exemplified by Sashimi plots for two reconstructed 

molecules from the Cox7a2l gene (Figure 2h), which illustrate how reconstructed sequences 

overlaying exons and splice junctions could assign molecules to transcript isoforms. 

Intriguingly, 53% of all reconstructed molecules could be assigned to a single annotated 

Ensembl isoform, including 41% of all molecules detected from multi-isoform genes (Figure 

2i), thus enabling counting of RNAs at isoform resolution. 

 

Strain-specific transcript isoform regulation has previously been hard to study, since the 

simultaneously quantification of strain-specific SNPs and splicing outcomes on the same RNAs 

have not been possible with traditional single-cell or population-level RNA-sequencing. We 

assigned the in silico reconstructed molecules to both allelic origin and transcript isoform 

structures, which revealed statistically significant strain-specific (CAST or C57) expression of 

transcript isoforms for 2,172 genes (adjusted p-value < 0.05, chi-square test with Benjamini-

Hochberg correction; and p-value < 0.05, gene-specific permutation test) (Figure 2j and Table 

S2). For example, transcripts for Hcfc1r1 were processed into two isoforms 

(ENSMUST00000024697 and ENSMUST00000179928) that differed both in coding sequence 

(3 amino acid deletion from a 12-bp alternative 3' splice site usage) and in 5' untranslated 

region splicing. Strikingly, the two isoforms had a significant  mutually exclusive pattern of 
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expression between strains (adjusted p-value < 10-208, chi-square test with Benjamini-

Hochberg correction) (Figure 2k). Thus, Smart-seq3 can simultaneous quantify genotypes and 

splicing outcomes, here exemplified by strain-specific splicing patterns in mouse.  

 

Next, we sought out to benchmark Smart-seq3 on a more complex sample consisting of many 

different types of cells. To this end, we sequenced 5,376 individual cells from the HCA 

benchmarking sample4, a cryopreserved and complex cell sample comprised of human 

peripheral blood mononuclear cells (PBMC), primary mouse colon cells and cell line spike-ins 

of human HEK293T, mouse NIH3T3 and dog MDCK cells. Smart-seq3 cells clearly separated 

according to species (Figure S6) and cell types (Figure 3a), and 77% of cells passed quality 

filtering, significantly higher percentages than the 29% to 63% reported for available 

protocols4, showcasing the robustness of Smart-seq3 (Figure S7). 

 

Except for CD14+ monocytes, which may be more vulnerable to the year-long freezer storage 

prior to FACS cell sorting and Smart-seq3 profiling, gene detection sensitivity was significantly 

higher in all cell types compared to Smart-seq2 already at shallow sequencing depths (Figure 

3b). This improvement in the number of genes detected extended into traditionally difficult 

cell types with low mRNA content, such as T-cells and B-cells for which we typically observed 

one thousand more genes per cell. Interestingly, we detected two distinct clusters of B-cells 

(Figure 3a) that were not separated in single-cell data from existing methods4. Differential 

expression between the B-cell populations reported 279 genes with significant expression 

difference, which included several known marker genes for naïve and memory B cells (Figure 

3c). This demonstrated an improved ability of Smart-seq3 to separate biologically meaningful 

clusters of cells compared to existing methods.  
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Investigating the RNA molecule reconstruction performance across the human cell types, 

revealed that 36-41% of all detected molecules could be assigned to a specific isoform across 

cell types (Figure 3d). To investigate the isoform assignment in greater detail, we visualized 

the number of compatible isoforms for each reconstructed RNA molecule, binning genes by 

the number of annotated isoforms. Many additional molecules could be assigned to a small 

set of transcript isoforms (Figure 3d). We further reasoned that the internal reads in Smart-

seq3 could provide more information on isoform expression. To this end, we computed 

isoform expressions using Salmon15 on all reads from Smart-seq3 and filtered the direct RNA 

reconstruction based assignment of molecules to only those isoforms that had detectable 

expression (TPM>0) in Salmon (Methods). This strategy further increased the assignment of 

molecules to unique isoforms (42% of all molecules) (Figure 3e), and we used the Salmon-

filtered isoform expression levels for the remainder of the study. 

 

Next, we investigated the patterns of isoform expression across cell types. Strikingly, 2,186 

genes had statistically significant patterns of isoform expressions across cell-types (Adjusted 

p-values <0.05; Kruskal-Wallis test and Benjamini-Hochberg correction). (Table S3). One of the 

significant genes was PTPRC (also known as CD45) which can be post-transcriptionally 

processed into several different isoforms16, including a full-length isoform (called RABC) and 

one that has excluded three consecutive exons (called RO). We mainly observed these two 

isoforms across the human immune cell types, although at significantly varying levels (Figure 

3f). Aggregating the reads supporting these two isoforms in gamma-delta T-cells (Figure 3g) 

further shows how the reconstructed molecules separated the inclusion or skipping of the 

three consecutive exons. Other specific isoform patterns were shared by certain cell types, for 
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example both CD14+ and FCGR3A+ monocytes expressed specific isoforms of the TIMP1 gene 

(Figure 3h,i). Both monocyte populations specifically expressed a shorter isoform of the TIMP1 

gene, whereas the long, full-length isoform was dominant across other cell types (Figure 3h), 

again supported by the reconstructed molecules (Figure 3i). Altogether, these results highlight 

the new and unique capabilities of using Smart-seq3 to query isoform expression and 

regulation across cell types.  

 

Discussion 

Mammalian genes typically produce multiple transcript isoforms from each gene17, with 

frequent consequences on RNA and protein functions. Analysis of transcript isoform 

expression (in single cells or in cell populations) using short-read sequencing technologies  

have often focused on individual splicing events (e.g. skipped exon) or used the read coverage 

over shared and unique isoform regions to infer the most likely isoform expression18,19. This is 

due to paired short reads seldom having sufficient information to assess interactions between 

distal splicing outcomes or combined with allelic expression from transcribed genetic 

variation. Long-read sequencing technologies can used to directly sequence transcript 

isoforms in single cells2,3. However, these strategies have limited cellular throughput and 

depth. For example, the Mandalorion approach provided comprehensive isoform data for 

seven cells2, whereas scISOr-seq investigated isoform expression in thousands of cells at an 

average depth of 260 molecules per cell3. In contrast, we obtained on average 8,710 

reconstructed molecules per cell (above 500 bp). Moreover, in  scISOr-seq the pre-amplified 

cDNA was sequenced on both short- and long-read sequencers in parallel to characterize cell 

types and sub-types, and the isoform-level sequencing data was mainly aggregated over cells 

according to clusters3. The use of two parallel library construction methods and sequencing 
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technologies for the same pre-amplified cDNA from individual cells substantially increases 

cost and labor. 

 

We developed Smart-seq3 to be both highly sensitive, thus improving the ability to identify 

cell types and states, and isoform-specific, to simultaneously reconstruct millions of partial 

transcripts across cells. Smart-seq3 thus removes the additional costs and labor associated 

with the use of multiple library preparation technologies and sequencing platforms in parallel. 

Compared to known transcript isoform annotations, these partial transcript reconstructions 

were sufficient to assign 40-50% of detected molecules to a specific isoform, which further 

revealed strain- and cell-type specific isoform regulation. Excitingly, this reconstruction should 

improve the abilities to perform splicing quantitative trait loci mapping, since both splicing 

outcomes and transcribed SNPs can now be directly quantified. The full Smart-seq3 protocol 

has been deposited at protocols.io (dx.doi.org/10.17504/protocols.io.7dnhi5e) and can be 

readily implemented by molecular biology laboratories without the need for specialized 

equipment. 

 

Several large-scale projects aim to systematically construct cell atlases across human tissues 

and those of model organisms20. These efforts are increasingly relying on scRNA-seq methods 

that count RNAs towards annotated gene ends (e.g. 10X genomics) that provides little 

information on isoforms expression patterns across cell types and tissues. Moreover, large-

scale efforts are also emerging to use single-cell genomics for the systematic analysis of 

disease (e.g. the LifeTime project) to identify disease mechanisms and consequences. As post-

transcriptional gene regulation has been tightly linked to disease21, it would be a missed 

opportunity for such efforts and atlases to disregard isoform-level expression patterns. In 
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contrast to long-read sequencing efforts, Smart-seq3 simultaneously provides cost effective 

gene expression profiling across cell types and isoform-resolution RNA counting within the 

same assay. This is currently achieved at a cost per sequence ready cell library around 0.5-1 

EUR. Additionally, as the current implementation uses 384-well plates, it is also possible to 

first shallowly sequence all cells and then later select cells of rare cell populations (as cellular 

amplified cDNAs can be kept in individual wells for extended periods of time) for in-depth 

sequencing and transcript isoform reconstruction. Altogether, we introduced a scRNA-seq 

method that is applicable to characterize cell types and annotate cell atlases at the level of 

gene, isoform and allelic expression. 
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Figure legends 

Figure 1. Overview of single-cell RNA-sequencing in Smart-seq3. 

(a) Library strategy for Smart-seq3. PolyA+ RNA molecules are reverse transcribed and 

template switching is carried out at the 5' end. After PCR preamplification, tagmentation via 

Tn5 introduces near-random cuts in the cDNA, producing 5' UMI-tagged fragments and 

internal fragments spanning the whole gene body. (b) Gene body coverage averaged over 

HEK293FT (n = 96) cells sequenced with the Smart-seq3 protocol. Shown is the mean coverage 

of UMI reads (green) and internal reads (blue) shaded by the standard deviation. (c) Effect of 

tagmentation conditions on the fraction of UMI-containing reads (16 HEK293FT cells per 

condition). Left panel: varying Tn5 with constant 200 pg cDNA input. Right panel: varying cDNA 

input with constant 0.5ul Tn5. (d) Gene detection sensitivity for Smart-seq2 (44 cells) and 

Smart-seq3 (88 cells),  downsampled to 1 million raw reads per HEK293FT cell. Shown are 

number of genes detected over 0 or 1 RPKM. P-value was computed as a two-sided t-test. (e) 

Reproducibility in gene expression quantification across HEKF293FT cells for Smart-seq2 (44 
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cells) and Smart-seq3 (88 cells) at RPKM and UMI level. Shown are adjusted r^2 for all pairwise 

cell to cell linear model fits in libraries downsampled to 1 million reads per cell. (f) Sensitivity 

to detect RNA molecules in Smart-seq3 shown by summarizing the number of unique error-

corrected UMI sequences and genes detected per HEK293FT cell. Colors indicate the per cell 

downsampling depth ranging from 10.000 (n = 24 cells) to 750.000 (n = 16 cells)  UMI-

containing sequencing reads. (g) Violin plots summarizing the number of molecules detected 

per cell with Smart-seq2-UMI, Smart-seq3 and using smRNA-FISH for four X chromosomal 

genes (Hdac6, Igbp1, Mpp1 and Msl3). (h) Estimating the percent of smRNA-FISH molecules 

that were detected in cells using Smart-seq2-UMI and Smart-seq3. Shown are means and 95% 

confidence intervals.     

 

Figure 2. Single-cell RNA counting at allele and Isoform-resolution. 

(a) Strategy for obtaining allelic and isoform resolved information using Smart-seq3. Red 

crosses indicate transcript positions with genetic variation between alleles. After 

tagmentation, UMI fragments are subjected to paired-end sequencing (indicated in green), 

linking molecule-counting 5' ends with various gene-body fragments that can cover allele-

informative variant positions and spanning isoform-informative splice junctions, thus allowing 

in silico reconstruction of isoforms and allele of origin. (b) Average percentage of molecules 

that could be assigned to allele origin based on covered SNPs, from 369 individual CAST/EiJ x 

C57/Bl6J hybrid mouse fibroblasts. Only genes detected in >5 % of cells were considered (n = 

15,158 genes). (c) Effect of transcript length and number of exonic SNPs on allele assignment 

of RNA molecules. Shown are genes (n = 15,158) grouped into 50 2D-bins colored by the 

average gene-wise percentage of molecules assigned to allele of origin. Inset shows the 

number of genes per visualized bin. (d) Concordance of allele expression from RNA counting  
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and traditional estimates based on separated expression and allele-fractions from internal 

reads. Shown are the average CAST allele fractions for 15,158 genes over 369 mouse 

Fibroblasts. Dots are colored by the local density of data points. (e) Results from linear models 

that compared direct allelic RNA counting with previous read-based estimates of allelic 

expression, within each of 369 individual fibroblasts. For each cell (n = 369), we computed a 

linear model fit of CAST allele fraction between direct reconstructed molecule assignment and 

traditional read-based estimates. Shown are boxplots of the Intercept, slope and r^2 values 

obtained from each linear model per cell. (f) Demonstrating the improved abilities of Smart-

seq3 to infer transcriptional burst kinetics compared to Smart-seq2-UMI (the Smart-seq2 

chemistry combined with a UMI in the TSO). Inference was made in F1 CAST/EiJ x C57/Bl6J 

mouse fibroblasts and we show the spearman correlation between the CAST and C57 kinetics 

across genes for burst size and frequency. Additionally, the x-axis shows the number of genes 

for which we could reliably infer the bursting kinetics. (g) Summarizing the numbers of RNA 

molecules (x-axis, log10) reconstructed to different lengths (in base pairs, y-axis), showing only 

molecules additionally assigned to a unique transcript isoform. In total, the one million longest 

reconstructed RNA molecules are shown from one experiment with 369 mouse fibroblasts, 

with molecules shown in descending order. (h) Sashimi plots visualizing two reconstructed 

RNA transcripts that supported two distinct transcript isoforms of Cox7a2l 

(ENSMUST00000167741 in orange, and ENSMUST00000025095 in light blue), observed in a 

mouse fibroblasts (cell barcode: TTCCGTTCGCGACTAA). (i) Violin plots showing the 

percentage of detected molecules that could be assigned to a specific Ensembl transcript 

isoform, per F1 CAST/EiJ x C57/Bl6J mouse fibroblast. Reported are the results on all Ensembl 

genes, or the subset with two or more annotated isoforms (‘multi-isoform genes’). The median 

percentages of assigned molecules per cell were  52.37% and 41.04% for all and multi-isoform 
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genes, respectively. (j) Visualizing significant strain-specific isoform expression in mouse 

fibroblasts, colored by chromosomes. Y-axis shows Benjamini-Hochberg corrected p-values (-

log10) from individual Chi-square tests performed per gene evaluating association between 

allelic origin and isoforms. (k) Visualizing the significant strain-specific isoform expression of 

Hcfc1r1 in CAST/EiJ and C57/Bl6J mouse strains. Violin plots depict isoform expression in 

mouse fibroblasts, separated per strain and isoform. Top shows the transcript isoform 

structures. 

 

Figure3. Smart-seq3 analysis of a complex human sample. 

(a) Dimensionality reduction (UMAP) of 3,890 human cells sequenced with the Smart-seq3 

protocol and colored by annotated cell type. (b) Comparison of sensitivity to detect genes 

between Smart-seq2 and Smart-seq3 in various cell types. Cells were down-sampled to 100k 

raw reads per cell and t-test p-values are annotated for each pair-wise comparison. (c) 

Heatmap showing gene expression for selected marker genes that were expressed at 

statistically significantly different levels in naïve and memory B-cells. Color scale represents 

normalized and scaled expression values. (d) The percentage of reconstructed RNA molecules 

that could be assigned to a single Ensembl isoform,  separated by cell types. (e) Matrix showing 

the fraction of reconstructed molecules that could be assigned to either one or N number of 

isoforms, where molecules were first grouped by the number of annotated isoform available 

for its genes. (f) Matrix showing the fraction of reconstructed molecules that could be assigned 

to either one or N number of isoforms (as in e) after we filtered the assignments to only those 

isoforms with detectable expression (TPM>0) in Salmon (including internal reads without 

linked UMIs). (g) Barplots showing the fraction of molecules assigned to different PTPRC 

isoforms, separated by cell type and aggregating over all cells within cell types. (h) Sashimi 
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plots of reconstructed molecules assigned to either the R0 or RABC isoform of PTPRC in 

gamma-delta T-cells. (i) Barplots showing the fraction of molecules assigned to different 

TIMP1 isoforms, separating by cell type and aggregating over cells within cell types. (j) Sashimi 

plots of reconstructed molecules assigned to two TIMP1 isoforms in FCGR3A+ monocytes.  
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Supplementary Figures 

 

Supplementary Figure 1. Overview of sequenced conditions and iterations of Smart-seq3. 

Each row shows a tested reaction condition and the number of genes detected in individual 

HEK293FT cells at 1M raw fastq reads. The numbers of individual cells that contained at least 

one million sequenced reads per condition are listed on the right. Several earlier versions of 

Smart-seq2 with elements of Smart-seq3 chemistry are included as “Smart-seq2.5” in this 

figure. The exact reaction conditions per row are listed in Supplementary Table 1. 

 

Supplementary Figure 2. Effects of salts, PEG and additives on Smart-seq3 reverse 

transcription. (a) Testing the performance of Maxima H-minus reverse transcription reactions 

on different reaction conditions. For each condition, we summarized boxplots with the 

number of unique UMIs detected in individual HEK293FT cells at 1M raw fastq reads. We 

tested reverse transcription in the context of using a NaCl, CsCl or the standard KCl based 

buffer. Moreover, we evaluated the effects of adding of 5% PEG or 1mM dCTP (16 cells per 

condition). (b) Reaction conditions as in (a) summarized against the number of genes 

identified from 1 million raw UMI-reads per cell (16 cells per condition). (c) Reaction 

conditions as in (a) summarized against the number of genes identified from 1 million raw 

reads (sub-sampling from both 5' UMI and internal reads) per cell (16 cells per condition). 

 

Supplementary Figure 3: Improved detection of protein-coding and non-coding RNAs with 

Smart-seq3. (a) Variants of Smart-seq3 reactions show improved detection of protein coding 

genes and also genes of different biotypes, including poly-A+ lincRNAs, antisense RNAs, 

processed pseudogenes, processed transcripts and snoRNAs, compared to Smart-seq2 and 
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earlier experimentations of Smart-seq2 with UMIs (here called “intermediate”). (b) Shows 

genes detected of similar RNA biotypes by UMI containing reads in Smart-seq2 with UMIs 

(here called “intermediate”) and Smart-seq3 variants.  

 

Supplementary Figure 4: Visualization of read-pairs from a single transcribed molecule from 

Cox7a2 locus in primary fibroblast cell. Visualization of read pairs sequenced from one 

molecule from the Cox7a2l locus. Top show the exons and introns in the Cox7a2l locus, with 

genomic coordinates (mm10). Each row show a unique read pair, where oranges boxes show 

the mapping of sequences onto the genomic loci, dotted lines indicate that the sequences are 

connected by the read pairs and solid lines represent that the exon-intron junction was 

captured in the sequenced reads. Note, all read pairs combined span essentially the full 

transcript, meaning that for this molecule we could reconstruct the full transcript. 

 

Supplementary Figure 5: Detailed comparison of burst kinetics inference based on Smart-

seq2-UMI and Smart-seq3 data.  

(a) Scatter plots showing the burst frequencies inferred for the C57 (x-axis) and CAST (y-axis) 

alleles for genes in mouse fibroblasts. The left plot show the results based on Smart-seq3 data 

and the right panel show the results from using Smart-seq2-UMI data. (b) Scatter plots 

showing the burst sizes inferred for the C57 (x-axis) and CAST (y-axis) alleles for genes in 

mouse fibroblasts. The left plot show the results based on Smart-seq3 data and the right panel 

show the results from using Smart-seq2-UMI data. 

 

Supplementary figure 6: Species-mixing and doublets in Smart-seq3. 
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(a) Scatter plot showing the number of reads that aligned to human (x-axis) and mouse (y-

axis) for the complex HCA sample that contained both human, mouse and dog cells. (b) Scatter 

plot showing the number of reads that aligned to human (x-axis) and dog (y-axis) for the 

complex HCA sample that contained both human, mouse and dog cells. Few cells show any 

signal towards more than on genome, demonstrating a very low doublet rate.  

 

Supplementary figure 7: Mapping statistics of used Smart-seq2 and Smart-seq3 libraries.  

(a) Percentage of unmapped read pairs, and read pairs that aligned to exonic, intronic and 

intergenic regions. Separated per protocol (Smart-seq2 and Smart-seq3) and experiment 

(HEK293FT, Mouse Fibroblasts, HCA cells). (b) Mapping statistics for 5’UMI-containing read 

pairs in Smart-seq3. Percentage of unmapped read pairs, and read pairs that aligned to exonic, 

intronic and intergenic regions. Separated per experiment (HEK293FT, Mouse Fibroblasts, HCA 

cells). 
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Figure S2
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Supplementary Methods 

 
 

Cell cultures. HEK293FT cells (Invitrogen) were cultured in complete DMEM medium 

containing 4.5g/L glucose and 6mM L-glutamine (Gibco), supplemented with 10% Fetal Bovine 

Serum (Sigma-Aldrich), 0.1mM MEM Non-essential Amino Acids (Gibco), 1mM Sodium 

Pyruvate (Gibco) and 100 µg/mL Pencillin/Streptomycin (Gibco). Cells were dissociated using 

TrypLE express (Gibco) and stained with Propidium Iodide, to exclude dead cells, before 

distribution into 96 or 384 well plates containing 3µL lysis buffer using a BD FACSMelody 100 

µm nozzle (BD Bioscience). The Smart-seq3 lysis buffer consisted of 0.5 unit/µL Recombinant 

RNase Inhibitor (RRI) (Takara), 0.15% Triton X-100 (Sigma), 0.5mM dNTP/each (Thermo 

Scientific), 1µM Smart-seq3 oligo-dT primer (5’-Biotin-ACGAGCATCAGCAGCATACGA T30VN-3’ 

; IDT), 5% PEG (Sigma) and 0.05 µL of 1:40.000 diluted ERCC spike-in mix 1 (For HEK293FT 

cells). The plates were spun down immediately after sorting and stored at -80 degrees. 

 

Primary mouse fibroblasts were obtained from tail explants of CAST/EiJ X C57/Bl6J derived 

adult mice (with ethical approval from the Swedish Board of Agriculture, Jordbruksverket: 

N343/12). Cells were cultured and passaged twice in (DMEM  high  glucose  (Invitrogen),  10% 

ES  cell  FBS  (Gibco),  1% Penicillin/Streptomycin (Invitrogen), 1% Non-essential amino acids 

(Invitrogen),  1%  Sodium-Pyruvate  (Invitrogen),  0.1mM  b-Mercaptoethanol  (Sigma), before 

stained with Propidium Iodide, and sorted in to 384 well plates containing 3µL Smart-seq3 

lysis buffer. Again, plates were spun down and stored at -80 degrees immediately after sorting. 

 

The Human Cell Atlas (HCA) reference sample consisting of a mix of Human PBMCs, Mouse 

colon, as well as fluorescent labelled cell-lines HEK-293-RFP, NiH3T3-GFP and MDCK-Turbo650 
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were thawed according to specified instructions4. Cells were stained with Live/Dead fixable 

Green Dead cell stain kit (Invitrogen), facilitating the exclusion of dead cells as well as NIH3T3-

GFP cells. Additionally, both debris and doublets were excluded in the gating. Cells were index 

sorted into 384 well plates, containing 3µL Smart-seq3 lysis buffer, using a BD FACSMelody 

sorter with 100µm nozzle (BD Bioscience). 

 

Generation of Smart-seq2 libraries. Smart-seq2 cDNA libraries were generated according the 

published protocol22. For Smart-seq2-UMI, cDNA libraries were generated as previously 

published12. Recipes for other “intermediate” Smart-seq2 reactions can be found in Table S1. 

Tagmentation was performed with similar cDNA input and volumes as for Smart-seq3 

described below. 

 

Generation of Smart-seq3 libraries. To facilitate cell lysis and denaturation of the RNA, plates 

were incubated at 72 degrees for 10 min, and immediately placed on ice afterwards. Next, 1µL 

of reverse transcription mix, containing 25 mM Tris-HCL pH 8.3 (Sigma), 30 mM NaCl 

(Ambion), 1 mM GTP (Thermo Scientific), 2.5 mM MgCl2 (Ambion), 8 mM DTT (Thermo 

Scientific), 0.5 u/µL RRI (Takara), 2 µM of different Smart-seq3 Template switching oligo (TSO) 

(see additional table for list of evaluated TSOs; 5’-Biotin-

AGAGACAGATTGCGCAATGNNNNNNNNrGrGrG-3’; IDT) and 2 u/µL Maxima H-minus reverse 

transcriptase enzyme (Thermo Scientific), were added to each sample. Reverse transcription 

and template switching were carried out at 42 degrees for 90min followed by 10 cycles of 50 

degrees for 2min and 42 degrees for 2 min. The reaction was terminated by incubating at 85 

degrees for 5 min. PCR preamplification was performed directly after reverse transcription by 

adding 6 µL of PCR mix, bringing reaction concentrations to 1x KAPA HiFi PCR buffer (contains 
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2mM MgCl2 at 1X) (Roche), 0.02u/µl DNA polymerase (Roche), 0.3mM dNTPs, 0.1µM 

Smartseq3 Forward PCR primer (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTGCGCAATG-3’ ; IDT), 0.1µM Smartseq3 

Reverse PCR primer (5’-ACGAGCATCAGCAGCATACGA-3’ ; IDT). PCR was cycled as follows: 

3min at 98 degrees for initial denaturation, 20-24 cycles of 20 secs at 98 degrees, 30 sec at 65 

degrees, 6 min at 72 degrees. Final elongation was performed for 5 min at 72 degrees. For 

various iterations and optimization conditions, see Supplementary table 1 for information 

about specific conditional changes to library preparation. 

 

Sequence library preparation. Following PCR preamplification, all samples, regardless of 

protocol used, were purified with either AMpure XP beads (Beckman Coulter) or home-made 

22% PEG beads (see step 27 in protocol doi:10.17504/protocols.io.p9kdr4w at protocols.io). 

Library size distributions were checked on a High sensitivity DNA chip (Agilent Bioanalyzer) 

and all cDNA concentrations were quantified using the Quant-iT PicoGreen dsDNA Assay Kit 

(Thermo Scientific). cDNA was subsequently diluted to 100-200pg/uL. Tagmentation was 

carried out in 2 uL, consisting of 1x tagmentation buffer (10mM Tris pH 7.5, 5mM MgCl2, 5% 

DMF), 0.08-0.1 uL ATM (Illumina XT DNA sample preparation kit) or TDE1 (Illumina DNA 

sample preparation kit), 1 uL cDNA and H2O. Plates were incubated at 55 degrees for 10min, 

followed by addition of 0.5 uL 0.2% SDS to release Tn5 from the DNA. Library amplification of 

the tagmented samples was performed using either 1.5 uL Nextera XT index primers (Illumina) 

or 1.5 uL custom designed Nextera index primers containing either 8 or 10 bp indexes (0.1 uM 

each), differing with a minimal levenshtein distance of 2 between any two indices. 3 uL PCR 

mix (1x Phusion Buffer (Thermo Scientific), 0.01 U/uL Phusion DNA polymerase (Thermo 

Scientific), 0.2 mM dNTP/each) was added to each well, and incubated at 3 min 72 degrees; 
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30 sec 95 degrees; 12 cycles of (10 sec 95 degrees; 30 sec 55 degrees; 30 sec 72 degrees); 5 

min 72 degrees; in a thermal cycler. For the experiments optimizing the UMI fragment 

conditions, following changes to the tagmentation procedure (cDNA input, amount of ATM, 

and time at 55 degrees) are shown in Figure 1c. After tagmentation samples were pooled, and 

the pool purified with Ampure XP beads or 22% home-made PEG beads at 1:0.6 ratio. Libraries 

were sequenced at 75 bp single-end, or 150 bp paired-end on a high output flow cell using the 

Illumina NextSeq500 instrument, or on a NovaSeq S4 flow cell 150 bp paired-end.  

 

Gel cutting pilot. We additionally experimented with selecting for certain lengths of libraries 

prior to sequencing of the mouse fibroblast cells. We used 20uL of purified sequence ready 

library and loaded it onto a 2% Agarose E-Gel EX and ran the gel for 12min. We manually cut 

the gel in the regions corresponding to 550-2000bp and re-purified the library using Qiagen 

QiaQuick gel extraction kit following the manufacturers protocol. We observed a modest 

improvement, however selecting for longer fragments could likely improve reconstruction 

lengths.  

 

Read alignments and gene-expression estimation. Raw non-demultiplexed fastq files were 

processed using zUMIs (version 2.4.1 or newer) with STAR (v2.5.4b), to generate expression 

profiles for both the 5’ ends containing UMIs as well as combined full length and UMI data. To 

extract and identify the UMI-containing reads in zUMIs, find_pattern: ATTGCGCAATG was 

specified for file1 as well as base_definition: cDNA(23-75; Single-end), (23-150bp, paired-end) 

and UMI(12-19) in the YAML file. UMIs were collapsed using a Hamming distance of 1. Human 

cells were mapped to hg38 genome and mouse fibroblast cells were mapped against mm10 

genome with CAST SNPs masked with N to avoid mapping bias, both supplemented with 
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additional STAR parameters “--limitSjdbInsertNsj 2000000 --outFilterIntronMotifs --

RemoveNoncanonicalUnannotated --clip3pAdapterSeq CTGTCTCTTATACACATCT”. 

Experiments containing HEK293FT cells were quantified with gene annotations from Ensembl 

GRCh38.91. Mouse primary fibroblast data was quantified with gene annotations from 

Ensembl GRCm38.91.  

 

Allele-calling of F1 mouse molecules. CAST/EiJ strain specific SNPs were obtained from the 

mouse genome project23 dbSNP 142 and filtered for variants clearly observed in existing 

CAST/EiJ x C57/Bl6J F1 data, yielding 1,882,860 high-quality SNP positions. Uniquely mapped 

read pairs were extracted and CIGAR values parsed using the GenomicAlignments package24. 

Reads with coverage over known high-quality SNPs were retained and grouped by UMI 

sequence. Molecules with >33% of bases at SNP positions showing neither the CAST nor the 

C57 allele were discarded and we required >66% of observed SNP bases within molecules to 

show one of the two alleles to make an assignment. 

 

Inference of transcriptional burst kinetics. Allele-resolved UMI counts were used to generate 

maximum likelihood inference of bursting kinetics from scRNA-seq data as described 

previously12. Inference scripts are available at https://github.com/sandberg-lab/txburst. To 

ensure a fair comparison with the data generated in this study, we reprocessed the Smart-

seq2 data deposited at the European Nucleotide Archive accession E-MTAB-7098 using zUMIs 

and the same SNP set as described above. 

 

Primary data processing for mixed-species benchmarking sample. The complete dataset was 

mapped against a combined reference genome for human (hg38), mouse (mm10) and dog 
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(CanFam3.1). Cells mapping clearly (> 75% of reads) to the mouse or dog were removed. 

Remaining cells representing HEK293, PBMCs and potential low quality libraries were 

processed using zUMIs (version 2.5.5) and mapped against the human genome only. 

 

Analysis of human HCA benchmark samples. First, cells were filtered for low quality libraries 

requiring >10,000 raw reads, >75% of reads mapped to the genome and >25% exonic 

fractions. Further analysis was done within v3.1 of Seurat25 retaining cell with > 500 genes 

detected (intron+exon quantification). Data was normalized (“LogNormalize”) and scaled to 

10,000 as well as regressing out the total number of counts per cell. The top 2,000 variable 

genes were found using the “vst” method and used for PCA dimensionality reduction. The first 

20 principal components were used for both SNN neighborhood construction as well as UMAP 

dimensionality reduction. Lastly, louvain clustering was applied (resolution = 0.7) to find cell 

groupings. Major cell types were readily identifiable by common marker genes: CD4+ T-cells 

(CD4, IL7R, CD3D, CD3E, CD3G), CD8+ T-cells (CD8A, CD8B), CD14+ Monocytes (CD4, CD14, 

S100A12), FCGR3A+ Monocytes (FCGR3A), B-cells (MS4A1, CD19, CD79A), NK-cells (NKG7, LYZ, 

NCAM1) and HEK cells (high number of genes detected). Naïve T-cells were separated from 

activated by CCR7, SELL, CD27, IL7R and lack of FAS, TIGIT, CD69. γδ T-cells were separated 

from other T-cells by TRGC1, TRGC2, TRDC and lack of TRAC, TRBC1, TRBC2. 

 

Isoform reconstruction of UMI-linking fragments from Smart-seq3. The genomic alignments 

of 5’ UMI containing reads and their paired reads from same fragments were generated by 

zUMI (version 2.4.1 or newer) with UMI and cell barcode error correction. Unique and multi-

mapped reads from same molecules mapping to exonic regions were used for isoform 

reconstruction. The genomic positions of exons from each isoform were based on reference 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2019. ; https://doi.org/10.1101/817924doi: bioRxiv preprint 

https://doi.org/10.1101/817924
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 28 

gene annotation from Ensembl GRCm38.91 for mouse fibroblast data and Ensembl GRCh38.95 

for human HCA data. Reads mapping to same molecule were compared to annotated 

transcripts structures, and represented as a Boolean string indicating which exon were found 

in read pairs and junctions (“1”) and junctions supporting the exclusion of exons (“0”).  For 

exons not covered with reads, “N” was used to signify lacking. The Boolean string from the 

reconstructed molecule were matched to the string corresponding to each reference isoforms 

of same gene to return compatible isoform(s) for each molecule. Molecule isoform 

assignments were further corrected based on reads aligning to alternative 5’ and 3’ splice sites 

of overlapping exons from different isoforms. 

 

Isoform assignments by integrating non-UMI reads. Transcriptome bam files generated using 

zUMI were demultiplexed per cell and isoform abundances quantified using Salmon15 

(v0.14.0) quant command and using he following settings “--fldMean 700 --fldSD 100 --fldMax 

2000 --minAssignedFrags 1 --dumpEqWeights”. We corrected the Salmon output for cases 

where all reads were assigned to one out of many possible isoforms belonging to the same 

equivalent classes. For each cell, isoforms with TPM > 0 from salmon were considered 

expressed, and used to filter compatible isoforms of the reconstructed molecules.  

If more than one isoform was compatible with a reconstructed molecule (after Salmon 

filtering), each compatible isoform obtained a partial molecule count (1/N compatible 

isoforms). 

 

Strain-specific isoform expression in mouse fibroblasts. To investigate mouse strain-specific 

isoform expression, we used all molecules with both an allele assigned and only a unique 

isoform assigned. We only considered genes for which we detected two or more isoforms and 
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expression from both alleles. For each gene, we constructed a contingency table based on the 

counts of molecules assigned to each allele and isoform. Significance was tested was by using 

Chi-square test and the resulting p-values were corrected for the multiple testings using the 

Benjamini-Hochberg procedure. We further scrutinized the significant strain-isoform 

interactions (with an adjusted p-value < 0.05). For each significant gene, we performed 

thousand independent randomizations of allele and isoform labels of all molecules, and we 

computed the Chi-square test on each permutation, and we further required that the real p-

value obtained were below 5% lowest p-values from the randomizations. 
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