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Single-cell RNA landscape of intratumoral
heterogeneity and immunosuppressive
microenvironment in advanced osteosarcoma
Yan Zhou1,11, Dong Yang2,11, Qingcheng Yang2,11, Xiaobin Lv 3,11, Wentao Huang4,11, Zhenhua Zhou5,

Yaling Wang 1, Zhichang Zhang2, Ting Yuan2, Xiaomin Ding1, Lina Tang 1, Jianjun Zhang1, Junyi Yin1,

Yujing Huang1, Wenxi Yu1, Yonggang Wang1, Chenliang Zhou1, Yang Su1, Aina He1, Yuanjue Sun1, Zan Shen1,

Binzhi Qian 6, Wei Meng7,8, Jia Fei9, Yang Yao1✉, Xinghua Pan 7,8✉, Peizhan Chen 10✉ & Haiyan Hu1✉

Osteosarcoma is the most frequent primary bone tumor with poor prognosis. Through RNA-

sequencing of 100,987 individual cells from 7 primary, 2 recurrent, and 2 lung metastatic

osteosarcoma lesions, 11 major cell clusters are identified based on unbiased clustering of

gene expression profiles and canonical markers. The transcriptomic properties, regulators

and dynamics of osteosarcoma malignant cells together with their tumor microenvironment

particularly stromal and immune cells are characterized. The transdifferentiation of malignant

osteoblastic cells from malignant chondroblastic cells is revealed by analyses of inferred

copy-number variation and trajectory. A proinflammatory FABP4+ macrophages infiltration is

noticed in lung metastatic osteosarcoma lesions. Lower osteoclasts infiltration is observed in

chondroblastic, recurrent and lung metastatic osteosarcoma lesions compared to primary

osteoblastic osteosarcoma lesions. Importantly, TIGIT blockade enhances the cytotoxicity

effects of the primary CD3+ T cells with high proportion of TIGIT+ cells against osteo-

sarcoma. These results present a single-cell atlas, explore intratumor heterogeneity, and

provide potential therapeutic targets for osteosarcoma.
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O
steosarcoma (OS) is a highly aggressive malignant bone
tumor frequently occurring in children and adolescents
with an annual incidence of ~4.8 per million world-

wide1,2. According to WHO classification of tumors of soft tissue
and bone, a minimal quantity identification of neoplastic bone is
sufficient to render a diagnosis of OS3. OS is thought to arise from
the primitive mesenchymal-derived bone-forming cells, and it
usually occurred in the bone that is growing quickly such as the
bones near the ends of the leg or arm in children and young
adults4. The standard treatment for OS consists of extensive
surgical resection and chemotherapy, whereas radiation therapy is
recommended for the unresectable tumor5. Although certain
target-based agents such as vascular endothelial growth factor
receptor-tyrosine kinase inhibitors (VEGFR-TKIs) have shown
promising outcomes, the 5-year overall survival rate is only 66.2%6.
The relapse and/or metastasis rate of OS remains higher than 30%.
For those relapse and/or metastasis patients, the 5-year overall
survival rate was <25%, due to resistance to chemotherapy or
radiation treatments7. The intrinsic genetic heterogeneity and
dynamic immunogenic features significantly affect the therapeutic
outcomes8–11. For instance, immune checkpoint inhibitors led to a
breakthrough in immunotherapy for a variety of solid tumor;
however, the anti-PD-L1 treatment only has a limited therapeutic
effect on OS12–14. Therefore, there is an urgent need to understand
the molecular mechanisms underlying the OS development and
progression, and to identify more efficient targets for therapeutic
treatment.

The traditional transcriptomic investigation is based on mix-
ture cellular populations, which lacks sufficient resolution in the
identification of specific cellular types and is unable to determine
the complexity of intratumoral heterogeneity in OS. Recently,
single-cell RNA-sequencing (scRNA-seq) has shown promising
values in exploring the intra-tumor heterogeneity of a variety of
cancers15,16, and the cellular cross-talk with the tumor micro-
environment (TME)17,18. In this study, we present a compre-
hensive analysis of the transcriptomic profiling of 100,987
qualified single cells from 8 primary osteoblastic and three pri-
mary chondroblastic OS lesions. Eleven major cell clusters are
identified and the cellular properties of malignant cells and the
major TME cells are characterized. We detect the intratumor
heterogeneity properties of OS lesions and the transdifferentiation
of malignant osteoblastic cells from malignant chondroblastic
cells in chondroblastic OS lesions. Through TME single-cell
deconvolution, we find the diversity of the myeloid cells, tumor-
infiltrating lymphocytes (TILs), mesenchymal stem cells (MSCs)
and fibroblasts. With trajectory analysis of osteoclast (OC)
maturation, we reveal that the antigen presentation function
becomes faded and the bone absorption activities increase.
Importantly, the CD8+ T, CD4+ T, regulatory T (T-reg), and
NKT cells in OS lesions highly express immunoreceptor inhibi-
tory checkpoint marker TIGIT (T cell Immunoreceptor with Ig
and ITIM domains), and blocking TIGIT in vitro significantly
enhance the cytotoxicity effects of CD3+ T cells against OS cells.
The current study provides a deeper insight into the cellular and
molecular characteristics of OS and its TME properties, which
may helpful for therapeutic methods development in future.

Results
Cellular constitution of OS tumor lesions. We performed
scRNA-seq analysis on tumor samples from 11 OS patients (five
male and six female, 11–38-years old) to explore their cellular
composition (Fig. 1a). Among them, eight lesions were osteoblastic
OS, including six primary, one recurrent, and one lung metastatic
lesions; three were chondroblastic OS with each was derived from
primary, recurrent and lung metastasis site (Supplementary

Table 1). After initial quality control assessment and doublet
removal, we obtained single-cell transcriptomes from a total of
100,987 cells, including 65,895 cells from primary OS lesions,
17,735 cells from lung metastatic OS lesions, and 17,357 cells from
recurrent OS lesions. The number of detected UMIs (unique
molecular indexes) ranged from 1459 to 18,333 per cell with the
mean of detected genes ranging from 704 to 4543 (Supplementary
Fig. 1a, b).

Unbiased clustering of the cells identified 11 main clusters in
parallel, based on t-distributed stochastic neighbor embedding (t-
SNE) and uniform manifold approximation and projection
(UMAP) analyses according to their gene profiles and canonical
markers (Fig. 1b; Supplementary Table 2). In particular, they were
as follows: (1) the osteoblastic OS cells highly expressing COL1A1,
CDH11,and RUNX2; (2) the proliferating osteoblastic OS cells
highly expressing osteoblastic cell markers and cell proliferating
markers TOP2, PCNA, andMKI67; (3) the chondroblastic OS cells
characterized with high ACAN, COL2A1, and SOX9 expression;
(4) the osteoclastic cells specifically express the markers CTSK and
MMP9; (5) the TILs including T and NK cells with high
expression of IL7R, CD3D, and NKG7; (6) the myeloid cells
specifically expressing CD74, CD14, and FCGR3A; (7) the
fibroblasts expressing COL1A1, LUM, and DCN; (8) the pericytes
highly expressing α-smooth muscle actin (α-SMA, also known as
ACTA2) and RGS5; (9) the MSCs expressing CXCL12, SFRP2, and
MME (CD10); (10) the myoblasts specifically expressing MYLPF
and MYL1; and (11) the endothelial cells specifically expressing
PECAM1 and VWF. The expression profiles of the representative
genes in the cell populations were demonstrated (Fig. 1c,
Supplementary Fig. 2). The top 20 differentially expressed genes
(DEGs) for the subclusters of seven major clusters out of the 11
were also given (Supplementary Data 1–7), with more details
extended in the following sections.

The dot plots compare the proportion of cells expressing cluster-
specific markers and their scaled relative expression levels (Fig. 1d).
We noticed that almost all types of cell populations were present in
each individual lesion (Supplementary Figs. 3, 4) except for the
myoblast, which were predominantly identified in the lung
metastasis lesion BC17 (Fig. 1e, Supplementary Figs. 3, 4). The
proportion of the cellular clusters varied significantly among the
lesions (Fig. 1e, Supplementary Fig. 5a), suggesting the intertumoral
heterogeneity as well as the consistency among the lesions.
Regarding myoblast, of which the cell number was relatively small
and the present rate is low, with 108 cells were annotated as the
myoblast in BC17 (3.24%), two in BC5 and two in BC22, and not
detected in other OS samples (Fig. 1e, Supplementary Figs. 3, 4).
We suggested that the rarely detected myoblasts may due to
heterogeneity of the OS tissues, under-sampling, but less likely
contamination in sampling. The correlations of average gene
expression profiles among the cellular clusters were also provided
(Supplementary Fig. 5b).

Transcriptional heterogeneity of malignant OS cells. Osteoblastic
and chondroblastic OS are the two major types of conventional OS
in a clinic. Through the t-SNE analysis of malignant OS cells, we
identified seven subclusters in total, of which six were of osteo-
blastic lineage and 1 belonged to the chondroblastic lineage
(Fig. 2a). The distribution of each cluster of single cells from three
different types of lesions, i.e., primary, recurrence, and metastasis,
was shown (Supplementary Fig. 6a). The gene expressing patterns
in different clusters of the malignant osteoblastic and chondro-
blastic OS cells were presented (Fig. 2b). The chondroblastic
lineage subclusters were characterized by relatively high expression
of SOX9, COL2A1, and ACAN (Fig. 2b). The osteoblastic lineage
displayed high levels of osteoblastic maturation markers including
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Fig. 1 Single-cell transcriptomic analysis of OS lesions. a Graphical view of the study roadmap. Single-cell suspensions were collected from OS lesions of

11 patients followed by scRNA-seq on 10× Genomics platform, respectively. A total of 100,987 qualified single cells were recovered. The peripheral blood

CD3+ T cells were isolated for cytotoxicity analysis for TIGIT blocking experiments. b The t-distributed stochastic neighbor embedding (t-SNE) plot of the

11 identified main cell types in OS lesions. c Violin plots showing the normalized expression levels of eight representative canonical marker genes across

the 11 clusters. d Dot plots showing the 21 signature gene expressions across the 11 cellular clusters. The size of dots represents the proportion of cells

expressing the particular marker, and the spectrum of color indicates the mean expression levels of the markers (log1p transformed). e Relative

proportion of each cell cluster across 11 OS lesions as indicated. The values of the detailed relative proportion of each cell cluster are provided in the

Source Data file.
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COL1A1, COL3A1, and RUNX2 (Fig. 2b). The numbers and pro-
portions of the malignant OS cells varied among the patients
(Supplementary Fig. 6b, c). Interestingly, BC20 and BC22, the
primary and recurrent chondroblastic OS samples, respectively,
had both the chondroblastic and osteoblastic lineage malignant
cells. Another OS sample, the lung metastatic lesion BC17, with the

corresponding in situ primary chondroblastic OS, contained pre-
dominantly the osteoblastic OS cells rather than chondroblastic OS
cells (59 chondroblastic OS cells and 1,103 osteoblastic OS cells),
which might attribute to the fact that chondroblastic OS cells were
less aggressive and thus, identified less in the metastatic lesions.
Hematoxylin-eosin (H&E) staining of the primary chondroblastic
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OS and the lung metastatic lesion (BC17) was performed, which
confirmed the scRNA-seq results of BC17 (Supplementary Fig. 6d).

Among the six subclusters of malignant osteoblastic cells,
Osteoblastic_1 and Osteoblastic_2, corresponding to the original
cluster of proliferating osteoblastic cells, showed high proliferation
rate, co-expressing osteoblastic cell markers (including COL1A1,
RUNX2, and COL3A1, etc.) and cell proliferation markers (such as
TOP2A, PCNA, andMKI67, etc.). As demonstrated in the list of the
top DEGs (Fig. 2c; Supplementary Data 1), specifically Osteoblas-
tic_1 expressed high levels of mitotic S phase genes including
PCNA, TYMS, and RRM2, while Osteoblastic_2 expressed high
levels of G2/M phase genes such as UBE2C and HMGB2. The other
four subclusters were the typical malignant osteoblastic cells. Based
on competitive gene set enrichment analysis (GSEA) analysis
(Fig. 2d), Osteoblastic_3 showed heightened activities of angiogen-
esis, IFN-α and IFN-γ signaling pathways; Osteoblastic_4 enriched
with MYC and oxidative phosphorylation signaling pathways;
Osteoblastic_5 enriched with TGF-β, P53, KRAS, and hypoxia
signaling pathways; and Osteoblastic_6 enriched with myogenesis,
inflammatory responses, and allograft rejection signaling pathways.

We managed to find the specific gene expression pattern for
lung metastasis or recurrent osteoblastic OS cells compared with
the primary osteoblastic OS cells (Fig. 2e). The analysis revealed
that the top over-expressed genes in the lung metastatic lesions
included S100A11, S100A10, PRDX2, and PSMD4, which were
reported to be promoting the metastasis and/or tumorigenesis in
multiple types of cancer19–22. The functional gene ontologies
(GOs) enriched in lung metastatic OS were oxidative phosphor-
ylation pathway, MYC gene targets, reactive oxygen species
pathway, mTORC1 and hypoxia signaling pathways (Supple-
mentary Fig. 6e). In the recurrent OS lesions, the genes MT1X,
GADD45B, HAPLN1, and CYR61 were significantly enriched
(Fig. 2e). Accordingly, hypoxia, TNF-α, TGF-β, IL2-STAT5, and
the mTORC1 pathways were enriched in recurrent tumor cells
(Supplementary Fig. 6f), suggesting that these pathways may be
critical for the OS chemotherapeutic resistance and tumor
recurrence.

Further t-SNE clustering of the malignant chondroblastic cells
identified four subclusters with distinct gene expression patterns
(Fig. 2f and Supplementary Data 2). The numbers and proportions
malignant chondroblastic OS cells among the patients and tissue
sites were demonstrated (Supplementary Fig. 6g, h, i). In particular,
the proliferating malignant chondroblastic cells (Chondro_Proli)
expressed TOP2A, PCNA, TYMS and MKI67. In addition, the two
subclusters of hypertrophic chondroblastic cells exhibited relatively
high expression of MEF2C, PTH1R, and IHH (Chondro_hyper_1
and Chondro_hyper_2). The last subcluster, Chondro_trans cells
were under trans-differentiation into osteoblastic cells with high
RUNX2, SPP1, and COL1A1 levels, and relatively low levels of
COL2A1 and SOX9, suggesting that the malignant osteoblastic cells
were possibly derived from the chondroblastic cells (Supplementary
Fig. 7; Supplementary Data 2). The GSEA analysis for chondro-
blastic cells (Fig. 2g), revealed relatively high gene expression

associated with IL-2/STAT5, Hedgehog, and Notch pathway in
the subcluster Chondro_hyper_1, while the subcluster Chondro_
hyper_2 exhibited higher inflammation responses and IL-6/JAK/
STAT3 pathways (Fig. 2g). The top 10 DEGs of malignant
chondroblastic and the osteoblastic cells were identified (Fig. 2h).
The GO enrichment analysis suggested that the chondroblastic cells
were enriched with genes related to chondrocyte differentiation,
collagen fibril organization, and cartilage development etc.
compared to the osteoblastic cells (Supplementary Fig. 6j).

Clonality analysis of malignant OS cells. OS is characterized by
significant somatic copy-number alteration (SCNA) and struc-
tural variation (SV) with few recurrent point mutations in
protein-coding genes23. To probe the clonal structure of OS cells,
we applied inferCNV algorithm to analyze the copy number
variations (CNVs) of the single cells from each lesion (Fig. 3a,
Supplementary Fig. 8)24,25. The 1p gain, 1q gain, 2q gain, 17q
gain and 21q gain were the mostly noticed canonically chromo-
somal variations among the lesions, which were consistent with
previously reported genomic CNVs observed in the comparative
genomic hybridization (CGH) and whole-genome sequencing
(WGS) studies23,26,27. Based on the aggregated CNV results, the
clonality tree for OS lesion was generated using the UPhyloplot2
plotting algorithm28. Multiple canonical (CNV percent > 90%)
and non-canonical CNVs (CNV percent < 90%) in subclones
were noticed in each of the lesions (Fig. 3b). The clonality analysis
results revealed the previously unappreciated complexity of both
canonical and non-canonical CNVs in OS (Fig. 3a, b). As
expected, the canonical CNVs dominated the chromosomal
landscape. Nevertheless, there are still multiple subclonal cano-
nical and non-canonical CNVs across OS patients, which underlie
the subclonal cellular populations in tumor cells evolution
(Fig. 3a, b).

Interestingly, more canonical CNVs were noticed in the
primary chondroblastic OS lesion BC22 and recurrent chondro-
blastic OS lesion BC20 than osteoblastic OS samples (Fig. 3a, b);
however further studies are required to confirm the CNVs.
Previous studies suggested that normal chondroblastic cells could
be trans-differentiated into osteoblastic cells during epiphyseal
formation and fracture healing29,30. Based on the clonal tree, the
mutual chromosomal alternation patterns were noticed in the
branches of both lesions BC20 and BC22 (Fig. 3b–d), implying
that the malignant osteoblastic cells might be derived from the
malignant chondroblastic cells during the chondroblastic OS
development and progression.

We further analyzed the tumor trajectory of the chondroblastic
and osteoblastic OS cells in BC20 and BC22 using the Monocle 2
algorithm and slingshot algorithm, which are popular tools for the
bifurcation trajectory analysis31,32. The bifurcation trajectory was
noticed in both samples using these two algorithms (Supplemen-
tary Figs. 9a–d, 10a, b). The BC20 trajectory suggested that a
branch of the chondroblastic cells could be transdifferentiated into
the osteoblastic cells (cell fate 1; Supplementary Figs. 9a, 10a),

Fig. 2 Distinct clusters of malignant cells in OS lesions. a Seven main malignant OS cell subclusters were identified by t-SNE analysis. b Feature plots for

marker genes of osteoblastic (COL1A1, RUNX2, and COL3A1) and chondroblastic (ACAN, COL2A1 and SOX9) tumor cells. The color legend shows the log1p

normalized expression levels of the genes. c The heatmap of the average expression of top 15 DEGs among six subclusters of osteoblastic tumor cells. The

color legend indicates normalized gene expression levels among the subclusters. d The heatmap of GSEA of the 50 hallmark gene sets in MSigDB database

among the six osteoblastic cell subclusters. e The scatter plot of the DEGs between osteoblastic tumor cells from lung metastasis (upper panel) or

recurrent lesion (lower panel) versus primary lesion. The top 10 DEGs in each comparison were labeled in red. f The t-SNE plot of the four subclusters of

chondroblastic cells. g The heatmap of GSEA of the 50 hallmark gene sets in MSigDB among the four chondroblastic clusters. h The scatter plot of the

DEGs between chondroblastic and osteoblastic malignant cells. The top 10 genes in each subcluster were marked in red. Relative GSEA scores for each

gene set across the cell clusters (d, g) and detailing average normalized gene expression (log1p transformed) values in different tumor sites (e) or types

(h) are provided in the Source Data file.
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Fig. 3 Copy-number variation and clonal evolution analysis of OS cells. a The summary CNV profiles of the OS cells for the 11 OS samples inferred from

inferCNV analysis. The CNV levels were categorized by the chromosome arm and simplified as gain or loss in single cells. Color in the heatmap indicated

the percent of the CNV events in the single cells from each individual sample. b Clonality trees of the single cells from each patient. The branches are

delineated according to the percentage of cells in the subclone containing the corresponding CNVs. The canonical CNV events in each lesion were labeled

in the clonality tree. c The hierarchical heatmap showing large-scale CNVs in chondroblastic OS lesions form one primary (BC22) and one recurrent

(BC20) OS sample (see Supplementary Fig. 8 for the other nine OS samples). d The percentage of chondroblastic and osteoblastic OS cells in each branch

of clonality tree as indicated in (b) for the two lesions (BC20 and BC22). The percent value of the chromosomal CNV events (a) in the single cells from

each individual sample is provided in the Source Data file.
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during which the genes involved in the osteoblast differentiation,
ossification, collagen organization, histone methylation, histone
H3 K4 trimethylation and histone H4 acetylation were signifi-
cantly increased (Supplementary Fig. 9e) and genes related to
skeletal system morphogenesis and stem cell differentiation were
reduced (Supplementary Figs. 9e, 10c). The other branch of the
cells showed endochondral bone formation (cell fate 2) with the
increased expression of genes associated with p53 mediated
apoptosis and a reduction of the genes related to bone
morphogenesis and stem cell differentiation (Supplementary
Figs. 9e, 10c). For BC22, we noticed that two branches of
osteoblastic tumor cells could be derived from the malignant
chondroblastic cells (cell fate 1 and 2; Supplementary Figs. 9c, 10b)
through activating distinct gene signaling pathways involved in
the histone deacetylation, bone morphogenesis, and osteoblast
differentiation processes (Supplementary Figs. 9f, 10d). Consistent
with the analysis results of CNV patterns, these results again
suggested that the malignant chondroblastic cells could be
transdifferentiated into the malignant osteoblastic cells in OS
TME.

Trajectory of OC maturation in OS lesions. OC, a set of rela-
tively large multinucleated, specialized monocyte-macrophage
lineage, plays a vital role in the osteolysis and tumor growth
supporting in OS tissues33. Based on t-SNE and UMAP algorithm
(Fig. 4a, Supplementary Fig. 11a, b), three distinct subclusters of
OCs were identified with a distinct expression of both myeloid
markers such as CD74, CD14, and/or mature osteoclastic markers
including CTSK and ACP5 (Fig. 4b; Supplementary Data 3).
These subclusters were described as: (1) OC_progenitor cells
expressed high levels of myeloid markers CD74 and CD14 with
dim OC markers CTSK and ACP5. This subcluster cells also
showed hyperproliferative phenotype with significantly high
levels of TOP2A, alluding that they were under the stimulation of
osteogenesis; (2) OC_immature cells co-expressed both of the
myeloid and OC markers; and (3) OC_mature cells demonstrated
high levels of CTSK and ACP5 and low CD74 and CD14. The cell
numbers and proportion of these three subclusters of OC cells
varied dramatically among different lesions (Supplementary
Fig. 11c, d). We also detected OC in lung metastatic and recurrent
lesion, which hinted that the function of OC as a key component
in TME of an advanced OS; however, the proportion of mature
OC cells was relatively lower in the chondroblastic, lung meta-
static, and recurrent lesions compared to the primary OS lesions.
This phenomenon indicated that the OC status may depend on
the chemotactic signal strength of osteogenesis in OS lesions34–36.

We also performed the trajectory analysis of the OCs based on
the Monocle 2 algorithm and SCORPIUS algorithm to infer OC
maturation course in OS lesions (Fig. 4c, d, Supplementary
Fig. 12a). Both trajectory algorithms showed that gene expression
signature patterns were in concordance with the distribution of
the three subclusters identified by the t-SNE plots (Supplemen-
tary Figs. 11e, f, 12b). Particularly, the gene patterns involved in
the OC cell state transition were dissected (Fig. 4e, Supplementary
Figs. 11e, 12b). The genes related to antigen processing and
presentation, IFN-γ response, hematopoietic stem cell differentia-
tion, mitotic nuclear division, and cell cycle checkpoint were
significantly reduced, whereas the genes related to OC differ-
entiation, bone resorption and bone remodeling were significantly
increased (Fig. 4e, Supplementary Fig. 12b). Meanwhile, the
transcriptional factors related to immune cell proliferation and
differentiation, such as HMGB1, HMGB2, MEF2C, ID1, ID3,
CREM, and LITAF, etc. (Fig. 4f), were gradually down-regulated
along with trajectory differentiation process. Conversely, some
well-known factors such as NFATC1, SPI1, and FOSL2 were

upregulated in the process (Fig. 4f), which are involved in
regulating differentiation, survival and size of OC37,38. We also
found some unidentified regulators such as JDP2, ZNF267,
CAMTA2, MLX, HES4, and GLMP in OS lesions, which are
potentially engaged in the cellular transition from the myeloid
monocytes into mature OC cells (Fig. 4f).

With the immunohistochemical staining method, we con-
firmed that the cells highly positive for CD74 (myeloid cells) were
small and mononuclear, while the CD74 levels were markedly
reduced in multinuclear OCs in OS lesions (Supplementary
Fig. 13a). Aiming to validate our trajectory observations, we
detected co-expression of CD74 and CTSK in OS samples by
immunofluorescence staining (Supplementary Fig. 13b). The co-
expressing of CD74 and CTSK in the same cells further
underscored the transitional status of the myeloid cells into OC
cells.

Diversity of stromal MSCs and cancer-associated fibroblasts
(CAFs). MSCs in the TME had been proved to stimulate the
tumor cellular proliferation, metastasis and drug resistance in
various types of cancer including OS39. It is well known that
MSCs are the multipotent stem cells that can differentiate into the
osteoblasts, chondrocytes, and adipocytes under specific micro-
environmental contexts40. Previous study suggested that the
MSCs in the OS microenvironment still hold the multipotent
activities41. In the OS lesions, we characterized MSCs by the
proposed markers including MME (CD10), THY1 (CD90), and
CXCL12 (Fig. 1, Supplementary Fig. 2).

With the t-SNE method, three cellular subclusters of MSCs
were identified (Fig. 5a), which were termed as the NT5E+MSCs,
WISP2+ MSCs and CLEC11A+ MSCs based on the gene
expression feature, representing MSC subcluster 1, 2 and 3,
respectively. The proportion of each subcluster varied in the
studied lesions (Fig. 5b, Supplementary Fig. 14a, b). We analyzed
the expression characteristics for a set of featured genes in each
MSC subcluster (Fig. 5c, Supplementary Fig. 14c; Supplementary
Data 4) including: (1) the subcluster 1, predominantly observed
in the chondroblastic OS lesions BC 20 and BC22 (Supplemen-
tary Fig. 14a, b), exhibited relatively high expression of MSC
marker NT5E (CD73) with genes VEGFA and TGFBI (Fig. 5c,
Supplementary Fig. 14c). Therefore, the NT5E+ MSCs may
stimulate the angiogenesis and metastasis of the OS cells; (2)
subcluster 2 was characterized by relatively high expression of the
WISP2 together with CXCL14 (Fig. 5c, Supplementary Fig. 14c).
Previous study reported that the secreted protein encoded by
WISP2 from MSC promoted the proliferation of MSCs rather
than inhibition of the adipogenic commitment and differentia-
tion42, while CXCL14 was suggested to promote the metastasis of
the OS cells43; (3) the subcluster 3 predominantly presented in
the osteoblastic OS lesions, and showed a high level of CLEC11A
(Fig. 5c), accompanied by relatively high expression levels of
osteoblastic differentiation markers SPP1 and IBSP (Supplemen-
tary Fig. 14c). CLEC11A, also known as osteolectin for the
protein, promotes the differentiation of mesenchymal progenitors
into mature osteoblasts in vitro and plays an important role in the
maintenance of adult skeleton age-related bone loss and fracture
repair44.

CAFs are another important component of the TME, which
could stimulate the tumor progression, growth and metastasis45.
It was reported that the malignant OS cells directly induced the
differentiation of mesenchymal stem cells (BMSCs) into CAFs46.
In this study, the CAFs exhibited remarkably high levels of
fibroblast markers decorin (DCN) and lumican (LUM) with
reduced osteoblast and MSC markers particularly PTH1R, MME,
and CXCL12 (Fig. 1a, Supplementary Fig. 2). Based on the t-SNE
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Fig. 4 Trajectory analysis of osteoclast cells (OC) in OS lesions. a t-SNE plot showing the three main subclusters of osteoclasts. b Feature plots showing
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analysis, the CAFs were categorized into three subclusters (Fig. 5d,
e). The cell number and proportion of all three subclusters in
each lesion were detailed (Supplementary Fig. 14d, e). The
classification of 3 CAF subclusters allowed the subtle features to
be identified, despite the high expression of general markers for
fibroblast, COL1A1, and LUM in all three subclusters (Fig. 5f,
Supplementary Data 5). The fibroblast_1 was characterized by
COL14A1, suggesting that they were COL14A1+ matrix fibro-
blasts. The fibroblast_2 was characterized by DES, coupled with
low level of ACTA2 and COL14A1, indicating that they could be
the smooth muscle-like cells. The fibroblast_3 expressed relatively
high levels of MYL9 and LUM, with positive ACTA2 but no
expression of COL14A1 and DES. It is similar to myofibroblasts,
but showed relatively high expression of osteoblast markers IBSP
and SPP1, suggesting that the cluster 3 CAFs in the OS lesions
may play an osteoblast-like function. Nevertheless, the fibro-
blast_1 and fibroblast_3 cells were the main CAFs in both

primary and recurrent lesions, and the fibroblast_2 cells were the
main component of CAFs in lung metastasis lesions (Fig. 5c). The
specific gene expression profiling of each CAF subcluster was also
determined (Supplementary Fig. 14f; Supplementary Data 5).

Heterogeneity of tumor-associated macrophages (TAMs) and
dendritic cells (DCs). Tumor-infiltrating myeloid cells are the
critical abundant components of TME, which are a heterogeneous
mixture of cell types with both tumor stimulating and suppres-
sing activities47. Analysis of the myeloid cells revealed 10 distinct
subclusters comprising monocytes, TAMs, DCs, and neutrophils
(Fig. 6a–c; Supplementary Data 6). For OS lesions, the monocytes
and the macrophages account for 70–80% of the total myeloid
cells, while a minority of the cells (<5%) were identified as DCs
(Fig. 6d; Supplementary Fig. 15a–c). We also identified specific
gene sets for these myeloid cells that allow a more in-depth
analysis of regulatory pathways (Fig. 6e, Supplementary Fig. 15d).
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Fig. 5 Clustering and identification of mesenchymal stem cells (MSCs) and cancer-associated fibroblasts (CAFs) subclusters in OS lesions. a t-SNE

plot of MSCs identified in the 11 OS lesions, colored by the three subclusters of cells as indicated. b The mean percent of the 3 MSC subclusters in primary,

lung metastasis and recurrent samples. c Violin plots showing the normalized expression levels of marker genes across the clusters. d t-SNE plot of three

subclusters of CAFs identified in the 11 OS lesions. e The mean percent of CAF subclusters in the three types of lesions. f Violin plots showing the

normalized expression levels of marker genes across the three subclusters of CAFs. The values of mean proportions of MSCs (b) and CAFs (e) subclusters

are provided in the Source Data file.
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Fig. 6 Comprehensive dissection of myeloid cells in OS lesions. a t-SNE plot separated 10 subclusters of the myeloid cells in OS lesions. b The violin plots

showing the normalized expression levels of signature genes across the myeloid subclusters. c Dot plots showing cluster signature genes in myeloid cells.
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Three subsets of TAMs were identified in OS lesions, namely
M1-, M2-, and M3-TAMs. It is known that M2-TAMs are the
main tumor-associated anti-inflammatory macrophages with
relatively high expression of CD163, MRC1, MS4A4, and MAF
(Supplementary Fig. 15a). M1-TAMs are associated with
inflammatory factors including CCL2, CCL3, CCL4, CXCL2,
and CXCL3, which could attract NK cells, T cells and immature
DCs in TME48,49. GSEA analysis suggested that M1-TAMs
display enhanced activities of the signaling pathways stimulated
by IFN-α, IFN-γ, IL2/STAT5, IL6/JAK/STAT3, and inflammatory
responses, suggesting that these macrophages may be derived
from a proinflammatory microenvironment in the OS lesions
under IFN-α and IFN-γ stimulation (Fig. 6e). Interestingly, M1-
TAMs showed elevated activities of the TGF-β and Hedgehog
signaling pathways, which could induce the M2 polarization
(Fig. 6e). Through the GSVA analysis, a small proportion of the
M2-TAMs with relatively high expression levels of M1-TAMs
marker genes was noticed (Fig. 6f), confirming the dynamic
transformation between M1- and M2-TAMs in the TME of OS
lesions. The M3-TAMs, actually the FABP4+ TAMs previously
identified as the alveolar macrophages in the lung, were dominant
in the lung metastatic OS lesion BC17 (Fig. 6d, Supplementary
Fig. 15b, c)50. GSVA suggested that the FABP4+ TAMs in OS
expressed remarkably high levels of M1 marker gene sets (Fig. 6f),
indicating that the FABP4+ TAMs may contribute to the pro-
inflammatory TME in lung metastasis OS cells. In addition,
neutrophils characterized by S100A8, S100A9, and G0S2 were
detected (Fig. 6b, c). Our data displayed more neutrophils
infiltrating the primary lesion than recurrent or lung metastatic
lesions (Supplementary Fig. 15a–c); however, the clinical
significance remains to be further addressed.

Recently, DCs, the sentinels of the immune system, were
adopted as targets of immunotherapeutic treatment strategies due
to their powerful antigen-presenting features. We identified four
distinct subclusters of DCs in the OS lesions, the monocyte-derived
CD14+CD163+ DCs, the conventional myeloid-derived CD1c+

DCs (cDC2), CD141+CLEC9A+ DCs (cDC1) lung and the
activated CCR7+ DCs (Fig. 6g). CCR7 takes part in chemotaxis,
survival, migratory speed, cytoarchitecture, and endocytosis of
DCs, which are closely related to tumor metastasis51. We found
that the ratio of CD1c+ DC was higher in lung metastatic lesions
than the primary and recurrent lesions. CD1c+ DC has been
administered as a source for vaccine immunotherapy that has
shown encouraging immunological and clinical outcomes52. Thus,
the infiltrated DCs in OS lesions may serve as immunotherapy
targets in the future.

Heterogeneity of the TILs. T cells are the key elements of cancer
immunotherapy53; however, their high heterogeneity with respect
to their cell-type compositions, gene expression patterns and
functional properties significantly influence the outcomes of the
T cells based immunotherapy54. From the OS lesions, we iden-
tified a total of 5420 TILs with high heterogeneity, which were
classified into eight subclusters as CD4−CD8− T, CD8+ T, CD4+

T, T-reg, proliferating T, NKT, NK, and B cells according to the
specific markers (Fig. 7a–e; Supplementary Data 7). The cell
number and proportion of each cellular subcluster was shown
(Supplementary Fig. 16a–c). Lower proportion of CD4+ and
CD8+ TILs was detected in the recurrent and metastatic OS
lesions than in primary lesions, which has been validated by the
IHC staining methods (Supplementary Fig. 16d). The low tumor-
suppressive status in recurrent and metastatic OS lesions sug-
gested that the T cell-based immunotherapy might be inefficient
in the metastatic and recurrent OS patients.

The CD8+ T cells in the OS tissues were characterized with
relatively high expression of the cytotoxicity markers granzyme A
(GZMB), GZMK, and GZMH55 (Fig. 7d). Importantly, we also
found that these cells positively expressed the T cell exhaustion
inhibitory receptors including TIGIT and LAG356,57 (Fig. 7d),
suggesting that the CD8+ T cells become exhausted after the
initial activation phase in OS. The CD4+ T cells expressed high
cytotoxicity genes including GZMA58, and they also expressed
relatively high levels of costimulatory molecules including
TNFRSF14, TNFRSF25, and ICOS559, which stimulate the
cytotoxic activities of the T cells (Fig. 7d).

We noticed two cell subclusters expressing the NK cell markers
including NKG7 and GNLY. One subcluster expressing the T-cell
specific markers including CD3D and CD8A was termed as the
NKT cells, and the other subcluster was termed as the NK cells
(Supplementary Fig. 16e). Most of the NKT cells were activated
and strongly expressed the GZMB, GZMA, and IFNG genes60,
indicating that they are performing tumor cytotoxicity activities
in the OS (Fig. 7d). Interestingly, only a small fraction of the NK
cells was positive for GZMB, IFNG, and PRF1, which could be the
non-activated state of the NK cells in the OS lesions. In addition,
we also identified a small proportion of B cells in the OS cells (87/
5,420) with at least two subsets exclusively expressing the
canonical markers MS4A1 and JCHAIN, suggesting that even B
cells, although very few, were involved in the OS lesion
(Supplementary Fig. 16e, f).

Recently, the anti-TIGIT therapeutics have drawn great attention
in treating colorectal cancer, breast cancer, and melanoma through
modulating the activities of CD8+ T, T-reg, and NK cells61.
Blockage of CD112R and TIGIT signaling sensitizes human natural
killer cell cytotoxicity functions on melanoma62. The OS T-reg cells
expressed the canonical gene signature including the FOXP3 and
IL2RA (Fig. 7d, e), and they also showed relatively high immune-
inhibitory molecules including the CTLA4 and TIGIT, which may
contribute to T-reg cell-mediated suppression of anti‐tumor
immune responses in OS lesions. We also noticed that TIGIT was
widely expressed in CD8+ T, CD4+ T, and NKT cells in the OS
(Fig. 7d, e), suggesting that TIGIT blocking could be an effective
therapeutic method for OS. Further, we isolated peripheral blood
CD3+ T cells from two patients (BC3 and BC16) with relatively
high TIGIT+CD3+ T cells infiltration in OS tissues and two
patients (BC5 and BC6) with relatively low TIGIT+CD3+ T cells
infiltration in OS tissues to determine the cellular cytotoxic activities
of the CD3+ T cells using anti-TIGIT antibodies in vitro. The
results showed that blocking TIGIT substantially enhanced the
death of OS cells triggered by CD3+ T cells derived from BC3 and
BC16 in the co-culture system (P < 0.05, Fig. 7f). In contrast, anti-
TIGIT treatment did not enhance the cytotoxicity of CD3+ T cells
derived from patients BC5 and BC6 (P > 0.05, Fig. 7f). These
suggested that targeting TIGIT may have potential therapeutic
values for OS in the future.

Discussion
Highly heterogeneous OS was characterized with complex SVs63,
localized hypermutation, and abundant CNVs but relatively few
point mutations on genomic level64. However, the current clinical
studies could only reflect the average measurements of gene
mutation and expression profiling across the tumor cells, and the
cell-type composition, dynamics and characteristics in OS tumor
lesions are largely undetermined. In this report we identified 11
main clusters of cells with t-SNE clustering in combination,
contributing to OS lesions, and further analyzed the subclusters
for seven of the main cell types (Supplementary Fig. 17). Their
cellular and molecular features, regulators, and dynamics were
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also analyzed with regard to their role in the progression of OS. All
these clusters of cells were progeny of adult stem cells either MSC
or hematopoietic stem cells (HSCs). The current study dissected
the complexity of the cellular landscape of the OS ecosystem
encompassing the primary, lung metastasis and recurrent lesions
based on scRNA-sequencing. The cellular atlas of malignant cells

and TME components had revealed the intratumor heterogeneity
characteristics, which may provide therapeutic targets for OS in
the future.

The malignant osteoblastic cells may be originated from any type
of cells along with the osteogenic differentiation linkage fromMSCs.
These cells were characterized with relatively high expression levels
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of mesenchymal markers COL1A1, LUM, COL3A1, and RUNX2,
along with the transcriptional factors essential for osteoblast dif-
ferentiation65. Based on the scRNA-seq data, the osteoblastic
malignant cells were classified into six subclusters in light of the
comprehensive gene expression atlas in tumorigenesis and onco-
genesis gene expression atlas of the cells. The first were the two
proliferating subclusters with the high expression levels of S and
G2/M phase-related genes. The other four osteoblastic subclusters
were characterized with differentially enhanced signaling pathways
related to angiogenesis, MYC, IFN-α, KRAS, TP53, and other
hallmark gene sets. Further, we found that the genes overexpressed
in the lung metastasis and recurrence cells enriched Myc, mTORC1,
hypoxia, and the oxidative phosphorylation signaling pathways.
MYC and CCNE1 were the highly expressed or muted genes
identified in the OS lesions66,67. The mTORC1 pathway was
hyperactivated in clinical OS samples68, which is consistent with the
scRNA-seq results. These results highlighted the intratumoral het-
erogeneity and the signaling pathways that may drive the pro-
gression and recurrence of the OS.

Chondroblastic OS ranks as the second commonly diagnosed
(~25%) OS in children and adolescents69. The cellular origin of
the chondroblastic OS is still debatable. It is important to note that
there were malignant osteoblastic cells in the chondroblastic OS
lesions based on H&E staining examination, which were further
supported by the scRNA-seq that the cells expressing both
COL1A1 and SOX9 were identified in the chondroblastic OS
lesions BC20 and BC22. Previous study suggested that chon-
drocytes could undergo a direct transdifferentiation process into
osteoblasts during the endochondral ossification in bone forma-
tion70. With the CNV clonal analysis by inferCNV with the
scRNA-seq revealed a large scale genomic copy message, we found
a great portion of genomic CNV pattern shared between the
chondroblastic and osteoblastic malignant subclones in chondro-
blastic OS lesions. This result, together with the finding revealed in
the trajectory analysis based on RNA expression profile at single
cells level strongly suggests that transdifferentiation of malignant
osteoblastic cells from malignant chondroblastic cells. Further-
more, with the cellular trajectory analysis, we demonstrated that
during tumor cellular transdifferentiation in chondroblastic tumor
cells, not only the genes involved in the osteoblast differentiation,
ossification, and bone morphogenesis are significantly increased
but also the genes related to histone methylation and acetylation.
These results suggested that the epigenetic modifications may
largely contribute to the transdifferentiation of malignant chon-
droblastic cells into osteoblastic cells.

In addition, we found both the chondroblastic and osteoblastic
malignant cells were localized in the primary site while only the
uniformed osteoblastic malignant cells were detected in the lung
metastasis lesions of the chondroblastic OS of patient BC17,
suggesting that the osteoblastic OS cells have more aggressive
tumoral activities and are capable of distant metastasis compared
to the corresponding chondroblastic tumor cells. This is sup-
ported by the reports that the malignant chondroblastic cells grew
slow and were less sensitive to the chemotherapy treatments than

malignant osteoblastic cells71. These results suggested that che-
motherapy reagents that targeting both the chondroblastic and
osteoblastic tumor cells are warranted for efficient treatment for
chondroblastic OS in clinic.

Bone homeostasis reveals systematically subtle coordination of
the osteogenesis and osteolysis72,73. There are clear imaging evi-
dences supporting the contribution of osteolysis to bone remo-
deling in primary OS74. We noticed that the OCs were not only
present in the primary and recurrent OS tumors but also in the
lung metastasis OS lesion, further supporting that OC is essential
and supportive for OS cell growth and dissemination, corrobor-
ating the previous75. Interestingly, the overall status and the sub-
group cellular proportion of OCs were variable among the patients
as annotated by the t-SNE results. According to the subcluster
t-SNE analysis, mature OC was showed neither in the chondro-
blastic OS patients BC20 and BC22, nor in the osteoblastic OS
patients BC11, and fewer total OC number was detected in lung
metastatic lesions of patients BC10 and BC17. It is well known that
osteoblast cells can stimulate the OC differentiation and activation
through the RANKL/RANK signaling pathway34, suggesting that
the OC maturation can be stimulated by the RANKL expressed by
malignant osteoblast cells in OS tissue. Compared to osteoblastic
cells, the chondroblast cells were found to have lower RANKL
expression. And compared to the osteoblastic cells enriched in
calcification zone in human growth plate76, fewer OCs were found
in the chondroblastic cells enriched resting zone and hypertrophic
zone. Therefore, the TME may hinder the OC maturation by the
chondroblastic cells. In addition, chemotherapeutics may also
hamper OC maturation in OS tissues. For example, the che-
motherapeutic agent gemcitabine used in the treatment of OS
patients was found to reduce the number of myeloid-derived OC
progenitor cells77. In agreement with these reports, three patients
in our study (BC10, BC11, and BC17) who received gemcitabine
treatment showed relatively lower levels of total number of OCs
and the mature status OCs. Altogether, it is reasonable to hypo-
thesize that the TME and the chemotherapy treatments may
modulate the OC maturation in OS tissues; however, studies are
warranted to confirm these results. Further, through the cellular
trajectory analysis of the OC maturation, we noticed the loss of
antigen-presenting activities and the gain and elevated osteolysis
activities from the OC progenitor cells to the mature OC cells,
suggesting a switch from tumor-suppressive activities to tumor-
promoting activities during the OC maturation. Interactions
between OCs and the immune system encourages the identifica-
tion of new therapeutic targets for OS treatments.

The immune cells, as the significant component of the TME
usually show the immunosuppressive activities78. The TME con-
sists of various types of cells mediating the communication
between malignant cells, immune cells and stromal cells79. TAMs,
especially the M2-TAMs relatively express high CD206 and MRC1,
and play critical roles in tumor growth, angiogenesis, invasion and
metastasis especially80. In the present study, we identified three
distinct TAM populations in OS, and the majority TAMs were M2.
Interestingly, we have identified alveolar FABP4+ macrophage in

Fig. 7 Cell clustering and functional annotation of tumor-infiltrating lymphocytes (TILs) in OS lesions. a t-SNE plot for TILs in OS lesions, and the cells

were classified into seven subclusters. b The violin plots showing the normalized expression levels of 8 signature genes across the TIL subclusters. c Dot

plots showing 14 signature genes among the TIL subclusters. The size of dots represents the proportion of cells expressing the particular marker, and the

spectrum of color indicates the mean expression level of the markers (log1p transformed). d The t-SNE plot showing the expression profiles of the four

selected well-known marker genes for exhausted T cells. e Heatmap of the gene sets of T-cell cytotoxicity, exhaustion, regulatory cytokines and receptors,

naive T cells, and T-cell costimulation, based on GSVA enrichment analysis. f Blockade of TIGIT increases the CD3+ T cells mediated cellular cytotoxicity

activities on U2OS and 143B cells derived from patients BC3 and BC16, but not for BC5 and BC6 (n= 3). Error bar: mean value ± SD. P values were

determined by paired two-sided Student’s t-test. The source data for the relative T cellular cytotoxicity activities on OS cell lines (f) are provided in the

Source Data file.
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lung metastatic OS tissues, which showed proinflammation prop-
erties as suggested by the GSVA analysis. These results suggested
that the tissue-resident macrophages may also involve in the OS
progression; however, their roles and the underlying mechanisms
need further investigation.

T cell immune checkpoint molecules are a set of promising
immunotherapeutic targets for cancer81. In the OS lesions stu-
died here, seven subclusters of T cells were identified and their
expression features of gene sets related to T cell cytotoxicity,
exhaustion, regulation, naive and co-stimulation were assessed
using GSVA enrichment analysis. T cells with predominant
exhaustion signature are the major subpopulation in TME of OS,
which was also commonly noticed in the other cancer tissues82.
Our data depicted that T cell-mediated tumor-suppressive
activities in the TME is weaker in lung metastasis and recurrent
lesions compared to primary lesions. Of the immune checkpoint
molecules, we noticed a relatively low mRNA level of PDCD1,
HAVCR2 and LAG3 in the CD3+ T cells, whereas the TIGIT
showed the most abundant expression levels in T-reg cells.
Recently, the anti-TIGIT therapeutics have got great attention as
a therapeutic marker of check point through modulating the
activities of CD8+ T, T-reg and NK cells activities83–86. In the
current scRNA-seq data, TIGIT was widely expressed in T-reg,
CD8+ T, CD4+ T, and NKT cells in OS, suggesting that OS
patients may benefit from TIGIT blocking therapeutics. Our
experiments with the in vitro cellular models using TIGIT
blockage antibody reinforced the cytotoxicity of CD3+ T cells
against OS cells, providing a primary evidence supporting the
potential of TIGIT inhibition for OS treatments in future.

Several limitations in the current study should be acknowledged.
First, the sample size was relatively small, particularly only two
samples were collected for the recurrent and the lung metastatic
lesions, without matched primary OS samples due to the clinical
nature of OS. We realized significantly cellular heterogeneity
between the patients, an independent comparison with a panel of
paired samples or more samples may help to further validate the
results and to eliminate any possible bias due to heterogeneity
between the individuals. Second, all patients had received combined
chemotherapy before surgical operation according to the National
Comprehensive Cancer Network (NCCN) treatment guidelines87,
and the influence of the gene expression pattern of the cells by
chemotherapy was unable to determine. However, these results
reflected the status of OS cells and TME that encountered in clinic
practice, especially for the advanced OS samples, which may pro-
vide therapeutic targets in future. Third, the scRNA-seq was per-
formed with 10× Genomics chromium platform, which usually
gives a relatively lower gene coverage for a larger number of single
cells compared to the plate-based scRNA-seq methods (such as the
Smart-seq). Smart-seq method may generate more refined cellular
atlas of OS with deeper message of transcripts. At last but not least,
a set of markers were identified in this study, exemplified by the
TIGIT blocking therapeutics, are yet to be intensively studied with
more models.

In conclusion, the current scRNA-seq analysis demonstrated
the intratumoral heterogeneity of OS cells and their TME in OS
tissues. Distinct clusters and subclusters for various types of cells
in OS lesions were identified with their corresponding molecular
features determined. The scRNA-seq revealed the cellular lineage
transdifferentiation of osteoblastic cells from chondroblastic cells
in OS tissues. Meanwhile, the cellular constitutions of immune
and stromal cell types and their properties suggesting the
immunosuppressive and tumor progression supportive activities
in OS tissues. This study provided the preliminary cellular atlas
for OS tissue, and paved a way for the identification of therapeutic
targets to improve the OS treatment.

Methods
Participants. Eleven patients hospitalized from October 2017 to April 2019 in
Shanghai Sixth People’s Hospital were prospectively enrolled in the study, which
was approved by the Shanghai Sixth People’s Hospital Ethics Committee. Each
patient provided written informed consent. All 11 patients (five male and six
female, age range from 11 to 38-years old) had been diagnosed with osteoblastic or
chondroblastic OS according to the NCCN Clinical Practice Guidelines in
Oncology (https://www.nccn.org/). Samples for scRNA-seq were derived from the
primary tumor sites of seven patients who had received traditional first-line
adjuvant and neo-adjuvant chemotherapy composed of a cocktail of four drugs
(doxorubicin, cisplatin, methotrexate and ifosfamide), as well as surgical therapy.
Two patients with lung metastasis and two with recurrent disease had received
gemcitabine in combination with docetaxel (GT). In addition to other patients
enrolled for our study, we recruited one patient (BC17) from the clinical trial
NCT03676985, in which all patients had undergone neoadjuvant chemotherapy,
surgery, and adjuvant chemotherapy, and they all had received anti-PDL-1 therapy
for one year until the disease progressed. Patient BC17 provided written informed
consent to participate in the clinical trial NCT03676985 and the current study.
Four patients BC3, BC5, BC6, and BC16 agreed to donate peripheral blood to
explore the efficacy of anti-TIGIT therapy in vitro. Detailed clinical characteristics
information about patients is provided (Supplementary Table 1).

Sample preparation and cell isolation for scRNA-seq. Fresh tumor lesions were
stored in GEXSCOPETM tissue preservation solution (Singleron Bio Com, Nanj-
ing, China) and processed on ice after the surgery within 30 mins. The specimens
were washed with Hanks Balanced Salt Solution (HBSS) three times and minced
into 1–2 mm pieces. Then, the tissue pieces were digested with 2 mL of GEXS-
COPETM tissue dissociation solution (Singleron) at 37 °C for 15 min with sus-
tained agitation. After digestion, the samples were filtered through 40-µm sterile
strainers and centrifuged at 800 × g for 5 min. Subsequently, the supernatants were
discarded, and the cell pellets were suspended in 1 mL phosphate-buffered saline
(PBS; HyClone, United States). To remove red blood cells, 2 mL of GEXSCOPETM
red blood cell lysis buffer (Singleron) was added, and cells were incubated at 25 °C
for 10 min. The solution was then centrifuged at 500 × g for 5 min and resuspended
in PBS. The samples were stained with trypan blue (Sigma, United States) and the
cellular viability was evaluated under the phase contrast light microscope (Nikon,
Japan).

Library preparation and scRNA-seq. Single cells were encapsulated into emulsion
droplets using the Chromium Controller (10× Genomics). The scRNA-seq libraries
were constructed using the Chromium Single Cell 3ʹ Library, Gel Bead & Multiplex
Kit (10× Genomics, V2 and V3) following the manufacturer’s instructions. In brief,
the sample volume was decreased, and the cells were examined with a light
microscope and counted with a hemocytometer. Cells were loaded in each channel
with a target output of ~5000 cells. The cells were partitioned into Gel Beads in
Emulsion in the ChromiumTM Controller instrument where cell lysis and barcoded
reverse transcription of RNA were performed. The sequencing libraries were
constructed using the amplified cDNA with the Nextera XT DNA sample Pre-Kit
(FC-131-1024, Illumina), and final libraries of individual samples were evaluated
on the Agilent Bioanalyzer using a High Sensitivity DNA Kit (Agilent Technolo-
gies). Individual libraries were pooled for sequencing with 75 cycle run kits on the
Illumina HiSeq X platform with 150-bp paired-end reads.

Pre-processing of scRNA-seq data. Raw reads were processed to generate gene
expression profiles using the standard internal pipeline based on the Cell Ranger
toolkit (version 2.1.1). The raw base call (BCL) files were used to generate the
FASTQ files with the “mkfastq” command. After filtering read 1 without poly T
tails, cell barcode and unique molecular identifiers (UMIs) were extracted. Adap-
ters and poly A tails were trimmed (fastp V1) before aligning the read 2 to GRCh38
Ensemble build 92 genome (fastp 2.5.3a and featureCounts 1.6.2). Reads with the
same cell barcode, UMIs and gene were grouped together to calculate the number
of UMIs per gene per cell using the “count” command. The UMI count tables of
each cellular barcode were used for further analysis.

The raw output data were processed with the Seurat package (version 3.1.5;
http://satijalab.org/seurat/) in R software (version 3.6.1) for each individual
sample88. We filtered out the cells with no. of expressed genes <300 genes or the
percent of mitochondrial genes over 10% of total expressed genes. Further, we
removed the potential doublets (and to an even lesser extent of higher-order
multiplets) that occurred in the encapsulation step and/or as occasional pairs of
cells that were not dissociated in sample preparation using the DoubletFinder
package (version 2.0.2) of the R89. A total of 10,987 filtered cells were used for
further bioinformatic analysis.

Data integration and the dimensionality reduction. The Seurat object with gene
expression data from individual samples was processed with the Read10× ()
function. For each sample, the gene expression was represented as the fraction of
the gene and multiplied by 10,000, which were converted into natural logarithm
and normalized after adding 1 to avoid taking the log of 0. The top 3000 highly
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variable genes (HVGs) from the normalized expression matrix were identified,
centered, and scaled before we performed the principal component analysis (PCA)
based on these HVGs. The batch effects were removed by the Harmony package
(version 1.0) of R based on the top 50 PCA components identified90.

Cell-clustering and annotation. The clustering analysis was performed based on
the integrated joint embedding produced by Harmony with the Louvain algorithm
after computing a shared nearest-neighbor graph with the Louvain algorithm that
was implanted in the “FindClusters” function of the Seurat package. The identified
clusters were visualized on the 2D map produced with the t-distributed t-SNE or
UMAP method. For sub-clustering analysis, we applied a similar procedure
including the variable genes identification, dimension reduction, cell integration
with Harmony and the clustering identification to the restricted cluster derived
from the overall analysis. To annotate the cell clusters, DEGs with high dis-
crimination abilities between the groups were identified with the FindAllMarkers()
function in Seurat using the default non-parametric Wilcoxon rank sum test with
Bonferroni correction. The cell groups were annotated based on the DEGs and the
well-known cellular markers from the literature. Detailed information of the cel-
lular biomarkers was provided in Supplementary Table 2.

DEGs identification and GO enrichment analysis. We identified the differentially
over-expressed genes in the specific cluster when compared to other remaining
clusters with the Wilcoxon Rank-Sum Test with the FindMarkers function in Seurat
(adjusted P-value < 0.05, only.pos= T and logfc.threshold= 0.1), and the cluster-
specific overrepresented GO biological process was calculated with the compar-
eCluster function in the clusterProfiler package (version 3.14.3) of R91. We also used
the GSEA with the curated gene sets to identify the pathways that were induced or
repressed in between the cell clusters. The gene set enrichment was performed
following the modification of the competitive gene set enrichment test CAMERA
developed by Cillo et al.92 that have been embedded in the SingleSeqGset (version
0.1.2) R package. In brief, the mean gene expression level was calculated and the log
twofold change (FC) between the specific cell cluster and the other cells was applied
as the test statistic92. The 50 hallmark gene sets in the MSigDB databases (https://
www.gsea-msigdb.org/gsea/msigdb) were used for the GSEA analysis93.

We also applied the non-parametric and unsupervised algorithm named gene
set variation analysis (GSVA) to assess the relative pathway activities in the T,
macrophage, and the DC cells. The signature gene lists of T cell (cytotoxic,
exhausted, regulatory, naive, costimulatory, G1/S and G2/M) and the tumor
macrophage (M1- or M2- type) were derived from the study performed by Chung
et al.94. The gene set lists for the IFN-γ signaling pathway activity
(HALLMARK_INTERFERON_GAMMA_RESPONSE) in T cells and the DC
activities were derived from the MSigDB collections as indicated93.

Single-cell copy-number variation (CNV) and clonality analysis. Initial CNVs
for each cell in the osteoblastic and chondroblastic tumor cells were estimated with
the inferCNV package of R (version 1.2.2; https://github.com/broadinstitute/
inferCNV/wiki)24. The CNVs of osteoblastic and chondroblastic tumor cells were
calculated and the immune cells were applied as the reference. After filtering the
unqualified cells with < 2000 UMIs, the inferCNV analysis was performed with
parameters including “denoise”, default hidden markov model (HMM) settings,
and a value of 0.1 for “cutoff”. To reduce the false positive CNV calls, the default
Bayesian latent mixture model was implemented to identify the posterior prob-
abilities of the CNV alterations in each cell with the default value of 0.5 as the
threshold. To infer the clonal single-cell CNV changes, the “subcluster” method
was applied to infer the subcluster cells based on the CNV values generated by
HMM. Consulting with the genomic cytoband information, each p- or q-arm level
change was simply converted to equivalent CNV based on its location. Each CNV
was annotated to be either a gain or a loss. After data conversion, subclones
containing identical arm level CNVs were collapsed and trees were restructured to
represent subclonal CNV architecture. For data visualization, we followed the
UPhyloplot2 algorithm developed by Durante et al.28 (https://github.com/
harbourlab/UPhyloplot2) to automate generation of intra-tumor evolutionary
trees. The arm level CNV calls curated from the inferCNV HMM subcluster CNV
predictions algorithm and the percentage of cells in each of the subclones were used
as inputs. A scalable vector graphics (.svg) file visualizing the phylogenetic tree was
generated for each sample and the arm length is proportional to the percentage of
cells plus a spacer (circle diameter+ 5 pixels)28.

Trajectory analysis of single cells. The single-cell pseudotime trajectories were
generated with the Monocle2 package (v2.8.0) in R95. The gene-cell matrix in the scale
of raw UMI counts derived from the Seurat processed data were used as the inputs.
The newCellDataSet function was applied to create an object with the parameter
expressionFamily= negbinomial.size. Only genes with the mean expression ≥ 0.1
were used in the trajectory analysis. DEGs with q-value < 0.01 between the cell groups
were applied for dimension reduction the reduceDimension() function using the
parameters reduction_method= “DDRTree” and max_components= 2. The cells
were ordered and visualized with the plot_cell_trajectory() function. Genes that
changed along with the pseudotime were calculated (q-val < 10−10) and visualized

with the plot_pseudotime_heatmap and the genes were clustered into subgroups
according to the gene expression patterns. To identify the genes that separate cells into
branches, the branch expression analysis modeling (BEAM) analysis were performed
and genes resulting from the BEAM analysis with a q-value < 10−10 were separated
into groups and visualized with the plot_genes_branched_heatmap() function. The
enrichment GO terms of the genes in each cluster were calculated with the cluster-
Profilter (version 3.14.3) package91. Differentially expressed transcriptional factors
were retrieved from the DEGs list based on the AnimalTFDB (v3.0) database (http://
bioinfo.life.hust.edu.cn/AnimalTFDB/#!/).

To validate the results from the Monocle 2, the slingshot algorithm, another
popular trajectory analysis tool that fits the bifurcation trajectory, was reanalyzed
the cellular trajectory of chondroblast OS cells31. The SCORPIUS algorithm, an
unsupervised approach for inferring linear developmental chronologies from
single-cell RNA-sequencing data32, was performed to validate the Monocle 2
inferred linear transition of OCs from the OC progenitor cells and OCs immature
cells into mature OCs in OS tissues.

Immunohistochemistry and immunofluorescence staining. Tissue sectioning
and immunohistochemistry staining of formalin-fixed, paraffin-embedded OS
specimens were performed. All sections were deparaffinized, rehydrated, and
washed. Endogenous peroxidase was blocked using 3% hydrogen peroxide for
10 min. After water-bath heating for antigen retrieval, slides were incubated with
primary antibodies followed by horseradish peroxidase (HRP)-linked secondary
antibodies and diaminobenzidine staining (ready-to-use #ZLI-9018, ZhongShan
Golden Bridge Biotechnology, China). Counterstaining was done with hematox-
ylin. Slides were dehydrated with sequential ethanol washes (75%, 80, and 100%)
for 1 min each. Two pathologists blinded to clinical data independently assessed
staining results for TIGIT (1:200, #ab243903, Abcam, USA), CD3 (1:100, #ab5690,
Abcam), CD4 (1:50, #ab213215, Abcam), CD8 (1:50, #ab17147, Abcam), CD74
(1:200, #ab22603, Abcam) and CTSK (1:200, #ab37259, Abcam).

For immunofluorescence staining, the process was similar up to the incubation
with primary antibodies of CD74 (1:200) and CTSK (1:200), which was performed
overnight at 4 °C. Samples were incubated for 1 h at room temperature after
washing with fluorescently labeled secondary antibodies including donkey anti-
rabbit Alexa Fluor 488 (#A21202, 1:1000; Molecular Probes) and goat anti-mouse
Alexa Fluor 514 (#A31555, 1:1000; Molecular Probes). Nuclei were counterstained
with 4’,6-diamidino-2-phenylindole (DAPI; #D9542, Millipore Sigma). Sections
were mounted using fluorescence mounting medium (#S3023, Dako, Denmark).

CytoTox 96® non-radioactive cytotoxicity assay. Peripheral blood mononuclear
cells (PBMCs) were collected from two OS samples (BC3 and BC16) using density
centrifugation with Lymphocyte Separation Medium (MP Biomedicals). Then CD3+

T cells were isolated with magnetic-activated cell sorting system (MACS; Miltenyi
Biotec) according to the manufacturer’s protocol. For the T-cell activation assays,
CD3+ cells were seeded in 24-well plates and stimulated for three days with
interferon-γ (IFN-γ, 1000 U/mL; Peprotech), IL-2 (600 U/mL, Peprotech), and anti-
CD3 antibody (5 ng/mL, clone OKT3; Biolegend). Subsequently, TIGIT was blocked
for 24 h with anti-TIGIT antibodies (50 μg/mL, clone #A15153G, Biolegend). 143B
and U2OS cells were seeded in 96-well plates, incubated overnight, and then added
to CD3+ T cells at effector-to-target (E:T) ratios of 4:1 and 8:1. Co-culture systems
were incubated for 8 h. The supernatant was harvested and analyzed using the
CytoTox 96® non-radioactive cytotoxicity assay (Promega, CTB163, USA). Each
group had three parallel wells, and all experiments were performed at least three
times96. According to the manual, the killing effect of T cells against target cells was
assessed with the following equation: Cytotoxicity= (Experimental–Effector
Spontaneous–Target Spontaneous)/(Target Maximum–Target Spontaneous) × 100%.

Statistical analysis. The statistical analysis was performed using SPSS 21.0 (IBM,
Armonk, NY, USA). Continuous data were expressed as mean ± standard deviation
(SD). The significance of differences was determined using the unpaired or paired
Student’s t-test as indicated, and differences with P < 0.05 were considered as
statistically significant.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The Single-cell expression data have been deposited in the NCBI Gene Expression

Omnibus database under the accession code GSE152048. All the other data supporting

the findings of this study are available within the article and its supplementary

information files without any restrictions or from the corresponding author upon

reasonable request. A reporting summary for this article is available as a Supplementary

Information file. Source data are provided with this paper.
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