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Human red blood cells (RBCs), or erythrocytes, are the most abundant blood cells
responsible for gas exchange. RBC diseases affect hundreds of millions of people and
impose enormous financial and personal burdens. One well-recognized, but poorly
understood feature of RBC populations within the same individual are their phenotypic
heterogeneity. The granular characterization of phenotypic RBC variation in normative and
disease states may allow us to identify the genetic determinants of red cell diseases and
reveal novel therapeutic approaches for their treatment. Previously, we discovered diverse
RNA transcripts in RBCs that has allowed us to dissect the phenotypic heterogeneity and
malaria resistance of sickle red cells. However, these analyses failed to capture the
heterogeneity found in RBC sub-populations. To overcome this limitation, we have
performed single cell RNA-Seq to analyze the transcriptional heterogeneity of RBCs
from three adult healthy donors which have been stored in the blood bank conditions
and assayed at day 1 and day 15. The expression pattern clearly separated RBCs into
seven distinct clusters that include one RBC cluster that expresses HBG2 and a small
population of RBCs that express fetal hemoglobin (HbF) that we annotated as F cells.
Almost all HBG2-expessing cells also express HBB, suggesting bi-allelic expression in
single RBC from the HBG2/HBB loci, and we annotated another cluster as reticulocytes
based on canonical gene expression. Additional RBC clusters were also annotated based
on the enriched expression ofNIX, ACVR2B andHEMGN, previously shown to be involved
in erythropoiesis. Finally, we found the storage of RBC was associated with an increase in
the ACVR2B and F-cell clusters. Collectively, these data indicate the power of single RBC
RNA-Seq to capture and discover known and unexpected heterogeneity of RBC
population.
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INTRODUCTION

Human red blood cell (RBC or erythrocytes) disorders, including various anemia diseases and
malaria, affect hundreds of millions of people across the world and exert a huge economic and
human burden. Although the basis for many red blood cell disorders is well studied, there are still
significant unknowns associated with their complex phenotypes and underlying disease
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heterogeneity. For example, the first identified “monogenetic
molecular disease”, sickle cell disease (SCD) (Pauling et al.,
1949), is still poorly understood in terms the heterogeneity
associated with the severity of anemia and subsequent
complications. Therefore, SCD is often referred as a
monogenic disease with polygenetic manifestations (Driss
et al., 2009). To understand SCD heterogeneity, previous
efforts used GWAS and genomic sequencing to identify the
genetic variants associated with the phenotypic heterogeneity
of SCD (Piel et al., 2017). However, these associated alleles do not
fully explain the enormous SCD heterogeneity.

Red blood cells expressing sickle hemoglobin are known to
polymerize and cause sickling, which underlies the pathogenic
mechanisms associated with SCD. Even different SCD patients
that share the same sickle point mutation in HbS (Sickle
Hemoglobin) present with heterogeneous clinical manifestation.
One potential source of this heterogeneity may result from the
phenotypic variations among RBC population within the same
individual. Different RBCs vary significantly in their structure
(Picas et al., 2013), density, adhesion, deformity and their
response to various treatments (Wang et al., 2013; Alapan et al.,
2014). However, RBC heterogeneity may also impact variation in
hemolysis, vascular blockage, and clinical manifestation. For
example, “dense cells” represent a small population of RBCs but
have much higher cellular density often postulated to block
microcirculation (Rodgers et al., 1985). Additionally, another
RBC population, “F cells,” express fetal hemoglobin and have the
ability to inhibit HbS polymerization. Many therapeutic approaches
for SCD aim to increase HbF expression and the percentage of F
cells. While we know such phenotypic heterogeneity among SCD
patients exists we do not have effective methods to accurately
characterize RBC heterogeneity, which in turn prevents the
functional association of SCD risk alleles with the disease or the
development of novel therapeutics.

RBC is routinely used for blood transfusion with more than
100 million units of blood collected worldwide annually
(Organization 2014). Standard blood bank protocols allow for
the storage of RBCs up to 42 days prior to transfusion. There are
conflicting reports whether the RBC quality decreases
proportionally as storage time increases, and whether poor
clinical outcomes are associated with in the recipients of
stored RBC (Tinmouth et al., 2006; Kim Shapiro et al., 2011;
Berezina et al., 2002; D’Alessandro et al., 2015). These storage-
related issues may be associated with various molecular and
biochemical alterations during storage. These storage-
associated changes, often collectively referred to as the
“storage lesion” (Wolfe 1985), include morphological
alteration, biochemical alternations (reduced ATP, 2,3-
diphosphoglycerate, and glutathione), decreased oxygen
delivery capacity, acidosis, altered cation homeostasis,
phosphatidylserine exposure, and oxidative damage (Kim-
Shapiro et al., 2011; Berezina et al., 2002; D’Alessandro et al.,
2015; D’Alessandro et al., 2010; Bennett-Guerrero et al., 2007). In
addition, the storage of red cell is associated with changes in optic
density, which can be used to separate fresh and stored RBC (Park
et al., 2019; Park et al., 2021). Interestingly, some of these storage-
associated changes are also observed during the physiological

RBC aging (Antonelou et al., 2010), raising the possibility that ex
vivo storage can be a model to investigate RBC aging. Regardless,
little is known about the transcriptomic characteristics that drive
the phenotypic differences of RBCs.

Given that mature human RBCs lose their nuclei during
differentiation, the conventional belief has been that erythrocytes
do not contain any nucleic acids. Contrary to this traditional belief, we
discovered that human erythrocytes contain abundant and diverse
species of microRNAs and other mRNA transcripts, a finding that
has been validated by others (Rathjen et al., 2006; Chen et al., 2008;
Xue et al., 2008; Sangokoya et al., 2010a; Kannan and Atreya 2010;
Azzouzi et al., 2015; Sarachana et al., 2015). Our analysis of
erythrocyte microRNAs identified a subgroup of HbSS with more
severe anemia due to the repression of NRF2 (Nuclear factor
erythroid 2-related factor 2) by the elevated expression of miR-
144 (Sangokoya et al., 2010b). This study also revealed the therapeutic
potential of NRF2 activation in sickle cell diseases (Doss et al., 2016;
Belcher et al., 2017). Besides microRNAs, recent evidence indicates
that mature RBCs have a significant number of large RNA species,
including mRNA and non-coding RNA (Doss et al., 2015).
Furthermore, we and other investigators have found that the RBC
storage is associated with significant changes in the RBC
transcriptome (Yang et al., 2018). However, these analyses used
bulk analysis of RNA that inherently masks the known
heterogeneous sub-populations of RBCs. New single cell analysis
is needed to overcome the limitations of the previous RBCpopulation
studies. Recent advances in transcriptome technology allows us to
capture a large number of individual cells to perform various genetic
analysis and reveal RBC heterogeneity that has previously been
masked in the bulk-cell analysis. For example, our own single cell
analyses of the malaria parasites have revealed the male- and female-
specific gametocytes (Walzer et al., 2018) and latent heterogeneity of
asexual stage of malaria parasites (Walzer et al., 2019). However, the
application of these single cell technology has yet to be applied to the
discovery and interpretation of RBC heterogeneity.

In this study, we performed single red cell RNA-Seq of circulating
RBC from three healthy donors that have been stored for one or
15 days. We found that the expression pattern of single RBCs clearly
separates into distinct cellular clusters, including a cluster of
reticulocytes with higher levels of RNA expression and a cluster
of F-cells. Additional cell clusters are characterized by the expression
ofACVR2B,HEMGN andNIX, Interestingly, the storage of RBCwas
associated an increase in the F-cell and ACVR2B cluster. We also
employed these scRNA-Seq data to examine the allelic expression of
different hemoglobin loci. Distinct subsets of RBCs express HBG2,
together with HBA1, HBA2 and HBB. Almost all the HBG2-
expressing F cells also express HBB, suggesting a bi-allelic
expression of the HBG2/HBB in most F-cells. These results reveal
novel insights into the gene expression regulation and heterogeneity
among individual RBCs.

MATERIALS AND METHODS

Blood Collection and RNA Purification
All studies were approved by the Institutional Review Board at
Emory University. Following informed consent, half unit of the
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whole blood from healthy adults was drawn into CPD-ADSOL
[AS-1] collection set and processed into leukodepleted packed
RBC units following standard procedures. Units were stored at
1–6°C in a monitored refrigerator. At day 1 and 15 of storage,
10 ml aliquots were removed via a sterile-docking device fitted
with a valve to ensure there was no re-entry of air, or other
contamination, into the RBC unit.

10X Genomics Drop-Seq for Single Red
Blood Cells Sequencing
Three pairs of blood units stored for one and 15 days were
submitted for analysis by the 10X Genomics Chromium
platform (Zheng et al., 2017). Libraries were prepared following
the 10x Genomics Single Cell 3’ Reagent Kits v2 User Guide.
Briefly, Single cells were dissociated, then washed and resuspended
in a 1x PBS/0.04% BSA solution, at a concentration of 1,000 cells/
ul. After size selection (<50um), the cell suspension was washed
with a 1x PBS/0.04% BSA solution to remove debris, clumps, dead
cells and contaminants, and a Cellometer (Nexcelom) was used to
determine the cell viability and concentration to normalize to 1 ×
106 cells/ml. We titered each prep to contain ~10,000 cells per
library. Cells were then combined with a master mix that contains
reverse transcription reagents. The gel beads carrying the Illumina
P7 and R2 primer, a 16bp 10x barcode, a 10bp randomer and a
poly-dT primer were loaded onto the chip, together with oil for the
emulsion reaction. The Chromium Controller partitions the cells
into nanoliter-scale gel beads in emulsion (GEMS) within which
reverse-transcription occurs. All cDNAs within a GEM, i.e., from
1 cell, share a common barcode. After the RT reaction, the GEMs
were broken and the full length cDNAs cleaned with both Silane
Dynabeads and SPRI beads. After purification, the cDNAs were
assayed on an Agilent 4200 TapeStation High Sensitivity D5000
ScreenTape for qualitative and quantitative analysis.

The cDNA was enzymatically sheared to a target size of
~200 bp and then sequencing libraries constructed. This
entailed end repair and A-tailing, adapter ligation, SPRI bead
clean-up, a sample index PCR, and further SPRI bead clean-ups.
The sample index PCR adds a unique sample index for sample
multiplexing during sequencing, and Illumina P5 and R1 primer
site addition. The final libraries contain P5 and P7 primers used
in Illumina bridge amplification. Sequence was generated using
paired end sequencing (one end to generate cell specific, barcoded
sequence and the other to generate sequence of the expressed
poly-A tailed mRNA) on an Illumina sequencing platform
(NextSeq 4000).

Data Analysis
The primary analytical pipeline for the SC analysis followed the
recommended protocols from 10X Genomics. Briefly, we
processed the raw FASTQ files using Cell Ranger software
version 5.01. The first steps of this program demultiplex the
raw reads and align the reads to the 10X GRCh38 reference
transcriptome and gene expression matrices created for all single

cells in each sample. Due to the low RNA content of RBCs being
sequenced along with erythrocytes, the “--force-cells” parameter
of cellranger count was used to ensure capture of all RBC types.

The secondary statistical analysis was performed using R
statistical methodology, R package Seurat2, which performs
quality control and subsequent analyses on the gene expression
matrices produced by CellRanger. In Seurat data was first
normalized on the log scale after basic filtering for minimum
gene and cell observance frequency cut-offs. We then closely
examined the data and performed further filtering based on a
range of metrics in attempt to identify and exclude possible
multiplets (i.e. instances where more than 1 cell was present and
sequenced in a single emulsified gel bead (Setup the Seurat Object
2011). The additional removal of further technical artifacts was
performed using regression methods to reduce noise. After quality
control procedures were complete, we calculated principal
components using the most variably expressed genes in our
dataset (Setup the Seurat Object 2011). Significant principal
components for downstream analyses were determined through
methods mirroring those implemented by Macosko et al.
(Macosko et al., 2015), and these principal components were
carried forward for two main purposes: to perform cell clustering
and to enhance visualization. Cells were grouped into an optimal
number of clusters for de novo cell type discovery using Seurat’s
FindClusters () function (Setup the SeuratObject 2011), graph-based
clustering approach with visualization of cells being achieved by the
use of UMAP (McInnes et al., 2018), which reduced the information
captured in the selected significant principal components to two
dimensions, (McInnes et al., 2018). Differential expression of
relevant cell marker genes was visualized on UMAP plot to
reveal specific individual cell types.

Cell Trajectory Analysis
The cell trajectory analysis was performed using R package
Monocle2 that uses reversed graph embedding to describe
multiple fate decisions in a fully unsupervised manner (Qiu et al.,
2017). The dimensionality was reduced by performing a Principle
Components Analysis (PCA) followed by t-SNE to project cells into
two dimensions (Monocle2 Documentation [). Density peak
clustering, based on each cell’s local density (Ρ) and the nearest
distance (Δ) of a cell to another cell with higher distance, identifies
cell clusters in 2-D t-SNE space (Qiu et al., 2017). The top significant
genes across all clusters as input for the RGE algorithm were used to
define progress through the trajectory (Monocle2 Documentation).

RESULTS

Experimental Plans and Protocol
Optimization
To define the single cell transcriptome of circulating red cells, blood
samples were obtained from three healthy donors after consent
according to the Institute of Review Board at Emory University. The
blood samples were leukodepleted to remove leukocytes, washed and

1Cell Rangers of 10X Genomics. 2Seurat R Package.
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processed according to the protocols of American Red Cross.
Aliquots of three leukodepleted AS-1 packed RBC units were
sampled at day 1 (Day 1) and day 15 (D15) (Figure 1)
(Sangokoya et al., 2010c). Drop-Seq analysis was carried out
as recommended by 10x Genomics, but with a modification to
the number of amplification cycles. Since each RBC contains
significantly less RNA than regular nucleated cells, we
increased the number of amplification cycles to generate
cDNA library with broad size distribution, similar to other
nucleated cells. The thus generated cDNA libraries were
sequenced on an Illumina HiSeq 4000 at a mean depth of
58,061 reads/cell.

Overall Clustering Patterns Based on the
Gene Expression Patterns of Red Blood
Cells
The UMAP analysis we identified 21 different clusters that were
grouped into 7 cell types (Figure 1A) based on canonically

expressed genes (Supplementary Table S1) and the relative
levels of gene expression between the distinct clusters
(Figure 1B). The distribution of UMIs in each individual
cluster indicates that a small percentage of cells express
150–300 genes, include many ribosomal transcripts, while
other RBCs expressed as few as 30 genes. Based on canonical
and level of gene expression we annotated the transcriptionally
active cluster as reticulocytes and young RBCs, while the adjacent
lower expressing cluster represents mature RBCs. An
intermediate cluster was characterized by the cluster-specific
expression of large number of genes known to be expressed in
RBCs, include many ribosomal transcripts. Further, this cluster is
enriched for HBA1, HBA2 and HBM expression, which suggests
that this cluster represents transitioning reticulocytes to mature
RBCs (Figure 1A).

Next, we identified the cluster-specific genes (Supplementary
Table S2) to generate a heatmap (Supplementary Figure S1) that
further supported the further annotation of defined the RBC
clusters. For example, one cluster is highly enriched in the
expression of HBG2 and correspond to what are usually
known as F cells. In the healthy individual, F-cell is expected
to be present in 2–3% of the RBC, consistent with the 3.5% cells
found in our analysis.

While the remaining RBC clusters have similar gene
expression profiles they exhibit differential gene expression
that may define RBC subtypes or at least expression state.
For example, stratified clusters was enriched for expression of
ACVR2B, which encodes Activin receptor type-2B, a
transmembrane serine/threonine kinase receptor for activin.
Activins are dimeric growth and differentiation TGF-beta
family factors shown to regulate erythropoiesis. Luspatercept
Acvr2b (L79D)-Fc) is a novel treatment for transfusion-
dependent β-thalassemia patients that improves
erythropoiesis. Another RBC cluster differentially expresses
HEMGN, encoding hemogen or EDAG (Erythroid
differentiation associated). EDAG is homologous to mouse
Hemgn and rat RP59, is a hematopoietic specific
transcriptional regulator involved in cell proliferation,
differentiation, and apoptosis (Rodgers et al., 1985; Wang
et al., 2013; Alapan et al., 2014). Finally, another cluster via
its enriched expression of BNIP3L that encodes NIX which
essential for the mitochondria clearance during the terminal
differentiation of RBCs (Schweers et al., 2007; Sandoval et al.,
2008).

Hemoglobin Expression in Individual Red
Blood Cells
Given the importance of hemoglobins in RBC function, we
next examined the allelic expression of individual hemoglobin
transcripts in individual RBCs (Figure 2). We identified the
expression of the two human fetal (HBG2 and HBG1) globin
genes within our annotated clusters (Figure 1A;
Supplementary Figure S1A), including HbG2 encoding
fetal hemoglobin. Interestingly almost all RBCs in this
cluster also express HbB (Figure 2A). During the
hemoglobin switching, the locus control region (LCR) is

FIGURE 1 | The heterogeneous clusters of the circulating RBCs and the
number of expressed transcripts. Leukodepleted RBC units from three
different individuals were incubated at 4°C for one and 15 days. Aliquots of
RBCs were removed from the bag, centrifuged, subjected to the single
cell RNA-Seq pipeline of Chromium. (A) The UMAP presentation of the
heterogeneous clusters of RBCs with the clusters identified by expressed
UMIs (B) and cluster-specific genes.
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supposed to switch from the fetal HbG locus to adult HbB
(Sankaran and Orkin 2013). Since each LCR can interact with
and activate the expression of either HbG2 or HbB gene at a
time (Wijgerde et al., 1995), these data suggest that only one Hb
allele has been switched from HBG2 to HBB, while the other
allele still maintains the HBG2 expression. These results suggest
an allelic specific hemoglobin switching in all the
individual RBCs.

Other than F cells, almost all remaining RBC express both HBA2
and HBB (Figure 2B). Although most RBCs expressing HBA2 also
express HBA1, a small portion of RBC cells in different RBC clusters
only expressed HBA2 (Figures 2C,D, blue circle). These results

indicate a modest heterogeneity in the allelic expression of the two
HbA loci among different RBCs. The significance of such difference
will require further exploration.

The Changes of the Red Blood Cell
Clustering During Red Blood Cell Storage
Next, we determined the effects of storage on RBC clustering by
comparing the expression of day 1 vs. day 15 samples. As shown in
Figure 3A, both day 1 and day 15 samples were well represented in
each cluster of RBCs, indicating a similar RBC heterogeneity and
lack of day-specific artifacts in the expression of RBCs. However,

FIGURE 2 | The comparisons and correlations of different hemoglobin genes in the individual RBCs. Pairwise comparison of hemoglobin genes within the overall
UMAP projection including (A)HBB vs. HBG2 (B)HBA1 vs., HBG2 (C)HBA2 vs. HBA1 and (D)HBB vs. HBA, where each gene is assigned a color red or green and the
intersection of expression is yellow, or the absence of expression is reflected in the primary gene color (right of each figure).
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when the frequency distribution within different RBC clusters was
compared between day 1 vs. day 15 samples, we noted that the
sizes of several clusters are different among the day 1 vs. 15
samples (Figure 3B). When the relative number of cells within
each cluster was compared between day 1 vs. 15 samples we
noticed an increase in the number of F-cell and ACVR2B cells
after 14 days of storage (Figure 3C). Enrichment in these RBC
cell types suggests that they respond differently to ex vivo
storage, which could have therapeutic implications and
requires further study.

Trajectory Analysis of Different Red Blood
Cell Clusters
Next, we performed in silico pseudotime trajectory analysis of
the three main RBC clusters, including the reticulocytes,
transitioning cells and mature RBCs. We found that the

differentiation path was derived from reticulocytes to
transitioning cells and finally mature RBC (Figure 4). This
is consistent with the expected differentiation paths between
these different RBC populations during terminal
differentiation.

DISCUSSION

In this study, we have established that single RBC RNA-Seq can
be used to identify heterogeneity among RBCs with seven distinct
cell clusters. Based on the cluster-specific expression, we
annotated reticulocytes and F cells as previously appreciated
RBC sub-population. However, such analysis also identified
some novel sub-populations which may suggest distinct RBC
populations.

Conventional wisdom held that the human mature RBC do
not contain DNA or RNA. However, during the past decade a
large number of studies have shown the presence of abundant
and diverse RNA species in the mature RBC (Chen et al., 2017).
Importantly, the RBC transcriptome can serve as biomarkers for
human diseases (Chen et al., 2017) and mediates the host-
pathogen interactions (Walzer and Chi, 2017) and
intercellular communication (Mantel et al., 2016).
Furthermore, RBCs are a major source of the cell-free
microRNAs that may complicate the findings of many blood-
based biomarkers (McDonald et al., 2011). Despite
overwhelming evidence, concerns remain as to whether RBC
RNAmay originate from contaminating reticulocytes. However,
the data we describe herein not only establishes that
reticulocytes express a diverse arrays of RNA species, but
trajectory analysis of our scRNA-Seq data suggests that we
can detect a continuum of expression from the reticulocytes
to transitioning cells to mature RBCs (Figure 4). Therefore, our
single cell analysis provides the most compelling evidence to
date for the existence of dynamic RBC transcriptome that can be
used for subtype analysis.

The RBC transcriptome has been used as biomarkers in a
wide of variety of human diseases, including SCD, thalassemia
and various auto-immune diseases (Chen et al., 2017). These
studies are based on the expression analysis of the bulk cell
analysis of the circulating RBCs or blood cells. The distinct
RBC clusters identified in this study may allow us to quantify a
specific cell population as novel biomarkers that would have
been masked by previous bulk-cell analyses. For example, F
cells have been used to monitor the severity and treatment
response of sickle cell disease. Our approach may allow us to
better characterize the proportion and distribution of RBCs in
these clusters that may change during disease processes or
treatments as more robust and reproducible source of
biomarkers that characterize these processes. Another
significant opportunity arising from our data is the
identification of “storage-associated” cluster frequency
differences that may represent the activation of specific
pathways to prolong the life span of RBCs and mimic the
“aging” processes. Further, the expression profile of yet other
clusters of cells from our analysis may yield insight into a

FIGURE 3 | The relationship between the RBC clusters and storage
times. (A) The indicated storage days of individual RBCs were projected into
the UMAP clusters of RBCs. (B) The UMAP presentation of the
heterogeneous clusters of separate RBCs which have been stored for
one (left) or 15 days (right). (C) The relative frequency of the seven
representative RBC clusters in day 1 vs. 15 showing an increase in ACVR2B
and F-cells in ex vivo stored RBCs.
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better understanding of the pathology of hemolytic anemia
because of their expression of auto-antigens or reduced anti-
stress capacity as reflected by their gene expression.

Some of the cluster-specific genes may suggest the distinct
development pathway of these RBCs as illustrated by the
cluster 5 (ACVR2B) and 6 (HEMGN). For example, cluster
6 is distinct based on the expression of HEMGN, encoding
hemogen or EDAG (Erythroid differentiation associated).
EDAG is homologous to mouse Hemgn and rat RP59, is a
hematopoietic specific transcriptional regulator involved in
cell proliferation, differentiation, and apoptosis (Rodgers et al.,
1985; Wang et al., 2013; Alapan et al., 2014). Overexpression of
EDAG induced erythroid differentiation of CD34 + cells
in vitro and in vivo using immunodeficient mice.
Conversely, EDAG knockdown reduced erythroid
differentiation in EPO-treated CD34 + cells. Another cluster
has elevated expression of ACVR2B, which encodes Activin
receptor type-2B Transmembrane serine/threonine kinase
activin receptor. The Fc fusion of ACVR2B can be used to
boost the late-stage erythrocyte (red blood cell) precursor cell
differentiation and maturation independent of EPO pathways
(Sherman et al., 2013; Attie et al., 2014). Finally, the cluster-
specific expression of BNIP3L, which encodes NIX essential
for the mitochondria clearance during the terminal
differentiation of RBCs (Schweers et al., 2007; Sandoval
et al., 2008). This cluster may, therefore, represent RBCs
with varying levels of NIX transcripts and mitochondrial
clearance.

Limitation of Red Blood Cell RNA
Transcriptome
It is important to point out some important limitation of our
study. First, given the lack of robust translation in mature RBCs,
the cluster-specific mRNAs we have identified may not be readily
lead to corresponding protein expression and functional
phenotypes. In addition, there are significantly fewer
transcripts per RBC, compared with the other nucleated cells.
This lower number of transcripts leads to a simpler principal
component structure, leading to a less robust clustering pattern
more easily effected by stochastic processes. Finally, our analysis
focus on polyA + mRNA, which is not the most abundant RNA
species in the mature RBC whereas the majority of the RBCs are
microRNAs and other small-sized RNA. Therefore, the
classification by the mRNAs may not fully capture RBC
heterogeneity as defined by the microRNA transcriptome.
Therefore, future works will incorporate the microRNA
expression patterns to further refine the RBC heterogeneity to
gain a better understanding of their functional relevance in the
developmental history and functional relevance.
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FIGURE 4 | Trajectory analysis of differentiating RBCs. In silico analysis of differentiating RBC from reticulocytes to transitioning cells and mature RBCs colored
separately.
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