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Single-cell RNA-seq analysis unveils a
prevalent epithelial/mesenchymal hybrid
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Abstract

Background: Organogenesis is crucial for proper organ formation during mammalian embryonic development.

However, the similarities and shared features between different organs and the cellular heterogeneity during this

process at single-cell resolution remain elusive.

Results: We perform single-cell RNA sequencing analysis of 1916 individual cells from eight organs and tissues of

E9.5 to E11.5 mouse embryos, namely, the forebrain, hindbrain, skin, heart, somite, lung, liver, and intestine. Based

on the regulatory activities rather than the expression patterns, all cells analyzed can be well classified into four major

groups with epithelial, mesodermal, hematopoietic, and neuronal identities. For different organs within the same group,

the similarities and differences of their features and developmental paths are revealed and reconstructed.

Conclusions: We identify mutual interactions between epithelial and mesenchymal cells and detect epithelial cells with

prevalent mesenchymal features during organogenesis, which are similar to the features of intermediate epithelial/

mesenchymal cells during tumorigenesis. The comprehensive transcriptome at single-cell resolution profiled in our study

paves the way for future mechanistic studies of the gene-regulatory networks governing mammalian organogenesis.

Keywords: Single-cell RNA-seq, Organogenesis, Interactions between mesenchyme and epithelium, Epithelial/

mesenchymal hybrid state

Background

During mammalian embryonic development, organogen-

esis is a crucial process leading to the diversification of

different organs and cell types. Organogenesis starts

when the neural tube is formed and the mesodermal

cells are segmented into somites. The onset of mouse or-

ganogenesis begins at approximately E8.0, and the buds

of all major organs are essentially formed at E9.5. Along

with development, interactions between epithelium and

mesenchyme are crucial for the proper development of

all organs with epithelial parenchyma [1]. Through inter-

actions with the mesenchyme, epithelial identity is

induced and specified [2, 3]. Another important cellular

mechanism characterizing embryonic development is

the epithelial-mesenchymal transition (EMT), which is

involved in many developmental processes (for instance,

gastrulation, neural crest development, and somite dis-

sociation) [4–6]. Through EMT, cells transit from the

epithelial state to the mesenchymal state, acquiring a mi-

gratory and invasive feature. However, instead of a single

binary switch between the full epithelial and full mesen-

chymal states, EMT is a process that consists of multiple

and dynamic intermediate phases. Cells are able to linger

in intermediate stages and frequently present an epithe-

lial/mesenchymal (E/M) hybrid state [7].

Recently, the transcript diversity from gastrulation

through organogenesis of mammalian embryos has been

studied by bulk-cell RNA-seq [8–11]. However, few studies

have focused on cellular heterogeneity among organs at

single-cell resolution, especially during the early stages of
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organogenesis. Although there are some single-cell RNA-

seq data of organs from different groups’ efforts to dissect

the transcriptome of mouse organogenesis [12–15], the or-

gans used were not from the same stages or the same em-

bryos, resulting in sampling and technical variations

among studies. Therefore, a parallel analysis of single cells

from different organs within the same mouse embryo is

more appropriate for eliminating the batch effect, sampling

variation, and other technological biases.

Many studies based on single-cell RNA-seq used gene ex-

pression matrices to perform clustering analyses [16–18].

Generally, genes that contribute to cellular phenotypes can

be divided into two classes: “realizer” genes, such as those

encoding enzymes, cytoskeletal proteins, etc., and regula-

tory genes, including those encoding transcription factors

(TFs) and co-factors [19–21]. Realizer genes directly main-

tain the cellular physiological phenotype, so their expres-

sion pattern more likely reflects functional similarities,

while regulatory genes regulate realizer genes to affect the

cellular phenotype, which makes them more specific and

crucial to the identity and function of the cells [22].

In this study, we mainly used regulatory activity-based

methods, assisted by expression patterns, to reveal the

evolutionary or developmental relationships of various

organs and cell types during mouse organogenesis. Spe-

cifically, we analyzed 1916 individual cells from eight or-

gans or tissues of seven E9.5–E11.5 mouse embryos.

Our results reveal the expression patterns and develop-

mental paths of distinct organs and many interactions

between distinct cell types. Additionally, we detect an E/

M hybrid state in epithelial cells during organogenesis,

whose molecular features are shared by tumor cells dur-

ing tumorigenesis. Thus, our work provides a single-cell

resolution resource for the transcriptomic features of

early mouse organogenesis and paves the way for future

functional studies of lineage formation and differenti-

ation for each major organ in mammals.

Results

Developmental landscape of mouse organogenesis

To study the organogenesis of multiple organs at single-

cell resolution, we sequenced 1916 single cells from eight

major organs and tissues, namely, the forebrain, hindbrain,

skin, heart, somite, intestine, liver, and lung, from three

E9.5, two E10.5, and two E11.5 mouse embryos (Fig. 1a).

After stringent filtering, 1819 single cells with high quality

were obtained to conduct subsequent analyses. On aver-

age, 6361 genes and 0.43 million unique molecular identi-

fier (UMI) transcripts were detected in each individual cell

(Additional file 1: Figure S1a). Cells sampled from differ-

ent embryos were mixed well, and no batch effect was

detected, as shown in the t-distributed stochastic neigh-

bor embedding (t-SNE) plot (Fig. 1b; Additional file 1:

Figure S1c and S1d). We also conducted a saturation

analysis to make sure that the sequencing depth was

sufficient for the subsequent analyses. As shown in

Additional file 1: Figure S1b, from just half of the original

reads, we could still detect 90% of the expressed genes

compared with using all of the original reads. This indi-

cates that the current sequencing depth was sufficient for

the subsequent analyses.

To explore the evolutionary or developmental relation-

ships among organs, we used SCENIC [23] to map gene-

regulatory networks (GRNs) from our single-cell RNA-seq

data. SCENIC is an algorithm that can reconstruct GRNs

and identify stable cell states (see Methods). We performed

an unsupervised clustering analysis adjusted by the random

forest algorithm using a binary regulon activity matrix gen-

erated by SCENIC (we will call this the regulon matrix for

convenience) and a gene expression matrix.

Four major groups were determined through the regu-

lon matrix, and their differentially expressed genes (DEGs)

were also identified (Fig. 1c and d). Based on the top TFs,

gene markers, and enriched terms (Additional file 1:

Figure S1e), we assigned these four major groups as

hematopoietic cells, where TFs such as Gata1, Tal1,

Runx1, and Klf1 were specifically active; neuronal cells,

which specifically activate TFs such as Sox2, Sox21, and

Pax6; epithelial cells, exhibiting high expression of genes

that are crucial for epithelial cells, such as Epcam, Cldn6,

Cldn7, and Cdh1; and mesoderm-derived cells, expressing

marker genes including Col3a1, Pcolce, and Cdh11. As ex-

pected, most of the hematopoietic cells were sampled

from the liver, because during this developmental period,

erythro-myeloid progenitors (EMPs) seed the fetal liver

and execute hematopoiesis. Neuronal cells were mainly

composed of cells sampled from forebrain and hindbrain,

except several cells from the somites and intestine. Epithe-

lial cells were exclusively composed of cells sampled from

three endoderm organs (intestine, liver, and lung) and one

ectoderm organ (skin). Mesenchymal cells of these four

organs were included in the mesoderm-derived cell group,

as were cells of mesoderm organs (heart and somites).

On the other hand, expression matrix-based clustering

generated a similar pattern as revealed in the t-SNE and

the hierarchy tree, indicating the accuracy of clustering by

the regulon matrix (Additional file 1: Figure S1c). However,

the hierarchy clustering based on the regulon matrix was

more reasonable in some details compared with that based

on the expression matrix. For example, in the hierarchy

tree constructed by the expression matrix, some heart cells

(cardiomyocytes) were rooted outside the epithelial cells

and mesoderm-derived cells, while all mesoderm-derived

cells were in the mesoderm-derived cell group when using

the regulon matrix. Thus, as mentioned in the Background,

instead of evolutionary or developmental relatedness, hier-

archy clustering based on the expression matrix more

likely reflected functional similarities. Given that, we used
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the developmental hierarchy constructed from the regulon

matrix to carry out the subsequent analyses, and the ex-

pression matrix was important for complementarity.

Development of epithelial cells and interactions between

mesenchyme and epithelium

In our data, we captured epithelial cells from four organs

composed of epithelial parenchyma, namely, intestine,

liver, lung, and skin, as well as their mesenchymal coun-

terparts. The first two axes of our principal component

analysis (PCA) well separated epithelial and mesenchymal

cells as distinct cell types (Fig. 2a). These data provided a

valuable chance to identify the interactions between epi-

thelium and mesenchyme, one of the fundamental devel-

opmental mechanisms responsible for the development of

the majority of organs [1].

a

b

d

c

Fig. 1 Global patterns of single-cell expression profiles and the identification of cell types. a Schematic of the sampling position (left) and sampling

information (right) of each mouse organ and tissue. b Regulon matrix-based t-distributed stochastic neighbor embedding (t-SNE) plot showing the

origin and embryonic stage of the cells. Organ types are indicated by colors, and developmental stages are indicated by shapes. The major groups

identified are circled and annotated. c Hierarchical clustering through the regulon matrix showing the relationships of cells sampled from different

organs and major groups identified by the regulon matrix. d Heatmaps showing the top 10 group-specific transcription factors (TFs, left) and differentially

expressed genes (DEGs, right) of each major group. The color key from blue to red indicates low to high gene expression or TF activity, respectively
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We reasoned that the organ-specific DEGs of either

epithelial or mesenchymal cells would represent specific

requirements for the development of a certain organ.

Moreover, for a certain organ, if some of the epithelial

DEGs and mesenchymal DEGs participated in the same

biological processes, these genes and biological processes

would provide valuable information on the putative inter-

action between epithelial and mesenchymal cells. Thus,

we first performed a differential expression analysis to

obtain the organ-specific DEGs for epithelial and mesen-

chymal cells (Fig. 2b; Additional file 1: Figure S2a). The

top organ-specific TFs also supported their identities

(Additional file 1: Figure S2b). Then, we used the Meta-

analysis workflow in Metascape [24] to combine these

organ-specific DEGs of epithelial and mesenchymal cells

to identify the shared pathways in which they participated.

Both cell type-specific and shared terms were enriched for

each organ, except skin, whose terms were nearly all mu-

tual for epithelial and mesenchymal cells (Additional file 1:

Figure S2c). Specifically, in the intestine, the shared terms

included digestive tract development and regulation of

cellular component movement; in the liver, retinoid

metabolism and transport and lipoprotein metabolism;

in the lungs, tube development and lung development;

and in the skin, Wnt signaling pathway, cell substrate

adhesion, and others. Actually, the shared DEGs be-

tween epithelial and mesenchymal cells had already

provided clear clues regarding their mutual regulation

(Fig. 2c). For example, the shared DEGs in the intestine,

Epcam and Cldn6, are both related to cell adhesion; in the

liver, Apoa1/2, Lpl, Rbp4,Ttr, and Apom are related to ret-

inoid metabolism and transport; in the lung, Mgp is in-

volved in bone mineralization, which is important for tube

development; and in the skin, Axin2, Col1a1, Dab2, Egr1,

a

c

b

Fig. 2 Interaction between epithelial and mesenchymal cells sampled from intestine, liver, lung, and skin. a Principal component analysis (PCA) of

epithelial and mesenchymal cells. Cell types are indicated by colors, and organ types are indicated by shapes. b Heatmaps showing the top 10

DEGs of epithelial (left) and mesenchymal (right) cells sampled from each organ. The color key from blue to red indicates low to high gene expression,

respectively. c Circos plots showing interaction between epithelial and mesenchymal cells. The shared genes are linked by purple lines, and the

different genes falling into the same term are linked by blue lines
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Wnt6, Sostdc1, and Wls are related to the Wnt signaling

pathway.

The preceding analyses were based on the whole organ,

which ignored the developmental factors. Thus, we next

investigated the molecular-developmental features of these

organs. Because of the limited resolution of the regulon

matrix, we used the expression matrix to conduct further

unsupervised clustering for epithelial cells of each organ.

Epithelial cells in each organ were split into two subclus-

ters, showing their developmental order (Fig. 3a). We also

performedPCA, and the first axis of the PCA ordered the

cells according to their developmental time in each of the

four organs (Fig. 3a). Meanwhile, the PCA also ordered

the subclusters and confirmed the accuracy of the further

clustering. We thus named them cluster 1 (early epithelial

cells) and cluster 2 (late epithelial cells). Apparently, dur-

ing these developmental stages, epithelial cells continu-

ously developed.

We wondered whether these organs possessed similar

developmental patterns. To explain the organ-specific

developmental direction, we used the Meta-analysis

workflow to combine DEGs between cluster 1 and clus-

ter 2 (Fig. 3b). Intestine and liver early epithelial cells

showed characteristics of movement, while lung and skin

early epithelial cells shared several terms related to the

cell cycle. Interestingly, epithelial cells of intestine clus-

ter 1 and liver cluster 1 shared many genes, indicating

similar developmental patterns at early stages (Fig. 3c).

In addition, these genes were enriched in terms related

to pluripotency and cell adhesion (Fig. 3d). On the other

hand, late epithelial cells (cluster 2) of these four organs

exhibited organ-specific developmental patterns (Fig. 3b).

For example, DEGs of intestine were enriched for terms

related to intestine absorption, fat and lipid digestion in

liver, lung alveolus development in lung, and sensory

perception of sound in skin.

Prevalent epithelial/mesenchymal hybrid state in

epithelial cells during mouse organogenesis

It is well known that the transition between epithelial

and mesenchymal features plays an important role in

embryonic development [6, 7, 25]. We asked whether

this critical cellular mechanism was also involved in the

development of the epithelial cells. Indeed, we found a

prevalent E/M hybrid state in the epithelial cells of all

four epithelial parenchyma organs. As revealed in Fig. 4a,

epithelial cells with high expression of epithelial markers,

such as Epcam, Cdh1, claudins, and cytokeratins, also

highly expressed Vim, Fn1, and Sparc (Sparc in right panel

of Fig. 1d), genes with mesenchymal characteristics. This

phenomenon was also validated by immunostaining: both

the mesenchymal markers Vim and Fn1 were co-

expressed with Cdh1, a typical epithelial marker (Fig. 4b;

Additional file 1: Figure S3a). The immunostaining of Fn1

was strong in intestine, liver, and lung epithelial cells

(Cdh1-positive cells in Fig. 4b), while in adult liver the

immunostaining of Fn1 was restricted to specific cells

(Additional file 1: Figure S3b), confirming that the

immunostaining of Fn1 in Fig. 4b was accurate.

Surprisingly, the classical EMT-inducting TFs (Snai1/

2, Zeb1/2, and Twist1/2) were barely expressed in these

epithelial cells, except for skin, where Snai2 and Twist1

were expressed at moderate levels in some cells (Fig. 5a).

In addition, when we checked the TF activity, Twist1/2

were not active in these cells (Fig. 5a). This was under-

standable, since these TFs were well known for their

ability to repress epithelial features [7]. However, these

epithelial cells still expressed epithelial markers. Thus,

the regulatory mechanism governing this hybrid state

might be different from classical EMT mechanisms. We

noticed that a TF, Grhl2, which protects the epithelial

phenotype [7, 26], was active in the epithelial cells of in-

testine, lung, and skin. GATA-binding protein 3

(GATA3) was also active, and previous evidence showed

that it could inhibit the miR-200 family and that it pro-

motes EMT [5]. Ovol genes were not highly expressed

across epithelia, though they were shown to stabilize the

hybrid E/M phenotype [27, 28]. Elf3 was expressed in

several epithelial cells, while Elf5 was not. Both Elf3 and

Elf5 were shown to be negative regulators of EMT [29].

In contrast, in the datasets of adult or mature epithelial

cells from intestine, liver, and E18 lung, they barely pre-

sented an E/M hybrid state (Fig. 5b) [15, 30, 31]. As a con-

trol, the immunostaining showed that the Epcam-positive

epithelial cells of adult intestine and lung were negative

for Vim as expected (Fig. 4c). This meant that the ob-

served E/M hybrid state only occurred at particular devel-

opmental stages in organs with epithelial parenchyma.

Since the transition between epithelial and mesenchy-

mal features has been associated with the cancer meta-

static cascade, we asked whether this kind of E/M hybrid

state was also prevalent in cancer cells. In two types of

carcinoma datasets, breast and lung cancers [32, 33], the

E/M hybrid state also existed (Fig. 5c). Given the similar

E/M hybrid pattern in developing epithelial organs and

carcinomas, we assumed that organs with carcinomas

might not create a novel mechanism to perform metas-

tasis; instead, they just utilize the mechanism that

already exists during normal embryonic development.

Therefore, it was crucial to understand what happens

during embryonic organogenesis and find the similarities

and differences in the E/M hybrid states between carcin-

oma metastasis and embryonic organogenesis.

We defined an epithelial score (E-score) by averaging

the expression of E-cadherin, ZO-1, claudins, occludin,

cytokeratins, and type IV collagen, and a mesenchymal

score (M-score) by averaging the expression of vimentin,

FSP-1, α-SMA, fibronectin, N-cadherin, and type I and
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)

Fig. 3 Development of epithelial cells sampled from intestine, liver, lung, and skin. a Principal component analysis (PCA) of epithelial cells

sampled from different organs (top). Clusters are indicated by colors, and developmental stages are indicated by shapes. Heatmaps showing the

top 10 DEGs of each cluster in different organs (bottom). The color key from blue to red indicates low to high gene expression, respectively. b

Heatmaps showing enrichment of DEGs of all early epithelial cells (cluster1, left) and all late epithelial cells (cluster2, right). The color key from gray

to brown indicates high to low P values, respectively. c Circos plots showing shared DEGs among clusters of epithelial cells. The shared genes are

linked by purple lines. d Enrichment network of shared DEGs between intestine1 and liver1. Each term is indicated by a circular node. The number

of input genes falling into that term is represented by the circle size and the cluster identities are represented by colors. P values based on –log10
are given in the brackets

a

b

c

Fig. 4 Prevalent epithelial/mesenchymal hybrid state in epithelial cells during organogenesis. a Heatmap showing the representative epithelial

and mesenchymal markers in epithelial and mesenchymal cells. The color key from blue to red indicates low to high gene expression,

respectively. b Immunostaining of Cdh1, Vim, and Fn1 in E11.5 intestine, liver, and lung. The white arrow indicates potential co-expression

of Cdh1 and Vim. c Immunostaining for Epcam and Vim in adult intestine and lung
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type III collagen (see Additional file 2 for gene list).

Interestingly, epithelial cells of different organs showed

different E/M characteristics during this developmental

stage, though they were all composed of epithelial paren-

chyma (Fig. 6a). Liver possessed the lowest E-score and

a moderate M-score, while lung had the lowest M-score and

a moderate E-score. The E- and M-scores of intestine and

skin seemed more scattered. A previous study proposed that

as the mesenchymal phenotype increases, stemness is ac-

quired during EMT [25, 34]. Thus, we also defined a stem-

ness score (S-score) by averaging all the genes of the Gene

Ontology (GO) term “stem cell population maintenance”

(GO: 0019827). When we ordered cells along the pseudode-

velopmental timeline as inferred from the PC1 axis in Fig. 3a,

a

c

b

Fig. 5 Expression pattern of representative EMT-related TFs and expression pattern of representative markers in late-stage or adult organs and

two carcinoma datasets. a Heatmaps showing the representative EMT-related TFs in epithelial and mesenchymal cells. The color key from blue to

red indicates low to high gene expression or TF activity, respectively. b Heatmaps showing the representative markers in adult intestine, adult

liver, and E18 lung [15, 30, 31]. c Scatterplots showing the expression of representative markers in two carcinoma datasets [32, 33]. Cells sampled

from different sources are represented by colors at the first plot of each dataset. For all plots, the x-axis measures the expression value of EPCAM,

and the y-axis measures the expression value of VIM. Cells whose expression values of both EPCAM and VIM exceed 2 are shadowed in blue, indicating

the potential E/M hybrid state. The expression values of representative markers are indicated by colors. The color key from gray to red indicates low to

high gene expression, respectively
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we did see clear patterns (Fig. 6b). Throughout the process

of development, all three scores of epithelial cells in the in-

testine and liver decreased, exhibiting a negative correlation

with the PC1 axis. This result was consistent with the above

finding that early epithelial cells (cluster 1) in these two or-

gans shared the most DEGs (Fig. 3c), which were

enriched in terms related to stemness and mesenchy-

mal features, such as signaling pathways regulating

pluripotency of stem cells, osteoblast differentiation, and

extracellular matrix organization. However, all three

scores for lung increased during development and showed

a positive correlation with the PC1 axis. This might be be-

cause organogenesis for lung begins during this period.

Since epithelial cells in lung at E18 barely expressed genes

underlying mesenchymal features such as Vim, Fn1, Cdh2,

and Co13a1, we expected that these three scores would

decrease later during development (Fig. 5b). We also rea-

soned that the intestine and liver would first show in-

creases in all these three scores before E9.5 and then

decreases, which was what we detected during E9.5–

E11.5. Although the E- and M-scores during development

for the skin epithelial cells did not change as in the other

three organs, the S-score did decrease during their devel-

opment. These results all show the remarkable plasticity

of epithelial cells during organogenesis. To conclude, this

E/M hybrid state seemed to be a common process in

endodermal organs with epithelial parenchyma, and the

E/M hybrid state had a positive correlation with stemness

in intestine, liver, and lung during organogenesis.

Next, we utilized the TF regulon activity obtained by

SCENIC to detect what TFs regulated these key epithe-

lial (Epcam and Cdh1) and mesenchymal markers (Vim,

Fn1, and Cdh2) in the four organs with epithelial paren-

chyma. Two criteria were used to identify the TFs: first,

we only kept co-expressed TFs with positive correla-

tions, i.e., potential activation associations; second, we

only kept TFs whose binding motif was over-represented

in the search space around the transcription start site

(TSS) of genes. As shown in Fig. 7a, these five markers

all had their specific TFs. In addition, several TFs could

regulate more than one marker. We further checked

their TF activity across the four organs and pruned TFs

with low activity. The remaining TFs are shown in

Fig. 7b. We only detected Grhl2 and Hnf4a as respon-

sible for the expression of Epcam in epithelial cells, and

these two TFs had different roles. Grhl2 regulated

Epcam and Cdh1 and was active in epithelial cells of the

intestine, lung, and skin but not the liver. The expres-

sion of Epcam in the liver was inferred to be regulated

by Hnf4a, which was also active in the intestine. Hnf1b

regulated both Cdh1 and Fn1, and it was limited to epi-

thelial cells of the intestine and liver. Epithelial cells of

the liver seemed quite different from the other three or-

gans in terms of TF activity. Meanwhile, the TFs that

were active in the liver were all shared with the intestine.

This might be one of the reasons why the intestine and

liver possessed similar E- and M-score patterns during

development as shown in Fig. 6b. For Cdh2, Fn1, and

a

b

Fig. 6 Epithelial, mesenchymal, and stemness scores of cells

sampled from intestine, liver, lung, and skin. a Scatterplots showing

the epithelial and mesenchymal scores for cells sampled from intestine,

liver, lung, and skin. Organs are indicated by colors, and cell types are

indicated by shapes. The x-axis represents the epithelial score, and the

y-axis represents the mesenchymal score. b Scatterplots showing the

changes in epithelial, mesenchymal, and stemness scores for epithelial

cells sampled from intestine, liver, lung, and skin during development,

as inferred by PC1 in Fig. 3a. The Pearson correlation coefficient between

each score and PC1 is calculated

Dong et al. Genome Biology  (2018) 19:31 Page 9 of 20



Fig. 7 Transcription factors (TFs) regulating key epithelial and mesenchymal markers. a TFs that positively regulate key epithelial and mesenchymal

markers. TFs on the left can regulate more than one marker, and marker-specific TFs are shown on the right. TFs and their targets are linked by lines. b

Heatmap showing the TF activity in epithelial and mesenchymal cells sampled from intestine, liver, lung, and skin. The color key from blue to red indicates

low to high TF activity, respectively. c Enrichment networks for target genes of Grhl2, Hnf1b, and Hnf4a. Their interactions are also indicated by arrows
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Vim, we did not identify epithelial cell-specific TFs, ex-

cept Hnf1b, which was shared by the intestine and liver.

We selected three epithelial cell-specific TFs, Grhl2,

Hnf4a, and Hnf1b, to explore their targets because only

Grhl2 and Hnf4a were identified to activate the important

epithelial gene Epcam, and Hnf1b regulated both Cdh1

and Fn1 (Fig. 7b and c). These three TFs were all self-

regulating and had strong interactions with each other.

Targets of Grhl2 and Hnf1b shared several enriched terms,

including tube development, epithelial cell differentiation,

and regulation of cell motility. Targets of Hnf1b were also

enriched in terms related to cell adhesion, such as cell-

matrix adhesion, which was related to mesenchymal fea-

tures. In addition, metabolism-related terms were enriched

among the targets of Hnf4a.

Development of hematopoietic cells

Blood cell synthesis already started to work at E7.25, be-

fore the emergence of hematopoietic stem cells (HSCs),

and this HSC-independent hematopoiesis was necessary

to sustain normal development during mouse early em-

bryogenesis [35]. This HSC-independent hematopoiesis

included two partially overlapping waves of progenitors,

the primitive and definitive progenitors. The definitive

progenitors seeded the fetal liver to initiate hematopoiesis,

and in our data, a large proportion of cells sampled from

the liver belonged to these populations. We captured

these two waves of hematopoietic cells, which were fur-

ther divided into five clusters (Fig. 8a and b). The expres-

sion patterns of DEGs confirmed the classification

accuracy. Based on known markers, we assigned these

clusters as a primitive macrophage cluster, as they

expressed Csf1r and Cx3cr1, and the majority of cells were

not from liver; a myeloid progenitor cluster, expressing

Itga2b and Adgrg1; an erythro-myeloid progenitor (EMP)

cluster expressing Kit; a definitive erythroid cluster (Sox6

and Bcl11a); and a primitive erythroid cluster (Hba-x)

(Fig. 8b and c). EMPs exhibited clear bi-potential differen-

tiation ability, as shown in the t-SNE plot (Fig. 8c).

Obtaining both primitive and definitive erythroid cells

provided a great opportunity to make comparisons be-

tween them (Fig. 8d). During this stage, primitive eryth-

roid cells had already taken part in the blood circulation,

while definitive erythroid cells were just differentiated

from EMPs and experienced expansion. We also identi-

fied several surface markers and TFs for further studies

of these cell types (Additional file 1: Figure S4a). All the

identified surface markers were highly expressed in de-

finitive erythroid cells. Also, both definitive and primi-

tive erythroid cells had their specifically expressed TFs,

for example, Bcl11a, Hmgb3, E2f4, Tfdp1, and Sox6 for

definitive erythroid cells, and Id3, Arid3a, Lmx1a, Tcf7l2,

and Sox11 for primitive erythroid cells. In particular,

Sox6 and Lmx1a were exclusively expressed in definitive

and primitive erythroid cells, respectively, even compared

with other hematopoietic cells. Sox6 was important for the

definitive erythroid maturation and suppressed the expres-

sion of embryonic globin genes, while Lmx1a positively

regulated the transcription of the insulin genes. We also

performed quantitative polymerase chain reaction

(qPCR) for five representative markers (Alas2, Slc4a1,

Bcl11a1, Cd47, Cd24a) to valid our identification. The

results were consistent with those of the single cell

RNA-seq (Additional file 1: Figure S4c).

Development of neuronal cells

We next analyzed neuronal cell development in the fore-

brain and hindbrain. By combining the regulon matrix

and the expression matrix, forebrain and hindbrain neur-

onal cells were further divided into five and four clusters,

respectively. Established markers and enriched terms let

us assign them into appropriate identities (Fig. 9a, b, and

e; Additional file 1: Figure S5a): for the forebrain, two

neuroepithelial cell clusters (NECs), one radial glial cell

cluster (RGC), one neuronal progenitor cell cluster

(NPC), and one interneuron precursor cell cluster (IPC);

and for the hindbrain, two RGCs and two NPCs. Cells

were substantially stretched across the PCA plot (Fig. 9a).

The first axis of the PCA explained the development of

neuronal cells in two organs, ordering cells during matur-

ation or differentiation, suggesting a largely common de-

velopmental route in these two sources of neuronal cells.

Thus, we reasoned that the gene expression underlying

developmental variation was shared by the two organs.

The DEGs ordered by developmental pseudotime also

supported this opinion: genes specifically expressed in

both early and late developmental stages were largely

shared by the two organs, and so were the enriched terms

(Fig. 9c, d, e, and f; Additional file 1: Figure S5a). Neuronal

cells of the forebrain and hindbrain at early stages both

expressed Id2, Id3, Hes1, Nes,Vim, and Sox2, which were

important for the differentiation of neuronal cells, while at

later stages they both expressed Stmn2 and Stmn3, which

encoded proteins regulating neuronal growth, as well

as several neuron markers, such as Tubb3 and Map2

(Fig. 9b; Additional file 1: Figure S5a).

However, the differences between forebrain and hind-

brain were also clear. First, the cell type composition was

quite different. At the later stage, IPCs expressing Dlx2,

Dlx5, Gad1, and Gad2 emerged in the forebrain but not

in the hindbrain (Fig. 9b). Second, the developmental pro-

cesses of the two organs were asynchronous. Even at E9.5,

all four cell types were detected in the hindbrain, while

this pattern was not seen in the forebrain. Instead, the ma-

jority of cells were NECs or RGCs, and specific cell types

were limited to a certain timeline in the forebrain, with

more mature cells only found at later stages (Fig. 9a).

However, it was interesting that, at later stages, neuronal
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cells of the forebrain seemed to be more mature than

those of the hindbrain, as evidenced by the expression of

the mature neuron markers Syp, Map2, and Rbfox3 and

the existence of interneuron cells (Fig. 9b). Third, the sec-

ond axis of PCA separated forebrain and hindbrain, im-

plying the existence of organ-specific gene expression

patterns between the two organs (Fig. 9a). Indeed, several

such genes were identified, for example, Foxg1 and Emx2

for forebrain, which are related to forebrain development

and regionalization, and En1, Wls, and Rfx4 for hindbrain,

which are related to hindbrain development and

regionalization (Additional file 1: Figure S5b and S5c).

Development of mesoderm organs (heart and somite)

Among the mesoderm-derived organs, we captured the

heart and the somites. Cells from the heart were classified

into six clusters within three cell types through the regu-

lon matrix: two cardiomyocyte clusters (CMs) on the basis

of high expression of Ttn and Myl1; two endothelial cell

clusters (EDs) specifically expressing Eng and Pecam1; and

a c

d

b

Fig. 8 Expression patterns of hematopoietic cells. a Expression-based t-SNE plot of hematopoietic cells. Cells sampled from different organs are

indicated by colors, and their developmental stages are indicated by shapes. b Heatmaps showing the top 10 DEGs of each cluster. The color key

from blue to red indicates low to high gene expression, respectively. c The expression of representative markers mapped on the t-SNE plot in a. d

Heatmaps showing the top 20 DEGs between definitive primitive erythroid cells
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two epicardial cell clusters (EPs), which specifically

expressed Upk1b, Upk3b, and Wt1 (Additional file 1:

Figure S6a). As expected, the two clusters within each of

the three cell types displayed a pattern of continuous de-

velopment. Cells in earlier clusters mainly consisted of

cells from E9.5 embryos, whereas cells in later clusters

mainly consisted of cells from E10.5 and E11.5 embryos.

We also compared the two clusters within each cell type

(Additional file 1: Figure S6b). Of the two CMs, the early

one highly expressed Sdf2l1, Creld2, Erp44, and

Tmem41b, while the later one highly expressed Rps20,

Pf4, Gm12657, and Pln. In the two EPs, genes such as

Ewsr1, Pkm, Lsp1, and Dkc1 were highly expressed in the

early one, while genes such as Clca3a1, Hpgd, Aldh1a2,

and S100a10 were highly expressed in the later one.

In addition, we captured the endothelial-mesenchymal

transition (End-MT) mainly in the ED2 cluster, which led

to the formation of the cardiac cushion (Fig. 10a and b).

We thus made comparison between End-MTand the E/M

hybrid state detected above. As shown in Fig. 10b,

ca d

b

fe

Fig. 9 Expression patterns of neuronal cells. a PCA plot showing the neuronal cells sampled from the forebrain and hindbrain. Cells from different

clusters are indicated by colors, and their developmental stages are indicated by shapes. Abbreviation information is shown on the bottom. b Violin

plots showing the expression of representative markers in each cluster. c Developmental pseudotime of forebrain cells inferred by Monocle2. Clusters

are indicated by colors. d Developmental pseudotime of hindbrain cells inferred by Monocle2. Clusters are indicated by colors. e Heatmaps showing

the DEGs of each cluster compared with all other clusters. Cells are arranged by the developmental pseudotime from c and d. f Heatmaps showing

enrichment of DEGs of each cluster. The color key from gray to brown indicates high to low P values, respectively
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endothelial cell clusters ED1 and ED2 expressed the clas-

sical EMT-inducing TF markers (Snai1/2, Zeb1/2 and

Twist1/2). However, the expression patterns were differ-

ent: Zeb1/2 expression was high in ED1, while Snai1/2

and Twist1/2 expression was high in ED2, suggesting dis-

tinct roles of these TFs in Endo-MT. With the upregula-

tion of Snai1/2 and Twist1/2 and downregulation of Zeb1/

2, the endothelial cells gradually lost endothelial markers

(e.g., Pecam1) and gained mesenchymal markers (e.g.,

Pdgfra). In contrast, we did not observe expression of these

genes in epithelial cells with the E/M hybrid state.

Several pathways participated in Endo-MT. For example,

cardiomyocytes secreted bone morphogenetic protein

(BMP) ligands to interact with the receptors on the target

cell surface to activate downstream genes through Smad

proteins; transforming growth factor beta (TGFβ) and

Notch signaling pathways were also activated to promote

Endo-MT. Transcription factors such as Hey2 and Gata4

were also important for this process. Again, no clear pat-

tern was seen in epithelial cells with E/M hybrid state.

Mesoderm-derived cells collected from the somites

were divided into five further clusters (Additional file 1:

Figure S7a and S7b). They developed from cells with a

dermomyotome feature (cluster 1) in two directions

as revealed by pseudotime analysis in Monocle2

(Additional file 1: Figure S7a). One was myotome

muscle cells (cluster 3), and the other was mesenchymal

sclerotomes (cluster 5). The first cluster consisted of cells

from E9.5 somites with dermomyotome features, express-

ing high levels of Prtg. During mouse somitogenesis, Prtg

a

b

Fig. 10 Expression patterns of representative markers during endothelial-to-mesenchymal transition (EndMT) in heart. a Schematic of EndMT and

the key markers and signaling pathways modified from Lim and Thiery [5]. b The expression of key markers and signaling pathways during EndMT

in heart. The epithelial clusters of intestine, liver, lung, and skin are also shown. The color key from gray to purple indicates low to high average

gene expression, respectively. The dot size indicates percentage of cells expressing a certain marker
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is restricted to the dorsal parts of the spinal cord (the roof

plate and neighboring cells) and of the somite (the dermo-

myotome). Cluster 2 was composed of skeletal muscle

cells because of its specific expression of Fos and Erg1,

which are related to skeletal muscle cell differentiation.

Cluster 3 included a population of muscle cells derived

from the myotome that highly expressed Tpm1 and

Tpm2. Cluster 4 showed features of a transitional state.

Cells in cluster 5 were presumably from the mesenchymal

sclerotome, as they expressed the sclerotome marker

Pax1, the mesenchymal gene Col3a1, and a series of Hox

genes, such as Hoxd11 and Hoxa11os (Additional file 1:

Figure S7b).

In addition, 10 somite cells were grouped into the

neuronal cell group. We thus compared these neuronal

cells sampled from the somites with the neuronal cells

from the brain and the somite mesoderm-derived cells

(Additional file 1: Figure S7c, S7d, and S7e). We noticed

that Neurod4 was highly expressed in the somite neur-

onal cells compared with the other two groups. Neurod4

is a member of the neurogenic differentiation factor

family and is involved in the Ngn2-regulated neuronal

differentiation pathway, which coordinates the onset of

cortical gene transcription. We used the Meta-analysis

workflow in Metascape to combine these two DEG sets

of the somite neuronal cells for comparison with the

other two groups. The shared enriched terms included

several neuronal development-related processes, the

Notch signaling pathway, and cell fate commitment.

Discussion
In this study, we systematically analyzed the transcrip-

tomic features in the major organs of E9.5 to E11.5 mouse

embryos at single-cell resolution. The gene and transcript

coverages make our data more sensitive than those at 10X

or Drop-Seq’s level, which makes our data more accurate

and comprehensive (Additional file 1: Figure S1a). The de-

velopmental characteristics revealed in various organs and

cell types broaden our horizons about mouse organogen-

esis and facilitate further deeper functional studies on

mammalian embryonic development.

We highlight the importance of regulon activity-based

methods to reveal evolutionary or developmental re-

latedness across multiple organs (Fig. 1a and b). As men-

tioned in several studies, the expression patterns of

realizer genes tend to reflect functional similarities,

while regulatory genes are more likely to assess the func-

tion of cells [19–22]. However, regulatory gene-based

methods also have shortcomings, for example, the lim-

ited resolution. It is difficult to detect weak developmen-

tal differences at a fine scale. Thus, in this study we first

used a regulon matrix constructed by SCENIC to per-

form the hierarchy clustering and then combined the

results with results from the expression matrix to reveal

subtle developmental relationships. Based on the regulon

activity, we obtained four major groups with epithelial,

mesodermal, hematopoietic, and neuronal features

(Fig. 1a and b). Subsequently, we comprehensively stud-

ied the transcriptomic and developmental features

within each of them.

We first focused on the development of epithelial cells

sampled from intestine, liver, lung, and skin. However,

due to the important role of mesenchymal cells in indu-

cing and specifying epithelial identity [1], it is necessary

to take mesenchymal cells into account when studying

the development of organs composed of epithelial paren-

chyma (Fig. 2a and b). Although several studies based on

bulk RNA-seq have already tried to identify the develop-

mental expression pattern of these organs [9–11], they

could hardly consider the mesenchymal effects. Even

worse, bulk data would lead to a mixed result of both

epithelial and mesenchymal cells, rather than the pure

development of a certain organ. Thus, our data reveal an

accurate and pure expression pattern in each of these organs

throughout development (Fig. 2a). In addition to the unique

expression pattern of these two cell types within each organ,

we identified the interactions between epithelial and mesen-

chymal cells, which guarantee the normal development of a

certain organ (Fig. 2b and c). The developmental compari-

son between these organs also provides a valuable resource

for others to study organ specification (Fig. 3).

Another noteworthy finding is the prevalent E/M hy-

brid state in epithelial cells. As shown in Fig. 4a, nearly

all epithelial cells during this stage co-expressed the epi-

thelial (Epcam, Cdh1, Cldn6, Krt18, etc.) and mesenchy-

mal (Vim, Fn1, Sparc, etc.) markers, exhibiting the E/M

hybrid phenomenon. The immunostaining results also

unambiguously validate this (Fig. 4b; Additional file 1:

Figure S3a). However, this phenomenon was not the

same as classical EMT events, in which typical TFs

(Zeb1/2, Twist1/2, Snai1/2, etc.) play crucial roles. These

TFs were barely expressed in the epithelial cells during

this developmental period (Fig. 5a). Additionally, this E/

M hybrid state was different from End-MT in heart

endothelial cells, as shown in Fig. 10b. In addition, adult

or mature epithelial cells did not show this E/M hybrid

state, as revealed in adult intestine cells, adult liver cells,

and E18 lung cells (Figs. 4c and 5b). Therefore, this E/M

hybrid state seems to be an important feature of epithe-

lial cells during organogenesis and may play a crucial

role in epithelial development, such as making them

move or migrate collectively, while keeping their epithe-

lial feature.

Surprisingly, this E/M hybrid state tended to be a

common process across the endodermal organs with the

epithelial parenchyma, because the epithelial cells of in-

testine and liver exhibit the pattern of E- and M-scores

gradually decreasing during E9.5–E11.5 (Fig. 6b). The
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epithelial cells of lung showed an opposite trend: E- and

M-scores gradually increased during this period. We

would expect a similar E- and M-score pattern as in the

intestine and liver to occur later, given that the lung or-

ganogenesis is in general later than the intestine and

liver organogenesis and that at E18 the E/M hybrid state

is no longer seen in the epithelial cells of lung (Fig. 5b).

However, the E- and M-scores of the skin epithelial cells

exhibited no correlation during E9.5–E11.5. Since the

skin is derived from the ectoderm, whether this could

reflect the differences between the ectodermal and endo-

dermal epithelial cells in terms of E/M features requires

further study.

Such an E/M hybrid state has also been reported in

tumorigenesis and circulating tumor cells (CTCs) [36].

We thus downloaded two single-cell RNA-seq datasets

of cancer [32, 33] to check whether this phenomenon

was also present in these datasets. Two carcinoma data-

sets (breast and lung cancer) also displayed a universal

E/M hybrid state with the co-expression of EPCAM and

VIM. However, there also existed several differences in

terms of the expression pattern of classical EMT-inducing

TFs (Zeb1/2, Twist1/2, and Snai1/2): the hybrid state in

lung cancer cells seemed to be more dependent on these

TFs in comparison with that in breast cancer. Considering

that these lung cancer cells were patient-derived xenograft

(PDX) tumor cells sampled from a lung adenocarcinoma

patient tumor xenograft, other human in vivo lung cancer

data should be checked for comparison.

A possible explanation for this E/M hybrid state is that

the E/M hybrid state lets cells acquire stemness and

more invasive features, as shown by several studies [25].

Indeed, we did see that the stemness score had a positive

correlation with the E- and M-scores (Fig. 6b). During

the process of development, these three scores all de-

creased in epithelial cells of the intestine and liver, while

they increased in the lung. Whether the similar E/M hy-

brid pattern in developing epithelial organs and carcin-

omas is regulated by similar mechanisms needs further

investigation. If the hypothesis we put forth above is

true, that carcinomas utilize the embryonic mechanism

to perform metastasis, it will be helpful for researchers

in studying cancer metastasis. They can simply examine

what happens to these organs during organogenesis.

The regulatory mechanisms underlying this E/M hy-

brid state are nonlinear, and they may involve different

levels, such as transcriptional control, epigenetic modifi-

cations, and alternative splicing [7]. We still think our

data can provide valuable insights into the hybrid state.

We identified several TFs that potentially regulate key

epithelial (Epcam and Cdh1) and mesenchymal (Vim,

Fn1, and Cdh2) markers in the four analyzed organs

with epithelial parenchyma. As shown in Fig. 7b, these

five markers were all regulated by several TFs. Among

these TFs, Grhl2 and Hnf4a were responsible for activat-

ing Epcam. However, they had different roles: Grhl2 reg-

ulated Epcam expression in epithelial cells of intestine,

lung, and skin, while Hnf4a regulated Epcam expression

in intestine and liver. Grhl2 is a key regulator of the E/

M hybrid state of lung cancer cells [28], and Hnf4a is

the master effector of mesenchymal-epithelial transition

(MET) and is able to maintain hepatocyte identity [37].

Another noteworthy TF is Hnf1b, which is active in epi-

thelial cells of intestine and liver and regulated both

Cdh1 and Fn1 (Fig. 7b). Hnf1b is a novel oncogene that

is able to induce cancerous phenotypes, EMT, and inva-

sive phenotypes [38]. These three TFs were all self-

regulating and interacted with each other (Fig. 7c).

Additionally, we captured two waves of HSC-independent

hematopoiesis. Our data show that the two partially overlap-

ping waves of progenitors, the primitive and definitive pro-

genitors, were unambiguously discriminated by single-cell

RNA-seq analysis. The differentiation of EMPs was also ob-

served in this study. Furthermore, by comparing primitive

and definitive erythroid cells, we identified several candidate

surface markers and TFs, which will be of great help for fu-

ture functional studies of the development of embryonic

erythroid cells. We also deeply explored the different devel-

opmental patterns between the forebrain and hindbrain.

The developmental processes of both forebrain and hind-

brain were characterized. However, the forebrain and hind-

brain neuronal cells were quite different in terms of cell

types, developmental routes, and expression patterns, indi-

cating temporal and spatial heterogeneity in the embryonic

brain. From heart, we captured the End-MT process in the

endothelial cells, which was quite different from the E/M

hybrid state identified above. End-MT depended on the

classical EMT-inducing TF markers (Snai1/2, Zeb1/2, and

Twist1/2) (Fig. 10b). In addition, from the somites, we ob-

tained several rare neuronal cells that were different from

the brain neuronal cells or other somite cells.

Conclusions

In summary, our study elucidates the transcriptome

landscape of mouse organogenesis from E9.5 to E11.5 at

single-cell resolution. We reveal many detailed biological

features of the major mouse organs, such as the develop-

mental features of each cell type and the expression pat-

terns of critical genes. Our data should be useful in

future functional studies of lineage formation and for

obtaining further insights into the molecular mecha-

nisms of mouse organogenesis.

Methods

Mouse embryo dissection and single-cell isolation

Cells were separated from the tissues and organs of E9.5–

E11.5 C57BL/6 J mouse embryos. Briefly, E9.5–E11.5 mouse

embryos were obtained by euthanizing pregnant mice and
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transferring the embryos to a petri dish containing fresh,

sterile Dulbecco’s phosphate-buffered saline (DPBS). The

embryos were washed extensively to remove any maternal

contaminants and excess blood. Then, the embryos were

placed in Dulbecco’s modified Eagle’s medium (DMEM)

containing 10% fetal bovine serum (FBS). The tissues and

organs used in this study included the forebrain, hindbrain,

skin, heart, liver, intestine, lung, and somites, which were

carefully separated with microdissecting forceps under a dis-

section microscope. These organs were digested with 0.05%

trypsin-ethylenediaminetetraacetic acid (EDTA) at 37 °C for

approximately 5 min, and then DMEM (containing 10%

FBS) was added to stop the digestion. The cells were then

further dissociated into single-cell suspensions by gentle pip-

etting with a mouth pipette.

Single-cell cDNA amplification and library construction

Single-cell cDNA amplification was carried out by using

the STRT protocol with several modifications to allow for

multiplexed single-cell RNA-seq. Briefly, after trypsiniza-

tion of each dissected organ and tissue to obtain the single

cells, a mouth pipette was used to pick single cells into 2

μL of cell lysis buffer in 200-μL PCR tubes, each contain-

ing 0.1 U/μL RNase Inhibitor (Takara, 2313B), 0.0475%

Triton X-100 (Sigma-Aldrich, X100), 2.5 μM deoxynu-

cleotide triphosphate (dNTP) mixture (Thermo, R0193)

and 2.5 μM barcode-reverse transcriptase (RT) primers

(TCAGACGTGTGCTCTTCCGATCT-XXXXXXXX-NN

NNNNNN-T25, where X represents the nucleotides of

the designed cell-specific barcodes and N represents the

unique molecular identifier [UMI], see Additional file 2).

To lyse the cells, the tube was first vortexed thoroughly

and placed in a thermocycler at 72 °C for 3 min to release

the linearized RNA molecules. Then, the reaction was im-

mediately quenched on ice. After the reaction was centri-

fuged, 2.85 μL of RT mixture (40 U SuperScript II reverse

transcriptase [Invitrogen, 18,064,071], 5 U RNase Inhibi-

tor, 5× Superscript II first-strand buffer, 25 mM dithio-

threitol [DTT], 5 M betaine [Sigma-Aldrich, B0300], 30

mM MgCl2 [Sigma-Aldrich, 63,020], and 1.75 μM tem-

plate switch oligo [TSO] primer [AAGCAGTGGTAT

CAACGCAGAGTACATrGrG+G, where rG represents

riboguanosine one (+G), and +G indicates the LNA-

modified guanosine]) were added into the single-cell

lysate. Reverse transcription was carried out in the

thermocycler at 25 °C for 5 min, 42 °C for 60 min, 50 °C

for 30 min, and then 70 °C for 10 min.

After reverse transcription, 7.5 μL of PCR mixture (6.25

μL 2× KAPA HiFi HotStart ReadyMix [KK2602], 300 nM

ISPCR oligo [AAGCAGTGGTATCAACGCAGAGT], and

1 μM 3′ Anchored oligo [GTGACTGGAGTTCA

GACGTGTGCTCTTCCGATC]) were added to each re-

action. The sample was amplified with four cycles of 98 °C

for 20 s, 65 °C for 30 s, and 72 °C for 5 min, followed by

10–15 cycles of 98 °C for 20 s, 67 °C for 15 s, and 72 °C

for 5 min; and finally 72 °C for 5 min.

The amplified samples with different barcodes (up to

96 barcodes) were pooled together. The pooled cDNAs

were first purified with DNA Clean & Concentrator-5

(DC2005; Vistech, Beijing, China) and eluted in 50 μL of

H2O. After the sample was further purified twice with

0.8× Ampure XP beads (Beckman, A63882), the cDNAs

were used for a second round of amplification with bio-

tinylated index primer (/Biotin/CAAGCAGAAGACGG

CATACGAGATindexGTGACTGGAGTTCAGACGTG

TGCTCTTCCGATC) and ISPCR oligo for an additional

four to five cycles. Subsequently, the biotinylated cDNAs

were again purified with 0.8× Ampure XP beads. Next,

the cDNAs were sheared into approximately 300-bp

fragments with a Covaris sonicator. The fragmented

cDNAs containing barcode and UMI sequences were

then enriched by using Dynabeads® MyOne™ Streptavi-

din C1 (Invitrogen, 65,002).

Libraries were prepared using KAPA Hyper Prep Kits

(KK8505). The NEB U-shaped adapter was used for

ligation. Finally, the adapter-ligated fragments were

amplified by using an Illumina QP2 primer (CAAGCA

GAAGACGGCATACGA) and a short universal primer

(AATGATACGGCGACCACCGAGATCTACACTCTTT

CCCTACACGAC) for 8–10 cycles. The libraries were

sequenced on an Illumina Hiseq4000 platform to gener-

ate 150-bp paired-end reads (sequenced by Novogene).

Processing of single-cell RNA-seq data

We first segregated raw reads on the basis of the informa-

tion from the cell-specific barcodes in read 2 of the

paired-end reads. Then, the TSO sequence and polyA tail

sequence in read 1 were trimmed with customized scripts.

Subsequently, sequences in read 1 that had low-quality

bases (N > 10%) or that were contaminated with adapters

were discarded. The stripped read 1 sequences were then

aligned to the mm10 mouse reference genome (University

of California, Santa Cruz, UCSC) using TopHat (version

2.0.12) [39]. We used htseq-count from the HTSeq pack-

age [40] to count uniquely mapped reads, which were then

grouped on the basis of the cell-specific barcodes. For

each gene, duplicated transcripts with identical UMIs were

removed. Finally, for each gene in each cell, the copy

number of the transcript was quantified on the basis of

the number of distinct UMIs of that gene.

In total, we sequenced 1916 single cells (see Additional file 3).

Cells with fewer than 2000 detected genes were re-

moved, leaving 1819 cells for downstream analysis. Be-

cause most of our single cells did not reach one million

UMIs, we used log2(TPM/10 + 1) rather than log2(TPM +

1), where TPM refers to transcripts per million, to

normalize the expression levels. This procedure prevented

each transcript from being counted multiple times.
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Saturation analysis of sequenced data

To make sure the sequencing depth of our dataset was

sufficient, we randomly selected one set of sequencing

data (which included 64 cells sampled from the E11.5 in-

testine) to down-sample the raw sequencing data to 10,

20, 30, 40, 50, 60, 70, 80, and 90% of its original data.

Next, we obtained the numbers of detected genes in

each of these down-sampling datasets and compared

them with the numbers of detected genes in the original

dataset. The results are shown in the boxplot in

Additional file 1: Figure S1b.

Nonlinear dimensional reduction (t-SNE) and clustering

based on the regulon matrix and the expression matrix

To explore the evolutionary or developmental relation-

ships among organs, we performed unsupervised cluster-

ing analysis adjusted by the random forest algorithm

using a binary regulon matrix and a gene expression

matrix. The regulon matrix was generated by SCENIC

[23] using UMI counts. SCENIC is an algorithm that

can reconstruct gene-regulatory networks (GRNs) and

identify stable cell states from single-cell RNA-seq data.

For details, access the website of SCENIC: http://aertslab.

org/#scenic. In brief, SCENIC first inferred co-expression

modules, which were subsequently trimmed by cis-

regulatory motif analyses, leaving a subset of pruned

modules termed regulons. SCENIC then scored all cells

for the activity of each regulon by calculating the en-

richment of the regulon as an area under the recovery

curve (AUC) across the ranking of all genes in a par-

ticular cell, whereby genes were ranked by their expres-

sion values. Finally, a binary regulon activity matrix was

obtained, and using this matrix, we carried out nonlin-

ear dimensional reduction (t-SNE) through the Rtsne

package in R.

For the expression matrix, we analyzed our 1819

single-cell data in the form of log2(TPM/10 + 1) expres-

sion values using the Seurat method [41] (for details, see

http://satijalab.org/seurat/). Specifically, genes were con-

sidered expressed only if their expression level was ≥ 1.

Genes expressed in < 3 cells and cells with ≤ 2000 de-

tected genes were discarded. Highly variable genes with

average expression > 1 and dispersion > 1 were used as

inputs for t-SNE analysis.

The clustering method was modified from Lake et al.

[42], and the scripts were also attached in the supplemen-

tal files of that paper. This method combined unsuper-

vised clustering to reveal heterogeneity in cell subtypes

and supervised classification to fine-tune clusters. Each

time, two clusters were obtained through this method. In

brief, (1) we first performed hierarchical clustering using

Pearson correlation distance metrics and obtained the first

two split clusters. If the input was the expression matrix,

the highly variable genes were first identified and then we

performed hierarchical clustering. (2) We then used a 10-

fold random forest feature selection to choose feature

genes dividing the two clusters. (3) Samples with internal

vote probabilities > 0.6 were selected for each class as the

training set to achieve an optimal classifier, which was used

to predict the rest of the samples. (4) We performed 100

runs of 10-fold random forest cross-validation (CV) and

discarded samples with internal vote probabilities < 0.55.

We used internal vote probabilities > 0.55 (higher than de-

fault = 0.5) as the cutoff to reduce the ambiguity of sample

voting. (5) To obtain more finely tuned clusters, steps 1–4

were recursively repeated on the newly formed classes. We

applied the classification method to both the regulon

matrix and the expression matrix. The hierarchy trees in

Fig. 1c and Additional file 1: Figure S1c were constructed

by the order of obtained clusters through this method.

Identification of top TFs, DEGs, and GO terms

To identify top-ranking TFs for a certain cluster, we aver-

aged the TFs of the binary regulon matrix for this cluster

and the rest. The ranking was set by the difference between

the average value of this cluster and the average value of

the rest. A bigger difference corresponded to a higher rank-

ing. For DEGs, analysis was carried out in Seurat. We used

the Seurat function find_all_markers (thresh.test = 1, tes-

t.use = “roc”) to identify unique cluster-specific marker

genes. For two given clusters, DEGs were identified by the

find.markers function with the following parameters: thre-

sh.use = 1, test.use = “roc”. For a certain gene, the roc test

generated a value ranging from 0 (for ‘random’) to 1 (for

‘perfect’), representing the ‘classification power’. Genes

with a fold change ≥ 2 or ≤ 0.5 and a power ≥ 0.4 were se-

lected. The pheatmap package in R was used to plot heat-

maps. Violin plots were generated using Seurat. Network

enrichment analysis was performed using Metascape [24]

(http://metascape.org/). The identified TFs and DEGs are

listed in Additional file 4.

For Fig. 7, we selected all the TFs that regulated at

least one of Epcam, Vim, Cdh1, Cdh2, and Fn1, as in-

ferred from the SCENIC analysis. Among these TFs,

Grhl2, Hnf1b, and Hnf4a tended to play important roles

in regulating the epithelial cells. We then extracted the

gene list that was regulated by these TFs to perform net-

work enrichment analysis using Metascape; the top 10

enriched terms are displayed in Fig. 7c.

Developmental pseudotime analysis

We used the Monocle2 package [43, 44] in R to deter-

mine the developmental pseudotimes of organs. Follow-

ing the Monocle vignette, we used UMI count data as

input and selected genes with high dispersion (more

than twice the fitted dispersion) for unsupervised order-

ing of the cells. The default settings were used for all

other parameters.
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Cell cycle analysis and identification of surface markers

and transcription factors

To perform cell cycle analysis, we used a previously de-

fined core gene set, including 43 G1/S and 54 G2/M genes

[45, 46]. The average expression of each gene set was cal-

culated as the corresponding score. Cells with a G1/S

score < 2 and a G2/M score < 2 were determined to be

quiescent; otherwise, they were deemed proliferative. Add-

itionally, proliferative cells with a G2/M score > G1/S

score were designated G2/M, whereas cells with a G1/S

score > G2/M score were designated G1/S. TFs were se-

lected from the 1485 TFs included in AnimalTFDB 2.0

[47], and surface markers were selected from the 261 cell

surface markers collected in a previous report [48].

Single-cell qRT-PCR

Additional single cells were collected from E11.5 liver

and E10.5 brain tissues. The single-cell reverse transcrip-

tion and cDNA amplification were carried out following

Smart-seq2 protocol. After the first round of purification

with 0.8× Ampure XP beads, the cDNA of each single

cell was quantified with qPCR of the housekeeping gene

(Gapdh) and selected genes (Alas2, Slc4a1, Bcl11a1,

Cd47, and Cd24a).

Immunofluorescence

The organs or embryos were fixed with 4% paraformal-

dehyde overnight at 4 °C and then dehydrated with 20%

sucrose solution overnight at 4 °C. After that, they were

embedded with Tissue-Tek® O.C.T. Compound (Sakura

#4583). Sections 6 μm thick were permeabilized in Tri-

ton X-100 (0.5% in PBS) for 30 min at room temperature

and incubated in blocking buffer (0.1% Triton X-100 and

10% donkey serum in PBS) for 90 min at room

temperature. Sections were incubated with diluted pri-

mary antibodies overnight at 4 °C and then with diluted

secondary antibodies (1:400) at room temperature for 2 h.

Finally, sections were immersed in ProLong Gold antifade

reagent with 4’,6-diamidino-2-phenylindole (DAPI, Invi-

trogen #1846939). Images were acquired using a confocal

laser scanning microscope (Leica TCS SP8, Leica Micro-

systems, Wetzlar, Germany). The primary antibodies used

in this study were mouse anti-E-cadherin (Abcam

#ab76055, 1:50 dilution), rabbit anti-vimentin antibody

(Abcam #ab92547, 1:50 dilution), and rabbit anti-

fibronectin antibody (Abcam #ab23750, 1:50 dilution).

Additional files

Additional file 1: Figure S1. Quality control of the dataset and the

characteristics of clusters. Figure S2. Interaction between epithelial and

mesenchymal cells sampled from intestine, liver, lung, and skin. Figure S3.

Immunostaining of Cdh1, Vim, and Fn1 in E9.5 and adult liver. Figure S4.

Comparison between definitive and primitive erythroid cells. Figure S5.

Comparison between neuronal cells sampled from forebrain and hindbrain.

Figure S6. Expression patterns of cells sampled from heart. Figure S7.

Expression patterns of cells sampled from somites. (PDF 17147 kb)

Additional file 2: Barcode-RT primer information, cell cycle gene list,

and E-, M- and S-score gene list. (XLSX 18 kb)

Additional file 3: Cell information and classification. (XLSX 270 kb)

Additional file 4: DEGs and top TFs among groups and clusters.

(XLSX 635 kb)
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