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Abstract

Differentiation of naïve CD4+ T cells into functionally distinct T helper subsets is crucial for the 

orchestration of immune responses. Due to extensive heterogeneity and multiple overlapping 

transcriptional programs in differentiating T cell populations, this process has remained a 
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challenge for systematic dissection in vivo. By using single-cell transcriptomics and computational 

analysis using a temporal mixtures of Gaussian processes model, termed GPfates, we 

reconstructed the developmental trajectories of Th1 and Tfh cells during blood-stage Plasmodium 

infection in mice. By tracking clonality using endogenous TCR sequences, we first demonstrated 

that Th1/Tfh bifurcation had occurred at both population and single-clone levels. Next, we 

identified genes whose expression was associated with Th1 or Tfh fates, and demonstrated a T-cell 

intrinsic role for Galectin-1 in supporting a Th1 differentiation. We also revealed the close 

molecular relationship between Th1 and IL-10-producing Tr1 cells in this infection. Th1 and Tfh 

fates emerged from a highly proliferative precursor that upregulated aerobic glycolysis and 

accelerated cell cycling as cytokine expression began. Dynamic gene expression of chemokine 

receptors around bifurcation predicted roles for cell-cell in driving Th1/Tfh fates. In particular, we 

found that precursor Th cells were coached towards a Th1 but not a Tfh fate by inflammatory 

monocytes. Thus, by integrating genomic and computational approaches, our study has provided 

two unique resources, a database www.PlasmoTH.org, which facilitates discovery of novel factors 

controlling Th1/Tfh fate commitment, and more generally, GPfates, a modelling framework for 

characterizing cell differentiation towards multiple fates.

Introduction

CD4+ T cells are key instructors of the immune system. They can display extensive 

phenotypic and functional diversity, by differentiating into a range of T helper (Th) subsets 

including Th1, Th2, Th17, Tfh, Th22, Treg and Th9 cells, that are distinguished mainly by 

cytokine and transcription factor expression profiles. Since Th cells can control infections 

and drive immune-mediated diseases there remains tremendous interest in the molecular 

mechanisms that mediate their in vivo differentiation.

Malaria, caused by the protozoan parasite Plasmodium, afflicted 212 million humans in 

2015 (1). Both Th1 responses (2) and Tfh-dependent antibody responses (3) can 

independently protect against malaria, and are elicited simultaneously in malaria-infected 

individuals (4), as well as in mice challenged with rodent-infective strains such as P. 

chabaudi chabaudi AS (PcAS) (5). However, the molecular relationships between Th1 and 

Tfh cells remain unclear during Plasmodium infection, and more generally during any 

immune challenge. A recent study has demonstrated that the unique T cell receptor of a 

naïve CD4+ T cell imparted a strong preference for either a Th1 or Tfh fate (6). 

Nevertheless, for many clones both fates could still emerge, implying that other 

mechanisms, such as internal stochasticity and cell-extrinsic factors also govern fate choices 

in vivo. Transcription factors including T-bet, Gata3, RORγT and Bcl6 have been reported 

to drive and stabilize Th fates, leading to their characterisation as “lineage-defining” 

molecules. This has tended to present Th differentiation as a choice between mutually 

exclusive linear pathways. However, transient co-expression of these transcription factors, 

e.g. of Bcl6/T-bet, and Foxp3/RORγT suggests that overlapping intermediate Th states also

exist in vivo. Moreover, substantial heterogeneity occurs in the kinetics of CD4+ T cell

responses, resulting in a complex mixture of intermediate states during differentiation,

which is not easily resolved via assessment of a small number of molecules.
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Conventional dendritic cells (cDCs) are the dominant initial source of antigenic signalling to 

naïve CD4+ T cells in secondary lymphoid tissues, for example in the spleens of 

Plasmodium-infected mice (7). In other models, it was shown that cDCs made long-lasting 

stable contacts with naïve CD4+ T cells to initiate priming (8). Once activated, CD4+ T cells 

regained motility, permitting further cellular interactions. Consistent with this observation, 

activated CD4+ T cells required further antigenic stimulation to optimize clonal expansion 

and Th differentiation (9); cDC were considered the most likely candidates, (8, 10), with 

other cell types remaining less explored. Studies of mice with altered monocytic responses 

suggested roles for these cells in CD4+ T cell priming, specifically in tissues with few cDCs 

(11). Other reports employed cDC-deficiency to illustrate that monocytes could activate 

naive CD4+ T cells (12). However, few in vivo studies have explored roles for monocytes in 

Th differentiation where cDC responses remain intact.

Here, we used single-cell RNA sequencing (scRNA-seq) to study Plasmodium-specific TCR 

transgenic CD4+ T (PbTII) cells during blood-stage PcAS infection in mice. We then 

employed a computational modelling strategy to reconstruct the molecular trajectories of 

Th1 and Tfh cells. Finally, we investigated cell-cell interactions based on dynamic 

expression of chemokines and their receptors, and examined roles for inflammatory 

monocytes in supporting activated CD4+ T cells towards a Th fate.

Results

scRNA-seq resolves Th1 and Tfh cell fates during Plasmodium infection in mice

We used scRNA-seq to elucidate the development and heterogeneity of Th1 and Tfh cells 

during PcAS infection (Figure 1A, Figure S1). We transferred naïve, proliferative dye-

labeled PbTII cells into congenic wild-type mice, and recovered them at days 2, 3, 4, and 7 

post-infection (p.i.) by cell sorting those expressing the early activation marker, CD69, or 

displaying dilution of the proliferative dye (Figure S2). Flow cytometric measurements of 

the canonical Th1 markers, T-bet (coded by Tbx21) and Interferon-γ, and Tfh markers, 

CXCR5 and Bcl6, indicated that these subsets emerged in parallel by day 7 p.i. (13, 14) 

(Figure 1B-D and S3). Notably, markers of Th2, Th17 or Treg subsets were not upregulated 

by PbTII cells (Figure S4).

Initially, we used principal component analysis (PCA) to explore the overall transcriptomic 

landscape of the PbTII cells (Figure S5A). The top principal components were strongly 

associated with the number of detected unique transcripts (reflective of mRNA content and 

proliferative status (Figure S5B)), and differentiation (Figures S5C and S6-7, Table S1). As 

expected, the variability related to previously established Th1 and Tfh gene expression 

signatures became more prominent with time, separating two subpopulations at day 7 (15) 

(Figure 1E-1F). Taken together, these results suggested a progressive commitment to Th1 

and Tfh fates, and indicated that single-cell transcriptomes could be used for estimating both 

proliferative states and degrees of differentiation of individual cells.
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Delineation of Th1 and Tfh trajectories using a Mixture of Gaussian Processes model

The results from the PCA suggested that variation in PbTII transcriptomes could be used to 

reconstruct the transcriptional programs that is underlying the Th1 and Tfh differentiation. 

To more explicitly model the temporal dynamics of this differentiation process, we 

developed GPfates, a temporal mixture model that builds on the Gaussian Process Latent 

Variable Model (GPLVM) (16) and Overlapping Mixtures of Gaussian Processes (OMGP) 

(17). Briefly, this approach is based on first reconstructing the differentiation trajectory from 

the observed data (“pseudotime”, Figure 2A-B), thereby establishing an order for the cells. 

While our model uses the sample time as prior information, the inferred orderings did not 

strictly adhere to the experimental time points (Figure S8). For example, cells from day 4 

p.i. were mixed with some of the cells from day 3 and day 7 at either end of the day 4

pseudotime distribution. This result is consistent with the idea that bulk assessments of cells

at specific time points fail to account for the heterogeneity and differential kinetics of

responses made by single cells. To assess the robustness of the established ordering, we

repeated this analysis without supplying the experimental sampling times to the model,

finding overall consistent results (Comp. Supp. Figure 8).

In a second step, GPfates uses the inferred temporal orders as input for a non-parametric 

time series mixture model (OMGP, (17)). This approach revealed two simultaneous trends 

emerging during pseudotime (Figure 2C-D), which separated from each other, indicating 

that a developmental bifurcation occurred.

In a third step, GPfates employs a change point model (Section 4.2 of the Computational 

Supplement), thereby facilitating to annotate pseudotime after bifurcation. The cell fate split 

appeared to initiate amongst early day 4 p.i. cells (in pseudo time, Figure 2C-D), an 

inference that was robust when using bootstrapped subsets of cells (Section 6.2 of 

Computational Supplement).

We found that differentially expressed genes between the identified trajectories were in 

agreement with known Th1/Tfh signature genes (15) (Figure 3A-B, and S9), strongly 

suggesting that the fitted mixture components corresponded to cells with Th1 and Tfh 

phenotypes. Notably, these bifurcation trends could not be identified by other published 

methods for reconstructing bifurcating single-cell trajectories (18–22) (Comp. Supp. Figure 

14). We also successfully applied GPfates to resolve bifurcation events in other published 

datasets, (Comp. Supp. Figure 11) (23, 24) (Comp. Supp. Figure 12), suggesting that our 

approach is more generally applicable for studying cellular differentiation using scRNA-seq 

data.

Lineage barcoding using endogenous TCR sequences reveals Th1/Tfh bifurcation from 

single CD4+ T cells

While the TCR transgenic approach employed in this study minimized the influence of TCR 

sequence variability on cell fate determination (6), the strain was Rag-sufficient, thus 

retaining potential for expression of diverse endogenous TCR chains in addition to the 

transgenic TCR. Sequence analysis of TCR transcripts in single PbTII cells confirmed 

universal expression of the PbTII Vα2 and Vβ12 chains (Supplementary Tables 2 & 3), as 
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well as highly diverse, though lower levels of expression of endogenous TCRα chains in 

many cells (Figure S10). Importantly, Rag-sufficient PbTII cells differentiated as effectively 

as Rag1-/- PbTII cells into both Th1 and Tfh cells (Figure S11), indicating that endogenous 

TCR sequences had not influenced Th fate bifurcation.

Given the vast combinatorial diversity of the endogenous TCR sequences, we employed 

these as unique molecular barcodes to identify ancestrally-related PbTII clones. We 

identified six clones comprising multiple sibling cells. Of these, two consisted of sibling 

cells that mapped close to the bifurcation point. For the remaining four clones, siblings 

exhibited highly diverging patterns of differentiation, with three sibling pairs falling at the 

extremities of the Th1-Tfh phenotype spectrum (Figure 3C). These results demonstrated that 

Th1/Tfh bifurcation had occurred at both population and at single clone levels in our system, 

with the progeny of a single cell populating both Th1 and Tfh compartments.

Transcriptional signatures associated with bifurcation of Th1 and Tfh fates

Next, we sought to identify genes whose expression differed between the Th1 and Tfh 

branches. We derived a bifurcation statistic to estimate the concordance with bifurcation for 

individual genes (see section 4.2 of the Computational Supplement text for details, Figure 

3D). Among the highest-ranking genes, the most common pattern was up-regulation along 

the Th1 branch (Figure 3D). This suggested that Tfh cells were in fact developmentally 

closer to the shared progenitor state than Th1 cells, since the Th1 fate involved up-regulation 

of numerous genes not expressed in either the progenitor or Tfh states.

To validate the robustness of these gene signatures and the timing of the bifurcation, we 

repeated the infection, and at days 0, 4 and 7 sequenced additional PbTII cells using the 

Smart-seq2 protocol (Figure 1A & S12A). A non-linear dimensionality reduction indicated 

that the single cells from both experiments populated similar transcriptional landscapes 

(Figure S12B) and that the subset-characteristic co-expression patterns of the bifurcating 

genes identified by GPfates emerged by day 7 (Figure S12C). Notably, the day 7 cells from 

each mouse could be separated into distinct Th1 and Tfh subpopulations using the top 

bifurcating genes (Figure S12D). These results indicated that the bifurcation-associated gene 

expression patterns were reproducible across experiments and sequencing platforms.

The highest-ranking transcription factors for the bifurcation included Tcf7 for the Tfh fate, 

and Id2 for the Th1 fate (Figure 3D & 3E). Tcf7 is required for T cell development, and has 

been recently shown to be instrumental for Tfh differentiation (25, 26). It also represented 

one of the rare genes defined by a decrease in expression when moving towards the Th1 fate. 

Id2 is an antagonist of Tcf7 and was recently identified as a key driver of Th1 responses 

(27). As expected, the hallmark Tfh transcription factor Bcl6 was also strongly associated 

with the Tfh fate. In Th1 cells, many bifurcating genes encoded immune-related receptors 

(Figure 3D-E), such as Cxcr6 (Figure S13A and S13B), Ifngr1 and S1pr1, which mediate 

egress from secondary lymphoid organs. This was consistent with the notion that Th1 cells 

can migrate to peripheral tissues and remain receptive to external signals. In contrast, the 

only bifurcating chemokine receptor associated with a Tfh fate was Cxcr5, which is 

important for trafficking into B cell follicles (28).
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Many of the bifurcating genes had no known role in Th differentiation. For example, lgals1 

(encoding Galectin-1), a molecule generally implicated in cDC (29) and Treg function (30), 

was unexpectedly upregulated in PbTII cells around bifurcation, and maintained along the 

Th1, but not the Tfh trajectory (Figure S14A). This observation was confirmed at protein 

level (Figure S14B). Next, comparison of Th1/Tfh fates in co-transferred WT and lgals1-/- 

PbTII cells during PcAS infection (Figure S14C) revealed a specific role for Galectin-1 in 

supporting Th1 but not Tfh fate (Figure S14D). Together, these data illustrate the potential 

for the GPfates model to enable identification of factors controlling Th1 and Tfh fates. 

Further examination of bifurcating genes is facilitated by the online database, 

www.PlasmoTH.org, accompanying this paper (Figure 3F).

Coinciding with Th1/Tfh differentiation, we also noted up-regulation of Il10 particularly in 

the Th1 branch (Figure S15A). Most of the Il10-expressing cells also expressed Ifng at equal 

or higher levels as those expressing Ifng alone (Figure S15B-C). These data revealed the 

development of Tr1 cells, defined as IL-10/IFNγ co-expressing CD4+ T cells. Given that 

Il10 expression was associated with the Th1 branch, this suggested that Tr1 cells were 

developmentally related to Th1 cells. Surprisingly, we found that aside from Il10, only two 

genes, Trib2 and BC017643, were differentially expressed between Il10/Ifng co-expressing 

Tr1 cells and Ifng-expressing Th1 cells (Figure S15D). Furthermore, a comparison of gene 

expression frequencies between Tr1 and Th1 cells, revealed a substantial degree of similarity 

across the genome (Figure S15E). Together these data strongly suggest that Tr1 cells derive 

directly from Th1 cells during blood-stage Plasmodium infection.

Pseudotemporal relationships between cell cycling, aerobic glycolysis and cytokine 

expression

Clonal expansion, increased aerobic glycolysis, and cytokine expression, are hallmarks of 

Th cell development whose temporal relationships with each other remain to be fully 

resolved in vivo. We noted that PbTII cells became highly proliferative around bifurcation, 

as shown by the upregulation of Mki67 (Figure 4A-B and S16A) and other known 

proliferation marker genes (31) (Figure S16B). This correlated with cell cycle activity, as 

inferred from the scRNA-seq data using the Cyclone tool, and confirmed by flow cytometric 

measurements of DNA content and cell size (Figure 4C-D, Figure S16C). On Day 4 p.i., the 

cells also increased expression of genes associated with aerobic glycolysis but not oxidative 

phosphorylation (Figure 4F), an indication of increased metabolic requirements being met 

by glucose metabolism and increased mTORC1 activity. Consistent with this was the 

observed elevated levels of ribosomal protein S6 phosphorylation on day 4 p.i. (Figure 4E).

By day 4 p.i., PbTII cells had gone through several rounds of cell division with differing 

kinetics, and with some cells expressing IFNγ. By comparing Ifng-expressing and non-

expressing cells on day 4 p.i., we noted that early Ifng-expressing cells cycled faster and 

expressed aerobic glycolysis genes more highly than non-cytokine expressing counterparts 

(Figure 4G). Taken together, our data suggest that around bifurcation, PbTII cells exhibited a 

highly proliferative and metabolically active state, with those cells cycling fastest and 

exhibiting most glycolytic activity being the first to acquire the capacity to secrete IFNγ.
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Gene dynamics identifies potential decision-making molecules

To elucidate how PbTII cells transitioned from the proliferative precursor state to Th1 and 

Tfh fates we sought to resolve the hierarchy of gene expression before and during cell fate 

bifurcation. In addition to genes directly following the bifurcation trend, we reasoned that 

expression of genes encoding key decision-making molecules might also be likely to be 

dynamic and peak prior to the bifurcation. To identify these, we selected those genes 

displaying interesting non-linear trends in their expression patterns over pseudotime by 

Gaussian Process regression. This was achieved firstly via a D-statistic (model likelihood 

ratio) where each gene’s expression pattern over pseudotime was tested for variation 

unexplained by random noise (32). Based on the D-statistic (> 50.0, figure 5C) we identified 

2061 dynamic genes (Figure 5A). Secondly, we ordered these genes according to their peak 

expression time to provide a temporal overview (Figure 5A), and noted that a substantial 

fraction of them peaked around bifurcation. These included the Th1-driving genes Tbx21, 

Il2ra, and Il2rb, supporting our initial hypothesis. Moreover, cells around bifurcation also 

transcribed the highest number of genes compared to those at all other points in pseudotime 

(Figure 5B).

This model also infers the lengthscale of the dynamic model, namely the degree of fast-

acting behaviour over pseudotime (Figure 5C). Using this additional feature, we noted 

roughly equivalent dynamics for Tbx21, Il2ra and Il2rb. Furthermore, we noted similar 

dynamics, though with slightly later peak times, for the chemokine receptors, Cxcr5 and 

Cxcr3. Closer examination of all chemokine receptor genes also revealed peak expression 

around bifurcation for Ccr4, but not others (Figure S17). Given that Cxcr5 and Cxcr3 have 

been associated with Tfh and Th1 cells, respectively (10, 33, 34), and since they exhibited 

similar dynamics, we hypothesized these were competing receptors that directly influenced 

Th1/Tfh fate (Figure 5D). Indeed, assessment of Cxcr3/Cxcr5 co-expression around 

bifurcation revealed a substantial portion of cells expressing both receptors (Figure S18). 

Thus, our examination of gene expression dynamics revealed large numbers of genes being 

expressed and peaking around bifurcation, including not only those associated with clonal 

expansion, but also numerous sequentially-expressed transcription factors and receptors with 

potential to influence Th fate.

Monocytes support activated PbTII cells towards a Th1 but not a Tfh fate

Given similar dynamics and peak expression times for Cxcr3 and Cxcr5, and peak 

expression around bifurcation for Ccr4 (Figure S17), we reasoned that cell-cell interactions 

via these receptors controlled Th1/Tfh fate. Hence we considered cell-types that could 

control Th fate, specifically around bifurcation. Since B cells supported a Tfh fate (Figure 

S19), we hypothesized that co-ordinated action by myeloid cells provided competing signals 

to support a Th1 fate.

To study this, we examined splenic cDCs and inflammatory monocytes prior to PbTII 

bifurcation. We sorted CD8α+ and CD11b+ cDCs and Ly6Chi monocytes from naïve and 

infected mice (Figure S20) and performed scRNA-seq. PCA of cDCs distinguished the two 

naïve cell types along PC2 (Figure 6A & S21) with an efficiency consistent with recent data 

(35), and further highlighted a number of expected and previously unknown cDC subset-
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specific genes (Figure S22). We next compared naïve cDCs with those from infection 

(Figure 6A & S21), and separated these along PC6 (Figure 6A). Analysis of differential gene 

expression in cDCs due to infection identified 30 genes, 29 of which were upregulated 

(Figure 6B & S23), including transcription factors Stat1 and Irf1, and CXCR3-attractant 

chemokines Cxcl9 and Cxcl10. Notably, gene expression patterns amongst individual cDCs 

varied according to the gene. For example, Stat1 and Irf1 were expressed by several naïve 

cDCs, and further upregulated during infection (Figure 6C). This was similar for Cxcl9, 

which was expressed by CD8α+ cDCs in naive mice, while Cxcl10 was induced only upon 

infection (Figure 6C). These data suggested interactions between cDCs and uncommitted 

CXCR3+ PbTII cells, consistent with a recent study (10). Next, PCA of Ly6Chi monocytes 

from naïve and infected mice distinguished them from each other along PC2 (Figure 6D & 

S24). Differential gene expression analysis between naïve and infected groups uncovered 

~100 genes, both up- and down-regulated during infection (Figure 6E & S25). A high 

proportion (~40%) of genes upregulated in cDCs were also induced in Ly6Chi monocytes, 

including Stat1, Irf1, and Cxcl10 (Figure 6E & F), suggesting possible overlapping 

functionality. In addition, monocytes expressed other chemokines, including Cxcl2, Ccl2 

and Ccl3 (Figure 6E & F). Furthermore, specific examination of all immune cellular 

interaction genes (Figure S26) revealed emerging variable expression of Tnf, Cd40, Pdl1, 

Ccl4, Ccl5, Cxcl16, Cxcl9 and Cxcl11 in monocytes, thus suggesting complex cell-cell 

interactions for Ly6Chi monocytes during infection.

Since Cxcl9-11, Ccl2, Ccl3 and Ccl5 signal through Cxcr3 or Ccr4, which were expressed 

by activated PbTII cells, we next hypothesized that Ly6Chi monocytes, in addition to cDCs 

(10), interacted with PbTII cells and influenced Th1/Tfh fate. To test this, we first assessed 

chemokine expression at protein level by Ly6Chi monocytes (Figure 6G). Kinetics of 

CXCL9 production was similar in cDCs and Ly6Chi monocytes. Next, we employed 

LysMCre x iDTR mice, in which Ly6Chi monocytes were depleted after PbTII cell activation, 

but before bifurcation (Figure 6H, Figure S27). We noted a modest reduction in CD68+

splenic macrophages using this approach (Figure S27B). Using this approach, we found that 

monocytes/macrophages supported a Th1 but not a Tfh fate (Figure 6H). Together, our data 

support a model in which activated, PbTII cells are supported towards either a Tfh fate by B 

cells (Figure S19), or a Th1 fate by chemokine-expressing myeloid cells, including Ly6Chi 

inflammatory monocytes.

Discussion

By capturing single CD4+ T cell transcriptomes during an experimental malaria infection, 

and computationally reconstructing the course of events, we have resolved the bifurcation of 

naïve CD4+ T cells into Th1 and Tfh cells at a molecular level. Importantly, GPfates 

modelling of scRNA-seq data is not limited to immune cells or single bifurcation events. 

This model can also be combined with existing computational workflows, including 

alternative methods to estimate pseudo-temporal dynamics (19, 36) (see section 5.2 of the 

Computational Supplement). The GPfates approach permits analysis of cellular 

differentiation towards two fates (Comp. Supp. Figure 11), and in principle, towards 

multiple fates (Comp. Supp. Figure 12). However, GPfates exhibits some limitations. Most 

notably, the ability to identify and time bifurcation events is linked to changes in the 
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transcriptome that reflect these cellular decisions. In particular, because scRNA-seq profiles 

are subject to high levels of noise, this means that changes will only be detectable with some 

lag time (Computational Supplement). The processed expression data and the GPfates model 

presented in this study can be accessed at www.plasmoTH.org, where users can visualise 

their genes of interest.

Our data provide the framework for revealing molecular insights into the early stages of Th 

cell differentiation, and describe the sequence of transcriptional events before and after the 

bifurcation of Th1 and Tfh fates. Transcriptomic profiling previously suggested 

developmental similarities between Tfh and Th1 cells (37). However, highly immunogenic 

viral or bacterial infections induced CD4+ T cells to segregate into Bcl6+ (Tfh) or Blimp-1+

(Th1) subpopulations within two days (38, 39). In our parasitic model, single CD4+ T cell 

transcriptomes remained remarkably similar until four days of infection. Although it is 

difficult to directly compare infection models, we speculate that Plasmodium infection in 

mice may not drive Th bifurcation as early as observed with highly immunogenic viruses or 

bacteria, particularly given evidence of immune-suppression (40).

IL-10-producing Tr1 cells can suppress immune responses, which could aid the treatment of 

immune-mediated disorders (41), or be detrimental for chronic infections (42). Despite this, 

their relationship to Th1 cells is not clear (43). In our model, Tr1 cells emerged from the Th1 

trajectory. This observation, coupled with similar transcriptomes for Th1 and Tr1 cells 

provides evidence that Tr1 cells are highly related to, and derive directly from Th1 cells in 

this model. Thus, our modelling of scRNA-seq data revealed molecular relationships 

between Th1, Tr1 and Tfh cells, and showed that a single naïve CD4+ T cell can 

simultaneously give rise to more than one cell fate during experimental malaria.

Activated CD4+ T cells may experience different microenvironments within secondary 

lymphoid tissue. The observation that bifurcation towards Th1 and Tfh fates was preceded 

by upregulation of chemokine receptors prompted us to investigate possible cell-cell 

interactions with chemokine-expressing myeloid cells. Previous studies have highlighted the 

potential for cDCs in lymph nodes to produce Th1-associated chemokines (10). Our study, 

which focused on the spleen further implicated inflammatory monocytes in Th1 support. 

However, since our transgenic approach for depleting monocytes also removed a small 

portion of splenic red pulp macrophages, we cannot fully discount the possibility that they 

may partly contribute to a Th1 fate. Nevertheless, we propose that splenic monocytes/

macrophages influence bifurcation by supporting a Th1 fate during Plasmodium infection. 

Our studies emphasise that although cDCs are key for initiating CD4+T cell activation in the 

spleen, other myeloid cells can also promote a Th1 fate in the presence of cDCs. In contrast, 

given that CXCR5 was the only chemokine receptor significantly associated with bifurcation 

towards a Tfh fate, cellular interaction with B-cell follicles may be the primary mechanism 

for supporting a Tfh fate. Our model proposes that activated, uncommitted CD4+ T cells 

become receptive to competing chemoattractant signals from different zones of the spleen, 

and suggests intercellular communication as a major driver of bifurcation. However, 

upstream of these processes, internal stochasticity in uncommitted CD4+ T cells may control 

the balance of chemokine receptor expression. Future experiments combining our integrated 

single-cell genomics and computational modelling with in vivo positional and trafficking 
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data may reveal molecular relationships between internal stochasticity, migratory behaviour 

and Th cell fate.

Materials and Methods

Study design

The goal of this study was to use scRNA-seq to capture the transcriptomes of individual 

splenic PbTII cells at various time points during the first week of a blood-stage PcAS 

infection. Multiple mice were used for most time points to test for possible batch effects, 

with an independent experimental repeat performed on a different scRNA-seq platform. 

scRNA-seq data was modelled using Gaussian processes, with statistical testing for 

significance of both genes and cells associated with the Gaussian processes.

Experimental mice and infections

Wild-type and transgenic inbred mouse strains were housed, and employed in blood-stage 

Plasmodium infections, as described in the supplementary materials and methods.

Flow Cytometry

Splenocytes were isolated and assessed by flow cytometry as described in the supplementary 

materials and methods.

Single-cell mRNA sequencing

Single-cell capture and processing, as well as quality control analysis of scRNA-seq data 

was performed as described in the supplementary material and methods.

Statistics

Statistical analyses were conducted using R, or Python, or GraphPad prism. The types of 

statistical tests and significance levels are described in respective figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

Using single-cell RNA sequencing and computational modelling of temporal mixtures we 

resolve the developmental trajectories of Th1 versus Tfh cells during experimental 

malaria, and identify novel T cell-intrinsic and extrinsic factors that influence fate.
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Figure 1. Single-cell mRNA-sequencing of PbTII cells.
(A) PbTII cells were transferred from a single donor to multiple recipients. The numbers

denote single cells from which mRNA-seq data was successfully recorded. Numbers in

parentheses refer to the replicate experiment presented in Fig. S12.

(B-C) Representative FACS plots showing bifurcation of splenic Th1 (T-bet+IFNγ+) and Tfh

(Bcl6+CXCR5+) PbTII CD4+ T cells at day 7 post-infection with PcAS.

(D) Flow cytometry data indicate concurrent differentiation of Th1 (IFNγ+) and Tfh

(CXCR5+) PbTII CD4+T cells within the spleen of PcAS-infected mice (n=4). Index
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expression is the product of MFI (mean fluorescence intensity) and proportion IFNγ+ or 

CXCR5+. Data are representative of two independent experiments.

(E) PCA of single PbTII cells at day 7 post-infection with PcAS. The arrows represent

Pearson correlation with PC1 and PC2. Cell size refers to the number of detected genes.

“Th1 signature” and “Tfh signature” refer to cumulative expression of genes associated with

Th1 or Tfh phenotypes (total TPM of all genes in the set) (15).

(F) Expression levels of the leading 50 genes with the largest PC2 loadings at day 7 (D).

Genes were annotated either as Th1- or Tfh-associated based on public datasets (15, 37, 44,

45). *Cdk2ap2 appears twice because two alternative genomic annotations exist.
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Figure 2. GPfates modelling of bifurcation processes using scRNA-seq data.
(A) Overview of the analysis workflow that underlies GPfates, consisting of dimensionality

reduction of high-dimensional single-cell transcriptomes (left), inference of a pseudo

temporal ordering of the cells (middle) and the reconstruction of trajectories using temporal

mixture modelling (right). These individual steps build on models derived using the

Gaussian process framework. Once fitted, GPfates enables for different downstream

analyses, including cell orderings, bifurcation time point estimates and inference of the

genes that drive bifurcation events.

Lönnberg et al. Page 17



(B) Illustration of intermediate results obtained from GPfates. Left: a low-dimensional

representation as well as a pseudo temporal ordering of the cells is inferred using a non-

linear dimensionality reduction (Gaussian process latent variable model). Temporal

trajectories and bifurcations are then reconstructed using a temporal mixture model

(Overlapping Mixture of Gaussian Processes), with data-trend assignments per cell.

(C) The low-dimensional representation (2D) of the complete datasets (408 single-cell

transcriptomes). The blue line depicts the inferred progression of pseudotime. Text labels

illustrate features typical features of cells in the corresponding pseudotime region.

(D) Inference of two simultaneous trends based on the pseudotime using the temporal

mixture model.
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Figure 3. The relationship of known Th1 and Tfh transcriptomics signatures and the GPfates 
trajectories.
(A) Th1 and Tfh assignment probabilities of individual cells. For differential expression

analysis (B), Th1 and Tfh were defined as cells with assignment probability of ≥0.8 for the

respective trend.

(B) Differential expression patterns between cells assigned to Th1 and Tfh states. Shown are

fold differences (x-axis) and the corresponding adjusted pvalue (y-axis) of differential

expression for expressed genes (in at least 20% of cells). Statistical significance was
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determined using Wilcoxon rank sum test, with Benjamini & Hochberg correction for 

multiple testing. The horizontal and vertical dashed lines denote adjusted p-value of 0.05 

and twofold change, respectively.

(C) Parallel Th1 and Tfh differentiation within cells of a single CD4+ T cell clone. Colors

correspond to individual clones determined by sequence analysis of endogenous T cell

receptor genes (Supplementary Tables 2 and 3).

(D) Identification of genes associated with Th1 and Tfh trajectories. For each gene, shown is

the expression correlation with pseudotime (x-axis) versus the correlation with the Tfh trend

assignment (y-axis). Gene relevance was determined using the bifurcation statistic (methods,

Figure S9C). The top 248 bifurcating genes, with bifurcation statistic > 49, are represented

in colors according to the functional classification of the genes (Supplementary Methods and

Supplementary Table 4).

(E) Genes with the strongest association with Th1 or Tfh differentiation, filtered using the

bifurcation score as in (D). The genes are ranked in descending order of association with the

respective trend. Cdk2ap2 appears twice because of alternative genomic annotations.

(F) Web address for GPfates database, where the expression kinetics of genes of interest can

be visualized. Examples illustrate the top-ranking bifurcating genes from (E).
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Figure 4. The bifurcation of T cell fates is accompanied by changes in transcription, proliferation 
and metabolism.
(A) The expression kinetics of Mki67, encoding the proliferative marker Ki-67, as a function

of pseudotime.

(B) Representative FACS plots showing kinetics of CellTrace™ Violet (CTV) dilution and

Ki67, IFNγ or CXCR5 expression, with summary graphs showing % of PbTII cells

expressing these (after 106 PbTII cells transferred) in uninfected (Day 0) and PcAS-infected

mice at indicated days post-infection (n=4 mice/time point, with data from individual mice

shown in summary graphs; solid line in summary graphs indicates temporal trends fit using a

third order polynominal regression). Data are representative of two independent

experiments.

(C) Relative cell-cycle speed of PbTII cells, determined by measuring the fraction of cells in

S, G2, or M phases. Shown are results when allocating cells to cell cycle phases using flow

cytometry (Figure S16C) or computational assignments based on the scRNA-seq data.

(D) Cell size estimation using FSC (Forward Scatter) measurements of PbTII cells.

(E) Cellular metabolic activity of PbTII cells in naive mice (n=3) and at days 4 and 7 post-

infection (n=6) as determined by flow cytometric assessment of ribosomal protein S6

phosphorylation (p-S6). Histogram and proportions are representative of two independent

experiments. Statistics are one-way ANOVA and Tukey's multiple comparisons tests

***p<0.001.
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(F)Expression kinetics of genes associated with the cell cycle (251 genes derived from

Cyclebase (46), glycolysis (41 genes, GO:0006096) and oxidative phosphorylation (30

genes, GO:0006119) during PcAS infection. Shown are cumulative expression levels of

genes in the respective categories per single cell. Data from all cells and mice (Fig. 1A) were

pooled.

(G) Differential Expression analysis comparing the experiment-corrected expression of

genes associated with cell cycle (p-value < 10-103), glycolysis (p-value < 10-4) and oxidative

phosphorylation (p-value < 10-5) (F) in Ifng positive (≥10 TPM) and Ifng negative cells (<10

TPM) at day 4 post infection with PcAS from both experiments combined.
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Figure 5. Temporal gene expression dynamics during PcAS infection.
(A) Expression patterns over pseudotime shown for top 2061 dynamic genes, (defined by D-

statistic >50). Genes are ordered per peak expression time. Th1 and Tfh probability

trajectories from the GPfates OMGP model presented at the bottom to depict bifurcation and

provide temporal context between the gene expressions and cellular fates. Various

dynamically expressed immune receptors, transcription factors and secreted molecules are

annotated.
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(B) The relationship of transcriptional activity and the divergence of Th1 and Tfh fates. The

number of detected genes per cell is shown across pseudotime. The color of the data points

represents trend assignment probability (Fig. 2). Th1 and Tfh trajectories from the GPfates

OMGP model presented to depict relation to the bifurcating behaviour.

(C) Gene expression dynamics assessed using D-statistic and optimal Squared Exponential

kernel lengthscales. Genes with a D-statistic >50 selected as displaying non-linear

expression patterns over pseudotime. The optimal lengthscales of the squared exponential

kernels of the Gaussian Processes plotted on x-axis, where small values indicate that some

rapid change in expression over pseudotime occur.

(D) A model summarizing the expression patterns of key chemokine receptors and the

transcription factors Id2 and Tcf7 during Th1-Tfh cell fate determination. The size of the

cell represents proliferative capacity (Fig. 4A-F).
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Figure 6. Myeloid cells influence Th bifurcation in uncommitted PbTII cells.
(A-C) Splenic CD8α+ and CD11b+ CD8α- cDCs from a naïve mouse, mixed cDCs from an 

infected mouse, and (D-F) Ly6Chi monocytes from naïve and infected mice were analysed 

by scRNA-seq, with mRNA reads filtered by minimum expression of 100 TPM in at least 2 

cells. (A& D) PCA showing clustering of (A) cDCs or (D) monocytes. (B & E) Fold-change 

and confidence for differentially expressed genes (19) between infected and naive (B) cDCs 

or (E) monocytes; genes filtered on expression in >10 cells; genes satisfying qval < 0.05 are 

colored per function. (C& F) Differentially expressed genes (qval<0.05) in (C) cDCs and (F) 
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monocytes, between naive and infected mice: cells and genes are ordered according to PC 

score and loading respectively. Common genes between heatmaps are annotated in (F). (G) 

Representative FACS histograms and proportions of splenic CD8α+ cDCs, CD8α- cDCs and 

Ly6Chi monocytes expressing CXCL9 in naive and infected mice; data shows individual 

mice with line at mean, and is representative of two independent experiments (n=4 mice/

time point/experiment). (H) PbTII cells were transferred into LysMCre x iDTR mice 1 day 

prior to infection. At 3 days p.i., mice were treated with diphtheria toxin (DT) or saline. 

Proportions of Th1 (T-bethiIFNγ+) and Tfh (CXCR5+) PbTII cells at 7 days p.i.; data pooled 

from three independent experiments (n=5-6/experiment). Statistics: Mann-Whitney U Test. 

****p<0.0001; NS, not significant. (I) Summary model proposing chemokine interactions 

between non-bifurcated PbTII cells and myeloid cells support a Th1 fate, while B cells 

support a Tfh fate.
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