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Abstract It has been known that, the novel coronavirus, 2019-nCoV, which is considered similar to SARS-CoV,

invades human cells via the receptor angiotensin converting enzyme II (ACE2). Moreover, lung cells that have

ACE2 expression may be the main target cells during 2019-nCoV infection. However, some patients also exhibit

non-respiratory symptoms, such as kidney failure, implying that 2019-nCoV could also invade other organs. To

construct a risk map of different human organs, we analyzed the single-cell RNA sequencing (scRNA-seq) datasets

derived frommajor human physiological systems, including the respiratory, cardiovascular, digestive, and urinary

systems. Through scRNA-seq data analyses, we identified the organs at risk, such as lung, heart, esophagus,

kidney, bladder, and ileum, and located specific cell types (i.e., type II alveolar cells (AT2), myocardial cells,

proximal tubule cells of the kidney, ileum and esophagus epithelial cells, and bladder urothelial cells), which are

vulnerable to 2019-nCoV infection. Based on the findings, we constructed a risk map indicating the vulnerability of

different organs to 2019-nCoV infection. This study may provide potential clues for further investigation of the

pathogenesis and route of 2019-nCoV infection.
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Introduction

On January 30, 2020, the World Health Organization

(WHO) declared the novel coronavirus 2019-nCoV out-

breaks as a Public Health Emergency of International

Concern [1]. Experts and scientists worldwide are working

rapidly to expand scientific knowledge on this new virus.

In addition to respiratory symptoms, such as cough and

shortness of breath, clinical manifestations including

multiple organ failure were also observed, which is

unusual with other coronavirus infections.

The initial step of 2019-nCoV infection is its entrance

into human cells. The analysis of Xu et al. [2] showed that

the 2019-nCoV and the SARS-CoV share a common

ancestor that resembles the bat coronavirus HKU9-1.

These coronaviruses have very similar spike protein 3-D

structures that are considered to have strong binding

affinity to the human cell receptor, angiotensin-converting

enzyme 2 (ACE2). Therefore, the cells with ACE2

expression may act as target cells and thus are susceptible

to 2019-nCoV infection; such cells include type II alveolar

cells (AT2) of the lungs [3]. Hence, we believe that the

ACE2 expression pattern in different organs, tissues, and

cell types could uncover the potential risk to 2019-nCoV

infection because the target cells expressing ACE2 might

permit coronavirus entry, multiplication, spread, and

pathogenesis. Previously, the RNA and protein expressions

of ACE2 were investigated using bulk samples from the

heart, lung, kidney, and other organs. However, these bulk

data only consider average expression and utterly ignore
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cell diversity and specificity.

In addition to AT2 cells, the cell types and organs that

express ACE2 as a potential receptor for 2019-nCoV are

still unclear. Therefore, this study explores the existence of

host cell receptor ACE2 in various cell types using

published single-cell RNA-seq (scRNA-seq) data to track

the potential 2019-nCoV infection in human organs. Based

on these data, we construct a map of ACE2 expression over

different cell types of different organs to predict the

potential risk for 2019-nCoV infection and injury. This

work can contribute to an improved understanding of how

2019-nCoV invades human body systems.

Materials and methods

Here, we explored the published scRNA-seq datasets from

various tissues and organs of different human body

systems, including the respiratory system [4,5] (nasal

mucosa, respiratory track, bronchus, and lung), the

cardiovascular system [6] (heart), the digestive system

[7–10] (esophagus, stomach, ileum, and liver), and the

urinary system [11,12] (kidney and bladder). The lung

scRNA-seq data were acquired from the Gene Expression

Omnibus (GEO) database under the series number

GSE122960; the nasal mucosa, respiratory track, bronchus

scRNA-seq data were from GSE121600; the heart data

were from GSE106118; the esophagus data were

downloaded from https://www.tissuestabilitycellatlas.org/;

the ileum data were from GSE134809 sample

GSM3972018; the stomach data were from GSE134520

sample GSM3954949; the liver data were from

GSE115469; the kidney data were from GSE109564;

and the bladder data were from GSE129845 sample

GSM3723358.

The ACE2 expression distribution across distinct cell

types of different organs were evaluated, and then the cell

types with high ACE2 expression levels were identified in

accordance with the scRNA-seq datasets. A generally

accepted consensus suggests that the 2019-nCoV virus

tends to attack lung AT2 cells via host receptor ACE2, and

the expression level of ACE2 in AT2 cells were thus used

as a reference. We defined that any type of cells with a

proportion of ACE2 positive cells (UMI count > 0)

comparable to or larger than that of AT2 cells is highly

vulnerable to 2019-nCoV infection, and the corresponding

organs should be listed as highly risky.

We used Seurat V3.0 to discriminate different cell types.

The data were first normalized using the LogNormalize

method, and the cell clustering performance were

conducted using the top 2000 most variable genes with

the resolution set to 0.5 for kidney and 0.1 for the others.

The cell scatter plots were obtained using the UMAP

method [13].

Results

Pulmonary AT2 cells and respiratory epithelial cells

exhibit high ACE2 expression

We analyzed scRNA-seq datasets from nasal mucosa,

respiratory track, bronchus, and lung of the respiratory

system. To construct the reference, we first calculated the

proportion of ACE2-positive lung AT2 cells from eight

individuals. For each individual, the clusters of lung AT2

cells were identified in accordance with the coexpression

of ACE2, SFTPB, and SFTPC genes (Fig. S1). The

average proportion of ACE2-positive AT2 cells among the

eight individuals was approximately 1% with 1% standard

derivation. We thus defined the cell types with a > 1%

proportion of ACE2 positive cells as high risk and those

with a < 1% proportion ACE2 positive cells as low risk.

Interestingly, the respiratory epithelial cells from the

respiratory track sample contained approximately 2%

ACE2 positive cells, and the respiratory track is thus

regarded as high risk (Fig. 1). However, almost no cell

obtained from the nasal and bronchial samples showed

high ACE2 expression (Figs. S2 and S3), and such samples

are therefore low risk.

Myocardial cells with high ACE2 expression

The scRNA-seq data from human heart showed that more

than 7.5%myocardial cells have positive ACE2 expression

(Fig. 2), thereby implying that heart could be in high risk of

2019-nCoV infection, especially in the presence of the

virus in blood or viremia.

Ileum and esophagus epithelial cells have high ACE2

expression

We explored the scRNA-seq data from the digestive

system, including esophagus, stomach, ileum, and liver.

Interestingly, extremely high ACE2 expression was found

in ileal epithelial cells (~30% ACE2-positive cells, Fig. 3);

thus, ileum could be at high risk. More than 1% ACE2

positive esophagus epithelial cells were found, and

esophagus can thus be regarded as high risk (Fig. 4). By

contrast, the cells from stomach and liver showed lower

ACE2 expression levels ( < 1%ACE2 positive cells, Figs.

S4 and S5).

Proximal tubule cells of kidney and bladder urothelial

cells express ACE2

We also analyzed the scRNA-seq data from the urinary

system, specifically kidney and bladder. Significantly high

ACE2 expression was found in kidney proximal tubule

(PT) cells with the proportion of ACE2-positive cells at

approximately 4% (Fig. 5). Furthermore, the proportion of
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Fig. 2 Heart scRNA-seq data analysis revealed myocardial cells with high ACE2 expression levels. (A) The cells were categorized into

10 clusters. (B) Violin plot of the ACE2 expression distribution of different cell clusters. (C) Scatter plots of the cluster of cells with high

ACE2 expression levels also expressed canonical markers of myocardial cells MYL3 and MYH7.

Fig. 1 Respiratory track scRNA-seq data analysis showed epithelial cells with high ACE2 expression levels. (A) The cells were

categorized into five clusters. (B) Violin plot of the ACE2 expression distribution of different cell clusters. (C) Scatter plots revealed that

the cluster of cells with ACE2 expression also expressed canonical markers of respiratory epithelial cells PIGR and MUC1.
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ACE2-positive cells in the bladder urothelial cells was

2.4% (Fig. 6). Therefore, kidney and bladder were

considered high risk, especially in viremia.

On the basis of the above findings, a 2019-nCoV

infection-related risk map of different organs can be

constructed (Fig. 7). As a clinical implication, lung should

be listed as having the highest risk. Interestingly, in

addition to lung AT2, more than 1% of the cell population

of some cell types from respiratory track, kidney,

esophagus, bladder, ileum, and heart also expressed

ACE2, and thus, those organs should be regarded as high

risk for potential 2019-nCoV infection. This finding may

explain the non-respiratory symptoms observed in 2019-

nCoV pneumonia patients.

Discussion

This study provides an overview of 2019-nCoV infection-

related vulnerable organs using state-of-art single-cell

techniques. According to scRNA-seq datasets, we mana-

ged to stratify the organs into high and low risk on the basis

of their ACE2 expression levels in some cell types for the

first time. The reported clinical symptoms of 2019-nCoV

infection (e.g., dyspnea, diarrhea, acute cardiac injury,

and kidney failure) might be related to the invasion of the

novel coronavirus in the lung, upper respiratory track,

ileum, heart, and kidney, especially in the presence of

viremia.

In this study, we identified the organs with high and low

vulnerability according to ACE2 expression. However, we

admit that the 2019-nCoV invasion is not just about ACE2,

and this observation means that our study may not have

exhausted all 2019-nCoV vulnerable organs. In addition,

given the gene expression variation between individuals,

further study is still required to exclude the susceptibility

of the organs categorized as low risk.

The mRNA expression of the receptor ACE2 indicates

the transcription of the gene in these tissues and relevant

cell types. To strengthen the expression pattern of ACE2,

we also analyzed the protein expression of ACE2 in the

stated human organs and cells by examining the Human

Protein Atlas (https://www.proteinatlas.org), the UniProt

(https://www.uniprot.org) databases, and some literatures.

The resulting data showed that ACE2 protein is enriched in

the enterocytes of small intestine and the renal tubules,

as well as the lung alveolar epithelial cells, the heart cells,

the arterial smooth muscle cells, and the gastrointestinal

Fig. 3 ScRNA-seq data analysis showed that ileal epithelial cells have high ACE2 expression. (A) The cells were categorized into nine

clusters. (B) Violin plot of the ACE2 expression distribution of different cell clusters. (C) Scatter plots showed that the cluster of cells with

high ACE2 expression also expressed canonical markers of ileal epithelial cells, FABP6, and ANPEP.
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system, as confirmed by published reports [14–18].

Moreover, myocardial infarction may increase ACE2

expression in heart, thereby suggesting that ACE2

plays an important role in cardiac injury [19]. The

information on ACE2 protein expression is consistent

with our results and thus supports the predictive risk map

of different organs and tissues according to scRNA-seq

data.

Fig. 4 Esophagus scRNA-seq data analysis revealed that a few esophageal epithelial cells express ACE2. (A) The cells were categorized

into 18 cell types. (B) Violin plot of the ACE2 expression distribution of different cell clusters. (C) ACE2 expression distribution

demonstrated in a scatter plot.
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Fig. 5 Kidney scRNA-seq data analysis revealed that the proximal tubule (PT) cells highly express ACE2. (A) The cells were

categorized into 14 clusters. (B) Violin plot of the ACE2 expression distribution of different cell clusters. (C) Scatter plots showed that the

cluster of cells with high ACE2 expression also expressed canonical markers of kidney PT cells CUBN and LRP2.

Fig. 6 Bladder scRNA-seq data analysis showed that a few cells express ACE2. (A) The cells were categorized into six clusters.

(B) Violin plot of the ACE2 expression distribution of different cell clusters. (C) Scatter plots showed that the cluster of cells with high

ACE2 expression also expressed canonical markers of bladder urothelial cells CLDN4 and SPINK1.
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