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Abstract

Background: Single cell transcriptomics is critical for understanding cellular heterogeneity and identification of
novel cell types. Leveraging the recent advances in single cell RNA sequencing (scRNA-Seq) technology requires
novel unsupervised clustering algorithms that are robust to high levels of technical and biological noise and scale to
datasets of millions of cells.

Results: We present novel computational approaches for clustering scRNA-seq data based on the Term Frequency -
Inverse Document Frequency (TF-IDF) transformation that has been successfully used in the field of text analysis.

Conclusions: Empirical experimental results show that TF-IDF methods consistently outperform commonly used
scRNA-Seq clustering approaches.
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Background

The recent advances in single cell RNA sequencing

(scRNA-Seq) technologies promise to unveil novel cell

types and uncover subtle regulatory processes that

are undetectable by analyzing bulk samples. Currently,

droplet-based technologies such as the Chromium Mega-

cell commercialized by 10x Genomics can quickly and

inexpensively generate scRNA-Seq expression profiles for

up to millions of cells. Indeed, a dataset recently made

public by 10x Genomics is comprised of 1.3 millionmouse

brain cells. However, the sequencing depth of each cell

in such datasets is typically very low, resulting in many

missing gene expression levels (the above 10x dataset has

a mean of only 23,185 reads per cell, with a median of

only 1927 genes detected per cell). The large amounts of

data and high levels of noise render many unsupervised

clustering methods developed for bulk gene expression

data [1] unusable, prompting the development of a new

generation of clustering tools.

In this paper, we propose several computational

approaches for clustering scRNA-Seq data based on the
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Term Frequency - Inverse Document Frequency (TF-IDF)

transformation commonly used for text/document analy-

sis. Empirical evaluation on simulated and real cell mix-

tures of FACS sorted cells with different levels of com-

plexity suggests that the TF-IDF methods consistently

outperform existing scRNA-Seq clustering methods. In

the Methods section we detail several commonly used

scRNA-Seq clustering methods, provide background on

the TF-IDF transformation and its proposed application

to scRNA-Seq data clustering, and describe the experi-

mental setup and accuracy metrics used in our empirical

assessment. In the Results section we present the results

of a comprehensive evaluation comparing the accuracy of

the proposed TF-IDF based methods with that of exist-

ing methods on cell mixtures with both simulated and real

proportions. Finally, in the Conclusions section we outline

directions for future work.

Methods

We did a preliminary assessment of twelve previously

proposed methods for clustering scRNA-Seq data, and

selected for the final assessment nine methods that had

consistently high accuracy as described in the Results

section. Our assessment also did a preliminary analysis
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of twenty four methods based on the TF-IDF transfor-

mation, out of which we selected nineteen methods for

inclusion in the final comparison. A summary of the com-

pared methods is given in Fig. 1. We next describe the

common data processing employed for all methods, then

give details of individual methods.

Synthetic datasets comprised of two to seven cell

types mixed in different proportions were generated as

described below using 3′-end scRNA-Seq data gener-

ated using the 10x Genomics platform from FACS sorted

immune cells [2]. For experiments on these mixtures all

methods take as input the rawUniqueMolecular Identifier

(UMI) counts generated using 10x Genomics’ CellRanger

pipeline for each gene and cell as described in [2]. Using

UMI counts rather than read counts reduces bias intro-

duced by PCR amplification in scRNA-Seq protocols. For

all 10x Genomics datasets we first filtered the cells based

on the number of detected genes and the total UMI

count per cell [3]. We also removed outliers based on the

median-absolute-deviation (MAD) of cell distances from

the centroid of the corresponding cell type. We also per-

formed basic gene quality control by applying a cutoff on

theminimum total UMI count per gene across all cells and

removing outliers based on MAD. For Seurat [4], the cell

and gene quality control was performed as recommended

by the authors and described below.

A second test dataset consisted of scRNA-seq data gen-

erated using the Smart-seq2 protocol from seven types

of pancreatic cells [5]. For this dataset clustering was

performed twice, once using Reads Per Kilobase per Mil-

lion (RPKM) estimates and once using raw read counts

reported in [5]. No cell QCwas performed for this set. The

same gene QC as described above for 10x UMI data was

performed; again for Seurat, the recommended defaults

for gene quality control and selection were applied.

For all methods, we determine an ‘optimal’ number of

clusters using the gap statistic approach introduced in

[6]. Briefly, the optimal number of clusters is selected as

argmaxkGapn(k), where the gap statistic for clustering n

points into k clusters is given by

Gapn(k) = E∗
n{logWk} − logWk , (1)

i.e., the difference between the logarithm of the normal-

ized sumWk of pairwise distances in the k clusters and its

expectation under a null reference distribution generated

by Monte Carlo sampling. The gap statistic analysis was

independently performed for each transformation applied

to the data (log-transform, PCA, tSNE, TF-IDF, etc.) as

the gap statistics, and hence the optimal number of clus-

ters, are sensitive to these transformations (Fig. 2). The

gap statistic based estimate was used to directly specify

the number of clusters for all methods except Seurat, Seu-

rat_SNN and graph-based clustering algorithms, which

determine the number of clusters internally.

When the number of clusters determined by Seu-

rat_SNN and graph-based clustering algorithms was

lower than the gap statistic estimate additional partition-

ing steps were performed as described below to enforce a

minimum number of clusters.

Fig. 1 Compared scRNA-Seq clustering methods. *For Seurat, QC and gene selection were carried out as suggested in [4]
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Fig. 2 Clockwise from top left: gap statistics for log-transformed, log-transformed PCA, tSNE, and TF-IDF transformed and binarized expression levels
of a 7:1 mixture of regulatory_t and naive_t cells. The x-axis gives the number of clusters K and the y-axis gives the gap statistic in (1)

Existing scRNA-Seq clustering methods

We included in our comparison several commonly used

methods. First, we included two methods from the Seu-

rat package [4], one based on K-means and one based

on graph clustering. Following the Granatum pipeline

[7], we included K-means and hierarchical clustering

with Euclidean and Pearson distances based on a 2-

dimensional projection of the data using the t-distributed

Stochastic Neighbor Embedding (tSNE) transformation

[8]. Also from Granatum, we tested K-means using the

log2(x+1) transformed data. Using the log2(x+1) trans-

form of the data followed by PCA, we tested a Gaus-

sian mixture model (GMM) based algorithm, a K-means

algorithm similar to that implemented in the CellRanger

pipeline distributed by 10x Genomics [9], as well as spher-

ical K-means and hierarchical clustering algorithms, again

with both Euclidean and Pearson correlation distances.

Finally, similar to the graph-based algorithms imple-

mented in the latest version of the CellRanger pipeline [9],

we tested the graph-based Louvain clustering algorithm

[10] with Euclidean distance over log2(x+1) transformed

data. Details on individual methods are as follows.

Seurat, Seurat_SNN

To test Seurat, we followed the guided clustering work-

flow recommended in the tutorial at [11] by first apply-

ing the recommended cell quality filtering based on the

number of detected genes, minimum 200 per cell, and

percentage of reads from mitochondrial genes. Then,

as recommended by Seurat’s authors, we ‘regressed out’

uninteresting sources of variation such as technical noise

and batch effects. As suggested in [12], regressing out

these effects improves downstream dimensionality reduc-

tion and clustering. We then used Seurat’s MeanVarPlot()

with its default values to identify genes that are outliers

on the ‘mean variability plot’ as recommended by Seu-

rat’s authors. After selecting highly variable genes and

performing PCA analysis, we used Seurat’s DOKMeans()

function which performs K-means clustering on both

genes and cells; we refer to this method as Seurat in the

Results section. We also used the FindClusters() function

which uses the top principal components and identifies

clusters of cells by a shared nearest neighbor (SNN) mod-

ularity optimization based clustering algorithm that first

calculates k-nearest neighbors and constructs the SNN
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graph, then optimizes the modularity function to deter-

mine clusters; this method is referred to as Seurat_SNN.

Gaussianmixturemodel based clustering (Log_PCA_GMM)

We used the mclust R package [13] to perform clustering

by fitting a finite Gaussian Mixture Model (GMM) using

expectation-maximization. We first performed Principal

Component Analysis (PCA) of the log2(x+1) transformed

UMI count matrix and ran mclust on the top 10 principal

components.

K-means clustering variants (Log_Kmeans,

Log_PCA_Kmeans, tSNE_Kmeans)

K-means clustering [14] aims to partition n points (cells

in our case) into k clusters such that the total intra-cluster

variance is minimized. Motivated by the similar cluster-

ing option provided in the Granatum pipeline from [7]

we included in the comparison a K-means variant (called

Log_Kmeans) that takes as input the log2(x+1) trans-

formedUMI counts.We also followed an approach similar

to that adopted in the CellRanger pipeline distributed by

10x Genomics [9], referred to as Log_PCA_Kmeans, in

which the PCA is run on the log2(x+1) transformed UMI

counts and K-means clustering is performed on the first

10 principal components. Finally, and again motivated by

the Granatum pipeline from [7], we included a K-means

variant run on the 2-dimensional tSNE transformation of

the data (tSNE_Kmeans).

Spherical K-means with log transform and PCA

(Log_PCA_sKmeans)

In this method we used the spherical K-means algorithm

[15] to cluster the log2(x+1) and PCA transformed data.

Instead of Euclidean distance, spherical K-means employs

the cosine dissimilarity,

1 − cos(θ) = 1 −

n
∑

i=1
AiBi

√

n
∑

i=1
A2
i

√

n
∑

i=1
B2
i

(2)

based on the angle between two feature vectors A and

B, which has been shown to be more robust to large dif-

ferences in total vector weights. We added this method

here as we wanted to compare its performance with the

spherical K-means applied to TF-IDF transformed data

described in next subsection.

Hierarchical clustering variants (Log_PCA_HC_E,

Log_PCA_HC_P, tSNE_HC_E, tSNE_HC_P)

Agglomerative hierarchical clustering is a “bottom up”

approach: each observation starts in its own cluster, and

pairs of clusters are iteratively merged based on inter-

cluster distances. Ward’s method [16] was used as linkage

criterion. We included in the comparison four variants

of hierarchical clustering, in which the algorithm was

run using Euclidean and Pearson correlation distances on

either the first 10 principal components of the log2(x+1)

UMI counts (methods referred to as Log_PCA_HC_E and

Log_PCA_HC_P, respectively), or on the 2-dimensional

tSNE transformation of the data as in [7] (tSNE_HC_E and

tSNE_HC_P).

Graph based Louvain clustering algorithm (Log_Louvain_E)

We also included in our comparison a graph-based Lou-

vain clustering algorithm similar to that provided by the

current version of the CellRanger pipeline distributed

by 10x Genomics [9]. This method takes as input the

log2(x+1) transformed UMI counts and builds a graph

by connecting pairs of cells with Euclidean pairwise dis-

tance above a certain threshold. For our experiments we

scaled the distance values to the range 0 to 1 and set a

cutoff of 0.01 to build a rather dense but weighted graph.

We then apply the Louvain for modularity optimization

[10] as implemented in igraph R [17] package to identify

communities (clusters) of cells.

Different from our method, the CellRanger pipeline

implements Louvain modularity optimization on a sparse

nearest-neighbor graph, where each cell is linked to its k

nearest Euclidean neighbors, where k is set to scale loga-

rithmically with the number of cells. CellRanger’s imple-

mentation also includes an additional cluster-merging

step which consists of hierarchical clustering on the

cluster-medoids in PCA space followed by merging of

sibling clusters with no differentially expressed genes at

an FDR of 0.05; such a step was not included in our

implementation.

TF-IDF scoring

TF-IDF, which stands for Term Frequency times Inverse

Document Frequency, is a data transformation and a scor-

ing scheme typically used in text analyses for measuring

whether or not and how concentrated into relatively few

documents the occurrences of a given word are [18].

Given a collection of N documents, let fij be the num-

ber of occurrences of word i in document j. The term

frequency of word i in document j, denoted by TFij,

is defined as

TFij = fij/max
k

fkj (3)

Here, the term frequency of word i in document j is the

number of occurrences normalized by dividing it by the

maximum number of occurrences of any word in the same

document, sometimes this is done after excluding stop

words. The normalization is needed to make it possible

to compare term frequencies for documents of different

lengths. After normalization, the most frequent word in a



Moussa and Măndoiu BMCGenomics 2018, 19(Suppl 6):569 Page 35 of 97

document always gets a term frequency value of 1, while

other words get fractional values as their respective term

frequencies. The Inverse Document Frequency of word i is

defined as

IDFi = log2(N/ni). (4)

where ni denotes the number documents that contain

word i among the N documents in the collection. Finally,

the TF-IDF score for word i in document j is defined to be

TFij×IDFi. Words with the highest TF-IDF score in a doc-

ument are often the terms that best characterize the topic

of that document.

To apply TF-IDF scores for scRNA-Seq data we consider

the cells to be analogous to documents; in this analogy,

genes correspond to words and UMI counts replace word

counts. The TF-IDF scores can then be computed from

UMI counts using Eqs. (3) and (4). Similar to document

analysis, the genes with highest TF-IDF scores in a cell

are expected to provide most information about the cell’s

type.

We explored two different approaches of using TF-IDF

scores for scRNA-Seq clustering. In first approach TF-IDF

scores were used to select a subset of the most informa-

tive genes that were then used for performing clustering.

In the second approach all genes are used for clustering

but the gene expression data was first binarized based

on a TF-IDF cutoff. Each of these data transformations

were combined with a number of clustering algorithms, as

detailed in the following two subsections.

scRNA-Seq clustering based on TF-IDF gene selection

We tested two alternatives methods for TF-IDF based

gene selection: using the genes with highest TF-IDF

average and using the genes with highest variability in

TF-IDF values.

In the first method, referred to as Top, we fitted a 2-

mixture GMM model to the distribution of TF-IDF gene

averages using mclust, and selected the genes assigned to

the mixture component with highest mean. In case this

resulted in a list of more than 3000 genes, we retained only

the top 3000 genes when ranking the genes based on the

number cells in which they are detected.

In the second method, referred to as Var, we identi-

fied genes with high TF-IDF variability by analyzing the

relationship between the coefficient of variation (CV) and

average expression levels as described in [19]. We first

computed for each gene the sample TF-IDF mean and

coefficient of variation CV, which is a standardized mea-

sure of dispersion. We then fitted a regression line for

the observed pairs of mean/CV values (plotted on log-

log scale in Fig. 3). Finally, we computed for each gene

the difference between the observed CV and the CV

expected for the observed mean based on the regression

line, and retained for clustering analysis only the top 30%

Fig. 3 Highly variable genes for a 1:1 mixture of b_cells and
cd14_monocytes

of the genes ranked by this difference (shown in yellow

in Fig. 3).

After applying the TF-IDF transform to the UMI count

matrix and performing gene selection using the above

two methods, clustering was performed using one of the

following algorithms:

Gaussian mixture model based clustering (TF-IDF

_Top_GMM, TF-IDF_Var_GMM). The expectation-

maximization clustering algorithm implemented in

the mclust R package [13] was applied to the TF-IDF

scores of genes selected using the Top, respectively

Var methods.

K-means (TF-IDF_Top_Kmeans, TF-IDF_Var_Kmeans).

Similarly, we applied K-means clustering to the TF-

IDF scores of genes selected using either Top or Var.

Spherical K-means (TF-IDF_Top_sKmeans, TF-IDF_

Var_sKmeans). We also used the spherical K-means

algorithm [15] on TF-IDF scores of genes selected

using Top, respectively Var.

Hierarchical clustering (TF-IDF_Top_HC_E, TF-IDF_

Top_HC_P, TF-IDF_Top_HC_C, TF-IDF_Var_HC_E,

TF-IDF_Var_HC_P, TF-IDF_Var_HC_C). Finally, we

performed hierarchical clustering with Ward aggre-

gation on the TF-IDF scores of selected genes using

Euclidean, Pearson correlation, as well as cosine dis-

tance (2) – the latter metric was included as it is

often employed in conjunction with TF-IDF for text

analysis [20].
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Fig. 4 Left: Distribution of TF-IDF gene averages for a 1:1 mixture of memory and regulatory T cells. Right: Binarization cutoff effect on macro
accuracy of TF-IDF_Bin_HC_C method on the same cell mixture

scRNA-Seq clustering using TF-IDF based binarization

The distribution ofmean TF-IDF scores of the genes (plot-

ted for a mix of 1,000 memory and 1,000 regulatory T

cells in the left panel of Fig. 4) typically exhibits a long tail.

The genes with very high mean TF-IDF scores are poten-

tially the most informative in identifying the underlying

cell types. The final group of TF-IDF based methods uses

this intuition by binarizing the gene expression data. We

first selected a suitable TF-IDF cutoff and then, for each

cell, we set the expression signature of all genes with a TF-

IDF above the cutoff to 1, and all remaining signatures to

0. Cells sharing the same type are expected to have highly

similar 0/1 expression signature vectors. By setting to 1

only the ‘informative’ genes in each cell we aim to remove

unnecessary noise and achieve better clustering accuracy.

Although the choice of TF-IDF cutoff can affect the clus-

tering accuracy, as shown in the right side of Fig. 4) for a

sample cell mixture, near maximum accuracy is achieved

by using a cutoff value equal to 0.1 × the mean of the

per-cell non-zero TF-IDF values. All experimental results

presented in the Results section are based on this cutoff.

The resulting binary expression signatures were then

clustered using one of the following algorithms:

Hierarchical clustering with Euclidean, Pearson, cosine

and Jaccard distances (TF-IDF_Bin_HC_E, TF-IDF_

Bin_HC_P, TF-IDF_Bin_HC_C, TF-IDF_Bin_HC_J).

Hierarchical clustering with Ward aggregation was

applied to the binarized TF-IDF expression signa-

ture vectors using Euclidean, Pearson correlation,

and cosine distances (2), respectively, to compare

with the previous variations of hierarchical cluster-

ing based on the same distances. Additionally, we

performed hierarchical clustering with Ward aggre-

gation using the Jaccard distance to measure dissim-

ilarity between cells. This is defined as 1 - Jaccard

similarity, where the Jaccard similarity between two

cells is computed as the number of genes with a sig-

nature of 1 in both cells divided by the number of

genes with a signatures of 1 in at least one of the cells.

TF-IDF graph-based greedy clustering with Euclidean,

Pearson, cosine and Jaccard distances (TF-IDF_Bin_Gree

dy_E, TF-IDF_Bin_Greedy_P, TF-IDF_Bin_Greedy_C,

TF-IDF_Bin_Greedy_J). In these methods we begin

by building an undirected graph with cells as the

vertices and edges connecting pairs of cells for

which the binarized expression signature vectors

Fig. 5 Left: Correlation distances between mean expression levels of 7 immune cell types from [2]. Right: 3D PCA plot of 1000 cells of each type
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Fig. 6 Left: Correlation distances between mean expression levels of 7 pancreatic island cell types from [5]. Right: 3D PCA plot of the 2045
pancreatic island cells

have Euclidean, Pearson, cosine, or Jaccard distance

below a certain cutoff value. For our experiments we

set a rather low cutoff of 0.01 to to build a dense

graph, but weighted the edges of this graph by the

corresponding pairwise similarity measures for clus-

tering by greedymodularity optimization, which was

performed using the algorithm introduced in [21]

and implemented in the cluster_fast_greedy() func-

tion of the igraph R package [17]. To ensure the

homogeneity of resulting clusters and to force a min-

imum number of clusters when required, all clusters

with a silhouette score below a given threshold were

subjected to further partitioning. All cells in such

a cluster were used to form a new gene expression

matrix which was subjected to TF-IDF transforma-

tion, binarization, and then clustering via the greedy

modularity optimization algorithm. The process was

repeated until the minimum number of clusters was

achieved, or no cluster had a silhouette score below

the given threshold.

TF-IDF graph-based Louvain clustering with Euclidean,

Pearson, cosine and Jaccard distances (TF-IDF

_Bin_Louvain_E, TF-IDF_Bin_Louvain_P, TF-IDF_

Bin_Louvain_C, TF-IDF_Bin_Louvain_J). Here, the

same approach described above for graph-based

greedy clustering was used in conjunction with the

Louvain modularity optimization algorithm [10] as

implemented in the cluster_louvain() function of the

igraph R package [17].

Experimental setup

Datasets

To assess the accuracy of compared clustering methods

we used synthetic mixtures of real scRNA-Seq profiles

generated from FACS sorted immune cells using the

10x Genomics platform [2]. We started from the filtered

Fig. 7Micro and macro accuracy on 2-class synthetic mixtures of
immune cells with ratios 1:1, 1:3/3:1, and 1:7/7:1 for (a) existing
methods, (b) algorithms using TF-IDF based gene selection, and (c)
algorithms using TF-IDF binarization
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Fig. 8Micro and macro accuracies on 2-class synthetic mixtures with ratios 1:1 (a), 1:3/3:1 (b), and 1:7/7:1 (c)

UMI count matrices generated using the CellRanger

pipeline and made publicly available at https://support.

10xgenomics.com/single-cell-gene-expression/datasets.

Of the available sorted cell populations we excluded

those shown to have substantial heterogeneity in [2].

This left us with seven cell types: CD4+/CD25+ Regu-

latory Cells (regulatory_t), CD4+/CD45RO+ Memory

Cells (memory_t), CD19+ B Cells (b_cells), CD14+

Monocytes (cd14_monocytes), CD56+ Natural Killer

Cells (cd56_nk), CD8+/CD45RA+ Naive Cytotoxic T

Cells(naive_cytotoxic), and CD4+/CD45RA+/CD25-

Naive T cells (naive_t). The hierarchical clustering

dendrogram based on Pearson correlations between

mean gene expression levels of the seven cell types along

with a 3-dimensional PCA projection of the individual

scRNA-Seq profiles are shown in Fig. 5.

Clearly, B cells, NK cells and monocytes are relatively

dissimilar to each other and to the four T cell types,

which in turn form two highly similar pairs (memory_t

and naive_cytotoxic) and (regulatory_t and naive_t) and

pairs with intermediate dissimilarity like (memory_t and

naive_t) and (regulatory_t and naive_cytotoxic). Thus,

in a first set of experiments, we focused on mixtures

of cells generated from six pairs of cell types of vary-

ing degrees of dissimilarity. We chose pairs (b_cells

and cd14_monocytes) and (b_cells and cd56_nk) to

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
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Fig. 9Micro- and macro-accuracies for synthetic mixtures with ratios 1:1, 1:3/3:1, and 1:7/7:1 simulated from (a) highly dissimilar cell type pairs
(cd14_monocytes,b_cells) and (cd56_nk,b_cells), (b) intermediate similarity cell type pairs (regulatory_t,naive_cytotoxic) and (memory_t,naive_t),
and (c) highly similar cell type pairs (regulatory_t,naive_t) and (memory_t,naive_cytotoxic)

represent mixtures of highly dissimilar cell types, pairs

(memory_t and naive_cytotoxic) and (regulatory_t and

naive_t) to represent mixtures of highly similar cell types,

and pairs(memory_t and naive_t) and (regulatory_t and

naive_cytotoxic) to represent mixtures of cell types with

intermediate similarity. To assess clustering accuracy in

the presence of different levels of imbalance between the

numbers of cells of different types, for each of the six pairs

of cell types we generated mixtures in ratios 7:1, 3:1, 1:1,

1:3, and 1:7. For each mixture ratio, we sampled a total

of 1,000 cells from the corresponding cell types. Finally,

to assess accuracy on a more complex cell population, we

generatedmixtures comprised of 7,000 cells sampled from

all seven cell types in equal proportions.

We also tested the implemented methods on scRNA-

Seq data from [5]. For this dataset, cells from pancreatic

islets were dissociated and sorted by FACS into 384-well

plates. Single-cell RNA-seq libraries were generated using

the Smart-seq2 protocol and sequenced on an Illumina

HiSeq 2000. We used all 2,045 cells annotated with one

of seven cell types (185 acinar cells, 886 alpha cells, 270

beta cells, 197 gamma cells, 114 delta cells, 386 ductal
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Fig. 10 Accuracy for equal-proportion 7-way mixtures of immune cell types (1000 cells each)

Fig. 11 Accuracy for pancreatic cells based on raw counts
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Fig. 12 Accuracy for pancreatic cells based on the RPKM values

cells, and 7 epsilon cells) identified based on known gene

markers in [5]. For this dataset we included all cells with-

out any quality filtering to reflect as close as possible the

natural frequency of these cell types in pancreatic islets.

As in [22], marker genes with unusually high expression

levels (INS for beta cells, GCG for alpha cells, SST for

delta cells, PPY for PP/gamma cells, and GHRL for epsilon

cells) were removed prior to clustering to eliminate the

possibility that they drive the clustering by themselves. A

hierarchical clustering dendrogram based on the Pearson

correlation between mean gene expression levels of the

seven cell types and a 3-dimensional PCA projection of

the individual scRNA-Seq profiles are shown in Fig. 6.

Accuracymeasures

For each dataset we computed macro- and micro-

accuracy measures [23, 24] defined by:

Micro Accuracy =

K
∑

i=1

Ci/

K
∑

i=1

Ni (5)

Macro Accuracy =
1

K

K
∑

i=1

Ci

Ni
(6)

whereK is the number of classes,Ni is the number of sam-

ples in class i, and Ci is the number of correctly labeled

samples in class i. Note that macro- and micro-accuracy

are identical for 1:1 mixtures, but may differ significantly

for imbalanced datasets, as macro-averaging gives equal

weight to the accuracy of each class (average accuracy

of all classes’ accuracies), whereas micro-averaging gives

equal weight to each cell classification decision (overall

accuracy). The ground truth was based on the cell sorting

information and annotations from [2] and [5].

For methods that identified more clusters than expected

(more than two clusters for the 2-class experiments or

more than seven for the 7-class mixtures), we used

majority based matching to label clusters with cell types.

For example, if a predicted cluster has x cells labeled as

cell type C1 in the ground truth and y cells labeled as cell

type C2, then all cells are assumed to be predicted as cell

type C1 for relevant accuracy calculations when x > y.
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This approach ensures that methods that are more sen-

sitive to the existing heterogeneity within the true cell

types are not penalized as long as the resulting sub-

clusters are “pure”, i.e., all or most cells of that sub-

cluster belong to only one of the cell types contributing

to the mixture. All datasets used in the paper along

with a Shiny application that performs accuracy calcu-

lations for user uploaded clustering results are available

at http://cnv1.engr.uconn.edu:3838/SCA/.

Results and discussion

Each of the 36 clustering algorithms described in the

Methods section was run on 2-class synthetic mix-

tures of 1,000 cells sampled in different ratios from

six pairs of immune cell types as described in Exper-

imental setup. For each combination of cell types

and mixture ratio we repeated each experiment five

times and computed the macro- and micro-accuracy

using Eqs. (5)-(6). Box-and-whiskers plots displaying the

macro- and micro-accuracies of the compared algo-

rithms, grouped into three categories (existing meth-

ods, algorithms using TF-IDF based gene selection, and

algorithms using TF-IDF binarization), are shown in

Fig. 7. Each plot shows the median of the correspond-

ing measure as the middle horizontal line, along with

mean values as the middle points connected by lines

across methods. The whiskers indicate the extreme non-

outlier data points of the upper and lower quartiles.

If present, outliers, i.e., data points that lie more than

1.5 interquartile ranges below the first quartile or above

the third quartile, are indicated as single points on

the plot.

Table 1 Average ranks based on micro-accuracy

Methods M Nc R N M N R Nc B Nk B Mc 7-class Pancreas Avg.

Seurat 14.6 19.0 25.0 25.6 1.0 25.6 28.0 4.0 17.9

Seurat_SNN 6.8 13.8 21.0 18.4 1.0 25.6 26.6 1.0 14.3

tSNE_Kmeans 26.0 27.0 14.6 18.6 22.6 27.8 11.4 19.5 20.9

tSNE_HC_E 25.0 25.4 12.6 18.0 6.0 11.2 10.0 20.0 16.0

Log_PCA_GMM 20.8 10.6 2.4 12.8 1.0 1.0 4.4 14.5 8.4

Log_PCA_Kmeans 24.4 24.4 26.4 26.8 1.0 1.0 7.6 14.0 15.7

Log_PCA_HC_E 23.8 22.8 22.6 23.8 1.0 1.0 4.6 14.0 14.2

Log_PCA_HC_P 27.0 25.2 25.4 26.0 16.4 6.0 2.4 18.5 18.4

Log_Louvain_E 26.2 27.2 25.8 21.0 15.4 6.2 10.4 14.0 18.3

TF-IDF_Top_Kmeans 6.0 16.8 15.8 17.0 1.0 1.0 9.2 21.0 11.0

TF-IDF_Top_sKmeans 2.0 7.4 7.0 2.4 1.0 1.0 8.4 9.5 4.8

TF-IDF_Top_HC_E 20.4 21.0 24.4 23.4 1.0 1.0 19.8 18.5 16.2

TF-IDF_Top_HC_P 14.8 15.8 19.2 16.0 1.0 1.0 16.4 12.0 12.0

TF-IDF_Top_HC_C 14.6 17.0 17.4 15.4 1.0 1.0 18.0 14.5 12.4

TF-IDF_Var_Kmeans 7.2 10.6 19.0 24.2 10.0 1.0 25.8 21.5 15.0

TF-IDF_Var_sKmeans 11.0 15.2 19.4 18.2 1.0 1.0 20.2 4.5 11.3

TF-IDF_Bin_HC_E 21.0 21.4 17.4 14.6 1.0 1.0 17.0 19.5 14.1

TF-IDF_Bin_HC_P 13.6 9.4 8.4 9.2 1.0 1.0 8.0 6.0 7.1

TF-IDF_Bin_HC_C 14.0 10.8 11.4 9.2 1.0 1.0 10.6 8.5 8.3

TF-IDF_Bin_HC_J 17.4 13.2 13.4 9.8 1.0 1.0 12.8 14.0 10.3

TF-IDF_Bin_Greedy_E 11.6 7.4 7.2 8.8 18.8 5.8 23.8 27.0 13.8

TF-IDF_Bin_Greedy_P 4.6 4.6 5.2 2.4 5.0 1.0 19.0 12.0 6.7

TF-IDF_Bin_Greedy_C 5.2 5.2 7.8 2.8 23.2 1.0 19.4 28.0 11.6

TF-IDF_Bin_Greedy_J 16.2 9.4 10.6 6.4 5.8 1.0 18.0 24.5 11.5

TF-IDF_Bin_Louvain_E 5.8 2.0 3.2 2.4 5.0 1.0 4.2 13.0 4.6

TF-IDF_Bin_Louvain_P 1.0 1.4 1.8 1.4 1.0 1.0 14.2 4.0 3.2

TF-IDF_Bin_Louvain_C 1.2 2.0 1.6 1.0 1.0 1.0 1.2 11.5 2.6

TF-IDF_Bin_Louvain_J 9.6 6.2 6.0 2.8 18.4 1.0 11.8 7.0 7.9

The lowest five average ranks (including ties) for each dataset are typeset in bold, and the best overall average rank is shown in red

http://cnv1.engr.uconn.edu:3838/SCA/
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Overall, algorithms using TF-IDF binarization have

consistently high accuracy in all 2-class experiments, with

existingmethods and algorithms using TF-IDF based gene

selection showing a higher degree of variability in accu-

racy across datasets. For remaining results we eliminated

8 methods that show consistently lower clustering accu-

racy in the 2-class experiments. Specifically, from the

existing methods group we removed from further anal-

ysis tSNE_HC_P, Log_Kmeans, and Log_PCA_sKmeans,

all of which have bothmacro andmicro-accuracy averages

below 0.8. From the group ofmethods using TF-IDF based

gene selection we removed the two GMM methods (TF-

IDF_Top_GMM and TF-IDF_Var_GMM), which clearly

performed much worse than the rest. We also removed

the three hierarchical clusteringmethods using genes with

highly variable TF-IDF scores (TF-IDF_Var_HC_E, TF-

IDF_Var_HC_P, TF-IDF_Var_HC_C) since their accuracy

is worse than the corresponding methods that use the

genes with top average TF-IDF score. All twelve algo-

rithms using TF-IDF binarization were retained for fur-

ther in-depth comparisons.

Box-and-whiskers plots displaying the macro- and

micro-accuracies of the 28 remaining algorithms on

2-class synthetic mixtures with varying mixture ratios

are shown in Fig. 8. Among existing methods, the

Log_PCA_GMM EM-based algorithm and Seurat_SNN

have highest average macro and micro-accuracies, with

Log_PCA_GMM having an edge in average accuracies

on the more balanced 1:1 and 1:3/3:1 mixtures, and

Seurat_SNN yielding slightly better macro-accuracy

for the more imbalanced 1:7/7:1 mixtures. However,

several TF-IDF based clustering methods achieve

Table 2 Average ranks based on macro-accuracy

Methods M Nc R N M N R Nc B Nk B Mc 7-class Pancreas Avg.

Seurat 8.2 8.0 18.8 24.2 1.0 26.4 27.2 10.0 15.5

Seurat_SNN 9.0 9.2 18.0 19.4 1.0 27.0 27.0 3.5 14.3

tSNE_Kmeans 24.2 24.0 9.0 14.8 22.4 26.6 11.6 18.5 18.9

tSNE_HC_E 24.4 24.8 9.4 18.2 6.2 10.4 9.2 20.0 15.3

Log_PCA_GMM 20.4 6.4 3.0 4.8 1.0 1.0 4.4 14.0 6.9

Log_PCA_Kmeans 27.2 27.4 26.6 26.8 1.0 1.0 7.6 16.0 16.7

Log_PCA_HC_E 27.2 24.8 22.0 24.6 1.0 1.0 4.8 13.5 14.9

Log_PCA_HC_P 25.8 23.8 17.8 20.6 16.2 5.6 2.4 18.0 16.3

Log_Louvain_E 23.0 25.6 20.8 14.2 15.0 5.8 10.6 14.5 16.2

TF-IDF_Top_Kmeans 9.6 13.4 18.6 13.6 1.0 1.0 9.6 18.5 10.7

TF-IDF_Top_sKmeans 4.2 9.4 8.0 6.2 1.0 1.0 8.6 12.5 6.4

TF-IDF_Top_HC_E 21.4 19.2 25.6 23.6 1.0 1.0 17.4 13.0 15.3

TF-IDF_Top_HC_P 17.6 17.4 20.4 20.6 1.0 1.0 18.2 11.5 13.5

TF-IDF_Top_HC_C 17.0 16.2 20.6 21.2 1.0 1.0 20.4 12.5 13.7

TF-IDF_Var_Kmeans 12.0 21.0 27.4 27.6 19.6 19.0 26.4 24.0 22.1

TF-IDF_Var_sKmeans 11.8 18.0 23.4 18.6 1.0 1.0 21.6 2.5 12.2

TF-IDF_Bin_HC_E 20.2 22.2 19.8 16.6 1.0 1.0 19.2 21.0 15.1

TF-IDF_Bin_HC_P 15.4 13.2 12.0 12.2 1.0 1.0 8.4 4.5 8.5

TF-IDF_Bin_HC_C 15.8 15.2 13.2 11.4 1.0 1.0 10.8 5.5 9.2

TF-IDF_Bin_HC_J 17.8 15.8 14.0 12.8 1.0 1.0 13.0 12.0 10.9

TF-IDF_Bin_Greedy_E 7.0 5.2 5.4 4.8 20.0 1.0 23.0 27.0 11.7

TF-IDF_Bin_Greedy_P 3.8 4.2 4.4 2.2 1.0 9.8 19.2 11.0 7.0

TF-IDF_Bin_Greedy_C 4.8 5.0 5.6 3.2 1.0 9.8 19.4 26.5 9.4

TF-IDF_Bin_Greedy_J 13.8 10.2 11.0 6.2 10.2 1.0 16.2 22.0 11.3

TF-IDF_Bin_Louvain_E 4.4 2.6 3.4 6.4 1.0 1.0 4.2 16.0 4.9

TF-IDF_Bin_Louvain_P 1.2 3.4 2.4 2.4 10.0 1.0 11.2 4.0 4.5

TF-IDF_Bin_Louvain_C 1.0 3.0 1.8 2.4 5.2 1.0 1.2 11.5 3.4

TF-IDF_Bin_Louvain_J 9.4 8.2 9.8 5.4 5.6 1.0 12.0 6.5 7.2

The lowest five average ranks (including ties) for each dataset are typeset in bold, and the best overall average rank is shown in red
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higher overall average macro- and micro-accuracies for

all mixture ratios, with TF-IDF_Bin_Louvain_C, TF-

IDF_Bin_Louvain_P and TF-IDF_Top_sKmeans scoring

the highest. For imbalanced mixtures, the micro-accuracy

is usually lower than but closely tracks macro-accuracy,

generally preserving the relative performance of the

compared methods.

Plots displaying the macro- and micro-accuracies of the

28 methods grouped by the level of similarity of the two

cell types in the mixtures are given in Fig. 9. As expected,

all methods have very high clustering accuracy on mix-

tures of highly dissimilar cell types. The accuracy is

generally lower on mixtures of cell types with intermedi-

ate similarity, and lower still on mixtures of highly similar

cell types. Algorithms based on TF-IDF binarization

perform among the best on all types of mixtures, with

TF-IDF_Bin_Louvain_C and TF-IDF_Bin_Louvain_P

showing most consistent performance. The TF-

IDF_Top_sKmeans algorithm is best-performing within

the group of algorithms using TF-IDF based gene

selection, with only slightly lower performance than

TF-IDF_Bin_Louvain_C and TF-IDF_Bin_Louvain_P on

mixtures of highly similar pairs.

To assess the effect of increased population complex-

ity on accuracy, we also ran the 28 methods on equal-

proportion mixtures consisting of all seven immune cell

types from [2]. The accuracies achieved for each cell

type are shown in Fig. 10. Since the cell types were

mixed in equal proportions in this experiment, the macro-

and micro-accuracy of each method are equal to the

average accuracy over all cell types, and hence pro-

portional to the total length of the horizontal bars in

the figure. These mixtures contain both highly similar

and highly dissimilar cell types, and several methods

end up assigning highly similar cell types to a single

cluster, resulting in significantly reduced accuracy for

some of the cell types. TF-IDF_Bin_Louvain_C is least

affected by such miss-assignments, achieving the best

overall accuracy.

Figures 11 and 12 show the accuracy per cell type for

experiments on the scRNA-Seq dataset from [5], consist-

ing of 2,045 pancreatic islet cells annotated with one of

seven cell types. Since cell type abundances in this dataset

reflect their natural frequency in pancreatic islets, the

total length of the horizontal bars in the figure is pro-

portional with the macro-accuracy (but not necessarily

micro-accuracy) of each method. Two sets of results are

presented, one based on raw counts and one based on

RPKM values in [5]. The relative performance of the com-

pared methods on this dataset is quite different from that

on the 7-way mixture in Fig. 10, underscoring the fact

that the performance of clustering algorithms is highly

dependent on specific aspects of each dataset. The relative

performance is also dependent on the metric used, with

raw counts yielding a quite different ranking of methods

compared to RPKMs.

Tables 1 and 2 summarizes the results of all exper-

iments by giving the average rank (among the 28

selected methods) achieved on each dataset based on

macro-, respectively micro-accuracy, along with overall

rank averages that give equal weight to each dataset.

TF-IDF_Bin_Louvain_C has the lowest overall average

rank with respect to both macro- and micro-accuracy.

The next three best performers with respect to over-

all average rank for both macro- and micro-accuracy

are all based on the TF-IDF transform as well (in

order, TF-IDF_Bin_Louvain_P, TF-IDF_Bin_Louvain_E,

and TF-IDF_Top_sKmeans), with TF-IDF_Bin_Greedy_P

coming fifth in macro-accuracy overall average rank

(Log_PCA_GMM takes fifth place for micro-accuracy

average rank).

Conclusions

In this paper we compared eight methods for clus-

tering scRNA-seq data: nine commonly used existing

approaches and nineteenmethods based on the use of TF-

IDF scores similar to those used in the text analysis field.

Empirical experiments on a variety of cell types and ratio

mixtures suggest that TF-IDF based methods achieve

consistently high accuracy, even on complex mixtures of

highly similar cell types.

A limitation of the TF-IDF_Bin_HC methods’ group is

the quadratic time required for distance calculations used

in hierarchical clustering methods, which becomes a per-

formance bottleneck for datasets with millions of single

cells. In ongoing work we are exploring MinHashing [25,

26] and Locality Sensitive Hashing (LSH) [27–30] tech-

niques that make feasible the efficient computation of

highly similar pairs of cells under, e.g., Jaccard or cosine

distances [31, 32].
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