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Single-cell RNA-seq enables comprehensive
tumour and immune cell profiling in primary breast
cancer
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Han Suk Ryu8, Sangmin Kim9, Jeong Eon Lee9, Yeon Hee Park10, Zhengyan Kan11, Wonshik Han5,7

& Woong-Yang Park1,2,4

Single-cell transcriptome profiling of tumour tissue isolates allows the characterization of

heterogeneous tumour cells along with neighbouring stromal and immune cells. Here we

adopt this powerful approach to breast cancer and analyse 515 cells from 11 patients. Inferred

copy number variations from the single-cell RNA-seq data separate carcinoma cells from

non-cancer cells. At a single-cell resolution, carcinoma cells display common signatures

within the tumour as well as intratumoral heterogeneity regarding breast cancer subtype and

crucial cancer-related pathways. Most of the non-cancer cells are immune cells, with three

distinct clusters of T lymphocytes, B lymphocytes and macrophages. T lymphocytes and

macrophages both display immunosuppressive characteristics: T cells with a regulatory or an

exhausted phenotype and macrophages with an M2 phenotype. These results illustrate that

the breast cancer transcriptome has a wide range of intratumoral heterogeneity, which is

shaped by the tumour cells and immune cells in the surrounding microenvironment.
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M
any molecular-targeted treatments for breast cancer
have been evaluated since the application of endocrine
therapy for oestrogen receptor (ER)-positive tumour

types1. Genome alteration-matched treatment of breast cancer to
target amplification of human epidermal growth factor receptor 2
gene (Erb-B2 receptor tyrosine kinase 2, ERBB2 also known as
HER2) is an example of a successful gene-targeted therapy2. Gene
expression-based molecular subtyping has also been broadly
applied to breast cancer to aid treatment decisions3,4. Molecular
targeted approaches have broadened the treatment options for
breast cancer and have significantly improved therapeutic
outcomes. However, genomic and gene expression profiling are
usually used to characterize a bulk tumour in individual cancer
patients, whereas cancers display intratumoral heterogeneity that
might affect the therapeutic outcome of a targeted treatment.

Genetic heterogeneity in breast cancer has been demonstrated
at a single-cell resolution with high levels of genome coverage5.
Copy number alterations were found at the early stage of cancer
development and remained stable, whereas single-nucleotide
variations varied extensively throughout tumour evolution.
A recent report on genetic alterations in HER2-negative
regions among HER2-amplified backgrounds6 demonstrated
multiple driver mutations in a single tumour, suggesting
a direct influence of genetic heterogeneity on the therapeutic
outcome. Heterogeneity at the level of gene expression also
greatly influences the clinical outcome of patients. Approximately
20% of ERþ tumours either do not respond to endocrine therapy
or develop acquired treatment resistance at a later stage. The
presence of ER-negative cells in an ERþ tumour represents
a molecular mechanism of drug resistance. Rewired signalling
pathway activation through other growth factor receptors, as well
as a change in the subtype from that of the primary tumour in
metastatic lesions7, may also arise from gene expression level
heterogeneity in individual tumour cells.

Gene expression profiling in bulk tumours reflects the
features of non-tumour compartments, which, in the case of
breast cancer, are characterized by an extensive admixture
of stromal, immune and endothelial cell infiltration. These
admixtures form the tumour microenvironment and play
a critical role in tumour initiation, progression and treatment
resistance. Micro-environmental gene expression signatures may
themselves present prognostic values independent of the intrinsic
tumour subtype8–10. The major cell populations forming the
cancer microenvironment include cancer-associated fibroblasts11

and immune cells12. Immune cell infiltrates are composed of cells
from multiple lineages that may play pleiotropic roles. Tumour-
associated macrophages (TAMs) often promote tumour
progression and metastasis, whereas CD8þ cytotoxic T cells
and CD4þ Th1 cells elicit antitumour immunity and suppress
tumour growth13. Furthermore, T cells with regulatory or
exhausted phenotype are associated with failure in antitumour
immunity. A subset of B cells was proposed to promote tumour
progression by affecting diverse cell types including T cells and
TAMs14. However, the presence of a large number of B cells in
the tumour region is associated with a good prognosis15.
Altogether, the tumour microenvironment is formed through
interactions between these variable cellular components and
through communication with tumour cells.

Single-cell genome analysis is expected to have clinical utility in
cancer treatment16. Non-invasive monitoring of circulating tumour
cells, estimation of tumour heterogeneity, early detection of small
numbers of recurrent tumours and sensitive monitoring of rare cell
populations can be utilized for patient care in cases of refractory
cancers. Knowing the level of transcriptome heterogeneity in the
tumour entity and the precise characterization of tumour and
microenvironmental gene expression may help identify better

molecular targets for prognosis and treatment17. Characterization
of heterogeneous tumour signatures will lead to effective molecular
targeted therapies, whereas characterization of tumour-infiltrating
immune cells may reveal a better strategy for overcoming immune
suppression and revitalizing the naturally occurring immune
surveillance18.

We provide the transcriptome analysis of 515 single cells from
11 patients with different breast cancer subtypes. Single-cell
isolates from individual tumour tissues contain carcinoma and
non-carcinoma microenvironment cells. Each population has
a unique pattern of gene expression, which cannot be resolved in
the total mixed population. Taken together, our study reveals the
characteristics of different tumour subtypes that are shaped by
tumour cells and immune cells in the microenvironment.

Results
Genomic profiles of 11 patients for single-cell analysis. We
selected 11 patients representing the four subtypes of breast
cancer: luminal A; luminal B; HER2; and triple negative breast
cancer (TNBC). All but one of the surgical samples were obtained
from chemotherapy-naive patients, and the markers for subtyp-
ing were validated by pathological examination as ER-positive
(BC01 and BC02; luminal A), ER/HER2-positive (BC03; luminal
B), HER2-positive (BC04, BC05 and BC06; HER2) and triple-
negative (BC07–BC11; TNBC) invasive ductal carcinoma
(Supplementary Table 1). Regional metastatic lymph nodes were
collected from the luminal B (BC03LN) sample and a triple-
negative breast cancer (BC07LN) sample.

Whole-exome sequencing revealed the genomic landscape of
these samples regarding somatic mutations (Supplementary Data 1)
and copy number variations (CNVs; Supplementary Data 2).
Triple-negative breast cancer patients showed marked alterations of
CNVs (Supplementary Data 2), supporting previous reports on
extensive genomic instability in this subtype tumour19. We also
confirmed the characteristic genetic alterations in breast cancer,
including missense mutations or amplifications in PIK3CA
(4/11 patients), missense mutations or deletions in TP53
(5/11 patients) and amplifications in ERBB2 (4/11 patients; Supple-
mentary Fig. 1)20–22.

We isolated single cells using microfluidic chips23 without
prior cell type selection to generate RNA-seq data containing
5.8±1.3 million reads from the amplified cDNAs of each single
cell (Supplementary Data 3). Detection of constant ratios of
two spiked-in RNAs assured the quality and consistency of all
single-cell RNA-seq experiments (Supplementary Fig. 2a).
Quantitative PCR analysis of the expression of 24 selected
genes supported the data from single-cell RNA-seq (Suppleme-
ntary Fig. 2b). Pooled tissue isolates were highly reflective of the
matching tumour tissues (Supplementary Fig. 2c). Comparisons
between the averages of single cells and corresponding pooled
samples (Supplementary Fig. 2d) demonstrated partial but
significant correlations (Pearson’s r 0.16–0.63 with average 0.47,
Po0.001). Multiple regression analyses of the transcriptomes of
different-sized pools of single cells to those of bulk tumours
(Supplementary Fig. 2e) provided a better representation of the
tumour population with an increasing number of single cells.
Altogether, single-cell RNA-seq could illustrate a significant
portion of the tumour entity, yet tumour components were lost
during the single-cell isolation or sequencing processes.

Separation of tumour and tumour-associated normal cells. We
analysed the gene expression profiles of 515 tumour tissue isolates
and found extensive intratumoral heterogeneity, as shown by the
mixed representation of intra- and inter-patient cells by principal
component analysis (Fig. 1a). Expression of therapeutic target
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genes such as ER (ESR1) and HER2 (ERBB2) also varied
across and within tumours (Fig. 1b). Because we isolated
single cells without prior selection of carcinoma cells, we specu-
lated that non-carcinoma cells might contribute to the observed
intratumoral heterogeneity. Those non-carcinoma populations
potentially represent fibroblasts, adipocytes, endothelial cells
and diverse immune cells according to the histopathological
examinations of the tumour tissues (Fig. 1c,d). Each tumour

manifested differential level of immune cell infiltration such that
luminal A type (BC01 and BC02) tumours were highly enriched
with carcinoma cells, whereas most TNBC type (BC07–10)
tumours showed extensive immune cell infiltration9 (Fig. 1c).

Gene expression profiling of tumour tissues reflects
the signatures of both the tumour and the surrounding
microenvironment. Therefore, single-cell transcriptome profiling
enables the separation of tumour-specific gene expression
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Figure 1 | Intratumoral heterogeneity in primary breast tumours. (a) Unsupervised PCA on the transcriptome, indicating a mixed distribution of intra-

and interpatient cells. Individual cells are coloured yellow for luminal A, green for luminal B, blue for HER2, and red for TNBC tumours. This colour scheme

is maintained throughout the manuscript. (b) Individual cells exhibiting gene expression heterogeneity for ER (ESR1), PR (PGR) and HER2 (ERBB2). The

overall single-cell expression profiles agree with the bulk tumour expression profiles and the pathology results. (c) Haematoxylin and eosin staining on

formalin-fixed paraffin-embedded slides. Microscopic findings indicated carcinoma and non-carcinoma cells, including tumour-infiltrating lymphocytes9

(TIL, 1–60%). Most of the TNBC tumours except BC10 were heavily infiltrated with lymphocytes, whereas luminal A tumours showed enrichment with

carcinoma cells. Scale bar, 100mm. (d) A part of the tumour tissue in c is magnified to show non-neoplastic cellular components as a representative.

Scale bar, 25mm.
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signatures from those of non-tumour compartments. We used the
chromosomal gene expression patterns to separate the breast
carcinoma cells from the mixed population. Here gene expression
profiles were aligned along the chromosomes as moving
averages24,25. With this approach, tumour cells would have
distinct chromosomal expression patterns, recapitulating tumour-
specific CNVs24 (Fig. 2a). Unsupervised hierarchical clustering of
chromosomal gene expression patterns identified 11 clusters
(Fig. 2b) among the 515 single cells: patient-specific carcinoma
clusters with distinct chromosomal gene expression patterns
and a multi-patient non-carcinoma cell cluster with no apparent
CNV patterns. The chromosomal gene expression pattern
in carcinoma clusters largely recapitulated the genomic CNV

profiles (Supplementary Fig. 3). The separation of carcinoma
versus non-carcinoma cells was corroborated by the results of the
unsupervised principal component analysis of the transcriptome
(Fig. 2c).

To further delineate the identity of carcinoma and
non-carcinoma cells, we analysed the expression of tumour-
associated stromal or immune gene sets proposed in the tumour
purity estimation, ESTIMATE26. Most of the non-carcinoma cells
scored high for the immune signature (Fig. 2d). A number of
non-carcinoma cells with low ‘immune scores’ expressed stromal
genes (Fig. 2d,e), suggesting their identity as cancer-associated
fibroblasts. Most carcinoma populations scored low for both
stromal and immune gene expression, while expressing high
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Figure 2 | Separation of carcinoma and non-carcinoma cells. (a) Scheme of cell classification. (b) Hierarchical clustering of the chromosomal gene

expression pattern separating the patient-specific carcinoma cell groups from the non-carcinoma cell cluster. Each row represents single cells and matched

bulk tumours (triangle): the tumour groups are colour-coded as in Fig. 1a. For each chromosome, the chromosomal gene expression pattern was estimated

from the moving average of 150 genes. These patterns implicate chromosomal amplification and deletion. (c) Unsupervised PCA showing the separation of

carcinoma and non-carcinoma cell groups. (d) Carcinoma cells identified in a, scored low for stromal and immune signatures, whereas non-carcinoma cells

scored high for immune signatures. Tumour score was inferred from the stromal and immune signature using ESTIMATE algorithm26. Normal tissues

represent 183 mammary tissue data from GTEx portal (http://www.gtexportal.org/). Each box shows the median and interquartile range (IQR 25th–75th

percentiles), whiskers indicate the highest and lowest value within 1.5 times the IQR and outliers are marked as dots. P value, Student’s t-test

(***Po0.001). (e) Representative gene expression in single cells for the immune (PTPRC, LAPTM5 and IL2RG), stromal (HTRA1, FBN1 and FAP) and

epithelial (KRT19, CDH1 and EPCAM) cell types.
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levels of epithelial cell differentiation markers. Altogether, among
515 single cells, we estimated the capture of 317 epithelial
breast cancer cells, 175 tumour-associated immune cells and
23 non-carcinoma stromal cells (Fig. 2a).

Intrinsic tumour cell heterogeneity in cancer aggressiveness.
Analysis of the cell-to-cell correlations for gene expression of the
515 cells demonstrated a relatively low degree of similarity
between cells from the same patient (Fig. 3a). After excluding
198 non-carcinoma cells, we found a marked increase in the
correlation between single carcinoma cells within a patient,
suggesting that intrinsic tumour cell properties and heterogeneity

should be resolved at the single-cell level. Carcinoma cells from
TNBC-type tumours (BC07–11) tend to show low cell-to-cell
correlations with or without the removal of non-carcinoma
cells (Fig. 3b), suggesting the contribution of both tumour
intrinsic and microenvironmental properties to the intratumoural
heterogeneity in TNBC. Ultimately, single-cell analysis revealed
the distinct carcinoma characteristics of each patient tumour and
diverse microenvironmental populations shared by different
patient tumours (Fig. 3c).

The putative breast cancer cells were further classified
into molecular subgroups using joint distribution between
the ER and HER2 module scores, scaling the ER and HER2
signalling, respectively27,28. For the molecular subgroup analysis,
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we excluded BC05 tumour cells, which had been subjected
to neoadjuvant chemotherapy and Herceptin. Application of
this classification method predicted the subtype of The Cancer
Genome Atlas (TCGA) breast cancer data set with 91% accuracy
(Supplementary Fig. 4). Most carcinoma cells were confined
within the boundary of the corresponding subtype category of the
bulk tumour (Fig. 4a, upper left), whereas some tumours show
mixed subtype cells (Fig. 4a, upper right). In particular,
carcinoma cells from HER2-positive tumours had the most
variable subtype composition, from predominant HER2 to mostly
TNBC types (Fig. 4a, bottom). Carcinoma cells from the
ER/HER2 double-positive tumour (BC03) were categorized
as the ER subtype with concomitant but low expression of
HER2 module genes.

Carcinoma cells variably expressed aggressive cancer signatures
such as epithelial–mesenchymal transition (EMT), stemness,
angiogenesis, proliferation29,30 and recurrence3,31 (Supplementary

Fig. 5a). Overall, the TNBC-type carcinoma cells had higher
expression of EMT signatures than those from the luminal and
HER2 types (Supplementary Fig. 5b). Both HER2 and TNBC
tumour cells expressed high levels of stemness and recurrence
signatures. Notably, EMT, stemness and angiogenesis signatures
had positive correlations (Fig. 4b), and rare cells with concurrent
high expression were identified. These rare subpopulations may
play a critical role in tumour cell propagation, progression and
metastasis.

Heterogeneity components in breast cancer subtypes. Most
carcinoma cells had gene expression characteristics consistent
with the parental group after the removal of non-carcinoma cells
(Fig. 3c). Using the single-cell data set, we identified differentially
expressed genes between breast cancer subtypes. We applied the
R package Seurat32 and used the likelihood ratio test (LRT) based
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on zero-inflated data to extract differentially expressed
genes for the luminal, HER2 or TNBC subtype carcinoma
groups (Fig. 5a, top, and Supplementary Table 2a). Most
carcinoma cells in all luminal tumours (BC01, BC02 and BC03)
expressed high levels of ER and the canonical ER pathway
genes20,33,34 (Fig. 5a, bottom, and Supplementary Table 2b).

Carcinoma cells from the HER2þ (HER2; BC04 and BC06)
and ERþHER2þ (luminal B; BC03) tumours expressed high
levels of the ERBB2/HER2 gene and genes located in the HER2
amplification region on chromosome 17q11-25. These carcinoma
cells, however, had variable expression of HER2 signalling
pathway genes20. Gene set variation analysis indicated higher
expression of PI3K, NF-kB and MEK pathway genes for the BC04
carcinoma cells compared to others (Fig. 5b). The expression of
PI3K and NF-kB pathway genes was low in the BC03
ERþHER2þ carcinoma cells, which was highly upregulated
following lymph node metastasis.

Carcinoma cells from the TNBC tumour groups (BC07–11)
exhibited variable upregulation of genes in basal pathways
(Fig. 5a). Triple-negative breast cancer is known to be extremely
heterogeneous in molecular, pathologic and clinical parameters.
Although the results of initial subtype studies suggest that the
majority of TNBC tumours belong to the basal-like subgroup,

TNBC and basal-like breast cancer may not represent identical
tumour entities35. TNBC tumours can even be further classified
into six different subgroups (basal-like 1, basal-like 2, immuno-
modulatory, luminal androgen receptor, mesenchymal and
mesenchymal stem-like)36. On the basis of this TNBCtype
classification scheme, TNBC carcinoma cells within a patient
were assigned to multiple subgroups, thus showing extensive
intratumoral heterogeneity (Fig. 5c). Interestingly, the TNBCtype
distribution in the BC07 tumour changed on lymph node
metastasis, suggesting a transition or selection of molecular
signatures in different tumour microenvironments.

Heterogeneity in tumour-infiltrating immune cells. Most
non-carcinoma cells were identified as immune cells based on
their gene expression signatures (Fig. 2c,d). We further classified
these 175 immune cells into three groups (Fig. 6a) by
non-negative factorization clustering with immune cell type-
specific gene sets37 (Supplementary Figs 6, 7a and Supplementary
Table 3). The largest group expressed immunoglobulins and
B-cell-specific transcriptional factors, and many came from the
tumour-infiltrating lymph nodes (cluster 1/B cells; Fig. 6a and
Supplementary Table 4a). In the detailed analysis, two subclasses
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Figure 5 | Subtype-specific gene expression profiling at single-cell resolution. (a) LRT based on zero-inflated data and heatmap analysis

(upper panels) identifying differentially expressed genes among different subtype tumours at a single-cell level (left) or in bulk (right). GSVA analysis with

subtype-related pathways also indicates differential activation of pathways at a single-cell level (lower panel). (b) HER2/HER3 downstream signalling

pathways (PI3K/AKT, NF-kB and RAS/MEK/MAPK) are highly activated in BC04 HER2þ tumour cells. Expression of PI3K and NF-kB pathway genes was

upregulated in the lymph node metastasis for BC03 ERþHER2þ tumour cells. Pathway activation was determined by the GSVA enrichment score.

(c) TNBCtype analysis59 was applied only to TNBC tumours (BC07–BC11), which characterized individual cells as one or more of six different subtypes.

Mixed subtype composition within a tumour indicates intratumoral heterogeneity comparable to intratumoral heterogeneity.
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of B lymphocytes were identified, one with an expression
signature of centroblasts/centrocytes38 and the other with that
of naive B lymphocytes (Supplementary Fig. 7b). The second
group expressed T-cell receptors and T-cell-specific markers,
most of which were captured from primary tumour tissues
(cluster 2/T cells; Fig. 6a and Supplementary Table 4b). The third
group also came from the primary tumour tissues and expressed
markers for tissue macrophages (cluster 3/macrophages; Fig. 6a
and Supplementary Table 4c).

The presence of tumour-infiltrating T and B lymphocytes was
also assessed by immunostaining in tumour tissues with anti-CD3
(dþ gþ e) or anti-CD20 antibodies (Fig. 6b), which showed
significant correlations with gene expression in the bulk tumour
samples (Po0.05; Fig. 6c). Among 10 tumour tissues with
T-lymphocyte-specific gene expression and immunostaining,
individual T-lymphocyte capture was successful in four tissue
isolates. Individual B-lymphocyte capture was successful in four
out of seven tissues. The results of additional marker staining for

T and B lymphocytes were consistent with the single-cell
RNA-seq results (Supplementary Fig. 8). These data support the
validity of gene expression profiling for cell type specification,
but also implicate limitations in single-cell isolation from breast
cancer tissues.

In the tumour-infiltrating T cells, we analysed gene expression
signatures for T-cell activation and functional status (Fig. 7).
T lymphocytes in four patient tumours manifested distinct
patterns for naive, costimulatory, regulatory, exhaustion
and cytotoxicity expression signatures39–41. The luminal
B-type tumour (BC03) had T lymphocytes with naive/early
costimulatory signatures in the primary tumour sites and
T lymphocytes with more costimulatory molecule expression in
the lymph nodes. One HER2þ tumour and two TNBC tumours
(BC04 and BC07) were populated by T lymphocytes with
the expression of regulatory T-cell markers, including IL2RA
(also known as CD25)41. The third TNBC tumour (BC09) had
two types of T lymphocytes, one with a predominant exhaustion
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signature and another exhibiting both exhaustion and cytotoxicity
signatures. T cells with a high exhaustion signature are targets of
immune checkpoint blockade in clinical oncology. In particular,
blocking antibodies for PD-1 (PDCD1) or its ligand PD-L1
(CD274) were shown to have clinical efficacy in the treatment of
melanoma and lung cancer42. However, PD-1 expression was
modest in our data set, but expression of alternative inhibitory
receptors such as TIGIT and LAG3 (ref. 43) was frequently
detected.

The third immune cell group expressed transcripts for
the monocyte/macrophage markers CD14 and CD68 (ref. 37),
as well as phagocytic enzymes associated with macrophage
function, suggestive of TAMs44. We identified genes that were
differentially expressed in putative TAMs compared with the
other immune cells from the single-cell transcriptome data
(Supplementary Fig. 7a and Supplementary Table 4c). The
selected genes were significantly enriched for genes involved in
inflammation and defence mechanisms (Fig. 6a). Previous
reports suggest that TAMs may show an immunosuppressive
M2 signature, which promotes tumorigenesis by suppressing
immune surveillance and inducing angiogenesis, rather than
the activating M1-type signature45. Indeed, the putative TAM
populations expressed many M2-type genes (Supplementary
Fig. 7a) such as CD163, MS4A6A and TGFBI (ref. 45), in
addition to genes known to promote tumour progression and
angiogenesis such as PLAUR13 and IL-8 (ref. 46). Collectively,
both innate and adaptive immune cell populations in the breast

cancer samples displayed immune-suppressive gene expression
characteristics.

Discussion
Using transcriptomic analysis of single-cell isolates from breast
cancer, we could clearly separate the signatures of carcinoma and
tumour-infiltrating immune cells, which together defined the
characteristics of breast cancer. In the tumour cell analysis, we
identified both heterogeneity and core gene expression signatures
for subtype-specific breast cancer cells. We also classified
non-tumour cells into three immune cell types with activating
and suppressive gene expression signatures, suggesting dynamic
immune cell interactions and a distinct immune system status
in each tumour.

The role of the immune system in tumour progression
has been extensively studied, and the results of these studies
have provided the basis for successful immunotherapy in
multiple cancer types12,42. Tumours are thought to evade
natural immune surveillance either by immunologic ignorance
or by active suppression. T-cell infiltration may be a key
determinant by which the evasion pathway operates. Among
immune cell infiltrates mostly obtained from TNBC tumours, we
found a number of T cells with high cytokine and chemokine
expression, which is indicative of ongoing immune responses.
Interestingly, these T cells also manifested immuno-suppressive
phenotypes of exhausted39,40 or regulatory T cells41. Therapeutic
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strategies to overcome T-cell exhaustion, that is, immune
checkpoint blockade, have been developed that target CTLA-4
and PD-1/PD-L1, and these strategies have demonstrated
significant efficacy in treating melanoma and non-small-cell
lung cancer42. Clinical trials of these treatment strategies for
other cancer types, including breast cancer, are in progress as
a mono- or combination therapy. Search for new immune
checkpoint targets is ongoing and early clinical trials for
additional checkpoint molecules such as LAG3 (ref. 47) have
begun. In our single-cell data set, most T cells expressed
LAG3 and/or TIGIT48 (Fig. 7), suggesting that they are
potential targets for checkpoint inhibition.

Conventionally, the study of tumour-infiltrating immune
cells has been conducted using predefined immune populations
based on known surface marker expression. Here we used an
inferred genomic feature, that is, RNA-seq-inferred CNV to
separate carcinoma and immune cells without prior marker
selection. This marker-free single-cell approach allows the use of
gene expression signatures to define the carcinoma and
immune cell populations, and makes it possible to demonstrate
marker-unrestricted profiles and heterogeneity in the populations.
There are potential errors in this approach, however, caused by a
doublet formation between tumour and immune cells during
single-cell capture and by a misclassification due to incomplete
CNV inference. Using single-nucleotide polymorphism (SNP)
information may reinforce the expression-based
CNV inference by revealing additional genomic features of cancer
cells such as loss of heterozygosity. Despite the potential errors, the
marker-unrestricted capture and characterization of diverse
tumour-associated populations may reveal new target populations
for therapeutic intervention. Therefore, a sufficient level of cell
capture without isolation bias would maximize the utility of
marker-free cell identification. In our study, we collected only a
small number of tentative cancer-associated fibroblasts or epithelial
cells, and no endothelial cells probably due to the limitations of the
cell isolation and capture methods. The partial representation of
bulk tumour transcriptomes by those of single cells (Supplementary
Fig. 2d,e) also suggests limitations of sampling in the current
approach. To overcome this limitation and to profile the entire
tumour microenvironment, cell isolation techniques enabling large
scale, unbiased sampling need to be explored32,49.

Many previously defined bulk tumour signatures were
recapitulated at the single-cell level, especially for luminal and
HER2-enriched subtype tumours, indicating that conventional
transcriptome profiling in mixed bulk populations can success-
fully depict the intrinsic tumour properties. Nonetheless, single-
cell profiling revealed individual tumour cell characteristics that
might have been obscured in bulk analysis. First, we found that
only one of the three tumours with ERBB2/HER2 amplification
had prominent activation of the HER2 downstream signalling
pathway. The other two tumours were non-standard HER2
tumours, one had concurrent ER positivity and the other had
been subjected to neoadjuvant chemo-/HER2 target therapy.
Carcinoma cells from the ER and HER2 double-positive tumour
showed both ER and HER2 expression with predominant ER
downstream signalling pathway activation, classifying them as the
luminal B type. Thus, these carcinoma cells may respond well to
hormonal therapy at the sampling time point, yet may retain the
potential to activate HER2 signalling and become resistant to
hormonal therapy. Indeed, the ERþHERþ carcinoma cells from
the lymph node metastasis had higher gene expression for HER2
signalling pathways. The HER2-positive cells from the patient
who had undergone neoadjuvant therapy showed low levels of
HER signalling pathway activation but higher basal gene
expression, resembling a TNBC tumour. These data suggest that
single-cell gene expression profiling allows for a comprehensive

understanding of the tumour cells and thus may help to develop
effective treatment strategies.

Second, we identified gene expression characteristics of TNBC
tumour cells, which have so far been elusive because of intrinsic
tumour heterogeneity and the large number of infiltrating
immune cells. Using single-cell RNA-seq, we confirmed the high
level of transcriptome heterogeneity in TNBC tumour cells
(Fig. 3b), which included signatures for basal, immunomodula-
tory, luminal androgen receptor, mesenchymal or stem-like gene
expression (Fig. 5c). Notably, rare cell types with strong EMT and
stemness signatures were identified within TNBC tumours
(Fig. 4b), which may lead to tumour progression and metastasis.
We also confirmed the high level of immune cell infiltration in
TNBC tumours by histology, immunostaining and gene expres-
sion profiling of bulk tumours, and at a single-cell level.
Considering the diverse immune cell types, single-cell expression
profiling is particularly important for the accurate characteriza-
tion of the tumour-infiltrating immune cells.

Altogether, these results demonstrate the scope and potential
impact of intratumoral heterogeneity and suggest that single-cell
transcriptome profiling can identify and characterize clinically
important subpopulations to develop successful targeted treat-
ments. Further, the results of our study indicate the need for
large-scale single-cell gene expression profiling projects for the
comprehensive characterization of heterogeneous tumours such
as triple-negative breast cancer.

Methods
Patients and tumour specimens. This study was approved by the Institutional
Review Board of Seoul National University Hospital and Samsung Medical Center,
and all patients provided signed informed consent for collection of specimens and
detailed analyses of the derived genetic materials (Institutional Review Board no.
1207-119-420 and 2015-12-094-003). A total of 10 of 11 patients diagnosed with
invasive ductal carcinoma underwent breast-conserving surgery or total
mastectomy without prior treatment. Patient BC05 received neoadjuvant
chemotherapy and Herceptin, and was thus excluded from subtype-specific
analyses. In all, 11 primary tumour specimens (BC01–BC11) and 2 metastatic
lymph nodes (BC03LN and BC07LN) were collected and processed for single-cell
RNA sequencing. For BC09, two runs of single-cell RNA sequencing were
performed and combined for downstream analysis. Molecular subtypes of tumours
were predicted50 using the R package genefu.

Isolation of single cells and cDNA amplification. Single-cell suspensions of
breast cancer tissues or lymph node metastases were obtained by mechanical
dissociation and enzymatic digestion on the day of the surgery. Dead cells were
removed by Ficoll-Paque PLUS (17-1440-02, GE Healthcare, Uppsala, Sweden)
separation, and 50,000 cells were loaded onto an individual 10–17 mm integrated
fluidic circuit mRNA sequencing chip in the C1 Single-Cell Auto Prep System
(100-5760, Fluidigm, San Francisco, CA, USA). Loaded chips were microscopically
examined to verify single-cell loading. For cell lysis, cDNA synthesis and
amplification, the SMARTer Ultra Low RNA Kit (634936, Clontech, Mountain
View, CA, USA) was used following the manufacturer’s instructions. RNA
spike-ins 1, 4 and 7 from ArrayControl RNA Spikes (AM1780, ThermoFisher,
Waltham, MA, USA) were added to the lysis mix. Amplified cDNAs were
quantified and qualified using a Qubit 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, USA) and 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA). In total, 579 single-cell cDNAs were subjected to RNA sequencing. Bulk
RNAs were extracted from pooled cells (B1� 105 tumour tissue isolates) or
tumour tissues using the RNeasy Plus Micro kit (74034, Qiagen, Hilden, Germany),
and 10 ng of total RNA was amplified with the SMARTer Ultra Low RNA Kit
under the same conditions as used for single cells.

Whole-exome sequencing and data processing. Exomes were captured using
the SureSelect XT Human All Exon V5 kit (5190-6208, Agilent). Sequencing
libraries were constructed for the HiSeq 2500 system (Illumina) and sequenced
using the 100-bp paired-end mode of the TruSeq Rapid PE Cluster kit and TruSeq
Rapid SBS kit (PE-402-4001, Illumina). Exome-sequencing reads were aligned to
the hg19 reference genome using BWA-0.7.10 (ref. 51). Putative duplications were
marked by Picard-1.93 (http://sourceforge.net/projects/picard/files/picard-tools/
1.118/). Sites potentially harbouring small insertions or deletions were
realigned and recalibrated by applying the modules of GATK-3.2 (ref. 52)
with known variant sites identified from phase I of the 1000 Genomes Project
(http://www.1000genomes.org/) and dbSNP-137 (http://www.ncbi.nlm.nih.gov/
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SNP/). We used MuTect-1.1.5 (ref. 53) to detect single nucleotide variations
(SNVs) and the Control-FREEC software package54 to detect CNVs. The whole
exome sequencing (WES) coverage was 100� for tumours and 50� for paired
blood samples.

RNA sequencing and bioinformatics analysis. Sequencing libraries were
constructed using amplified cDNAs with the Nextera XT DNA Sample Prep Kit
(FC-131-1024, Illumina) and sequenced using the HiSeq2500 system in 100-bp
paired-end mode of the TruSeq Rapid PE Cluster kit and the TruSeq Rapid SBS kit.
To assess the expression values of array control RNA spike-ins, reference sequences
and the corresponding annotations were generated by merging three control RNA
spike-ins (ThermoFisher) with the human genome reference sequences (hg19) and
the GENCODE 19 annotations. The RNA reads were then aligned to the reference
sequences using the 2-pass mode of STAR_2.4.0b (default parameters)55, and
relative gene expression was quantified as transcript per million (TPM) using
RSEM v1.2.17 (default parameters)56. Isoform expression levels for each gene were
summed to derive the TPM values. Quality control assessment of aligned single-cell
RNA-seq reads was performed using RNA-SeQC57, and the results are summarized
in Supplementary Data 3. To remove cells with low-quality sequencing values, four
filtering criteria were applied: (1) number of total reads; (2) mapping rate;
(3) number of detected genes; and (4) portion of intergenic region. To remove
genes with low expression values, the following steps were applied. First, TPM
values o1 were considered unreliable and substituted with zero. Second, TPM
values were log2-transformed after adding a value of one. Third, genes expressed in
o10% of all tumour groups were removed. In total, 515 single cells and 17,779
genes passed the QC criteria. The filtered 17,779 genes were also used for bulk
tumour analyses. As an estimate of the sensitivity and reproducibility of single-cell
RNA sequencing, we obtained consistent log2(TPMþ 1) ratios for RNA spike-in 1
(12,200 transcripts) and RNA spike-in 4 (912 transcripts; Supplementary Fig. 2a).
RNA spike-in 7 with an estimated 62 transcript input was not detected. For
transcriptome analysis, expression data were mean centred by subtracting the
average log2(TPMþ 1) value for each gene with the following exceptions: for RNA
spike-in analysis; comparisons between RNA-seq and quantitative PCR (qPCR)
results; detection of chromosomal expression patterns; measurement of
intratumoral correlations; comparisons with immunofluorescence staining results;
comparisons of immune marker expression; and application of self-normalizing
tools such as Gene Set Variation Analysis (GSVA) and TNBCtype.

Copy number inference from RNA-seq data. To identify the distinct
chromosomal gene expression pattern of cancer cells in comparison to putative
non-carcinoma cells, expression profiles of normal breast tissues from GTEx portal
(http://www.gtexportal.org/) were first transformed into log2(TPMþ 1) values
comparable to our data set. Second, the average gene expressions with their
variations for all normal breast tissues were calculated for the genes detected in
our filtered single-cell data. Third, the Z-scores of each gene were calculated by
normalizing our single-cell data to the averaged expression profile of normal breast
tissues. All genes were sorted by their chromosome number and start position.
The chromosomal expression patterns were estimated from the moving averages of
150 genes as the window size and adjusted as centred values across genes.

Correlations between genomic CNVs and inferred CNVs. Comparisons of
CNVs were performed for somatic CNVs and large-scale segments (410,000 bp).
To compare the CNVs between WES and RNA-seq in parallel, both CNVs were
binned into 10Mb window sizes, and inferred CNVs were averaged across single
cells. The correlation coefficients were calculated by Pearson’s correlation analysis
using the R function.

Pathway analysis. To assess gene expression signatures and pathway activation, a
non-parametric and unsupervised software algorithm called GSVA software in the
R package58 with the RNA-seq mode was used. We included GTEx normal breast
tissue samples in the GSVA to assess relative pathway activation levels. For all gene
sets, over-representation analysis was performed using the hypergeometric test, and
those with P values o0.05 were utilized.

Breast cancer subtype-specific gene expression. We applied the R package
‘Seurat’32 to analyse single-cell data and used the LRT based on zero-inflated data and
the receiver-operating characteristic test to identify subtype-specific markers (whose
average expression was larger than twofold and classification power
(area under the curve) was higher than 0.7 with LRT Po0.05; Supplementary
Table 2a–c). To show compartmental pathway activation in each subtype or identify
the characteristic genes for HER2-enriched tumour cells compared to luminal
HER2þ tumour cells, GSVA enrichment scores were calculated for subtype-related
pathways or HER2/HER3 downstream signalling pathways from MSigDB v5.0.

Triple-negative breast cancer subtyping. Triple negative breast cancer cells were
classified into six subtypes using TNBCtype (http://cbc.mc.vanderbilt.edu/tnbc/
index.php)59 (Fig. 5c). TNBCtype has six centroids for each subtype, defined by

2,188 subtype-signature genes and 386 training samples. By comparing a candidate
sample with six centroids, TNBCtype provides Spearman correlation coefficients
and P values for each subtype. Some cells had high correlation coefficients
(Po0.05) with more than one subtype, and thus were classified as multiple
subtypes. Before the application of TNBCtype, genes that were not expressed in any
single TNBC cells were removed. The input files were then uploaded without
centring to avoid false ERþ tumour cell calling as a result of zero ESR1 expression
in most of the TNBC single cells.

Immune cell type-specific gene expression profiling. Three immune cell
subgroups were identified by non-negative factorization clustering60 from
175 non-tumour cells using 412 genes annotated in 11 non-overlapping immune cell
types37 (Supplementary Table 3). To characterize the three immune cell clusters, the
receiver-operating characteristic test and LRT based on zero-inflated data were
performed using Seurat. Then, genes with a fold change 42 and an area under the
curve40.7 were obtained as cell type-specific genes (LRT Po0.05; Supplementary
Table 4a–c). Gene ontology terms significantly enriched in cell type-specific genes
were annotated by DAVID 6.7 (https://david.ncifcrf.gov/) with a default option. To
further characterize T or B cells by functional status, GSVA analysis was performed
with selected gene sets from the literature (Supplementary Table 5a–c).

Immunofluorescence staining. Immunofluorescence staining was carried
out to assess the presence of tumour-infiltrating T or B cells in tumour tissues.
T lymphocytes were double-stained with anti-CD3 (1:200; MA5-12577, Thermo
Fisher, Waltham, MA, USA) and anti-MARK3 (1:100; PA5-29328, Thermo Fisher)
antibodies in the formalin-fixed paraffin-embedded (FFPE) slides. B lymphocytes
were double-stained with anti-CD20 (1:200; MA5-13141, Thermo Fisher) and
anti-PRPSAP2 (1:50; PA5-31237, Thermo Fisher) antibodies. Alexa488-labelled-
anti-mouse and Alexa568-labelled-anti-rabbit antibodies (1:50; Invitrogen) were
used for double immunofluorescence with 4,6-diamidino-2-phenylindolecounter-
staining. The numbers of CD3þ or CD20þ cells were assessed as average counts
in three 0.125mm2 areas with maximal positive staining.

Validation of RNA-seq data by qPCR. qPCR was performed with the DELTA-
gene assay (PN100-3035, Fluidigm) using cDNAs from 6 bulk and 185 single-cell
samples. Primer sequences were designed using D3 software (Fluidigm) and are
listed in Supplementary Table 6. Before comparison of qPCR and RNA-seq data,
Ct values of 999 (¼ not detected) were replaced with ‘NA’. Ct values were nega-
tively converted and � 20 was set as the threshold value. These data represent the
log2 expression level for qPCR comparable to log2(TPMþ 1) for RNA-seq.
The inter-relations were assessed by Pearson’s correlation, Spearman’s rank order
correlation and linear regression analysis.

Data availability. The RNA-seq (single-cell and bulk) and bulk WES data have
been deposited in the NCBI Gene Expression Omnibus database under the
accession code GSE75688, and the bulk WES data have been deposited in the NCBI
Sequence Read Archive under the accession code SRP067248. The TCGA Breast
Invasive Carcinoma data referenced during the study are available in a public
repository from the cBioportal website (www.cbioportal.org).
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