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Single-cell RNA-seq of rheumatoid arthritis
synovial tissue using low-cost microfluidic
instrumentation
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Droplet-based single-cell RNA-seq has emerged as a powerful technique for massively

parallel cellular profiling. While this approach offers the exciting promise to deconvolute

cellular heterogeneity in diseased tissues, the lack of cost-effective and user-friendly

instrumentation has hindered widespread adoption of droplet microfluidic techniques. To

address this, we developed a 3D-printed, low-cost droplet microfluidic control instrument and

deploy it in a clinical environment to perform single-cell transcriptome profiling of dis-

aggregated synovial tissue from five rheumatoid arthritis patients. We sequence

20,387 single cells revealing 13 transcriptomically distinct clusters. These encompass an

unsupervised draft atlas of the autoimmune infiltrate that contribute to disease biology.

Additionally, we identify previously uncharacterized fibroblast subpopulations and discern

their spatial location within the synovium. We envision that this instrument will have broad

utility in both research and clinical settings, enabling low-cost and routine application of

microfluidic techniques.
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T
he complex architecture and associated higher-order
function of human tissues relies on functionally and
molecularly diverse cell populations. Disease states repre-

sent significant perturbations to cellular heterogeneity, with
tissue-resident cells acquiring altered phenotypes and circulating
cells infiltrating into the tissue. Therefore, defining the cellular
subsets found in pathologic tissues provides insights into disease
etiology and treatment options. Traditional methods such as flow
cytometry, which require a priori knowledge of cell type-specific
markers, have begun to define this landscape, but fall short in
comprehensively identifying cellular states in a tissue, with par-
ticular difficulty detecting extremely rare subpopulations.

Technological advancements in automation, microfluidics, and
molecular barcoding schemes have permitted the sequencing of
single cells with unprecedented throughput and resolution1–4. In
particular, recent studies featuring analysis of 104–105 single cells
have enabled unbiased profiling of cellular heterogeneity, where
entire tissues can be profiled without advance enrichment of
individual cell types1,5,6. In spite of this progress, technological
advances can be slow to permeate into resource-limited clinical
arenas due to a variety of reasons related to cost, personnel
requirements, space or infrastructure. Specifically, a major barrier
to widespread adoption of droplet microfluidic techniques is the
lack of cost-effective and reliable instrumentation7,8. Microfluidic
experiments are typically performed using commercial instru-
ments which are expensive and often configured for a single
purpose, or custom research instrument setups which are com-
prised of multiple pieces of equipment and rarely portable. Par-
ticularly in clinical settings, microfluidic instrumentation is not
always proximal to the site of cell sample generation requiring
transport to external sites or cell preservation, both of which can
alter cellular transcriptomes or result in extensive cell death6,9.

To address these short-comings and provide a low-cost option
for single-cell transcriptome profiling, we have developed an
open-source portable instrument for performing single-cell dro-
plet microfluidic experiments in research and clinical settings.
Recent microwell-based transcriptome profiling approaches have
been shown to be advantageous for low-cost portable tran-
scriptome profiling10–12, however some of these techniques are
challenging to perform and or require extensive chemical mod-
ification to fabricate the devices. Additionally, the fixed archi-
tecture of microwell (partitioning) microfluidic devices dictates
their use for specific applications. In contrast, the platform pre-
sented here is easy to use and can be implemented for a variety of
droplet microfluidic (partitioning) or continuous phase micro-
fluidic based experiments. Potential applications of this system
include recent work profiling immune repertoires from hundreds
of thousands of single cells13 and combined single-cell tran-
scriptome and epitope profiling14 in addition to ddPCR15,
ddMDA16, hydrogel microsphere fabrication for 3D cell cul-
ture17,18, chemical microfluidic gradient generation19 and
microparticle size sorting20–22. The instrument is comprised of
electronic and pneumatic components affixed to a 3D printed
frame. The entire system is operated through software control
using a graphical user interface on a touchscreen. Requiring only
a standard wall power outlet, the instrument has an extremely
small footprint; small enough to fit on a bench top or in a bio-
containment hood. The total cost of materials to construct an
instrument is approximately $575. This represents an approxi-
mately 20-fold and 200-fold reduction in cost compared to a
research-level, syringe-pump based microfluidic setup, and a
commercial microfluidic platform, respectively.

We applied the microfluidic control instrument in conjunction
with the Drop-seq technique1 to perform unbiased identification
of transcriptomic states in diseased synovial tissue, which
becomes highly inflamed in rheumatoid arthritis (RA) and drives

joint dysfunction. RA is a common autoimmune disease affecting
approximately 1% of the population. While the cause of RA is not
precisely known, disease etiology is hypothesized to originate
from a combination of environmental and genetic factors23,24. RA
affects the lining of the joint; the synovial membrane, leading to
painful inflammation, hyperplasia, and joint destruction. RA is
clinically characterized by multiple tender and swollen joints,
autoantibody production (rheumatoid factor and anti-
citrullinated protein antibody or ACPA) in addition to cartilage
and bone erosion25. Unlike other tissue membranes with an
epithelial layer, the synovial lining is composed of contiguously
aligned fibroblasts and macrophages 2–3 cells deep26. In RA, the
membrane lining is expanded to 10 – 20 cells deep and synovial
fibroblasts assume an aggressive phenotype marked by the
expression of disease relevant cytokines, chemokines and extra-
cellular matrix remodeling factors27–29. The sublining is marked
by an accumulation of lymphocytes, macrophages, and dendritic
cells amidst the subintimal synovial fibroblasts. Pioneering studies
have uncovered heterogeneity in fibroblast morphology30 and
phenotype31,32, observing differences in activation state and
invasive behavior33,34. In addition, in situ hybridization experi-
ments have identified non-uniform activation of inflammatory
drivers and matrix metalloproteinases35,36, motivating the use of
our unsupervised approach to catalog fibroblast subpopulations,
and molecular markers which define them.

Here we describe the design of a microfluidic control instru-
ment that can be assembled with 3D-printed and commercial
components at low cost, is fully portable, and functions as a
reliable and flexible droplet generator. The instrument is fully
open-source and instructions for its use and construction have
been deposited in the open fluidics repository Metafluidics37

(https://metafluidics.org/devices/minidrops/). We adapt this
device to perform massively parallel single-cell RNA-seq (Drop-
seq), observing metrics and performance that are indistinguish-
able from a research level Drop-seq setup. We deploy this
instrument to a hospital laboratory to profile 20,387 single cells
from the synovial tissue of 5 RA patients. To our knowledge, this
represents the first ‘atlas’ of hematopoietic and fibroblast tran-
scriptional subtypes from scRNA-seq of autoimmune disease
tissue. We identify 13 subpopulations, including both abundant
and rare groups that contribute to disease biology, alongside
additional sources of heterogeneity within immune clusters. We
also define cellular subsets of synovial fibroblasts, validate subset
markers using immunofluorescence and flow cytometry, and
characterize their spatial distribution in intact tissue. The
deconvolution of cellular complexity in a diseased tissue by this
portable device provides a template for the application of droplet-
based single-cell transcriptome profiling for routine clinical
analysis.

Results
Development of droplet microfluidic control instrument. To
perform single-cell transcriptome profiling experiments in clinical
settings at low cost, the components of a standard Drop-seq setup
were replaced with alternative miniature components and pack-
aged onto a multi-tiered 3D printed frame. (Fig. 1a–c, Supple-
mentary Figure 1) For example, syringe pumps in a standard
Drop-seq setup (which provide a means for fluid flow through a
microfluidic chip) were replaced with components such as a
micro air-pump, regulators, and micro solenoid valves. These
components are similarly effective for providing adequate fluid
flow, in a smaller footprint and at significantly lower cost. Stirring
of barcoded microparticles is achieved through actuation of a
stepper motor affixed with a permanent magnet at the end of 3D
printed shaft. Rotation of the motor shaft locally inverts a
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magnetic field thereby tumbling a magnetic stir disc in the
microparticle fluid reservoir. A custom printed circuit board
(PCB) was designed to interface the electronic and pneumatic
components of the instrument to a single board computer
(Raspberry Pi). Further critical components of the instrument
include pressure sensors for optimal flow rate determination,
micro solenoid valves for on-demand pressure actuation, and a
microscope for real-time experiment monitoring. The microscope
is comprised of an inexpensive 5-megapixel CMOS camera cou-
pled with a laser diode collimating lens. This provides sufficient
magnification operating in fixed-focus mode to view the micro-
fluidic channels with the ability to resolve single cells. (Fig. 1d,
Supplementary Movie 1) The instrument is operated through a
custom graphical user interface on a touchscreen. All components
were affixed to a 3D printed frame measuring approximately 21
cm by 20 cm and 9 cm tall (Fig. 1b). For Drop-seq experiments,
fluorinated oil, cells, and barcoded microparticles are pipetted
into fluid reservoirs situated at the rear of the instrument. Custom
pressure caps seal the vial and tubing connections are made to a
microfluidic chip situated on the top of the instrument above the
microscope camera. The small footprint of the device permitted
use in clinical laboratory space requiring only a standard wall
outlet for power. In order to facilitate adoption of the device, we
have completely “open-sourced” the instrument. Users can find a
complete bill of materials (Supplementary Table 1), design files,
and documentation required to build and operate the micro-
fluidic control instrument in the supplementary materials and in
the Metafluidics repository37.

Instrument validation and operation. To validate the design and
operation of the instrument we first assessed the droplets pro-
duced by the device in conjunction with a modified Drop-seq
microfluidic chip compared to droplets produced by a syringe
pump based Drop-seq setup using the original microfluidic chip

design (Supplementary Figure 2). Droplets produced using the
instrument displayed a high degree of uniformity (diameter = 105
± 3 µm) across multiple microfluidic chips and instruments at
identical operating pressures indicating stable and reproducible
flow patterns of the assembly (Fig. 1e). Next, the loading of
microparticles (tested at an optimized concentration) into dro-
plets was assessed using a image analysis software to measure the
number of empty, singly occupied, and doubly occupied droplets.
The resulting droplet occupancy profile followed a Poisson dis-
tribution, as expected for the stochastic loading process described
here (Fig. 1f). The instrument processes 1 mL of cells at a con-
centration of 150–200 cells/µl in about 30 min, generating over
one million droplets at a generation rate of approximately 700 Hz.

To compare the technical characteristics of the instrument
against a standard syringe pump based Drop-seq setup, we
performed benchmark experiments to measure single-cell load-
ing, sensitivity and accuracy metrics. First, to validate single-cell
encapsulation, we performed species mixing experiments at two
different initial cell input concentrations in which approximately
equal numbers of HEK293 (human) cells and NIH 3T3 (mouse)
cells were combined in a single run, followed by shallow
sequencing to identify mixed-species doublets (Fig. 1g). As
observed with a standard Drop-seq setup1, we found that the
degree of observable species mixed droplets is dependent on total
cell input concentration, enabling users to identify a input loading
concentration to match their desired doublet rate. Next, to
explore the mRNA capture sensitivity and accuracy we used
synthetic ERCC RNA “spike-in” controls in a side-by-side
comparison of a standard Drop-seq setup and the microfluidic
control instrument described here. We analyzed both the
sensitivity (molecules/barcode) and accuracy (correlation with
known ERCC abundances), and found identical performance
between both Drop-seq implementations (Supplementary Fig-
ure 3). Taken together, we conclude that our miniaturized device
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Fig. 1 Microfluidic control instrument design and validation. a Picture of the microfluidic control instrument performing a Drop-seq run. b Top down views

of multi-tiered instrument. Levels 1–4 contain assorted components for instrument operation. c 3D rendering of the instrument with levels corresponding to

those in b. Components in light gray are 3D printed. d Microscope image screen capture directly from the instrument. Cells and barcoded microparticles

are visualized easily on the screen. eMicroscope image of droplets output from the instrument. Droplets and microparticles are detected via image analysis

software as blue circles and green circles respectively. Inset: droplet diameter distribution histogram. f Microparticle loading distribution into droplets as

measured via automated image analysis is consistent with Poisson loading. g Species mixing experiments using mouse (3T3) and human (HEK293) cells at

total cell concentrations of 75 cells/µl (left) and 300 cells/µl (right)
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recapitulates the technical characteristics of a standard Drop-seq
setup, but with significantly reduced cost and footprint.

Transcriptomic profiling of synovial tissue. After validation of
the instrument, we explored the possibility of using our setup to
perform Drop-seq directly on patient tissue in a clinical setting.
We focused on the inflammatory cellular milieu in synovial tissue
extracted from the knees of 5 seropositive RA patients (Fig. 2a).
Histologically the RA tissue displayed characteristics of extensive
inflammation, including synovial lining hyperplasia (black arrow)
and dense leukocyte infiltrations in the sub-lining (blue arrow)
(Fig. 2b). Fibroblast morphology within the sub-lining varied
widely in the intervening space suggesting that subpopulations of
fibroblasts may exist in heterogeneous micro-niches. For each
patient, immediately after surgery, a portion of the recovered
joint tissue was processed using an optimized disaggregation
protocol to generate a single-cell suspension. For two of the
patients, we performed side-by-side replicate experiments using
identical instruments to assess technical reproducibility. Cells
were counted, re-suspended for optimal single cell loading into
droplets, and immediately pipetted into the appropriate fluid
reservoir of the instrument to run through the Drop-seq protocol.
Briefly, following encapsulation in droplets, cells are lysed and
mRNAs hybridized to microparticles undergo reverse transcrip-
tion in bulk to generate stable cell-barcoded cDNAs as previously
described1. The total time starting with sample extraction from
the patient to initiation of the microfluidic instrument is
approximately 1.5 h, obviating the need for cell preservation. In
total, we collected data from 20,387 single cells, sequenced to an
average read depth of 29,651 reads/cell, and detecting an average
of 2,315 unique molecules per cell.

We applied our previously described graph-based clustering
procedure10,38, to conservatively partition cells into 13 distinct
subpopulations, which we visualized using t-distributed stochastic
neighbor embedding (t-SNE) (Fig. 2c, d). While the clustering
was unsupervised, differential expression revealed combinations
of known markers that could be used to confidently assign
subpopulations to broad categories. For example, we observed 10
immune populations that broadly expressed PTPRC (CD45) and
three fibroblast populations, expressing uniform high levels of
COL1A2. Similarly, as we explored further within immune cells,
we identified clear markers of known subtypes, including
canonical macrophage markers (MARCO), T cell (CD3), and B
cell (MS4A1) markers (Fig. 3).

We observed that all clusters contained cells from each of the
five patients, though we did observe patient heterogeneity in cell
type frequency (Fig. 2d, f). However, when comparing replicate
experiments from the same patient, we observed tight conserva-
tion between the two runs (Fig. 2e; mean R = 0.98). Additionally,
we compared averaged expression levels for cells in the same
cluster across replicates. For example, global macrophage
transcriptomes were highly reproducible between replicates (R
= 0.99) (Fig. 2g), but transcriptomes for different cell populations
were widely divergent as expected (macrophage/CD8+ T cell R =
0.84 and R = 0.79 for RABP3 and RA153, respectively) (Fig. 2h).
These results demonstrate the reproducibility of the overall
workflow. Additionally, our reproducible and quantitative ‘in
silico’ bulk transcriptomes offer an alternative to traditional bulk
RNA-seq on sorted populations, as our procedure requires no
sorting, and can derive averages for all 13 populations
simultaneously.

To our knowledge, this single-cell dataset represents the first
unbiased and comprehensive ‘atlas’ of cellular subpopulations
present in human autoimmune disease tissue. Below, we
summarize both abundant and rare cell states in our data, with

unbiased markers shown in Fig. 3 and Supplementary Data 1. We
highlight particular subtypes of lymphocyte and myeloid cells that
have not been previously identified in healthy PBMCs, as well as
unexpected transcriptomic heterogeneity within fibroblast
populations.

Unsupervised taxonomy of cellular states in synovial tissue. We
identified six lymphocyte subpopulations corresponding to het-
erogeneous groups of T, B, and NK cells. T cells (CD3+) were
grouped into CD4+ (helper) and CD8+ (cytotoxic) subpopula-
tions based on canonical markers. Within the CD4+ T helper cell
population we detected a distinct subset marked by high levels of
MAF, CXCL13, and PDCD1 (PD1), which has not been pre-
viously identified in previous single cell RNA-seq studies of
human PBMCs4,10. However, a recent CyTOF analysis of RA
synovial tissue identified a population with consistent markers,
representing an RA synovial “peripheral T helper cell” (TPH) that
may support B cell activity and antibody production in this non-
lymphoid tissue39 (Fig. 2c). Pathway enrichment analysis tailored
to single cell data40 identified functional modules up-regulated
specifically in these cells, including the regulation of inflamma-
tory cytokine production and B cell differentiation (Supplemen-
tary Figure 4), supporting these functional analyses, and
demonstrated our ability to identify cellular phenotypes that are
relevant to diseased tissue.

Closer inspection of individual groups also revealed further
cellular heterogeneity within the T and NK lymphocyte subsets.
Within NK cells (uniformly expressing GNLY), further sub-
clustering revealed a subpopulation expressing high levels of the
cytokines XCL1 (lymphotactin) and XCL2, which have previously
been demonstrated to regulate fibroblast production of matrix
metalloproteinases and direct lymphocyte migration in synovial
tissue41. This subpopulation also down-regulates cytotoxic genes
(PRF1) and FCGR3A (CD16), representing a bifurcation between
CD16+CD56bright and CD16−CD56dim subsets (Supplementary
Figure 5). Notably, while CD56bright cells are rare in healthy tissue
and have not been identified in scRNA-seq analyses of PBMCs4,
our analyses are consistent with previous reports that the
presence of this subset is enriched within RA tissue42. Further
exploration within all T cells revealed populations that were
consistent with the global analysis, but also identified a rare
population enriched for the expression of FOXP3, IL2RA (CD25),
and IKZF2, likely representing CD4+ CD25+ regulatory T cells,
which have also been previously reported to be enriched in
inflamed synovial tissue43.

We also characterized B cell populations (MS4A1+) (also
known as CD20), as well as terminally differentiated populations
that secrete high levels of immunoglobulins (IGHG4+). These
plasma cells could be further subdivided into two distinct
populations based on antibody light chain usage (IgA kappa+
vs. IgA lambda+) (Supplementary Figure 5). This enabled us to
calculate a kappa/lambda ratio based on single cell proportions
(1.75, 1.98, 3.03) for three patients where we observed at least 25
plasma cells. Finally, we also identified four non-lymphocytic
hematopoietic subpopulations, including mast cells (TPSAB1+),
macrophages (MARCO+) and platelets (VWF+). Taken together,
these clusters represent an detailed and unsupervised character-
ization of tissue-resident immune cells from inflamed synovial
tissue, including both abundant and rare populations that
contribute to disease biology.

Identification and validation of fibroblast subtypes. Non-
hematopoietic cells were primarily composed of subpopulations
expressing gene sets consistent with the fibroblast lineage such as
COL1A2, COL3A1, and CLU (Figs. 3a and 4a). While immune cell
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subsets can be defined based on canonical marker expression,
potential sources of cellular heterogeneity in fibroblasts are poorly
understood, despite their strong implication in inflammatory
disease biology26–28. Our unbiased clustering returned three

fibroblast subpopulations (Figs. 3a and 4a, b). These represented
two groups of fibroblasts with distinct bifurcations in marker
expression (Fibroblast 1 vs. Fibroblast 2), as well as a further
subdivision of the latter (Fibroblast 2a vs. Fibroblast 2b)
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representing more quantitative differences in gene expression.
Genes differentially expressed between the subsets included
known drivers of RA biology, including cytokines (CXCL12),
matrix metalloproteinases (MMP2, MMP3), in addition to a
subset of surface protein markers (i.e., CD55; CD90) (Fig. 4a-c).

We next looked to validate the major separation of fibroblast
subsets, and to test the specificity of the putative markers using
complementary techniques. We first used flow-cytometry of non-
hematopoietic viable cells from this tissue to demonstrate that
CD90 and CD55 antibodies stained independent cell populations
(Fig. 5a, middle panel). The CD55+ cells were largely positive for

the common fibroblast marker podoplanin, while the CD90+
non-hematopoietic cells separated into a podoplanin-positive
(fibroblasts) and podoplanin-negative population (Fig. 5a, right
panel). The CD90+ CD45− PDPN− population likely represents
perivascular stromal cells or endothelial cells44. Bulk RNA-
sequencing analyses of podoplanin-positive CD90+ vs. CD55+
cells from two patients exhibited highly similar expression
patterns when compared to our ‘in silico’ averaged fibroblast
clusters (Figs. 4a and 5b), and genes that were differentially
expressed in the population samples showed strong agreement
with our original single-cell predictions (Fig. 5c) Therefore, CD90
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and CD55 antibodies specifically mark our Fibroblast 1 and
Fibroblast 2 populations, indicating two transcriptomically
distinct fibroblast subsets in the RA synovium.

We next asked whether these fibroblast subsets exhibited
distinct spatial localization in synovial tissue. To this end,
paraffin-embedded tissue blocks for this tissue were sectioned and
analyzed by immunofluorescence with antibodies against subset-
specific markers (Fig. 5d). Importantly as this approach examines
the cells and markers within the intact tissue, it eliminates
dissociation-induced artifacts and potentially informs on ana-
tomic localization within the tissue. Interestingly CD55 (Fibro-
blast 1 marker) predominantly stained in the synovial lining
(Fig. 5d). Distinctly, CD90 antibodies (Fibroblast 2 marker)
labeled cells in the sublining regions, with intense staining of
individual cells disseminated throughout the sublining and
intermediate staining that encircled wider rings around larger
vessels (Fig. 5d and Supplementary Figure 6).

The distinct anatomical distribution of Fibroblast 1 and 2
populations hereafter referred to as CD55+ lining and CD90+
sublining fibroblasts, respectively, implicate putative functional
differences. CD55+ fibroblasts locate to the intimal lining, which
is responsible for the generation and turnover of synovial fluid.
Importantly, hyaluronan synthase 1 (HAS1) expression was
enriched in CD55+ lining fibroblasts (Fig. 4a). As hyaluronan
represents the most abundant macromolecule in synovial fluid,
this suggests these cells function within the lining to produce
synovial fluid components. Pathway and gene-set enrichment
analysis revealed hierarchical relationships between fibroblast

subpopulations that were consistent with transcriptomic simila-
rities, and also suggested heterogeneous pathway activation
between these groups (Fig. 4d). For example, CD55+ fibroblasts
expressed functional modules associated with endothelial cell
proliferation and regulation of reactive oxygen species responses,
while both CD90+ fibroblast groups were enriched for modules
associated with metallopeptidase activity and the organization of
the extracellular matrix. Collectively, distinct anatomic locations,
cell surface staining and transcriptomic differences confirm the
independent nature of these synovial fibroblast subsets.

Discussion
In this study, we developed a low-cost, portable microfluidic
control instrument to perform droplet-based single-cell tran-
scriptomic profiling in a clinical laboratory. Using this instrument
we profiled thousands of single cells derived from synovial tissue
obtained from 5 RA patients immediately after joint surgery. This
methodology allowed us to profile gene expression in a highly
quantitative and unsupervised manner across all cell populations
simultaneously, providing an attractive alternative to bulk-sorting
followed by RNA-seq. Single cell deconvolution of synovial tissue
revealed immune subsets including CD4+, B, and NK cells that
likely contribute to RA disease etiology through expression of
signaling molecules and their interactions with immune and
fibroblast populations. Further, single cell transcriptomic sig-
natures identified sources of heterogeneity, specifically in fibro-
blasts, corresponding to differences in microenvironment and
function. Importantly, this dataset can be used to discover and
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validate putative markers enabling future functional studies. Here
we used immunofluorescence to localize CD55+ and CD90+
synovial fibroblasts to the lining and sublining respectively.
Information rich datasets obtained from single cell profiling
experiments such as this could potentially elucidate disease
mechanisms in RA and be used to stratify patients, ascertain
treatment efficacy, and classify disease sub-states across many
arthritic conditions.

Methods
Microfluidic chip fabrication. Microfluidic chips were designed in AutoCAD
(Autodesk) and a transparency mask was manufactured (Advance Reproductions).
SU-8 3050 (MicroChem) was spin coated onto a clean silicon wafer to a thickness
of 100 µm and exposed through the mask using a contact mask aligner. After
development, polydimethylsiloxane (PDMS) was poured over the master mold,
degassed in a desiccator and cured in an oven at 80 °C for 2 h. PDMS slabs were cut
from the substrate, holes were punched for tubing connections and the slab was
bonded to a clean glass slide using oxygen plasma. Finally, microfluidic channels
were treated with Aquapel (Pittsburgh Glass Works) and dried in an oven at 80 °C
for 30 min.

Microfluidic control instrument. The microfluidic control instrument consists of
a 3D printed frame affixed with a custom printed circuit board (PCB) designed in
Eagle (Autodesk) containing electronic and pneumatic components. The frame
accommodates a microfluidic chip viewed at fixed focus through a Raspberry Pi
camera with lens. Fluid flow through the microfluidic chip is achieved through
pressurization of the head space of reservoir vials situated at the rear of the
instrument using a micro air pump, two independent regulators and micro sole-
noid valves. Pressures for the oil vial and the aqueous vials (cell and microparticle)
were independently measured using two analog gauge pressure sensors. Barcoded
microparticles were stirred with a stir disc located inside of the vial under the
influence of a permanent magnet affixed to a stepper motor shaft situated at the
base of the instrument. The instrument is controlled through a Raspberry Pi 2
model B single-board computer with a custom graphical user interface for

monitoring of the experiment (through the microscope camera) and control of
solenoid valves, micro-air pump, and magnetic stirring. The instrument is powered
through an external wall adapter power supply (12 V, 5 A) through a barrel jack
connection mounted on the PCB. Detailed instructions for the construction and
operation of the microfluidic control instrument can be found at https://
metafluidics.org/devices/minidrops/37.

RA Patient synovial tissue disaggregation. Synovial tissue was collected from
RA patients enrolled and genetically consented under the HSS Early RA Tissue
Study (IRB# 2014-317) and the HSS FLARE study (IRB# 2014-233) during syno-
vectomy or arthroplasty. The patients were seropositive for CCP antibodies and
met 2010 ACR/EULAR Criteria25. The HSS Pathology Lab confirmed the sample
was synovial tissue by gross inspection and histologic examination of OCT-
embedded and Paraffin-embedded blocks.

For single-cell suspensions, synovial tissue was minced with scissors to ~2 mm3

pieces, which were then digested with Liberase TL (100 µg/mL, Roche) and DNAseI
(100 µg/mL, Roche) at 37 °C for 15 min with inversion of the sample every 5 min.
The enzymatic reaction was quenched by 10% fetal bovine serum in RPMI
(Invitrogen) and debris filtered out using two 70 µm strainers. Red blood cells were
lysed (reagent a gift of J. Lederer) for 5 min at room temperature, followed by an
additional filter step through a 70 µm strainer. The filtration steps should remove
large pieces of debris, as well as poorly disaggregated cell clumps. Cells were
counted on a hemocytometer and assessed for viability (> 85%) using trypan blue
staining and 150,000 synoviocytes were re-suspended in Drop-seq loading buffer.

Single-cell droplet experiments. Briefly, cells and split-pool synthesized barcoded
microparticles suspended in cell buffer and lysis buffer respectively are co-
encapsulated into approximately 1 nL volume droplets. Cell buffer consisted of 1 ×
PBS with 1.25% Ficoll PM-400 and 0.01% BSA. Lysis buffer consisted of 200 mM
Tris-HCl (pH 7.5), 20 mM EDTA, 1.25% Ficoll PM-400, 0.2% Sarkosyl, and 0.01%
BSA. Microparticles (ChemGenes) contained oligos consisting of a split-pool
generated cell barcode (same for all oligos on a microparticle), a UMI (different for
each oligo on a microparticle), a PCR handle and a polyT stretch for capture of
polyA mRNA. Following encapsulation (and immediate cell lysis) mRNAs hybri-
dize to the microparticle, the emulsion is broken using 1 H,1 H,2 H,2H-Perfluro-1-
octanol (370533 Sigma–Aldrich), microparticles are collected and cDNA is
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generated through reverse transcription in bulk. Exonuclease, PCR (15 cycles total),
cDNA purification, and Nextera library preparation steps were then performed.
Libraries were sequenced on the Illumina HiSeq 2500 platform.

Single-cell RNA-seq analysis. Sequencing reads were aligned to the UCSC hg19
transcriptome and then binned and collapsed onto the cell barcodes corresponding
to individual microparticles using Drop-seq tools (http://mccarrolllab.com/
dropseq). To exclude low quality cells, we filtered out cells for which fewer than 500
genes/4000 UMIs were detected and excluded likely doublets by removing cells
with greater than 13,000 UMIs. All genes that were not detected in at least 3 cells
were discarded, leaving 30,208 genes. Library-size normalization was performed on
the UMI-collapsed gene expression values for each cell barcode by scaling by the
total number of transcripts and multiplying by 10,000. The data was then natural-
log transformed using log1p before any further downstream analysis with Seurat.

To adjust for the effects of cell cycle, we first assigned a cell cycle score to each
cell inspired by the PCA method45. We performed PCA on an annotated list of cell
cycle genes46, and observed that the PC1 and PC2 scores for each cell were strongly
correlated with the expression of G2/M and S phase modules. We then constructed
a linear regression model for each gene to predict expression based on the two cell
cycle scores, the number of UMIs per gene, percentage of mitochondrial genes
detected, run ID, and alignment rate to the transcriptome. We used the scaled (z-
scored) Pearson residuals from this model as corrected gene expression estimates
for downstream dimensional reduction. We first selected 2,092 genes with high
variance, using the FindVariableGenes function with log-mean expression values
between 0.05 and 8 and dispersion (variance/mean) between 0.5 and 30. We then
reduced the dimensionality of our data using principle component analysis and
identified 13 principle components (PCs) for downstream analysis. We then
utilized the Louvain algorithm for modularity-driven clustering47, based on a
cell–cell distance matrix constructed on these PCs. This was implemented using the
FindClusters function in Seurat with a resolution of 1 to identify 16 distinct clusters
of cells.

We and others5 have noticed that while modularity-based clustering is a
sensitive method for community detection, it can be affected by the multi-
resolution problem, and can occasionally over-partition large clusters in order to
sensitively detect rare populations. We therefore implemented a post-hoc
procedure to merge together clusters with similar gene expression patterns. We
reasoned that if a partitioning represented ‘over-clustering’ of the data, it would be
challenging to distinguish the two resulting cluster based on gene expression values.
Therefore, for each pair of clusters, we trained a random forest classifier to predict
cluster membership based on the expression level of variable genes, using the
ranger package in R with default parameters48. We merged clusters together if the
classifier had a prediction error greater than 11% as measured by the out-of-bag
error. This procedure resulted in the iterative merging of two pairs of clusters, both
of which also had few differentially expressed genes between them. Finally, we
merged two clusters of macrophages that differed primarily in technical metrics of
cell quality, including UMI/cell and transcriptomic alignment rate. For
visualization, we applied t-SNE on the cell loadings of the previously selected PCs
to view the cells in two dimensions.

Our selection of 13 PCs represents a conservative clustering of the data, and we
used these to partition our cells into broad subtypes. For immune populations, in
particular T cells, NK cells, and B cells, we explored additional sources of
heterogeneity by repeating the procedure only on cells from these populations, after
the first round of clustering. This enabled us to further separate CD56bright from
CD56dim NK cells, distinguish plasma cells based on IgA kappa+ vs IgA lambda+
expression, and identify rare groups of FoxP3+ regulatory T cells (Supplementary
Figure 5).

For all single-cell differential expression tests, we used a non-parametric
Wilcoxon rank sum test, as implemented in the Seurat v2.1 package.

Drop-seq comparison with ERCC spike-in controls. ERCC RNA spike-in mix
(4456740) was purchased from ThermoFisher Scientific. 1 µl of “Mix 1” was diluted
in approximately 870 µl of Drop-seq cell buffer and split evenly between side-by-
side runs of the standard Drop-seq setup and the microfluidic control instrument
described here. Both runs were completed under 15 min. After the runs, droplets
were deposited into a Fuchs-Rosenthal hemocytometer and droplet size was
measured to ensure identical droplet diameters (volumes). Microparticles were
reverse transcribed and exonuclease treated in bulk and counted. One hundred
microparticles were pooled for amplification, Nextera library preparation and
sequencing in triplicate for each setup. A reference was constructed using the
known abundances and sequences provided as supplementary information with the
ERCC spike-in kit (https://assets.thermofisher.com/TFS-Assets/LSG/manuals/
ERCC92.zip). Reads were mapped to the ERCC reference using the Drop-seq tools
pipeline, discarding barcodes with fewer than 100 UMIs. To calculate sensitivity,
the total number of detected molecules associated with each barcode was assessed
across techniques. To calculate accuracy, the molecule counts for each ERCC were
compared to the known molecule abundances in the mix. Pearson correlation (after
log-transformation) for each cell independently represents accuracy as defined in
Supplementary Figure 3.

Immunofluorescence. Antibodies for CD55 (NaM16-4D3) and CD90 (EPR3133)
were purchased from Santa Cruz Biotechnology, INC. and Abcam, respectively.
Sectioning of paraffin-embedded synovial tissue and immunofluorescent staining
was performed by the Molecular Cytology Core Facility at Memorial Sloan-
Kettering Cancer Center. The concentrations of CD55 and CD90 antibodies used
were 2 µg/mL and 0.7 µg/mL, respectively.

Flow Cytometry. Synovial cell suspensions were stained with fluorochrome-
conjugated CD45 (H130Biolegend) 1:20 dilution, CD90 (5E10-Biolegend) 1:20
dilution, CD55 (JS11-Miltenyi Biotec) 1:10 dilution, podoplanin (REA446-Miltenyi
Biotec) 1:10 dilution, propidium iodide (PI) (P3566 Invitrogen) and analyzed by
FACS. Data were analyzed using FlowJo (Tree Star, Inc.) software.

Flow sorting and bulk RNA-seq. ~16,000 CD55+ and ~42,600 CD90+ cells were
sorted from patient sample RABP3. ~3400 CD55+ and ~11,900 CD90+ cells were
sorted from patient sample RA195. Sorting was performed at Weill Cornell
Medicine Core Laboratories Center (WCM CLC) Flow Cytometry Core Facility on
a BD Aria II sorter. RNA was purified using Qiagen Micro columns and prepared
for sequencing using a custom version of the SMART-Seq2 protocol, where we
introduce a cell barcode onto the reverse transcription primer, enabling us to pool
amplified cDNA from each sample prior to library construction, and described in
Mayer et al.49.

Pathway enrichment analysis. We performed pathway and gene-ontology (GO)
enrichment for the fibroblast and T cell clusters using the pagoda routines from the
scde package on the scaled and normalized scRNA-seq data from each subset
separately for the RABP3 patient. We used the genome wide annotation for
humans as our reference (Carlson M (2017). org.Hs.eg.db: Genome wide annotation
for Human. R package version 3.4.1). We performed a PCA analysis and the top
principle component for each gene set was obtained using the pagoda.pathway.
wPCA function. We then evaluated the statistical significance of each gene set using
the pagoda.top.aspects function and retained those with a p-value of less than 0.01.
To remove redundant GO terms, we used the pagoda.reduce.loading.redundancy
function to collapse gene sets driven by the same combinations of genes and the
pagoda.reduce.redundancy function to collapse those that separated the same sets
of cells. Finally, we took the GO terms with the 10 highest average cell PC1 score
for each of our identified clusters for heatmap visualization and analysis.

Data availability. RNA sequencing data that support the findings of this study
have been deposited in dbGaP with the accession code phs001529.v1.p1.
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