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Abstract

High-throughput single-cell transcriptomics offers an unbiased approach for understanding the

extent, basis, and function of gene expression variation between seemingly identical cells. Here,

we sequence single-cell RNA-Seq libraries prepared from over 1,700 primary mouse bone marrow

derived dendritic cells (DCs) spanning several experimental conditions. We find substantial

variation between identically stimulated DCs, in both the fraction of cells detectably expressing a

given mRNA and the transcript’s level within expressing cells. Distinct gene modules are

characterized by different temporal heterogeneity profiles. In particular, a “core” module of

antiviral genes is expressed very early by a few “precocious” cells, but is later activated in all

cells. By stimulating cells individually in sealed microfluidic chambers, analyzing DCs from

knockout mice, and modulating secretion and extracellular signaling, we show that this response is

coordinated via interferon-mediated paracrine signaling. Surprisingly, preventing cell-to-cell

communication also substantially reduces variability in the expression of an early-induced

“peaked” inflammatory module, suggesting that paracrine signaling additionally represses part of
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the inflammatory program. Our study highlights the importance of cell-to-cell communication in

controlling cellular heterogeneity and reveals general strategies that multicellular populations use

to establish complex dynamic responses.

INTRODUCTION

Variation in the component molecules of individual cells1–7 may play an important role in

diversifying population-level responses8–11, but also poses therapeutic challenges4,5. While

pioneering studies have explored heterogeneity within cell populations by focusing on small

sets of preselected markers1,2,4–6,8,12, single-cell genomics promises an unbiased

exploration of the molecular underpinnings and consequences of cellular variation13–17.

We previously16 used single-cell RNA-Seq to identify substantial differences in mRNA

transcript structure and abundance across 18 bone marrow-derived mouse dendritic cells

(DCs) 4 hours (h) after stimulation with lipopolysaccharide (LPS, a component of gram-

negative bacteria). Many highly expressed immune response genes were distributed

bimodally amongst single cells, originating, in part, from closely related maturity states and

variable activation of a key antiviral circuit. These observations raised several questions

about the causes and roles of single-cell variability during the innate immune response: How

does variability change during the response? Do different stimuli elicit distinct variation

patterns, especially in stimulus-relevant pathways? Does cell-to-cell communication

promote or restrain heterogeneity? Addressing these requires profiling large numbers of

cells from diverse conditions and genetic perturbations.

Here, we sequenced over 1,700 SMART-Seq15 single-cell RNA-Seq libraries along time

courses of DCs responding to different stimuli (Fig. 1, Extended Fig. 1a). Combining

computational analyses with diverse perturbations – including isolated stimulation of

individual cells in sealed microfluidic chambers and genetically and chemically altering

paracrine signaling – we show how antiviral and inflammatory response modules are

controlled by positive and negative intercellular paracrine feedback loops that both promote

and restrain variation.

RESULTS

Microfluidics-based Single-Cell RNA-Seq

We used the C1 Single-Cell Auto Prep System (Fluidigm; Fig. 1b) and a transposase-based

library preparation strategy to perform SMART-Seq15 (Supplementary Information (SI)) on

1,775 single DCs, including both stimulation time courses (0,1,2,4&6h) for three pathogenic

components18 (LPS, PIC (viral-like double stranded RNA), and PAM (synthetic mimic of

bacterial lipopeptides)) and additional perturbations (Fig. 1, Extended Fig. 1; SI). For most

conditions, we captured up to 96 cells (87±8 (average ± standard deviation)), and generated

a matching population control (Fig. 1c, SI, Supplementary Table 1). We prepared

technically-matched culture and stimulation replicates for the 2h and 4h LPS stimuli, and

independent biological replicates for the unstimulated (0h) and 4h LPS experiments (SI). We

sequenced each sample to an average depth of 4.5±3.0 million read pairs, since single-cell
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expression estimates stabilized at low read-depths13,19 (Extended Fig. 2). Our libraries’

quality was comparable to published SMART-Seq data15,16 (Extended Fig. 1b,

Supplementary Tables 1–2). Overall, we successfully profiled 831 cells in our initial time

courses and 944 cells in subsequent experiments (Extended Fig. 1a, Supplementary Table 1–

2). We excluded another 1,010 libraries with stringent quality criteria (SI, Extended Fig. 1c).

Aggregated in silico, single-cell expression measurements agreed with the matching

population controls (R=0.87±0.05), with correlations plateauing once we had sampled ~30

cells (SI, Extended Fig. 1d–g). Technical and biological replicates were reproducible

(technical: R>0.90, biological: R>0.87; Extended Fig. 3) and our results were robust to

variation in several aspects of sample preparation (SI, Extended Figs. 1h–j). We removed

537 “cluster-disrupted” DCs16, a distinct subpopulation that matures as an artifact of

isolation and culturing (SI, Extended Fig. 4), retaining 1,238 DCs for further analyses

(Supplementary Tables 1–2).

Variability during immune responses

Principal components analysis (PCA) of gene expression profiles from all three time courses

together showed that DCs spread along a continuum of expression variation in each

principal component (PC) (Fig. 1c, Extended Figs. 1k–n). For example, while PC1

distinguished early from late time points for each stimulus, its scores also varied

significantly between cells within any single stimulus and time point (Fig. 1c, Extended

Figs. 1k–n), suggesting that some cells were “ahead” of others, especially early (1–2h).

Consistent with previous studies18, pathogen-responsive genes partitioned into co-regulated

modules based on their population-level expression profiles (Fig. 1c, left, SI). Genes

induced in cells stimulated with LPS or PIC (cluster I, Fig. 1c) were enriched for antiviral

defense factors, including interferons and their targets (Bonferroni-corrected P<10−5),

whereas genes induced in cells stimulated with LPS or PAM (cluster III, Fig. 1c) were

enriched for inflammatory genes and NF-κB targets (Bonferroni-corrected P<10−6;

Supplementary Table 3).

We used the single-cell gene expression profiles to partition these main clusters into finer

modules (Fig. 1c, black lines, right, Supplementary Table 3, SI) and applied a resampling

method20 (SI, Extended Fig. 5d) to identify four modules significantly associated with the

three major PCs (Fig. 1c): Cluster Id (“core” antiviral module; enriched for annotated

antiviral and interferon response genes; e.g., Ifit1, Irf7; Bonferroni-corrected P<10−8,

Supplementary Table 3; Fig. 1c, Extended Fig. 5a) had high PC1 scores; Cluster IIIc

(“peaked” inflammatory module; showing rapid, yet transient, induction under LPS; e.g.,

Tnf, Il1a, Cxcl2) and Cluster IIId (“sustained” inflammatory module; exhibiting continued

rise in expression under LPS; e.g., Mmp14, Marco, Il6) had high PC2 scores; and Cluster

IIIb (“maturity” module; containing markers of DC maturation; e.g., Cd83, Ccr7, and Ccl22,

SI) had high PC3 scores.

Digital and analogue variability in gene expression between cells—Genes from

these four modules displayed distinct patterns of variation that changed with time and

stimulus (Fig. 2a, Extended Figs. 5&6). For example, early after LPS stimulation, “core”
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antiviral response genes were detectably expressed only in some cells (i.e., bimodal) (Fig.

2a, Extended Figs. 5a&6), but turned on in most cells between 2 and 4h (i.e., became

unimodal). In contrast, many “peaked” inflammatory genes were induced by LPS in all cells

early, but were only detectable in some cells later (Fig. 2a, Extended Figs. 5b&6). Finally,

“sustained” inflammatory genes were induced early in most cells and persisted at equal or

elevated levels later (Fig. 2a, Extended Figs. 5c&6). Some variation patterns changed

between stimuli (e.g., “peaked” inflammatory genes remained detectably expressed in most

cells late (6h) in PAM), while others patterns were similar for distinct pathogens (e.g., the

antiviral modules Ia-Id under LPS and PIC) (Fig. 1&2a, Extended Fig. 5a–c).

As noted previously from single-cell quantitative real-time polymerase chain reaction (qRT-

PCR) data21, we distinguished two types of heterogeneity: (1) digital variation, reflecting

the percentage of cells detectably expressing a transcript; and (2) analogue variation,

representing expression level variation among detectably expressing cells. Using the

variance calculated over all cells as a metric of heterogeneity6,16 conflates these two types of

variation. We therefore explicitly modeled our data using three parameters (Fig. 2b,

Extended Fig. 7): the mean (µ) and variance (σ2) of a gene’s expression among detectably

expressing cells, and the fraction of detectably expressing cells (α)21: in this scheme, σ2 and

α signify analogue and digital variation, respectively.

We computed α based on a fixed threshold for appreciable expression (ln(TPM+1)>1, SI,

Extended Fig. 7a,f), and then estimated µ and σ2 across appreciably expressing cells. This

three-parameter model effectively described most (91%) of our single-cell data (Fig. 2c,d,

SI, Extended Fig. 7b). Our data did not support fitting with either a single lognormal or a

mixture two, fully parameterized lognormals (for expressing and unexpressing cells; SI,

Extended Fig. 7c–e). Computed α values were consistent between technical and biological

replicates, but µ and σ2 estimates were reproducible only when genes are expressed in at

least 10, or 30 cells, respectively (Supplementary Note, SI, Extended Figs. 2c–e,7g&8).

Our nominal α estimates are likely deflated due to the detection limits of single-cell RNA-

Seq. Indeed, we observe higher α values when examining our existing RNA Fluorescence

In-Situ Hybridization (RNA-FISH) data16 (Extended Fig. 6g–j). By comparing our single-

cell RNA-Seq and RNA-FISH, we estimate that the transcript detection efficiency for our

single-cell RNA-Seq is ~20%, consistent with previous reports14,22. We and others15,23 have

also observed a strong relationship between a gene’s average expression and its probability

of detection (Extended Fig. 7h). We thus employed a conservative null model, where this

relationship results solely from technical limitations (SI, Extended Fig. 7h), and determined

the maximum likelihood estimate of α (αMLE) for each gene after correcting for it (Fig. 2e,

Extended Fig. 7j–l, SI). Based on this analysis, we estimate that ~45% of “core” antiviral

genes and 30% of “peaked” inflammatory genes are significantly bimodal in the LPS

response (Bonferroni-corrected p<0.01; SI, Extended Fig. 7i).

Quantitative chromatin levels correlate with digital variation—Since the presence

of a chromatin marks is, by definition, discrete in a single cell, we reasoned that population

ChIP-Seq profiles of active histone marks (e.g., histone 3 lysine 27 acetylation (H3K27ac))

should more closely reflect the fraction of cells with detectable transcripts (α) than
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population-level expression. Supporting this hypothesis, the observed α for a gene was

strongly correlated (mean R for binned data=0.89; SI) to its promoter-associated ChIP-Seq

density (collected under identical conditions24), even within a fixed population expression

range (Fig. 3a top/middle, rows). In contrast, a gene’s population-level expression was not

correlated (mean R for binned data=−0.02) to H3K27ac promoter levels within a fixed α

range (Fig. 3a top, middle; columns). When controlling for µ instead of ±, highly significant

correlations remained between H3K27ac and population-level expression (Fig. 3b). A partial

correlation analysis limited to either all immune response genes or “bimodal” genes

(likelihood ratio test (LRT), p>0.1 after controlling for α, Fig. 3c) yielded similar results.

Digital variation did not correlate with histone 3 lysine 4 trimethylation (H3K4me3) levels

(Fig. 3a, bottom), in line with previous observations24 that H3K4me3 is not as tightly

correlated with active transcription. Emerging single-cell epigenomic technologies25 should

help further explore this relationship.

Dynamic population-level responses involve shifts in both α and µ—An average

(population) increase in the expression of bimodally expressed genes may represent changes

in the amount of transcript made by expressing cells (shifts in µ), the proportion of

expressing cells (shifts in α), or both. For each pair of consecutive time points, we examined

the proportion of genes in each module with a significant change in: (1) µ (Wilcoxon rank-

sum test); (2) α (LRT); or (3) both (SI). Given our limitations in estimating α and µ, we only

considered genes that were annotated as bimodal in at least one time point in the relevant

time course and expressed in at least 10 cells in both time points (SI). We excluded the

unstimulated time point since most immune response genes were not yet expressed.

For LPS, we observed strong shifts in α (alone or with µ) at early time points for “core”

antiviral and “sustained” inflammatory genes (Fig. 3d, top, Extended Fig. 5e,f), which

transitioned to high and unimodal expression late in the response (Fig. 1&2). In contrast, α

decreased at later time points for “peaked” inflammatory genes, especially from 2–4h (Fig.

3d, middle, Extended Fig. 5f). The temporal patterns in “core” antiviral activation were

shared between LPS and PIC. However, unlike in LPS, “peaked” inflammatory expression

did not diminish, and α did not decrease at later points under PAM (Fig. 3d). These coherent

shifts suggest that variability reflects regulated immune response phenomena, rather than

unconstrained stochastic transcription.

Intercellular determinants of Variation

Both differences in intracellular components1–4 and changes in the cellular

microenvironment7,26 can affect heterogeneity. In particular, slow diffusion of cytokines and

chemokines could lead to local variation in intercellular signals. Since the “core” antiviral

module is enriched for targets of IFN-β, we hypothesized that upstream variability in IFN-β

exposure may drive its heterogeneity (Extended Fig. 9), and thus profiled cells 2h after IFN-

β stimulation. Supporting our hypothesis, compared to 2h of LPS where the “core” antiviral

module is highly variable (median α=0.52; 30% of genes significantly “bimodal”, P<0.01,

LRT, Extended Fig. 9b), cells stimulated with IFN-β for 2h exhibited sharply reduced digital

variation in the “core” antiviral module (Fig. 4a, median α=0.82; 7% of genes significantly

“bimodal”).
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A few cells precociously express late-induced antiviral genes very early—We

next explored the cellular source of interferon in the native LPS response. At 2h following

LPS, Ifnb1 was bimodally expressed (P<10−4, LRT) and correlated with the expression of

the “core” antiviral module (Extended Fig. 9a,d,e). This observation, together with IFN-β

stimulation’s suppression of digital variation, suggested that, in response to LPS, a few cells

may first produce (Extended Fig. 9d) and secrete a wave of interferon, leading to a gradual

coordination of the “core” antiviral module at later time points via paracrine signaling.

To test this hypothesis, we computed a “core” antiviral “activation score” (SI) for each cell

and compared scores across the LPS time course (Fig. 4b, Extended Fig. 9e,f&10a, SI).

Although most cells activated the module between 2h and 4h, we discovered two cells with

strong “core” antiviral activation at 1h (Fig. 4b,c, Extended Fig. 9f,i, yellow stars). We

verified the existence and scarcity of these “precocious” cells at 1h by RNA-FISH (Fig. 4c;

SI). Appreciable Ifit1 and Ifnb1 coexpression was detected only in 0.8% of cells (23 of

2,960, mRNA count ≥ 5 copies, P=2×10−28, proportion test). These “precocious” cells were

indistinguishable from the others except in their expression of the ~100 “core” antiviral

genes. We observed similar early responding cells following PIC and PAM stimuli

(Extended Fig. 9f–h&10a).

While these “precocious” cells are reminiscent of the “sentinels” that have been reported in

viral infections and stimulations of fibroblasts27,28 (Supplementary Note, SI), we note that,

in those studies, only some cells sense and respond to the primary stimulus (e.g., due to lack

of viral replication). In contrast, all DCs rapidly sense and respond to LPS, as evidenced by

the unimodal activation of “peaked” inflammatory genes at early time points (Extended

Figs. 5b–d,10a; Fig. 2a, Tnf).

Blocking intercellular communication dramatically alters cellular

heterogeneity—To examine whether the rare “precocious” cells are required for

coordinating the “core” antiviral response, we developed an approach to stimulate cells in

the absence of cell-to-cell communication. Modifying the standard C1 workflow, we

captured individual unstimulated DCs in a C1 chip (SI), washed in LPS-containing media,

and then immediately sealed each microfluidic chamber to isolate stimulated cells

individually for 4h (“on-chip” stimulation, SI, Fig. 5a). Key experimental conditions,

including cell density, were similar between the “in-tube” and “on-chip” experiments (SI).

Absent cell-to-cell communication, “core” antiviral module genes were bimodally expressed

(Fig. 5) – only 8 cells (20%) weakly activated the “core” antiviral module at 4h (Fig. 5b–d,

Extended Fig. 9e), likely mimicking the “precocious” cells observed “in-tube” at 1h. This

observation suggests an upper bound for the number of cells capable of autonomously

inducing a response by 4h. Removing cell-to-cell communication also down-regulated the

expression of maturation markers in all cells and some of the “sustained” inflammatory

genes (Extended Fig. 10a), though other key inflammatory genes were unaffected.

Surprisingly, blocking intercellular communication also sharply altered the single-cell

expression of “peaked” inflammatory genes (Fig. 5b–d). Genes encoding key inflammatory

cytokines (e.g., Tnf, Cxcl1) switched from bimodal (α=0.77, 0.56, respectively) to unimodal
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(α=1.0, 0.91; LRT for corresponding αMLE’s P<10−4, P<10−13, respectively) expression

“on-chip” (Fig. 5b,c). Indeed, a large portion of the “peaked” inflammatory genes that were

bimodal (LRT P<0.01) after 4h LPS “in-tube” shifted to unimodal expression “on-chip”

(Extended Fig. 10a,b; P<0.01, hypergeometric test), indicating that cell-to-cell signaling is

required for dampening the “peaked” inflammatory program at later time points following

LPS. The opposite behaviors of the “core” antiviral and “peaked” inflammatory modules

indicate that intercellular communication can have opposing effects on variation for

different gene modules within the same cell.

Paracrine interferon signaling affects digital variation of “peaked”

inflammatory genes—“On-chip” isolation conflates the effects of different paracrine

signals and the loss of cell-to-cell contact. To distinguish these, we first profiled DCs from

interferon receptor knockout mice (Ifnar1−/−). As expected, and consistent with previous

findings16, antiviral gene expression was undetectable at 4h in all Ifnar1−/− DCs, implying

that even the “precocious” cells require autocrine interferon feedback to activate and sustain

their “core” antiviral responses (Extended Fig. 10g). This is further supported by the

decoupling of the expression of Ifnb1 and the “core” antiviral module in Ifnar1−/− DCs

stimulated with LPS for 2h (Extended Fig. 9e).

Removal of interferon signaling also strongly affected the “peaked” inflammatory module:

at 4h LPS, Ifnar1−/− cells showed a similar increase in the fraction of activated cells as in the

“on-chip” experiment (Fig. 5d, Extended Fig. 10a,d,g), suggesting that the absence of

interferon signaling, rather than changes in cell-to-cell contact29, is the major driver.

Furthermore, DCs lacking Stat1, a key mediator of interferon responses24, also exhibited

increase activation and decreased digital variation in “peaked” inflammatory genes (P<0.01;

hypergeometric test; Fig. 5d and Extended Fig. 10a,e,g,i). Conversely, the “sustained”

inflammatory module was not appreciably affected by the absence of interferon signaling

(Fig. 5d and Extended Fig. 10a,g), implying a different mechanism for its down-regulation

“on-chip”.

Interferon acts early on the antiviral module and induces a second paracrine

signal that down-regulates “peaked” inflammation—Interferon response targets can

cross-inhibit inflammatory gene expression either through the direct formation of repressive

complexes, e.g., the STAT1-inclusive ISGF-3, or by driving the production of anti-

inflammatory cytokines30. The few cells with “on-chip” antiviral activation exhibited no

change in “peaked” inflammatory gene expression (Fig. 5b). This suggests that the

repression of “peaked” inflammatory genes, unlike antiviral activation, is not directly

downstream of IFN-β signaling, but rather is mediated by a second IFN-β/STAT1-dependent

paracrine signal. Peaked induction through two asynchronous paracrine signals is

reminiscent of the activation and contraction of keratinocytes following wounding and

immune infiltration, respectively31.

To test this hypothesis further, we added Brefeldin A (GolgiPlug), a secretion inhibitor,

either simultaneously with LPS (“0h”) or at 1 or 2h after stimulation, and measured single-

cell RNA-Seq profiles at 4h (Fig. 5d, Extended Fig. 10a–c). Inhibiting secretion at the time

of LPS addition dramatically dampened the antiviral response, similar to the “on-chip”
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experiment. However, adding Brefeldin A at 2h did not affect the activation of the “core”

antiviral module and adding it at 1h had only a modest impact. This indicates that the first

hour represents the crucial paracrine window for this response. In contrast, for the “peaked”

inflammatory module, addition at each of the three time points resulted in the module

remaining aberrantly activated at 4h, as “on-chip”. Collectively, these experiments show that

paracrine interferon signaling events prior to the 1h time point are crucial to antiviral

activation, while subsequent, separate, signaling is responsible for inflammatory

desynchronization (Supplementary Note, Discussion, SI).

DISCUSSION

Here, we have analyzed how variation between individual DCs changes with stimulus and

time to dissect how heterogeneity is regulated across the immune response. Our statistical

analysis reveals that changes in digital variation can encode a diversity of temporal response

profiles (Fig. 3d, Extended Fig. 5f). For example, late-induced “core” antiviral genes are

very weakly expressed, on average, early, but are highly expressed in a few “precocious”

cells; the progressive dampening of “peaked” inflammatory genes originates from changes

in the fraction of cells expressing these transcripts, rather than a uniform gradual decrease in

the expression in all cells.

Such complex average responses can be generated not only through intricate intracellular

circuits in each cell, but also through intercellular communication between cells, as we show

for both modules. For example, we uncovered a small number of “precocious” cells that

express Ifnb1 and “core” antiviral genes as early as 1h after LPS stimulation, and through

the secretion of IFN-β, help activate “core” antiviral genes in other cells to coordinate the

population response. These cells are indistinguishable from the rest, except in their

expression of the “core” antiviral module (Extended Fig. 9j,k), and yet are crucial for an

efficient and timely population response (Supplementary Note, SI).

IFN-β signaling also dampens a subset of induced inflammatory genes at later time points,

and our Brefeldin A experiments suggest that a secondary, IFN-β dependent signal, is

involved (Extended Fig. 10j,k). This is consistent with a model where IFN-β secreted by a

few cells induces the expression and secretion of secondary anti-inflammatory cytokines

from a subset of cells, which, in turn, attenuate the inflammatory responses of their

neighbors. Computational analyses, genetic perturbations and recombinant cytokine

experiments suggest that IL-10 may be involved in this second wave of negative signaling

(Extended Fig. 10h, Supplementary Table 4), but further experiments are needed to fully

elucidate the mechanism (Supplementary Note, SI). One involved component may be the

RNA degradation factor ZFP36 (TTP), whose targets are enriched in the “peaked”

inflammatory module32.

The ability of “precocious” cells to influence others via paracrine signaling may be an

efficient strategy for “quorum sensing”33, but also may be perilous. If the activation

threshold is too low, a few stochastically responding cells could induce an inappropriate

immune response. Indeed, this is observed in autoimmune diseases like systemic lupus

erythematosus (SLE), where excess IFN-β production potentiates auto-reactive DC
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activation34,35. Meanwhile, overly restrictive thresholds may limit rapid responses to a viral

infection, or the dampening of chronic inflammation (e.g., in rheumatoid arthritis or

ulcerative colitis30,35). Thus, individual cells likely place tight controls on the regulation of

key cytokines, preferring different induction strategies under different stimuli to maximize

the balance between responsiveness and control. Indeed, similar population-level Ifnb1

expression in LPS/PIC (Extended Fig. 9c) stems from different underlying phenomena: a

substantial fraction of cells express Ifnb1 transcript moderately at 2h LPS (α=0.35, µ=5.1),

while just a few cells express Ifnb1 very highly at 2h PIC (α=0.07, µ=6.31; uncorrelated

with the cell’s activation of the antiviral response26,27: Extended Fig. 9e).

Using microfluidics, we achieved the statistical power needed to track transcriptome-wide

changes in single-cell variation across a variety of conditions, as well as to identify novel

rare responses. Microfluidics also allowed us to finely control the stimulation of our cells.

Similar and improved techniques will be essential for characterizing other rare sub-

populations, such as cancer stem cells, and for studying heterogeneous clinical samples and

tissues. Further innovation in massively parallel manipulation and profiling of single cells

will continue to improve our understanding of the rich diversity in, and dynamic functional

communities that constitute, multicellular populations.

METHODS SUMMARY

Bone marrow derived mouse DCs were prepared as previously described18 and stimulated

with pathogenic stimuli for specified time periods. The C1 Single-Cell Auto Prep System

(Fluidigm) was used to perform SMARTer (Clontech) whole transcriptome amplification

(WTA)15,16,19 on up to 96 individual cells. WTA products were then converted to Illumina

sequencing libraries using Nextera XT (Illumina)15. RNA-Seq libraries were also made from

10,000 cells from each parent population (population control). Each sample was sequenced

on an Illumina HiSeq 2000 or 2500, and expression estimates (transcripts per million; TPM)

for all UCSC-annotated mouse genes were calculated using RSEM36. Data was further

analyzed as described in the SI. Additional experiments were performed using RNA-FISH

(Panomics), “on-chip” isolated stimulation, knockout mice, secretion blockers (GolgiPlug,

BD Biosciences), protein synthesis blockers (Cycloheximide, Sigma), and recombinant

cytokines. Full Methods and any associated references are provided in SI. Data are

deposited in GEO under accession number GSE48968.
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Extended Data

Extended Figure 1. Single-cell RNA-Seq of hundreds of DCs

(a) Overview of experimental workflow. (b) Shown are read densities for seven

representative genes (two housekeeping genes: Rpl3 and Actb and five immune response

genes: Ifnb1, Ifit1, Ccr7, Tnf, Marco) across 60 single cells (blue) and one population

control of 10,000 cells (grey) in 4h LPS. (c) Distribution of failure scores for all single cells.

Single cells with failure scores above 0.4 were discarded (see SI). (d–g) Comparing
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expression estimates for the “average” single cell and the bulk population. (d) Scatter plots

showing for each gene the relation between the average single-cell expression (Y axis) and

bulk population level expression (X axis) for each of four time points following LPS

stimulation (1, 2, 4, and 6h, left to right). (e) The Pearson correlation coefficients (Y axis) of

each comparison, as in d, for each of the time points and stimuli presented in Fig. 1, as a

function of the number of cells captured in the respective experiment (X axis). (f) Scatter

plots showing the residual (population-level expression minus the single cell average) in an

LPS 1h experiment (X axis) vs. the residual in each of 3 other experiments (Y axis, left to

right): LPS 6h, PIC 4h and PAM 2h. (g) The Pearson correlation coefficient (Y axis)

between the bulk population level expression and the single-cell expression average when a

different number of sub-sampled cells (X axis) is included in the single-cell average. (h,i)

Effects of Hoechst dye and periodic mixing on mRNA expression. (h) Comparable

expression levels after 4h LPS with the addition of small amounts of Hoechst to aid in cell

counting (X axis) and when no dye is used (Y axis), when looking at all genes (left) or only

immune response genes (right). (i) Comparable expression levels after 4h LPS with hourly

mixing (X axis) or with no mixing (Y axis), when looking at all genes (left) or only immune

response elements (right). (j) “Core” antiviral, “peaked” inflammatory, and “sustained”

inflammatory module activation scores for a 0.1× LPS stimulation. Shown are Violin plots

of the scores (Y axis) for the “core” antiviral (SI, top), “peaked” inflammatory (SI, middle),

and “sustained” inflammatory modules (SI, bottom) for each cell in (left to right): LPS 0h,

1× (100 ng/mL) LPS 4h, and 0.1× (10 ng/mL) LPS 4h. (k–n) PCA of stimulated DCs. (k)

PCA for the first two PCs for samples from the LPS stimulation time course. From top to

bottom: unstimulated/LPS 0h, LPS 1h, LPS 2h, LPS 4h, LPS 6h. (l–n) PCAs (left) and the

distributions of scores (right) for each of the first three PCs for samples collected after

stimulation with LPS (l), PAM (m), or PIC (n), for 1 (yellow), 2 (blue), 4 (grey) and 6 (red)

hours. A single PCA was performed for all cells in all three time courses.
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Extended Figure 2. Effects of shallow read depth on expression estimates

(a–b) A million reads per cell are sufficient to estimate expression levels. (a) Scatter plot for

a single cell (from Shalek et al., Nature, 201316) showing the relation between expression

estimates calculated using 30M reads (X axis) or a sub-sample of 1M reads (Y axis). (b)

Scatter plots for six different DCs stimulated for 4h with LPS. Each plot shows the relation

between expression estimates calculated using all reads (X axis; number of reads marked on

axis label) or a sub-sample of 1M reads (Y axis). In all cases, R > 0.99. Note that although,

in principle, no gene should be estimated as present only in a subsample but not the full

dataset, this does occur for a very small number of genes (e.g., four genes in Cell 3),

representing a nuanced technical error in RNA-Seq estimation. Consider two expressed

genes, A and B, from distinct loci, but with a short stretch of sequence identity. At low

sequencing depth, if reads only map to the shared region, estimation tools such as RSEM36

used here can guess erroneously which gene is expressed, such that additional sequencing

depth can “flip” the assignment of an uncertain read from gene A to gene B. These cases are

extremely rare, and have a negligible effect. (c–e) A million reads per cell are sufficient to

estimate µ, σ2, and α. Scatter plots showing the relation between α (c), µ (d), and σ2 (e)

values estimated using 10M reads/cell (on average;×axis) or a sub-sample of 1M reads/cell
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(y axis) from RNA-Seq libraries prepared from individual DCs stimulated for 4h with LPS.

(c) For the vast majority of genes, 1M reads are sufficient to estimate α. For a very small

fraction (<0.1%) of weakly expressed genes, estimates of α are improved with increased

sequencing depth. For ¼ (d) and σ2 (e), estimates are plotted for all genes (left), only genes

detected in more than 10 cells (middle), or only those genes detected in more than 30 cells

(right).

Extended Figure 3. Technical and biological reproducibility
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(a–d) Scatter plots showing the relation between the average single-cell expression estimates

in either two technical replicates (LPS 2h (a), LPS 4h (b)) or two biological replicates

(Unstimulated/LPS 0h (c), LPS 4h (d)) for all genes (top), immune response genes (middle),

or non-immune response genes (bottom). (e–f) QQ plots (top) and MA plots (bottom)

showing the similarity in expression estimates for the two LPS 2h technical replicates (e) or

the two LPS 4h technical replicates (f). Plots are provided across all genes (left), non-

immune response genes (middle), or immune response genes (right). (g–h) QQ plots (top)

and MA plots (bottom) showing the similarity in expression estimates for all cells (including

cluster-disrupted cells) in the two LPS 0h/unstimulated biological replicates (g) or the two

LPS 4h biological replicates (h) across either all genes (left), non-immune response genes

(middle), or immune response genes (right). Note, that slight variations in the fraction of

cluster-disrupted cells and activation state of one of the two 0h samples results in mild

deviations between immune response gene estimates in those biological replicates. (i–j)

PCA for the two LPS 4h technical replicates. (i) The first two principal components (PC1

and PC2, X and Y axis, respectively) from a PCA from the two LPS 4h stimulation technical

replicates (blue: replicate 1; red: replicate 2). (j) The distributions of scores for cells from

each of the two technical replicates on each of the first five PCs (left to right: PC1 to PC5).
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Extended Figure 4. Cluster disruption

(a) Single-cell expression distributions for Serpinb6b (a positive marker of cluster

disruption) and Lyz1 (a negative marker of cluster disruption) at each time point (marked on

top) after stimulation with LPS (all cells included, see SI). Distributions are scaled to have

the same maximum height. (b) Difference in mRNA expression as measured by qRT-PCR

(with a Gapdh control) between Lyz1 or SerpinB6b in cells pre-sorted before stimulation to

express or not express CD83 (CD83+ and CD83−, respectively), a known cell surface marker

of cluster-disrupted cells (see SI). Pre-sorted cells were then either unstimulated (blue) or
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stimulated (red) with LPS for 4h. (c) Expression of cluster-disruption markers does not

change with stimulation. qRT-PCR showing the difference between Gapdh (control) and

Lyz1 or SerpinB6b expression in cells pre-sorted on Cd83 either in the presence or absence

of simulation with LPS. (d) PCA showing the separation between “maturing” (blue dots)

and “cluster-disrupted” (red dots) cells. (e) Expression of cluster disruption markers of cells

stimulated with LPS “on chip”. For each cell (black dot) stimulated with LPS “on chip”,

shown are the expression levels (X axis) of Serpin6b (cluster disruption cell marker, left)

and Lyz1 (normal maturing cell marker, right) vs. its antiviral score (Y axis). With one

exception, the cells are clearly “maturing” and not “cluster-disrupted”. Red shading: range

of expression in cluster disrupted cells.

Extended Figure 5. Time-dependent behaviors of single cells from different modules and stimuli

(a–c) For each of three key modules – “core” antiviral, Id (a), “peaked” inflammatory, IIIc

(b), and “sustained” inflammatory, IIId (c) – shown are wave plots of all of its constituent

genes in DCs stimulated with PAM (top), LPS (middle), or PIC (bottom) for 0,1,2,4 and 6h

(left to right). X axis: expression level, ln(TPM+1); Y axis: genes; Z axis: single-cell
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expression density (proportion of cells expressing at that level). Genes are ordered from

lowest to highest average expression value at the 4h LPS time point. (d) Contributions of

each module to measured variation. Significance of the contribution of modules Ia-Id and

IIIa-IIId from Fig. 1 to the variation measured throughout the stimulation time course.

Shown is the p-value (Mann-Whitney test) of the tested association between each gene

module and the first three PCs, calculated using a statistical resampling method (see SI).

Only the “core” antiviral, maturity, and “peaked”/”sustained” inflammatory clusters show

statistically significant enrichments with the three PCs. (e) Gene modules show coherent

shifts in single-cell expression. Shown are heat maps of scaled α (left), µ (middle), and σ2

(right) values (color bar, bottom) in each time course (LPS, PAM, PIC) for the genes in each

of the three key modules (rows, modules marked on left). Heat maps are row-normalized

across all three stimuli, with separate scalings for each of the three parameters, to highlight

temporal dynamics. Genes are clustered as in Fig. 1. (f) Dynamic changes in variation

during stimulation in each module. For each module (rows) and stimulus (columns), shown

are bar plots of the fraction of genes (Y axis) with a significant change only in α (by a

likelihood ratio test, P<0.01, blue), only in µ (Wilcoxon test, P<0.01, green), or in both (each

test independently, light blue), at each transition (X axis), in different conditions (marked on

top) separated by whether they increase or decrease during that transition. In each module

and condition, the proportion is calculated out of the genes in the module that are

significantly bimodal (by a likelihood ratio test) in at least timepoint during the LPS

response and are expressed in at least 10 cells in both conditions. Their number is marked on

top of each bar; conditions with 3 or fewer genes changing are semi-transparent.
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Extended Figure 6. Comparison of single-cell RNA-Seq to RNA-FISH

(a–f) Single cell mRNA expression distributions by RNA FISH and single cell RNA-Seq.

(a) Representative images of genes analyzed by RNA-FISH at 1 and 4h after LPS

stimulation. (b–f) mRNA expression distributions for the housekeeping gene B2m (b), the

“peaked” inflammatory gene Cxcl1 (c), the “core” antiviral gene Ifit1 (d), the “sustained”

inflammatory gene Il6 (e), and the “peaked” inflammatory gene Tnf (f) measured using

either single-cell RNA-Seq (top, black curves) or RNA-FISH (black histograms; no

smoothing) in either unstimulated cells (LPS 0h) or cells stimulated with LPS for 1, 2, 4 or
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6h. (g–j) Determining the detection limit of single-cell RNA-Seq by comparison to RNA-

FISH. For each of 25 genes, we compared single-cell RNA-Seq data (Y axis, this study) to

RNA-FISH data (X axis, from Shalek et al., Nature, 2013) based on either their µ values

(g,h) or α values (i,j), where for RNA-FISH, “expressing” cells were defined for µ or α

calculation at different thresholds (from left to right: at least 1, 4, 5, 10 or 20 copies per

cell). (g,i) Data from all 25 genes. (h,j) Data after excluding probes from 5 “cluster-

disrupted” gene markers (blue; Ccl22, Ccr7, Irf8, Serpinb6b, Stat4), which are less

comparable since there are more cluster-disrupted cells in RNA-FISH experiments, and 2

low quality probes (grey; Pkm2, Fus) that showed very low expression in RNA FISH, but

had high expression in both single cell and population-level RNA-seq experiments. SPE

(square-root of percent explained, top) represents the square-root of the total variance in the

RNA Seq parameter explained by the RNA FISH parameter, under the y=x model.
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Extended Figure 7. Fitting gene expression distributions

(a) Flow chart of model fitting. Shown are the key steps in fitting the 3-parameter model. (b)

Examples of cases where fitting a multimodal distribution is required. Single-cell expression

distributions for (top to bottom) Car13, Rgs1, Ms4a6c, and Klf6 at (left to right) 1, 2, 4, and

6h (marked on top) after stimulation with LPS. Distributions are scaled to have the same

maximum height. Data: black lines; Bimodal fits: grey lines; Multimodal fits: blue lines. P

values (color-coded) calculated using a goodness-of-fit test (a low P value rejects the fit; see

SI). (c–e) Reproducibility of gene-specific fitting of the “undetected” mode, when fitting a
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mix of two normal distributions to all data points, including those with ln(TPM+1) < 1. (c,d)

Scatter plot showing the correlation between µ1 and µ2 estimates for the two LPS 4h

technical replicates (SI), where µ1 and µ2 are the two component means (in decreasing order

of magnitude) of the two mixed normal distributions. Estimates for µ2 correlate poorly

between technical replicates, particularly when focusing on genes for which µ2 is greater

than 1 (e), suggesting that the current dataset does not support the use of this additional fit

parameter. (f) Robustness of α estimates to small deviations in the threshold. Scatter plots

showing the correlation between α estimates determined when using a cutoff of ln(TPM+1)

= 1 (X axis) vs. when using a cutoff of ln(TPM+1) = 0.25 (Y axis, left); 0.5 (Y axis, middle)

or 2 (Y axis, right) for the LPS time course (top to bottom: 1h, 2h, 4h, and 6h). (g)

Saturation curves for estimates of µ, σ2, and α. Box plots depicting the Pearson correlation

coefficient between α (top), µ (middle), or σ2 (bottom) in two LPS 4h technical replicates, as

a function of the number of cells randomly drawn from each replicate (full details in SI).

Plots are shown for all genes (left), as well as those detected in more than 10 (middle) or 30

cells, (right) in both replicates (full datasets). (h,i) Correcting for the relationship between

mean expression and average detection. (h) The probability of detecting a transcript (Y axis)

in a cell as a function of µ (X axis). Black, grey curves are two illustrative cells from the

LPS 4h time point. (i) Differences in αMLE, a stringently-corrected MLE estimate of α (SI),

across the LPS time course. Shown are the box plots of αMLE values (Y axis) for bimodally

expressed genes (determined by a likelihood ratio test, SI) at each time point (1, 2, 4, and

6h) following LPS stimulation (X axis), as well as for the “On-chip” 4h LPS stimulation, for

each of the “core” antiviral (left), “peaked” inflammatory (middle) and “sustained”

inflammatory (right) modules. Stars represent intervals where there is a significant

difference in a parameter between two consecutive time points, as determined by a

Wilcoxon rank sum test (single star: P<10−2; double star: P<10−5). (j–l) Estimating an upper

bound on α using a likelihood test. For each of three transcripts (Ifit1 (j); Rsad2 (k); and

Cxcl1 (l)) shown are their expression distributions (red, left) and the matching likelihood

function for a stringent upper estimate of α (blue dots, right), when considering a null model

where expression is distributed in a lognormal fashion and any deviations are due to

technical detection limits (SI). Red vertical line: αMLE; black vertical line: nominal α.

Vertical green bars signify the “nominal” estimation of α, representing the fraction of cells

with detected expression of a transcript.
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Extended Figure 8. Reproducibility of estimates µ, σ2, and α parameters

(a–f) Reproducibility of estimated µ, σ2, and α parameters between technical replicates.

Scatter plots showing the relation between the estimated α (a), µ (b), and σ2 (c) values for

the two unstimulated/LPS 0h technical replicates. For µ (b) and σ2 (c), estimates are plotted

for all genes (leftmost), as well as (left to right) for genes only detected in more than 10, 20,

30, 40, or 50 cells, respectively. (d) – (f) show the same plots for the two LPS 4h technical

replicates. (g–h) Reproducibility of estimated µ, σ2, and α parameters between biological

replicates. Scatter plots showing the relation between the α (g), µ (h), and σ2 (i) values
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estimates for the two LPS 2h biological replicates. For µ (h) and σ2 (i), estimates are plotted

for all genes (leftmost), as well as (left to right) for genes only detected in more than 10, 20,

30, 40, or 50 cells, respectively. (j) – (l) show the same plots for the two LPS 4h biological

replicates. (m,n) Relation between per-gene errors for µ, σ2, and α and the number of cells

in which the gene’s expression is detected, or its bulk expression level. Scatter plots

displaying the differences in the σ2 (left), µ (middle), and α (right) estimates for each gene

between technical replicates for LPS 2h (m) or LPS 4h (n) (Y axis) as a function of either

the number of cells in which the transcript is detected (X axis, for µ and σ2), or the

transcript’s bulk expression level (TPM, X axis, for α). Notably, Ã2 (left) estimates saturate

(denoted by a magenta line and shaded box) after ~ 30 detectable events, while µ estimates

saturate after ~ 10. Dashed orange line: 95% confidence interval. (o,p) Changes in µ, σ2, and

α between time points are significant as compared to null models from both technical and

biological replicates. Shown are the cumulative distribution functions (CDF) for shifts in µ

(left), σ2 (middle), and α (right) between 2h and 4h (red CDF) for the “core” antiviral (top),

“peaked” inflammatory (middle), and “sustained” inflammatory (bottom) modules compared

to a null model (black CDF) derived from either technical (o) or biological (p) replicates

(SI). In the vast majority of cases, the changes between time points are significant, as

assessed by a Kolmogorov-Smirnof (KS) test (P-value of test in the upper left corner of each

plot).
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Extended Figure 9. Ifnb1 expression, production, and precocious cells

(a–b) Ifnb1 mRNA expression and the effect of IFN-β on variation. (a) Single-cell

expression distributions for the Ifnb1 transcript at each time point (top) after stimulation

with PAM (top, green), LPS (middle, black), and PIC (bottom, magenta). Distributions are

produced with the density function in R with default parameters, and scaled to have the

same maximum density. (b) For each of three modules defined in Fig. 1 (core antiviral, top;

peaked inflammatory, middle; sustained inflammatory, bottom), shown are bar plots of the

fraction of genes (Y axis) with a significant change only in α (by a likelihood ratio test, P <
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0.01, blue), only in µ (Wilcoxon test, P < 0.01, green), or in both (each test independently,

light blue) between the 2h LPS stimulation and the 2h IFN-β stimulation separated by

whether they increase or decrease during that transition. In each module and condition, the

proportion is calculated out of the genes in the module that are significantly bimodal (by a

likelihood ratio test) in at least time point during the LPS response and are expressed in at

least 10 cells in both conditions. Their number is marked on top of each bar. (c–d) Ifnb1

mRNA expression patterns and effect of Cycloheximide. (c) From top to bottom, population

average Ifnb1 mRNA expression (top), single-cell average Ifnb1 mRNA expression (second

to top), α (second to bottom) and µ (bottom) estimates for Ifnb1 for each stimulation

condition in Fig. 1. Grey star at 6h for PIC denotes uncertainty due to the small number of

cells captured at that time point. (d) Shown are box plots of the “core” antiviral scores

(population level, see SI) after a 4h LPS stimulation either where Cycloheximide was added

at the time of stimulation (right, blue), or during a standard 4h LPS control (left, green).

“Core” antiviral expression is dramatically decreased with addition of Cycloheximide,

suggesting that newly produced protein is needed to initiate the antiviral response. (e)

Relationship between “core” antiviral gene expression and Ifnb1 mRNA expression during

the LPS, PAM, and PIC stimulation time courses and in follow-up experiments. Shown are

the expression of “core” antiviral genes (heat maps: rows – gene; columns – cells) for cells

stimulated for 0, 1, 2, 4, or 6 hours (left to right) with LPS (top), PAM (middle), or PIC

(bottom). Beneath each heat map, grey bars depict the “core” antiviral score (middle panel,

see SI) and blue dots show Ifnb1 mRNA expression for each cell in every heat map. (f–k)

Identifying the “precocious” cells. (f) “Core” antiviral scores for cells stimulated with LPS,

PIC, and PAM. Shown are violin plots of the core antiviral module scores (SI, Y axis) for

each cell from time course experiments (from left: 0,1,2,4, and 6h) of DCs stimulated with

LPS (top), PIC (middle) or PAM (bottom). Two “precocious” cells (yellow stars, top panel)

have unusually high antiviral scores at 1h LPS (yellow stars, top); similarly “precocious”

cells can be seen in PIC at 1 and 2h (orange stars, middle) or in PAM at 2h (turquoise stars,

bottom). (g) “Precocious” cells in all three responses are typically maturing cells. PCA

showing the separation between “maturing” (blue dots) and “cluster-disrupted” (red dots)

cells (top), as well as only maturing (middle) or only cluster-disrupted (bottom) cells (all as

also shown in Extended Fig. 4d). The “precocious” cells from each of the responses are

marked as stars (colors as in (f)), and all fall well within the “maturing” cells. (h)

“Precocious” cells in all three responses express Lyz1 and do not express Serpin6b. Shown

are mRNA expression distributions for Serpin6b (cluster disruption cell marker, left) and

Lyz1 (normal maturing cell marker, right) in LPS 1h, PIC 1 and 2h, and PAM 1h (top to

bottom). The typical range for expression in cluster-disrupted cells is shaded in red. The

“precocious” cells from each of the responses are marked as stars (colors as in (f)), and all

fall well within the “maturing” cells. (i) Normal quantile plots of the expression of genes

from the “core” (cluster Id, left) and secondary (cluster Ic, right) antiviral clusters at 1h LPS.

The two “precocious” cells (yellow stars) express unusually high levels of “core” antiviral

genes (left) but not of secondary genes (right). (j,k) The “precocious” cells are only

distinguished by the expression of ~100 core antiviral genes. Shown are the distributions of

scores for each of the first five PCs (right) for samples collected after stimulation with LPS

for 1 hours with (j) or without (k) the inclusion of “core” antiviral genes. “Precocious” cells

(vertical red bars), normally distinguished by the 3rd and 4th principle components (j),
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become indistinguishable from all other cells if the ~ 100 “core” antiviral genes are excluded

(k) prior to performing the PCA.

Extended Figure 10. Characterizing the “precocious” cells

(a) “Core” antiviral, “peaked” inflammatory, and “sustained” inflammatory module scores

during the LPS time course and follow-up experiments. Shown are violin plots of the scores

(Y axis) for the “core” antiviral (SI, top), “peaked” inflammatory (SI, middle), and

“sustained” inflammatory (SI, bottom) modules for cells in each of the experiments (from
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left to right): LPS 0h, LPS 1h, LPS 2h, LPS 2h technical replicate 1, LPS 2h technical

replicate 2, LPS 4h, LPS 4h technical replicate 1, LPS 4h technical replicate 2, LPS 4h

biological replicate, LPS 6h, IFN-β 2h, “On-Chip” unstimulated, “On-Chip” LPS 4h, LPS

4h with GolgiPlug at 0h, LPS 4h with GolgiPlug at 1h, LPS 4h with GolgiPlug at 2h, LPS

4h with Ifnar−/− DCs, and LPS 4h with Stat1−/− DCs. Yellow stars: the two “precocious”

cells at 1h LPS. (b) Changes in expression and variation during stimulation in the “on-chip”.

For genes in the (from top to bottom) “core” antiviral, “maturity”, “peaked” inflammatory,

and “sustained” inflammatory modules, shown are bar plots of the fraction of genes (Y axis)

with a significant change only in α (by a likelihood ratio test, P<0.01, blue), only in µ

(Wilcoxon test, P<0.01, green), or in both (each test independently, light blue) between

either the 4h “on-chip” LPS stimulation and the 4h “in-tube” LPS stimulation separated by

whether they increase or decrease during that transition. In each module and condition, the

proportion is calculated out of the genes in the module that are significantly bimodal (by a

likelihood ratio test) in at least timepoint during the LPS response and are expressed in at

least 10 cells in both conditions. Their number is marked on top of each bar. (c–f) Bar plots,

as in b, for a 4h wild-type LPS stimulation (in tube) and either a 4h “in-tube” LPS

stimulation where GolgiPlug was added 2h after LPS (c), a 4h LPS stimulation of Ifnar−/−

DCs (d), a 4h LPS stimulation of STAT1−/− DCs (e), or a 4h LPS Stimulation of TNFR−/−

DCs (f). (g) Genetic perturbations alter expression and variation in different inflammatory

and antiviral modules. Shown is the expression of the genes (rows) in – from top to bottom –

the “core” antiviral (Id), “maturity” (IIIb), “peaked” inflammatory (IIIc), and “sustained”

inflammatory (IIId) modules in single cells (columns) in – from left to right – the “in-tube”,

“on-chip”, IFNAR−/−, STAT1−/−, and TNFR−/− conditions. Yellow/purple color scale:

scaled expression values (z-scores). (h) Scores of the “peaked” inflammatory module for

Ifnar−/− DCs with recombinant cytokines. Shown are box plots of the “peaked”

inflammatory module scores (SI, Y axis) for three population-level replicates of a 4h LPS

stimulation of Ifnar−/− DCs to which a recombinant cytokine (X axis) has been added at 2h

after stimulation. Notably, adding IL-10 significantly reduces the “peaked” inflammatory

module. (i) Stat1 knockout affects expression and variation of “peaked” inflammatory genes.

Shown are expression distributions for five “peaked” inflammatory genes after 4h of LPS

stimulation in each of three conditions: “in-tube” stimulation of WT DCs (control; left), “on-

chip” stimulation of WT cells (no cell-to-cell signaling; middle), and a stimulation of DCs

from Stat1−/− mice (performed “in-tube”; right). (j,k) Population-level paracrine signaling

enhances and coordinates the “core” antiviral response while dampening and

desynchronizing the “peaked” inflammatory ones. (j) Gene network model showing how

positive IFN-β signaling induces the antiviral response and reduces its heterogeneity, while

simultaneously activating a negative paracrine feedback loop, possibly including IL-10,

which dampens the “peaked” inflammatory cluster and increases its heterogeneity. (k) Cell

population model showing how positive and negative paracrine feedback alter antiviral

(magenta) and inflammatory (green) gene expression variability across cells. Grey denotes

no expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Microfluidic-enabled single-cell RNA-Seq of DCs stimulated with pathogenic
components

(a) Schematic of Toll-like receptor (TLR) sensing of PAM by TLR2, LPS by TLR4, and

PIC by TLR3 (SI). (b) Microfluidic capture of a single DC (top, cell circled in purple) on a

C1 chip (CAD drawing, bottom). (c) Time-course expression profiles for induced genes

(rows) in DCs (columns) at 0,1,2,4,&6h post stimulation with PAM (green), LPS (black),

and PIC (magenta) within populations (left) and individual cells (right). Far right: gene

projection scores onto the first three PCs (columns); bottom: contributions of each cell

(columns) to the first three PCs (rows).

Shalek et al. Page 30

Nature. Author manuscript; available in PMC 2014 December 19.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2. Time-dependent behaviours of single cells

(a) Single-cell expression distributions for three genes at each time point after stimulation

with PAM (top, green), LPS (middle, black), or PIC (bottom, magenta). Distributions are

scaled to have the same maximum height. Individual cells are plotted as bars underneath

each distribution. (b) Three parameters describing single-cell expression distributions: µ

(green) and σ2 (gold), the mean and variance of RNA abundance in detectably expressing

cells, respectively, and α (blue), the fraction cells with detectable expression (at ln(TPM

+1)>1). (c) Examples of fit (grey) and measured Tnf expression distributions (black). (d)

The values of µ, σ2, and α (Y axes, left to right) computed for Tnf at each time point (X

axis). Units for µ and σ2 are ln(TPM+1). (e) Maximum likelihood estimate α(αMLE). Shown

are the likelihood functions (dotted blue line) for Tnf (matching c) used to determine αMLE

(red line; black bar: nominal α; SI).
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Figure 3. Dynamic changes in variation during stimulation

(a,b) The relationship between expression and H3K27ac binding depends on α (a), but not

on µ (b). Plots show average promoter read density (black high; white low; scale bar,

bottom) for H3K27ac in LPS 2h (a,b, left) and unstimulated cells (a, middle; b, right), or

H3K4me3 in 2h LPS (a, right) in genes corresponding to each of 10 quantile bins of

population expression (Y axis) and each of 10 quantile bins of α (a, X axis) or µ (b, X axis)

(SI). (c) Bar plots showing p-values of correlation between average expression levels and

K27ac only for immune response genes either as is (red) or when controlling for µ (blue) or

α (green). (d) Dynamic changes in α and µ in each module. Bar plots showing for each

module the fraction of genes (Y axis) with a significant change only in α (P < 0.01,

likelihood ratio test, blue), only in µ (P < 0.01, Wilcoxon test, green), or in both (each test

independently, light blue), at each transition (X axis), in different conditions (marked on

top). The number of genes over which the proportion is calculated is marked on top of each

bar (SI, Extended Fig. 5f).
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Figure 4. IFN-β feedback drives heterogeneity in the expression of “core” antiviral targets

(a) Single-cell expression distributions for Rsad (top) and Stat2 (bottom) after stimulating

with LPS (left, black) or IFN-β (right, magenta) for 2h. (b) The “core” antiviral score (Y

axis; SI, Extended Fig. 9f&10a) for each LPS-stimulated cell at each time point (X axis) and

cells simulated for 2h with IFN-β (rightmost). Two “precocious” cells (yellow stars) have

unusually high antiviral scores at 1h LPS. (c) RNA-FISH confirms the presence of rare

“precocious” responders (arrow; yellow star), positive for both Ifnb1 (magenta) and Ifit1

(cyan). Grey: cell outlines. Scale bar: 25 µm.
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Figure 5. Microfluidic blocking of cell-to-cell signaling affects response heterogeneity in “core”
antiviral and “peaked” inflammatory modules

(a) Experimental blocking of cell-to-cell communication. Left: C1 chip; Right: On-chip

stimulation, followed by actuation of microfluidic valves (red bars), seals the cells at

individual chambers, preventing intercellular signaling. (b) Expression of the genes (rows)

in the “core” antiviral (Id, top rows) and “peaked” inflammatory (IIIc, bottom rows) modules

in single cells (columns) from the “in-tube” (left) and “on-chip” (right) stimulations. (c)

Gene expression distributions for representative genes from the “core” antiviral (top) and

“peaked” inflammatory (bottom) modules in the “in-tube” (left, black) or “on-chip” (right,

blue) 4h LPS stimulation. (c) Violin plots of, top to bottom, “core” antiviral (SI, top),

“peaked” inflammatory (middle), and “sustained” inflammatory (bottom) scores for

individual cells from the stimulation conditions listed on the X axis. Yellow stars: the two

“precocious” cells from Fig. 4 (Extended Fig. 10a).
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