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Abstract  

Dendritic cells (DC) and monocytes play a central role in pathogen sensing, phagocytosis and 

antigen presentation and consist of multiple specialized subtypes. However, their identities and 

inter-relationships are not fully understood. Using unbiased single-cell RNA sequencing of 

~2400 cells, we identify 6 human DC and 4 monocyte subtypes in human blood. Our study 

reveals: a new DC subset that shares properties with plasmacytoid DCs (pDC) but potently 

activates T cells, thus re-defining pDCs; a new subdivision within the CD1C+ subset of DCs; the 

relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating 

progenitors of conventional DCs (cDC). Our revised taxonomy will enable more accurate 

functional and developmental analyses as well as immune monitoring in health and disease.  
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Introduction 

Dendritic cells (DCs) are mononuclear phagocytes found in blood, lymphoid organs and all 

tissues. One of their central functions is to ingest materials such as pathogens, present processed 

epitopes to T cells and regulate innate and adaptive immune responses (1-3). DCs are 

heterogeneous and consist of multiple subtypes with unique functions that have been defined 

over the past decade in mice and humans. However, it is unclear how many DC subtypes exist, 

how they are related to each other, and how they differ from other mononuclear phagocytes.  

 

The results of numerous studies have shown that human dendritic cells express high levels of 

major histocompatibility complex class II (HLA-DR), a molecule essential for antigen 

presentation, and lack key markers of T, B, NK, granulocyte and monocytes. In the blood, DC 

subtypes include CD11C+ conventional DCs (cDCs), consisting of either CD141+ or CD1C+ 

cells, and plasmacytoid DCs (pDC), consisting of CD123+ cells. cDCs are effective at antigen-

specific stimulation of CD4+ and CD8+ T cells, while pDCs specialize in producing type I 

interferons in response to viruses.  pDCs and cDC subtypes differ in their expression of 

numerous sensors, pathways and effectors, and play distinct roles in the immune response (1-3). 

 

The different DC subtypes have historically been defined by a combination of morphology, 

physical properties, localization, molecular markers, functions and developmental origins, 

converging to the current model described above (1-3). However, the definition of DCs is still 

likely to be biased by the limited markers available to identify, isolate and manipulate the cells. 

Such biases, in turn, would alter the assignment of function and ontogeny to each DC subtype. 
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To overcome some of these limitations, we used single-cell RNA sequencing (scRNA-seq) (4-5) 

to better assess the diversity of blood DCs and monocytes, leading us to identify new subtypes of 

DCs and monocytes, refine their existing classification, and pinpoint a precursor of cDCs in the 

blood. Using discriminative markers associated with the newly defined DC subtypes, we also 

assessed the functions of some of the DC subtypes. Overall, our analysis provides a relatively 

unbiased and comprehensive map of human blood DCs and monocytes.  

 

RESULTS  

Strategy for discovery and validation of DC and monocyte subtypes 

To determine the subtypes of DCs and monocytes in the human blood, we developed an 

experimental and computational strategy to: (i) perform single-cell RNA-sequencing on DCs and 

monocytes derived from a single healthy individual; (ii) identify clusters of cells that are similar 

to each other; (iii) find discriminative markers per cluster; (iv) prospectively isolate cells 

corresponding to key clusters using newly identified surface markers; (v) validate the identity of 

the sorted cells using scRNA-seq; (vi) confirm the existence of these cell types in up to 10 

independent healthy individuals; (v) perform functional analyses for selected cell types.  

 

Single cell profiling of blood DCs and monocytes  

We analyzed blood DC and monocyte populations from ficoll-purified blood cells that were 

FACS-sorted (Fig. 1A) and excluded for B, T and NK markers (6). For DCs, we sampled LIN–

HLA-DR+CD14– cells across the CD11C+ (to enrich for CD141+ and CD1C+ cDCs) and CD11C- 

(to enrich for CD123+ pDCs) fractions (Fig. 1B). For monocytes, we sampled LIN–CD14lo/++ 

cells (including classical CD14++CD16–, intermediate CD14++CD16+, and non-classical 

CD14+CD16++). We used additional markers (DCs: CD123, CD141, CD1C; monocytes: CD14, 
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CD16) to create overlapping gates that comprehensively and evenly sample DCs and monocytes 

(6).  

 

To define subpopulations and identify useful markers for further isolation, we performed deep 

scRNA-seq using a modified Smart-Seq2 protocol (6), followed by sequencing of ~1-2 million 

paired-end reads per cell (7-8). Of 768 DCs and 372 monocytes initially profiled in the selected 

individual for discovering subsets, we focused on 742 DCs and 339 monocytes that passed 

quality control (QC) filters (6) with an average of 5,326 unique genes detected per cell. In 

subsequent validation and characterization phases, we additionally profiled ~1200 cells.  

 

Unbiased classification of LIN–HLA-DR+CD14– subsets   

We defined six cell clusters within the LIN–HLA-DR+CD14– population using unsupervised 

analysis that did not rely on any marker gene expression. Briefly, we identified 595 genes 

exhibiting high variability across single cells, reduced the dimensionality of this data with 

principal components analysis (PCA), and identified five significant PCs using a previously 

described permutation test (6,9). We used these PC loadings as input to t-distributed stochastic 

neighbor embedding (t-SNE) (10) for visualization, and clustered cells using a graph-based 

approach similar to one recently developed for CyTOF data (6, 11). We observed 6 clusters: (a) 

two clusters mapping closely to the well-established DC subsets, with cluster DC1 mapping to 

CD141+ DCs, and cluster DC6 to pDCs, based on the post-hoc overlap of transcript and surface 

marker expression; (b) two clusters containing the CD1C+ cDCs, thus splitting them into 2 

subsets: CD1C_A (cluster DC2) and CD1C_B (cluster DC3); (c) a cluster corresponding to the 

poorly characterized CD141–CD1C– population (cluster DC4); (d) and one cluster that does not 
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correspond to any of the known blood DC subtypes (cluster DC5; Fig. 1C; Fig. S1).  

 

We identified 242 genes (AUC ≥0.85) that best classified cells into these 6 putative cell 

populations (Fig. 1D, Fig. S2A; Tables S1-2 for a list of markers, including surface markers). 

While cluster DC1 mapped most closely to CD141+ DCs,  this commonly used CD141 

(THBD/BDCA-3) marker was a poor discriminator for this cluster, being also expressed by cells 

captured in clusters DC5 and DC6 (pDC) (Fig. S2B). As CLEC9A appeared to be a perfect 

discriminative surface marker for the DC1 cluster, we refer to this subset henceforth as 

CLEC9A+ DCs. Clusters DC2 and DC3 mapped to CD1C+ DCs.  CD1C was the best and sole 

marker uniquely shared by both clusters. The DC4 cluster mapped to the CD141–CD1C– 

population and was accurately delineated by FCGR3A/CD16. The DC5 cluster was best defined 

by the surface markers AXL and SIGLEC6. Finally, while the DC6 cluster mapped to pDCs, 

several markers commonly used to identify these cells (e.g. IL3RA/CD123, CLEC4C/CD303) 

were also expressed in the population defined by the DC5 cluster, leading us to define a new 

combination of markers that distinguish pDCs from the DC5 population. Altogether, we 

identified sets of discriminative markers that can be used in combination to isolate cell 

populations corresponding to known DC subsets (but with higher purity) as well as to previously 

uncharacterized subsets.  

 

Two subpopulations within CD1C+ DCs 

The CD1C+ DCs were distributed across two clusters with similar numbers of cells, which we 

termed CD1C_A (cluster DC2) and CD1C_B (cluster DC3). Comparing the two clusters, the 

CD1C_B cells were distinguished through their expression of a strong unique signature that 
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includes acute and chronic inflammatory genes (12-14), such as CD14, S100A9 and S100A8, 

while CD1C_A cells were marked only by slightly higher levels of MHC class II genes (Fig. 2A; 

Table S3). 

 

We validated the presence of the two populations by combining prospective isolation with a new 

sorting panel followed by scRNA-seq. To isolate these cells by flow sorting, we developed a 

panel incorporating surface markers derived from the set of uniquely expressed genes: FCGR2B 

(CD32B) for CD1C_A, and CD163 and CD36 for CD1C_B subsets (Fig. 2B). scRNA-seq of 

prospectively isolated cells from each subset recapitulated the original split observed in CD1C+ 

DCs (Fig. 2C). Unlike monocytes and pDCs, both CD1C_A and CD1C_B subsets (isolated with 

the newly identified markers) were potent stimulators of naïve T cell proliferation (p<0.05, 

paired t-test), consistent with the functional characteristics of cDCs (Fig. 2D). Subsequent 

activation of both CD1C subsets with LPS, R848 and poly (I:C) highlighted functional 

differences between these subsets (Fig. S3; Table S4), with CD1C_A secreting higher levels of 

the immune mediators CCL19, IL-10, IL-12B, IL-18. Thus, scRNA-seq revealed unappreciated 

heterogeneity in this particular subset, leading to new hypotheses about the functions of CD1C+ 

DCs. 

 

Discovering monocyte subsets and their relationships to DC subsets  

Some key genes that were known to be associated with monocytes were also expressed by 

CD1C_B (cluster DC3) and CD141–CD1C– (cluster DC4) cells (e.g., CD14 and FCGR3A/CD16, 

respectively). To analyze the relationships between monocytes and CD1C_B cells, we profiled 

372 single blood monocytes (Fig. 1A, Fig. 3A). Based on 339 monocytes that passed QC, we 
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identified four clusters (Fig. 3B, Fig. S4A) distinguished by 102 classifier genes (AUC ≥0.85; 

Fig. 3C, Fig. S4B, Table S5). The two largest clusters, Mono1 and Mono2, contained the 

CD14++CD16- (‘classical’) and CD14+CD16++ (‘non-classical’), respectively. However, Mono1 

and Mono2 also included 88 of the 124 cells derived from the ‘intermediate’ monocyte gate 

(CD14++CD16+) (Fig. S4A), demonstrating that the ‘intermediate’ monocytes do not form a 

homogenous population. The two smaller clusters, Mono3 and Mono4, contained 40 of the 124 

‘intermediate’ cells and expressed many of the Mono1 (‘classical’ monocyte) signature genes. 

Mono3 also uniquely expressed genes involved in cell cycle arrest and cell differentiation 

inhibition (e.g., G0S2, MXD1), as well as trafficking (e.g., CXCR1, CXCR2, VNN2), while 

Mono4 distinctively expressed a cytotoxic gene signature (e.g. PRF1, GNLY, CTSW) resembling 

previously reported ‘natural killer dendritic cells’ (15-17) (Fig. 3C, Fig. S4B). We conclude that 

the previously defined ‘classical’ and ‘non-classical’ subtypes are contained in 2 distinct clusters 

(Mono1 and Mono2, respectively), but that the ‘intermediate’ monocytes are far more 

heterogeneous than previously appreciated, being distributed across 2 known and 2 new clusters 

(Fig. S4A).  

 

All monocyte subtypes shared a signature that distinguished monocytes collectively from CD1C+ 

DC (cluster DC2 and DC3), CLEC9A+ DC (cluster DC1), and pDC (cluster DC6) populations 

(e.g., ITGAM/CD11B, ITGB2, TLR2, and CLEC7A) (Fig. 3B, Fig. 3C, Fig. S4B). Importantly, 

despite co-expressing genes such as CD14 and S100A8, Mono1 and CD1C_B/DC3 cells did not 

form a single cluster (Fig. 3B; Fig. 3C). CD1C+ DCs (DC2 and DC3) expressed unique markers 

(e.g., CD1C, CLEC10A, FCER1A, FCGR2B, and CD1D) enriched for antigen processing 

(p<2.66-10), MHC II (p<1.79-8) and leukocyte activation (p<1.14-6) gene ontology (GO) terms 
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(Fig. 3C; Table S6) (6). In contrast, Mono1 cells were enriched for defense response (p<2.15-14), 

inflammatory response (p<9.59-14), and chemotaxis (p<6.77-10) genes.  

 

Finally, we interrogated the relationship between CD16-expressing CD141–CD1C– cells (cluster 

DC4) to CD16+ monocytes (cluster Mono2).  Although the two populations shared many genes 

(e.g. FCGR3A), they formed distinct clusters (Fig. 3B) defined by unique discriminative gene set 

(Fig. 3C; Tables S7-S8). DC4 cells were enriched for type I interferon signaling pathway 

(p<1.53-13) and response to virus (p<4.77E-9), while Mono2 cells were enriched for immune 

system process (p<1.09-14) and leukocyte migration (p<3.57-8) GO terms. Although we conclude 

that monocytes and DCs are distinct from each other in the steady state, our data does not 

address interconversion between cell fates or distinct ontogeny. 

 

AXL+SIGLEC6+ population and its relation to cDCs and pDCs 

As described above, a population emerged from the unbiased cluster analysis (cluster DC5; Fig. 

1), defined by expression of unique markers (e.g., AXL, SIGLEC1, SIGLEC6, and 

CD22/SIGLEC2) (Fig. 4A, Fig. S5A, Tables S1-S2). Flow cytometry analysis of PBMCs from 

10 independent donors confirmed the existence of AXL+SIGLEC6+ cells (‘AS DCs’) within the 

original DC gate (Fig. 4B), at a 2-3% frequency consistent with what was originally observed in 

the initial scRNA-seq analysis (30 of 768 DCs; Fig. 1C). scRNA-seq profiling of prospectively 

sorted AS DCs cells (isolated with the gating strategy in Fig. 4B) showed the newly sorted cells 

clustering together with the original cluster (Fig.4C, Fig. S5B), further validating our successful 

enrichment strategy.   
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AS DCs exhibited a spectrum of states based on gene expression (Fig. 4D) defined by cells 

enriched for a pDC-like signature (e.g. IL3RA, IGJ, NRP1, MZB1) and cells enriched for a cDC-

like signature (IFI30, ITGAX, LY86, GLIPR2, FGR, LYZ, ENTPD1). We validated this 

observation by flow cytometry, using the surface markers CD123/IL3RA and CD11C/ITGAX that 

respectively correlated with pDC and cDC gene signatures (Fig. 4B, 4D). We exploited the 

combinatorial expression of AXL, SIGLEC6, CD123 and CD11C (at mRNA and protein level) 

to prospectively isolate the ends of this spectrum representing 2 putative AS DC subtypes (see 

gating strategy in Fig. 4B), and further validated their identities by scRNA-seq (Fig. 4E, Fig. 

S5C-F). Across all ten individuals tested, the two AS DC subpopulations represent a very small 

fraction of the Lin–HLA-DR+ populations: 0.1% for AXL+SIGLEC6+CD123+CD11C-/lo cells and 

0.04% for AXL+SIGLEC6+CD123loCD11C+ cells (Fig. 4F). Notably, lower levels of AXL and 

SIGLEC6 protein were associated with increased HLA-DR, CD11C and CD1C, while higher 

levels of AXL and SIGLEC6 were associated with increased CD123, CD303, CD141 and lower 

HLA-DR (Fig. S5C-J). This latter relationship was also observed by t-SNE analysis of flow 

cytometry data, where a peninsula with graded expression of AS DCs was located at the base of 

the CD1C+ DC cluster and adjacent to the pDC cluster (Fig. 4G). Trajectory mapping of these 

cells across different levels of surface markers CD123 and CD11C further highlighted that AS 

DC form a continuum from pDC to CD1C+ DC transcriptional state (Fig. S5C-F).   Taken 

together, our data suggest that AXL+SIGLEC6+ DCs are related but not identical to cDCs or 

pDCs. 

 

pDCs are phenotypically and functionally distinct from CD123+CD11C- AS DCs 

Since pDCs and AXL+SIGLEC6+CD123+CD11C-/lo DCs shared expression of many genes (Fig. 
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4D-E; Fig. S6A), we assessed whether these cell types also shared functional properties. 

Importantly, we found that the genes specifically expressed by pDCs, but not AS DCs, were 

associated with the known biological properties of pDCs. This includes, for example, pathogen 

sensing and induction of type I IFNs (IRF7, TLR7, SLC15A4, PACSIN1), secretion (e.g. DERL3, 

LAMP5, and SCAMP5), and the pDC master regulator transcription factor TCF4, along with its 

binding targets (e.g. SLA2, PTCRA, PTPRCAP) (Fig. 5A; Fig. S6A) (18-19). In contrast, 

CD123+CD11C-/lo AS DCs expressed cDC markers, including CD2, CX3CR1, CD33 

(SIGLEC3), CD5 and SIGLEC1 both at protein and mRNA levels (Fig. 5A; Figs. S6A-C). pDCs 

were also morphologically distinct from AS DCs. Both AS DC subsets possessed the same 

cerebriform nucleus and cytoplasmic features of cDCs (Fig. 5B). We hypothesized that although 

CD123+CD11C-/lo AS DCs expressed pDC markers, including CD123/ILRA and 

CD303/CLEC4C (Fig. S5G-J), they are functionally distinct from pDCs. 

 

To compare the functional properties of ‘pure’ pDCs to AS DCs and cDCs, we used the markers 

identified in our study to isolate ‘pure’ pDCs by excluding AS DCs, CLEC9A+ DCs, CD1C+ 

DCs and monocytes by FACS. As expected, ‘pure’ pDCs produced their hallmark cytokines, 

IFNα, while AS DCs produced negligible amounts of IFNα upon TLR9 stimulation (p<0.001; 

Fig. 5C). In contrast, the CD123loCD11C+ AS DC subset secreted IL-12p70 at similar levels to 

other cDCs, while pure pDCs and CD123hiCD11C-/lo AS DCs did not produce IL-12p70 (p<0.01; 

Fig. 5C). Other factors, such as IL-8, were produced at high levels by the CD123+CD11C-/lo AS 

DC subset but not by pDC (p<0.001; FigS6D).  Finally, ‘pure’ pDCs induced undetectable or 

reduced levels of T cell proliferation in response to LPS or LPS+R848, respectively (p<0.05; 

Fig. 5D). We conclude that ‘pure’ IFNα-producing pDCs (that lack AS DCs) do not upregulate 
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CD86 (Fig. S6C,E), are diminished in their ability to induce of T cell proliferation, and that 

contamination of AS DCs within the traditionally defined pDC gate is likely responsible for T 

cell stimulation activities measured in prior reports (18-20).  

 

AS DCs stimulate T cell proliferation and are present in tonsils 

To understand the potential for AS DCs to stimulate T cells, we first considered their expression 

of costimulatory molecules and cytokines. While CD80 and CD83 were absent across all DCs, 

both AS DC subsets expressed CD86 at comparable levels to CD1C+ DCs and CLEC9A+ DCs 

(Fig. S6E). Strikingly, both AS DC subtypes were potent stimulators of allogeneic CD4+ and 

CD8+ T cell proliferation, unlike pDCs (p<0.01), and were marginally superior to CD1C+ and 

CLEC9A+ DCs (Fig. 5E).  These latter results are consistent with AS DCs expressing 

costimulatory molecule CD86 along with components of the antigen processing machinery (Fig. 

S6A,C). 

Similarly to other DCs, AS DCs expressed CLA and CD62L but not CCR7 protein (Fig. S6F), 

suggesting potential homing to peripheral tissue such as skin and lymph node from the 

circulation. Since CD123+ pDCs were observed in the T cell area of the human tonsil (21), we 

evaluated whether CD123+ AS DCs were also present by staining human tonsils with antibodies 

to CD123 and AXL.  We found AS DCs adjacent to CD3+ T cells, admixed with CD123+AXL- 

pDCs (Fig. 5F). Flow cytometry confirmed this finding, showing that the CD123+CD11C-/lo AS 

DCs represented 0.7% and CD123-CD11C+ AS DCs represented 1.7% of the CD45+LIN–HLA-

DR+ fraction (Fig. 5F). Thus, AS DCs are both able to stimulate T cells and are present in the T 

cell zones of tonsils.  
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Identification of circulating CD100hiCD34int cDC progenitors 

Finally, we interrogated CD11C–CD123– cells within the HLA-DR+CD14– gate used for 

isolating DCs but were not considered in the initial analysis since they were not previously 

thought to include DCs, (red dashed gate in Fig. 1B and updated gate in Fig. 6A used for these 

experiments). Analysis of CD11C–CD123– scRNA-seq data revealed 6 clusters in this gate (Fig. 

S7A-B). Cells in cluster 6 expressed genes associated with hematopoiesis, DC progenitors, and 

genes essential for DC development (e.g. SATB1, RUNX2, KIT, HLX, ID2) (22-25), and were 

marked by high expression of the cell surface protein SEMA4D (CD100). We therefore 

hypothesized that cluster 6 could represent a progenitor population. 

 

To assess the progenitor potential of this compartment, we cultured FACS-purified CD11C–

CD123– cells with MS5 stromal cells and cytokines that induce DC differentiation (6), based on 

a published human DC progenitor differentiation assay (26). After several days in culture, the 

cells were evaluated by flow cytometry, using a panel of antibodies that identify pDCs, CD1C+ 

and CLEC9A+ DCs (6), and by scRNA-Seq profiling of CD45+ immune cells for a more 

comprehensive assessment. For comparison, under the same conditions, we monitored the 

differentiation potential of isolated pDCs, CD1C+ and CLEC9A+ DCs, as well as AS DC 

subtypes (see Fig. S7C-D). 

 

After 7 days of culture, cells isolated from the CD11C–CD123– gate gave rise to CLEC9A+ and 

CD1C+ DCs, based on flow cytometry and scRNA-seq analyses (Fig. 6B). While at day 7 some 

of the cells expressed low levels of CD303 or CD123 proteins, they did not express a bona fide 

pDC transcriptional signature by scRNA-seq. We narrowed down the search for the progenitor 
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cells to the CD45RA+CD39–CD100+ pool of cells based on the unique cluster-6 marker 

CD100/SEMA4D (Fig. S7B), along with candidate markers that we tested (based on DC 

progenitors in the bone marrow (CD45RA) and tissue DC (CD39) markers) (Fig. 6C, Fig S7C-

F). After iterative testing each sorted population for differentiation potential, we discovered that 

only the CD100hiCD34int cells generated CLEC9A+ and CD1C+ DCs (Fig. 6C; Fig. S7F).  

ScRNA-seq of CD100hiCD34int cells mapped these cells to the original cluster-6, including the 

expression of the same DC differentiation and progenitor function genes (Fig. S7B). 

 

We validated the existence of CD100hiCD34int progenitors in 10 individuals, with a frequency of 

~0.02% of the LIN–HLA-DR+ fraction of PBMCs (Fig. 6D). These cells were morphologically 

primitive, possessing high nuclear to cytoplasmic ratio and circular or indented nuclei (Fig. 6D), 

compared to AS DCs, pDCs, CD1C+ and CLEC9A+ DCs (Fig. 5B). Furthermore, 

CD100hiCD34int cells retained significant proliferative capacity (p<0.05; Fig. 6E), in accordance 

with their primitive morphology, phenotype and expression profile. Although CD100hiCD34int. 

cells were CD117/KIT+CD45RA+ and CD115–, CD1C–, CD141–, CD123–, a profile similar to 

previously reported circulating human DC progenitor (24, 27-28), they differ from the published 

progenitor in having a more primitive morphology and lacking CD116/CSF2R and CD135/FLT3 

expression (Fig. S7G-H).  

 

While expressing some level of the co-stimulatory molecule CD86 (Fig. S6E), the 

CD100hiCD34int. cells have low T cell stimulatory potential (Fig. 5C). CD100hiCD34int. cells 

expressed CLA and CD62L at similar protein amounts to cDC (Fig. S6F). Homing CCR7 gene 

was expressed in these cells (Fig. S7B, S7H) but protein expression was modest (Fig. S6F). 
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Both CD100hi CD34int. cells and AS DCs were CD45RA+ and CD38+ (Fig. S5J; Fig. S6B).  

 

Differentiation potential of AS DCs  

We seeded cultures with pDCs, CD1C+ and CLEC9A+ DCs and found that they generally 

retained the same phenotype throughout the differentiation assay (Fig. 6F, Fig. S7I-J). Upon 

observing a gene expression spectrum of AS DC states that includes pDC- and CD1C+-like DC 

signatures (Fig. S5C-F), we also seeded AS DCs to assess their potential to transition towards 

other DC subsets (ensuring no contamination with CD1C+ and CLEC9A+ DCs (Fig. S7I-J)).  

After 7 days in culture, we observed cells with high levels of CD1C (frequency 40%-50%, n=6 

donors) and rare cells with surface CLEC9A and CADM1 (0.5-0.8%) expression (Fig. 6F), 

regardless of FLT3L concentration used (Fig. 6F) or if the culture was seeded with either of the 

two AS DC subpopulations representing both ends of the spectrum (Fig. S7K). Notably, both AS 

DCs at day 0 and the cells generated from AS DC differentiation did not express BATF3 

(transcription factor required for terminal differentiation of CLEC9A+ DCs), CADM1 or XCR1, 

which are key CLEC9A+ DC discriminative markers (Table S2)(23, 29-33), consistent with the 

absence of expression of these genes across the spectrum of AS DCs at steady state (Fig. S5D-

E). Importantly, AS DCs do not divide during the transition into CD1C+ DCs, in contrast to 

CD100hiCD34int. cells that divide and differentiate into CD1C+ as well as CLEC9A+ DCs. 

Furthermore, CD100hiCD34int. differentiation into CD1C+ DCs is not likely to transition through 

AS DCs since CD100hiCD34int. do not express AXL or SIGLEC6 genes at day 0 or during 

differentiation. AS DCs are thus functional cDCs that exist in a continuum of states in vivo (Fig. 

S5C-F), with the potential to transition towards CD1C+ DCs.  
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Mapping malignant cells from patients to the healthy DC atlas 

We leveraged our human DC atlas to compare pathogenic cells driving blastic plasmacytoid 

dendritic cell neoplasm (BPDCN), a rare and aggressive hematological malignancy previously 

known as natural killer (NK) cell leukemia/ lymphoma (34-35), to healthy DC populations. Since 

the ontogeny of these cells remains unclear (34-38), we performed scRNA-seq on CD45+HLA-

DR+CD123+ blasts from 4 BPDCN patients (n=174 cells) (6). The first principal component 

highlighted gene sets clustering all 4 patients together with healthy blood pDCs (Fig. 6G). 

Analysis of BPDCN samples together with healthy DCs showed highest overlap with pDC and 

AS DC gene expression signatures (Fig. S8A). Since pure pDC and AS DC subsets co-express 

many genes, yet have distinct biological function (Figs. 4-5), we further analyzed the genes 

overlapping between BPDCN, pure pDCs and cDCs (Fig. S8B). Despite sharing some pDCs 

genes (e.g. NRP1, IL3RA, DERL3, LAMP5, PTCRA and PTPRCAP), several key genes essential 

for pDC function were missing or very lowly expressed in patient cells (e.g. GZMB, IRF7, 

CLEC4C/CD303, IRF4, SLC15A4; Fig. S8B). Only a small number of cDC genes were 

expressed in patient cells, including SIGLEC6, LTK, FCER1A, CD59, CADM1, and TMEM14A.  

Noteworthy, all 4 patient samples shared a set of discriminative genes (Fig. S8B; Table S9) that 

included several genes expressed in B cells (e.g. FCRLA, IGLL1, TCL1A, IGLL5; Fig. S8C) or 

with hematopoietic progenitors (e.g. SOX4 and CLEC11A). Collectively, our analysis suggests 

that while BPDCN malignant cells express some key B cell markers, they are most closely 

related to pDCs. 
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Discussion 

DCs and monocytes are defined based on a combination of molecular markers, functional 

properties and ontogeny (39). However, an open question is whether the expression of existing 

markers tracks with the more complex internal states of cells. To address this question, we 

determined the states of blood DC/monocytes through comprehensive profiling of gene 

expression at single cell resolution, empirically inferred cell subtypes, identified optimal surface 

markers for purifying the hypothesized cell subtypes, and showed that prospectively purified cell 

types corresponded to inferred subtypes based on scRNA-seq. Our study has generated a more 

accurate taxonomy that includes 6 DC and 4 monocyte subtypes, as well as a circulating, 

dividing progenitor of cDCs.  

 

Previous studies classified human blood DCs into one pDC and two cDC populations. Our study 

identifies 6 DC populations: DC1 corresponds to the cross-presenting CD141/BDCA-3+ cDC1, 

which is best marked by CLEC9A; DC2 and DC3 correspond to new subdivisions of the 

CD1C/BDCA-1+ cDC2; DC4 corresponds to CD1C–CD141–CD11C+ DC, which is best marked 

by CD16 and shares signatures with monocytes; DC5 is a unique DC subtype, AS DCs; and DC6 

corresponds to the interferon-producing pDC, purer than previously identified pDC population 

defined by standard markers (CD123, CD303/BDCA-2) and contaminated with AS DCs. In the 

process of addressing how DCs resemble monocytes, we also identified 4 monocyte subtypes – 

the 2 known ones, a monocyte killer subtype and a subtype characterized by cell cycle-arrest and 

trafficking gene sets. Although DC2/3 and DC4 shared an expression signature with monocytes, 

our data does not suggest how they acquired these shared modules (common precursor, 

interconversion or independent convergence). Finally, we derived specific expression signatures 



 19 

for each DC and monocyte subtype, including transcription factors, cytokines, and cytokine 

receptors (Fig. S9A-F; Tables S10A-10F), providing a resource for further understanding of 

subtype functions and ontogeny.  

 

The CD1C/BDCA-1+ DCs subdivision (DC2 and DC3) is further supported by parallel 

observations in their murine CD11b+ DC homologs (40-43) that comprise Esamlo subset with 

higher expression of myeloid genes such as CD14 and potent cytokine production, and Esamhi 

subset with better MHC class II-dependent priming of CD4+ T cells (40-41).  

 

AS DCs, which were found within the pDC gate, formed a continuum between pDC and CD1C+ 

DC (see trajectory mapping; Fig. S5C-F). Consistent with this observation, AS DCs were able to 

transition towards the CD1C+ DC state in vitro (with <1% of differentiated AS DCs 

phenotypically resembling CLEC9A+ DCs, which could be contaminants). However, since AS 

DCs (at both ends of the continuum) morphologically resemble cDCs and are able to stimulate T 

cell proliferation, yet do not proliferate themselves, they seem less likely to serve as a progenitor 

that generates cDCs, but rather a functional DC variant that can be modulated to resemble 

CD1C+ DCs. While AS DCs most closely resemble CD1C+ cDCs in basic functional properties 

and expression signatures, they are likely to have distinct functions based on their localization in 

the T cell zone of tonsils and their expression of lectins that recognize diverse glycans, and AXL 

which interacts with apoptotic cells and Zika virus (44-46). 

 

An unresolved question is the significance of AS DCs sharing an expression signature with 

pDCs. Consistent with our findings that AS DCs are found in the traditional pDC flow cytometry 
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gate, a recently described human CD2hi pDC subset (20) appears to correspond to AS DCs based 

on expression of CD2, AXL, CX3CR1, LYZ and CD86 (Fig. S6C), localization to tonsil, and a 

similar ability to trigger naive T cell proliferation. Furthermore, a murine study identified non-

canonical CX3CR1+CD8α+ cDCs (nc-cDCs), which expressed pDC and cDC signatures (e.g., 

CX3CR1, CD11c and MHCII), do not produce IFNα, and activate T cell proliferation (47-48). 

Interestingly, pDC and nc-cDCs require E2-2/TCF4 to develop, and reduced levels of E2-2 lead 

to higher ID2 and expression of cDC genes (18, 47-48). Consistent with this finding, we observe 

E2-2/TCF4 expression in human pDCs (Fig. 5A), with decreasing levels of E2-2/TCF4 and 

increasing levels of ID2 as AS DCs transition to CD1C+ DCs (Fig. S5C-F). These findings 

suggest that AS DCs are similar to human CD2hi pDCs and murine nc-cDCs.  

 

The discovery of AS DCs led us to update the strategy for isolating pDCs. When we removed AS 

DCs from pDCs isolated with standard markers (e.g. CD123 and CD303), the resulting pDCs 

were highly attenuated in their ability to induce T cell proliferation and produce T cell 

stimulatory ligands (e.g., IL-12), consistent with reports that found several markers splitting 

pDCs into those that stimulate or do not stimulate T cells (18,20, 49-52). We thus propose that 

our purer pDC population corresponds more closely to the ‘natural interferon-alpha producing 

cells’ (21, 53). These cells also appear to share more properties with plasma B cells than DCs 

based on morphology, higher expression of ER/secretory machinery, known rearrangement at the 

Ig locus, and expression of B-cell related transcripts. We also found that BPDCN cells share the 

pDC signature as well as additional B cell genes (e.g. IGLL1, IGLL5, TCL1A). We conclude that 

while pure pDCs do fall into the MHC II-expressing gate, they have markers, gene signatures, 

and functions distinct from cDCs. 
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In contrast to AS DCs, the CD100hiCD34int. cells appear to be cDC progenitors based on their 

primitive morphology, absence of cDC functions and signatures, and their potent ability to 

proliferate and generate a large and equal number of CD1C+ DC and CLEC9A+ DC within 7 

days of culture. The recently identified human pre-cDC (24-28), which has proliferative capacity 

and differentiates into CD1C+ and CD141+ DCs, appears to have some functional and 

phenotypical similarities with our CD100hiCD34int progenitors, though our cells appear to be 

morphologically more primitive and lack the expression of CD116 and CD135, which were 

previously reported as markers (24). Single cell profiling studies are needed to determine 

whether and how these precursors are related.  

 

CD100hiCD34int cells also appear to be different from peripheral blood CD34hi HSCs. Culturing 

of CD100hiCD34int cells gives rise only to CLEC9A+ DCs and CD1C+ DCs in 7 days (and no 

other cell types). In contrast, peripheral blood CD34hi HSCs under the same culture conditions 

for up to 14 days did not give rise to CLEC9A+ cDCs. Furthermore, CD100hiCD34int cells have a 

distinct transcriptional signature from blood CD34hi HSCs. Mapping CD100hiCD34int to other 

bone marrow progenitors may help resolve the origin of these cells. 

 

Our results have several implications. The discovery of several DC subsets will enable a more 

complete understanding of DCs in tissues, inflammation and disease. Furthermore, the 

identification of circulating CD100hiCD34int progenitors provides a well-defined cell type for 

generating DCs in vitro and for therapeutic targeting. Our new strategy for isolating pure pDCs, 

combined with the knowledge that the functions of contaminating AS DCs were incorrectly 

attributed to pDCs, should lead to more definitive annotation of pDC functions with implications 
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for their therapeutic application (54-56). More generally, our use of the DC atlas to understand 

BPDCN cells illustrates how single cell analysis can pinpoint relationships of diseased to healthy 

cells. Finally, some susceptibility genes identified in human genetics association studies are 

expressed in the DCs and monocytes subsets defined in this study, suggesting new potential roles 

in disease (Fig. S10A-B; Table S11A-C). 

 

Using single cell transcriptome profiling, we deconvoluted admixtures of cell types (e.g., pDCs, 

‘intermediate’ monocytes, cDC progenitors), revealed rare cell types (e.g., AS DCs) and 

elucidated complex relationships between cell types (e.g., spectrum of states for AS DCs) – thus 

addressing limitations in the existing classification that relies on a small number of markers (39). 

Nevertheless, some DC/monocyte subtypes were likely missed because they either do not 

express MHC Class II at rest, can only be defined by non-RNA molecules, are distinguished by 

lowly expressed transcripts, or are only present during inflammation, disease or within tissues. 

To build a comprehensive immune cell atlas, future studies will need to address these challenges 

as well as localize these cell types within lymphoid and non-lymphoid tissues. 

 

Materials and Methods 

Study subjects 

The study was performed in accordance with protocols approved by the institutional review 

board at Partners (Brigham and Women's Hospital, Massachusetts General Hospital, Dana-

Farber Cancer Institute; Boston, USA) and Broad Institute (USA), as well as the Newcastle upon 

Tyne Hospitals (UK) Research Ethics Committee. All patients provided written informed 

consent for the genetic research studies and molecular testing.  Healthy donors were recruited 
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from the Boston-based PhenoGenetic project, a resource of healthy subjects that are re-

contactable by genotype (57), and the Newcastle community. Individuals were excluded if they 

had a history of cancer, allergies, inflammatory disease, autoimmune disease, chronic metabolic 

disorders or infectious disorders. All healthy donors were non-smoker, had a normal BMI and 

normal blood pressure, and were between 25-40 years of age.  

 

Cell isolation, flow cytometry staining, cell sorting, and analysis 

For profiling of healthy cells, peripheral blood mononuclear cells (PBMCs) were isolated from 

fresh blood within 2hrs of collection, using Ficoll-Paque density gradient centrifugation as 

previously described (58). Single-cell suspensions were stained per manufacturer 

recommendations with different panels of antibodies (Table S12) designed to enrich for certain 

population for single cell sorting and single cell RNA-sequencing (scRNA-seq). Refer to 

supplementary materials and method section for further details (6).   Flow cytometry and FACS-

sorting of PBMC was performed on a BD Fortessa or BD FACS Fusion instrument, and data 

analysed using FlowJov10.1. Single-cells were sorted into 96-well full-skirted eppendorf plate 

chilled to 4°C, pre-prepared with lysis buffer consisting of 10µl TCL buffer (Qiagen) 

supplemented with 1% beta-mercaptoethanol. Single-cell lysates were sealed, vortexed, spun 

down at 300g at 4°C for 1 minute, immediately placed on dry ice and transferred for storage at -

80°C. Tonsil was mechanically disrupted to obtain single-cell suspension.    

 

Single-cell RNA-sequencing 

Smart-Seq2 protocol was performed on single sorted cells as described (7-8), with some 

modifications (6). For DCs, a total of 8 x 96-well plates (768 single DCs) were initially profiled 
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from the same blood draw and sort from the index volunteer and subsequent validation 

performed on an additional ten healthy individuals.  For monocytes, a total of 4 plates were 

profiled (372 single monocytes and 12 population samples). An additional 975 single cells were 

profiled to further characterize the CD1C+ DC subsets (n=125), AXL+SIGLEC6+ cells (n=372), 

CD11C-CD123- compartment at day 0 (n=164), differentiation assay outputs (n=218), 

CD100hiCD34int. cells (n=96), and BPDCN patient samples (n=269). Noteworthy, some of these 

single cells were excluded from the analysis after applying QC filters and analytically 

confirming cell type (6). Refer to supplementary materials and methods for further details on the 

scRNAseq processing (6). 

 

Single-cell RNA sequencing analyses  

Raw sequencing data were processed as previously described (60) (see Table S13-S16 for cell 

identities that accompanies raw data and gene expression matrices). Briefly, short sequencing 

reads were aligned to the UCSC hg19 transcriptome. These alignments were used to estimate 

transcriptomic alignment rates, and were also used as input in RSEM v 1.2.1 to quantify gene 

expression levels (transcripts per million; TPM) for all UCSC hg19 genes in all samples. We 

filtered out low-quality cells from our dataset based on a threshold for the number of genes 

detected (a minimum of 3000 unique genes/cell for cells sequenced at HiSeq depth, and 2000 

unique genes/cell for cells sequenced at MiSeq depth). All genes that were not detected in at 

least 0.5% of all our single cells were discarded, leaving 21,581 genes for all further analyses. 

Data were log transformed (log(TPM+1)) for all downstream analyses, most of which were 

performed using the R software package Seurat (https://github.com/satijalab/seurat; 

https://github.com/satijalab/seurat
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http://satijalab.org/seurat/). Refer to supplemental materials and method section for further 

details, including R script used to generate clusters (6).  

 

DC differentiation assay on MS5 stromal cells 

DC differentiation assay was performed as previously described (23-25) with minor adaptation.  

Briefly, 1x104 purified progenitors, DC, and monocyte subsets were cultured in 96-well flat 

bottomed plate layered with 4x104 murine MS5 stromal cells (DSMZ, Germany) in the presence 

of human FLT3-ligand (FL; 100 ng/ml; Miltenyi Biotec), recombinant human SCF (20 ng/ml; 

R&D Systems) and recombinant human GM-CSF (10 ng/ml; Peprotech). MS5 stromal cells were 

seeded 24 hours prior to co-culture. Growth factors were replenished on day 3 of culture.  Cells 

were in culture for up to 7 days prior to harvesting by physical dissociation on ice. Cells were 

then stained on ice either for flow cytometry analysis (see output panel in Table S12) or single 

cell index sorting of CD45+ cells for scRNAseq of culture output analysis.  

 

Cytokine production measurements 

Purified subsets were cultured at 5x10
3 

cells/well in 96 well round bottom plates in the presence 

of LPS (100ng/ml; Invivogen) and ODN2395 (1μM; Invivogen) or ODN5328 (ODN2395 

control, 1μM; Invivogen), or in the presence of LPS, poly (I:C) (25μg/ml; Invivogen) and R848 

(2.5μg/ml; Enzo Life Sciences). Culture supernatants were harvested after 24 hours and analyzed 

using a multiplexed cytokine assay (ProcartaPlex, eBioscience), or by leveraging the 92 

inflammatory-related protein biomarker panel and 4 controls provided by Olink Proteomics 

(Uppsala, Sweden). Refer to supplementary methods for further details (6).   
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Assessing T cell stimulatory potential  

DC, monocyte, and progenitor subsets were purified from peripheral blood of healthy donors by 

FACS sorting (BD FACS Fusion; see Table S12 for sorting panels and antibodies). For T cell 

stimulatory potential, purified DCs, monocytes, AXL+SIGLEC6+ subsets, and progenitor subset 

were cultured at 5x104/well cell density. All purified cell subsets were matured with LPS 

(100ng/ml, Sigma) and R848 (2.5ug/ml, Invivogen), or with just LPS (100ng/ml, Sigma), for 24 

hours prior to co-culture with 5×105 CFSE-labelled allogeneic unfractionated CD3+ T cells at a 

1:10 DC:T cell ratio. T cell proliferation was assessed by measuring CFSE dilution on day 5 of 

culture.    

 

Cytospin and immunostaining 

Cytospin of FACS-purified cells were prepared as previously described (76) using Shandon 

Cytospin 4 (Thermo Scientific). Giemsa-Wright staining was performed using Advia S60 

(Siemens) and imaged using Axioimager.Z2 microscope with Axiovision softwarev4.8 (Carl 

Zeiss, Germany). Human tonsil paraffin sections were immunostained with the following 

antibodies (clone: manufacturer): anti-AXL (MM0098-2N33: Abcam), CD123 (BR4MS: Leica 

Biosystems) and CD3 (LN10: Leica Biosystems) using a Ventana Benchmark XT instrument. 

 

Monitoring cell proliferation  

PBMCs were labeled with Cell Trace Violet (CTV, Life Technologies) according to 

manufacturer’s protocol.  CTV-labeled FACS-purified progenitors and DC subsets were cultured 

on murine MS5 stromal cells as described above and analyzed on day 5 to assess proliferation 

measured by CTV dilution.  
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Figure Legends 

Figure 1. Human blood DC heterogeneity delineated by single-cell RNA-sequencing.  

(A) Workflow of experimental strategy: isolation of human PBMC from blood; sorting single 

DC (8x96-well plates) and monocytes (4x96-well plates) into single wells using an antibody 

cocktail to enrich for cell fractions; single cell transcriptome profiling. (B) Gating strategy for 

single cell sort: DCs were defined as live, lineage (LIN:CD3,CD19,CD56)–CD14–HLA-DR+ 

cells. Three loose overlapping gates were drawn as an enrichment strategy to ensure a 

comprehensive and even sampling of all populations: CD11C+CD141+ (CD141; turquoise), 

CD11C+CD1C+ (CD1C; orange), CD11C+CD141-CD1C- (‘Double Negative’; blue), CD11C-

CD123+ plasmacytoid DCs (pDCs; purple).  24 single cells from these 4 gates were sorted per 

96-well plate. A fifth gate (CD11C-CD123-, red dashed gate) was subsequently investigated (see 

Fig. 6). (C) t-SNE analysis of DCs (n = 742). Number of successfully profiled single cells per 

cluster include: DC1 (n =166); DC2 (n=105); DC3 (n=95); DC4 (n =175); DC5 (n=30); DC6 

cluster (n =171). The number of discriminative genes with AUC cutoff ≥ 0.85 is reported in 

bracket next to each cluster ID. Up to 5 top discriminators are listed next to each cluster; number 

in bracket refers to AUC value. Colors indicate unbiased DC classification via graph-based 

clustering. Each dot represents an individual cell. (D) Heatmap reports scaled expression (log 

TPM (Transcripts Per Million) values) of discriminative gene sets for each cluster defined in Fig. 

1C with AUC cutoff ≥0.85. Color scheme is based on z-score distribution from -2.5 (yellow) to 

2.5 (purple). Right margin color bars highlight gene sets specific to the respective DC subset. 
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Figure 2. Definition and validation of CD1C+ DC subsets. 

(A) Heatmap showing scaled expression (log TPM values) of discriminative gene sets defining 

each CD1C+ DC subset with AUC cutoff ≥ 0.75. Color scheme is based on z-score distribution, 

from -2.5 (yellow) to 2.5 (purple). Violin plots illustrate expression distribution of candidate 

genes across subsets on the x-axis (orange for CD1C_A/DC2; green for CD1C_B/DC3). In red 

are 3 markers used for subsequent enrichment strategy: CD163, CD36 and FCGR2B/CD32B 

(AUC =0.63). (B) Enrichment gating strategy of CD1C+ DC subsets (LIN(CD3,CD19,CD56)–

HLA-DR+CD14–CD1C+CD11C+). CD1C_A/DC2 subset was further enriched by sorting on the 

10% brightest CD32B+ cells (orange gate), while CD1C_B/DC3 subset was enriched by sorting 

on CD32B-CD163+CD36+ cells (green gate), or on CD32B-CD163+. Right panel: overlay of the 

two sorted CD1C+ DC populations.  47 single cells were sorted from the green and orange gates 

in a 96-well plate for profiling. (C) Heatmap reporting scaled expression (log TPM values) of 

scRNAseq data from three cell subsets defined by CD1C+CD32B+, CD1C+CD36+CD163+, and 

CD1C+CD163+. Combining either CD1C+CD36+CD163+ or just CD1C+CD163+ recapitulated 

the CD1C_B/DC3 signature.  (D) Proliferation of allogeneic CD4+ and CD8+ T cells five days 

after co-culture with CD14+ monocytes, pDCs, CD1C_A/DC2 DCs (CD1C+CD32B+), CD1C_B 

DC3 (CD1C+CD163+).  Left panel depicts representative pseudocolor dot plot and right panel 

bar graphs of composite data (n=3, mean ± SEM, *p<0.05, paired t-test).  
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Figure 3. Human blood monocyte heterogeneity.  

(A) Gating strategy for monocyte single cell sorting: monocytes were enriched by first gating on 

LIN(CD3, CD19, CD56)-CD14+/lo, followed by three loose overlapping gates defined by relative 

expression of CD14 and CD16 for comprehensive sampling of CD14++CD16- (yellow gate), 

CD14++CD16+ (purple), CD14+CD16++ (blue). 32 cells from each gate were sorted per 96-well 

plate profiled.  Bottom right dot plot shows overlay of the sorted populations. (B) t-SNE analysis 

incorporating monocytes (n=337 successfully profiled) and DCs (n=742). Number of 

successfully profiled single monocytes per transcriptionally defined clusters includes: Mono1, 

n=148; Mono2, n=137; Mono3, n=31; Mono4, n=21. The number of discriminative genes with 

AUC cutoff ≥ 0.85 (combined analysis of DC and monocyte datasets) is reported in bracket next 

to cluster ID.  Up to 5 top discriminators are listed next to each cluster; number in bracket next to 

each gene refers to AUC value.  Colors indicate unbiased DC and monocyte clustering from 

unbiased graph-based clustering. Each dot represents an individual cell. (C) Heatmap reporting 

scaled expression (log TPM values) of discriminative gene sets for each monocyte subsets with 

AUC cutoff ≥ 0.85 (see Fig. S3B for detailed heatmap). Color scheme is based on z-score 

distribution, from -2.5 (yellow) to 2.5 (purple). Right margin color bars highlight gene sets of 

interest. 
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Figure 4. Identification of AXL+SIGLEC6+ DCs (AS DCs).  

(A) Violin plots showing expression distribution of surface markers AXL and SIGLEC6.  Other 

populations are depicted on the x-axis and each dot represents an individual cell. (B) Flow 

cytometry gating strategy to identify AXL+SIGLEC6+ cells within human blood LIN(CD3, 

CD19, CD20, CD161)– and HLA-DR+ mononuclear fraction.  AXL+SIGLEC6+ cells were further 

distinguished by the relative expression of CD123/IL3RA and CD11C/ITGAX 

(1=CD123+CD11c-/lo (pink) and 2=CD123loCD11c+ (blue)).  Data shown is a representative 

analysis of ten healthy individuals. (C) t-SNE analysis of all DCs (n=742), along with 

prospectively profiled AXL+SIGLEC6+ single cells (n=105) using gating strategy in panel B 

(sorted from purple gate). Newly isolated AS DCs overlap with the originally identified DC5 

cluster (n=30), purple dashed circle. (D) Heatmap reporting scaled expression (log TPM values) 

of discriminative gene sets (AUC cutoff ≥ 0.75), highlighting the expression continuum of AS 

DCs. Top bar graph defines the AS DCs population purity score based on the top 10 most 

discriminative genes (i.e. AXL, PPP1R14A, SIGLEC6, CD22, DAB2, S100A10, FAM105A, 

MED12L, ALDH2, LTK). (E) Heatmap reporting scaled expression (log TPM values) of 

prospectively enriched AS DCs populations (n=90) isolated by relative CD11C/ITGAX and 

CD123/IL3RA expression levels (red in panel D). 43 single AXL+SIGLEC6+CD11C- (pink gate, 

panel B) and 47 single AXL+SIGLEC6+CD11C+ (blue gate, panel B) were sequenced. The 

average expression values of the original CD1C+ (combined DC2 and DC3), CD141+/CLEC9A+ 

(DC1) and pDC (DC6) single cells were used as reference to highlight enrichment of cDC-like 

and pDC-like gene sets. Top bar graph represents AS DC purity score. (F) Frequency (% mean 

±SEM) of AXL+SIGLEC6+CD123+CD11C-/lo (population 1 (pink): 0.1 ± 0.014) and 

AXL+SIGLEC6+CD123loCD11C+ (population 2 (blue): 0.04 ± 0.01) as a % of LIN(CD3, CD19, 
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CD20, CD161)–HLA-DR+ PBMCs.  Scatter plot includes data from nine healthy individuals. (G) 

t-SNE analysis of flow cytometry data for LIN(CD3,CD19,CD20,CD161)–HLA-DR+CD14–

CD16– PBMCs based on the protein expression levels of AXL, SIGLEC6, CD1C, CD11C, 

CD22, CD33, CD34, CD45RA, CD100, CD123, CD303 and HLA-DR (see Fig. 6 for 

CD100hiCD34int. population).  Overlay of populations defined by conventional flow cytometry 

gating on clusters derived by t-SNE analysis shown in the following colors: 

1=AXL+SIGLEC6+CD123+CD11C– (pink); 2=AXL+SIGLEC6+CD123+CD11Clo (blue); 

3=AXL+SIGLEC6+CD123loCD11C+ (green); 4=CD1C+ DCs (purple) cells; 5=pDCs (dark blue); 

6=CLEC9A+ DCs (red); 7= CD34+CD45RA– (yellow); 8= CD34+CD45RA+ (brown); 9= 

CD100hiCD34int (beige); 10= CD34–CD100lo (cyan).  

 

  



 37 

Figure 5.  Phenotypic and functional characterization of AS DCs and ‘pure’ pDCs. 

(A) Heatmap reporting scaled expression (log TPM values) of gene sets common between AS 

DCs (DC5) and cDCs (clusters DC1-DC4), and genes uniquely expressed in pDCs (DC6). Gene 

sets were generated through K-means clustering using the doKmeans function in the Seurat 

package. (B) Morphology of pDCs, CD1C+ DCs, CLEC9A+ DCs, 

AXL+SIGLEC6+CD123+CD11C-/lo and AXL+SIGLEC6+CD123loCD11C+ by Giemsa-Wright 

stain.  Scale bar=10m. (C) IFNα (left panel) and IL-12p70 (right panel) concentration in culture 

supernatant 24 hours after CpG and LPS stimulation (n=8) or after LPS, R848 and poly (I:C) 

stimulation (n=4) of CD14+CD16- monocytes, pDCs, CLEC9A+ DCs, CD1C+ DCs, 

AXL+SIGLEC6+CD123+CD11C-/lo (1, pink), AXL+SIGLEC6+CD123loCD11C+ (2, blue), and 

CD100hiCD34int cells (3, beige) cells.  Composite data from four to eight donors is shown (mean 

±SEM, **p<0.01, *** p<0.001, Mann-Whitney U test). (D) Proliferation of allogeneic CD4+ and 

CD8+ T cells five days after co-culture with pDCs contaminated with AXL+SIGLEC6+ cells 

compared with pDCs devoid of AXL+SIGLEC6+cells, in the context of LPS or LPS+R848 

stimulation.  Top panel depicts representative pseudocolor dot plot and bottom panel bar graphs 

of composite data (n=4, mean ± SEM, *p<0.05, paired t-test). (E) Proliferation of allogeneic 

CD4+ and CD8+ T cells five days after co-culture with CD14+CD16- monocytes, pDCs, 

CLEC9A+ DCs, CD1C+ DCs, AXL+SIGLEC6+CD123+CD11C-/lo (1, beige), 

AXL+SIGLEC6+CD123loCD11C+ (2, blue) cells, and CD100hiCD34int (3, beige) cells.  Top panel 

depicts representative pseudocolor dot plot, and bottom panel bar graphs of composite data (n=7, 

mean ±SEM, **p<0.01, paired t-test). (F) Top panel: immunohistochemical staining of human 

tonsil with AXL (brown), CD123 (purple) and CD3 (green).  Brown arrows depict AXL+CD123+ 

cells adjacent to CD3+ T cells.  Data shown is representative of four donors.  Scale bar=50m. 
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Middle panel: frequency of AXL+SIGLEC6+CD123+ and CD123lo/- cells in human tonsil 

determined by flow cytometry analysis, as a percentage of CD45+LIN(CD3, CD19, CD20, 

CD56, CD161)–HLA-DR+ cells (mean ± SEM of three donors shown; AXL+SIGLEC6+CD123+: 

0.7% ± 0.2%, and AXL+SIGLEC6+CD123lo/-: 1.7% ± 0.2%). Bottom panel: representative 

pseudocolor dot plot of AXL+SIGLEC6+CD123+ (pop. 1, pink) and AXL+SIGLEC6+CD123lo/- 

(pop. 2, blue) cells in human tonsil by flow cytometry analysis (n=3).  
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Figure 6. Identification and characterization of circulating CD100hiCD34int cDC progenitor.   

(A) Flow cytometry gating strategy to isolate DC subsets: CLEC9A+ DCs (red), CD1C+ DCs 

(blue), pDCs (green), AXL+SIGLEC6+ (purple), and CD123-CD11C- cells (red gate) for 

differentiation assays. Data shown is a representative analysis of at least ten healthy individuals.  

(B) Differentiation assays readout (flow cytometry for CLEC9A+ DCs, CD1C+ DCs and pDC, 

and scRNA-seq profiling of CD45+ cells) after seven days of co-culturing LIN(CD3, CD19, 

CD20, CD161)–HLA-DR+CD14–CD16–AXL–SIGLEC6–CD123–CD11C– cells on MS5 stromal 

cell line supplemented with GM-CSF, SCF and FLT3LG. Top panel shows representative 

overlay dot plots.  Overlay of pDC (green), and output cells (grey) for CD123 and CD303 

expression shown in the far right (in green). Population 3 (in beige) represents CD100hiCD34int. 

at day 0. Top right are composite bar graphs for CLEC9A+ and CD1C+ DCs differentiated from 

culture by flow cytometry analysis (n=4, mean±SEM).  Heatmap in bottom panel reports scaled 

expression (log TPM values) signature from culture output by scRNA-seq (n=132), confirming 

differentiated CLEC9A+ (red) and CD1C+ (blue) DC transcriptional identities.  Original 

transcriptional signatures from DC1 (CD141+/CLEC9A+ DC), DC2 (CD1C_A subset), and DC3 

(CD1C_B subset) clusters are used as reference set. (C) Top panel: flow cytometry gating 

strategy used to identify the CD100hiCD34int. subset. All cell fractions in dashed-gate were tested 

for differentiation potential (see Fig. S6A-F).  (C, F) Representative culture outputs on day 

seven and composite bar graphs (mean± SEM; n=6 donors). (C) Bottom panel – output from 

CD100hiCD34int fraction (population 3, beige gate). (D) Frequency of CD100hiCD34int. subset as 

of LIN(CD3, CD19, CD20, CD161)–HLA-DR+ PBMCs (n=9 healthy donors). Morphology of 

CD100hiCD34int. cell by Giemsa-Wright stain.  Scale bar=10m.  (E) Proliferative capacity of 

peripheral blood Cell Trace Violet (CTV)-labeled CD34+ HSCs (purple), CD100hiCD34int. 
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(beige), AXL+SIGLEC6+CD123+CD11C-/lo (pink), and AXL+SIGLEC6+CD123loCD11C+ (blue), 

as measured by CTV dilution after five days in culture on MS5 stromal cell line supplemented 

with GM-CSF, SCF and FLT3LG.  Left panel shows representative overlay histogram; right 

panel shows composite bar graphs illustrating % of proliferated cells and number of 

proliferations undergone from three donors shown (*p<0.05, paired t-test).   (F) Output from 

differentiation assays seeded with CLEC9A+ DCs, CD1C+ DCs, pDCs, and 

AXL+SIGLEC6+cells isolated using gating strategy in panel A.  AXL+SIGLEC6+x2 = double 

FLT3LG concentration. (G) PCA analysis incorporating monocytes (n=339), DCs (n=742), and 

4 BPDCN patient samples (n=174) using the R software package Seurat. PC1 vs. PC2 

demonstrates the close transcriptional proximity between all 4 BPDCN samples and pDCs 

(dashed black circle), with overlapping cells (black bracket). PC1 and PC2 variance is 3.8%. 

Each dot represents an individual cell and colored legend for each subset is shown on the right.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


