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Abstract

Background: Human pluripotent stem cells offer the best available model to study the underlying cellular and

molecular mechanisms of human embryonic lineage specification. However, it is not fully understood how

individual stem cells exit the pluripotent state and transition towards their respective progenitor states.

Results: Here, we analyze the transcriptomes of human embryonic stem cell-derived lineage-specific progenitors by

single-cell RNA-sequencing (scRNA-seq). We identify a definitive endoderm (DE) transcriptomic signature that leads

us to pinpoint a critical time window when DE differentiation is enhanced by hypoxia. The molecular mechanisms

governing the emergence of DE are further examined by time course scRNA-seq experiments, employing two new

statistical tools to identify stage-specific genes over time (SCPattern) and to reconstruct the differentiation trajectory

from the pluripotent state through mesendoderm to DE (Wave-Crest). Importantly, presumptive DE cells can be

detected during the transitory phase from Brachyury (T)+ mesendoderm toward a CXCR4+ DE state. Novel regulators

are identified within this time window and are functionally validated on a screening platform with a T-2A-EGFP

knock-in reporter engineered by CRISPR/Cas9. Through loss-of-function and gain-of-function experiments, we

demonstrate that KLF8 plays a pivotal role modulating mesendoderm to DE differentiation.

Conclusions: We report the analysis of 1776 cells by scRNA-seq covering distinct human embryonic stem cell-derived

progenitor states. By reconstructing a differentiation trajectory at single-cell resolution, novel regulators of the

mesendoderm transition to DE are elucidated and validated. Our strategy of combining single-cell analysis and genetic

approaches can be applied to uncover novel regulators governing cell fate decisions in a variety of systems.

Keywords: Single-cell RNA-seq, Embryonic stem cells, Mesendoderm, Brachyury, Definitive endoderm, Wave-Crest,

SCPattern, KLF8, CRISPR/Cas9

Background

The three primary germ layers composed of lineage-

specific progenitors are critical for the establishment of

the embryonic body plan [1–4]. Directional differenti-

ation protocols have efficiently driven human pluripotent

stem cells into progenitor populations mimicking those of

the embryonic ectoderm, mesoderm, endoderm, and ex-

traembryonic lineages [5–18]. However, it is not fully

understood how individual embryonic stem (ES) cells exit

the pluripotent state and give rise to lineage-specific

progenitors.

Among the three primary germ layers, the definitive

endoderm (DE) is the internal layer of the embryonic

gut, formed by the recruitment of epiblast cells through

the primitive streak. The DE cells give rise to a variety

of functional specialized epithelial cell types that line

the developing gut tube and contribute to vital organs

or tissues such as the lungs, trachea, esophagus, liver,

stomach, intestine, thyroid, thymus, and pancreas [1–3].

These endoderm-derived organs support indispensible

functions in adults, such as gas exchange in respiration,

mechanical and chemical digestion, and blood glucose
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homeostasis and detoxification. Therefore, human pluri-

potent stem cell-derived DE cells are an instrumental

resource for regenerative medicine [7, 9, 10, 15, 18, 19].

However, the factors governing the transition from

epiblast-derived precursors to the DE state is not fully

understood.

Mesendoderm represents a transient state, composed of

a migratory cell population emerging from the primitive

streak. Its emergence is accompanied by the activation of

the transcription factor Brachyury (T), which marks the

onset of gastrulation [2, 11, 20]. As gastrulation continues,

mesendoderm contributes to mesoderm or DE. Once the

lineage decision is segregated, T expression appears to be

continually associated with certain mesodermal derivatives

but not DE derivatives [11, 21, 22]. This represents a key

developmental juncture when cell fate decisions have been

made from a broad multi-potent state (mesendoderm) to-

wards a more restricted state (definitive endoderm).

Therefore, we designed our scRNA-seq experiments to

detect signals that could promote DE differentiation and

then followed up these experiments with a detailed time

course to identify the critical time window in which

mesendoderm transitions to the DE state.

Standard methods for transcriptome-wide profiling of dif-

ferentiation involves the collection of thousands to millions

of cells for deep sequencing (bulk RNA-seq) at one or sev-

eral time points. With this approach, cellular heterogeneity

cannot be resolved since variably expressed genes will be av-

eraged or – if exclusively expressed in rare cells – completely

missed. Single-cell RNA-seq (scRNA-seq), on the other

hand, is able to characterize cell-to-cell variation and reveal

transcriptomic signatures unique to individual cells

[23–25]. Such analyses can provide novel insights into

the responses to extrinsic signals and reveal intrinsic

factors that control cell fate decisions. These insights

can then guide the genesis of more sophisticated dif-

ferentiation protocols and quality control assays.

To understand the distinctions between DE cells and the

other lineage-specific progenitors, we examined their tran-

scriptomes by scRNA-seq. Our analysis revealed a DE-

specific signature that is enriched for NODAL and WNT

signaling pathways as well as metabolism-related gene ex-

pression. The latter category of genes led us to define a

time window in which hypoxia could enhance DE marker

expression. Based on this observation, we hypothesized

that the emergence of nascent DE cells occurs as soon as

two days post differentiation from the pluripotent state.

Compared to single time point experiments, time course

scRNA-seq has the potential to reveal detailed cell state

transitions [26–28]. To pinpoint the exact timing of DE

cell emergence, we profiled the transition of single human

ES cells to mesendoderm then to the DE state over four

days of differentiation. To analyze the transition at the

single-cell level, we developed two novel statistical tools.

First, SCPattern [29] is used to identify stage-specific

genes over time; and second, Wave-Crest is used to recon-

struct the differentiation trajectory from the pluripotent

state through mesendoderm to DE. Based on this high-

resolution temporal reconstruction, we detected presump-

tive DE cells characterized with CXCR4 and SOX17 ex-

pression as early as 36 h post differentiation. Focusing on

this time point, Wave-Crest identified candidate genes

that could function as pioneer regulators governing the

transition from mesendoderm to the DE state.

Owing to known technical variability and stochastic

expression in single-cell gene expression measurements

[30–33], rigorous functional validation of scRNA-seq

analyses is essential. In order to specifically validate our

analysis, we engineered a T-2A-EGFP reporter ES cell line

by CRISPR/Cas9-mediated knock-in. Of all the candidate

genes tested, we found that siRNA knockdown of KLF8

rendered one of the most overt delays in differentiation. A

converse gain-of-function experiment demonstrated that

KLF8 plays a previously unrecognized role during the

transition from a T+ state to a CXCR4+ DE state. Our re-

sults reveal that elevated levels of KLF8 enhance expres-

sion of DE markers but not mesodermal genes, suggesting

that KLF8 acts specifically on the transition from mesen-

doderm to DE but not to mesoderm. Altogether, our study

reinforces the importance of combining single-cell analysis

and genetic approaches. We believe this strategy could be

directly applied to other lineages during any differenti-

ation paradigm to examine cell fate decisions.

Results
scRNA-seq reveals a unique endoderm progenitor

signature

To begin investigating lineage-specific transcriptomic fea-

tures at single-cell resolution, we performed a cohort of

scRNA-seq experiments profiling snapshots of lineage-

specific progenitor cells differentiated from H1 human

ES cells using our established differentiation proto-

cols, all adapted to chemically-defined culture condi-

tions [17, 20, 34, 35]. In order to obtain a high purity

of lineage-specific progenitors, cells were enriched by

fluorescence-activated cell sorting (FACS) with their

respective markers (see details in “Methods” and Additional

file 1: Figure S1). Progenitors differentiated from human

ES cells included neuronal progenitor cells (NPCs,

ectoderm derivatives, n = 173), DE cells (endoderm

derivatives, n = 138), endothelial cells (ECs, mesoderm

derivatives, n = 105), and trophoblast-like cells (TBs,

extraembryonic derivatives, n = 69). Single undifferen-

tiated H1 (n = 212) and H9 (n = 162) human ES cells

and human foreskin fibroblasts (HFFs, n = 159) were

also included as controls. In total, 1018 single cells

were analyzed in this cohort of experiments (Fig. 1a

and Additional file 1: Figure S1).
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To elucidate the distinctions between different line-

ages, we conducted bulk-projected principal component

analysis (PCA), which projects individual cells on bulk

RNA-seq defined principal component (PC) axes (see

details in “Methods”). The majority of the single cells

cluster according to their respective developmental line-

ages (Fig. 1b). The tight clusters of overlapped H1 and

H9 single cells indicated the relative homogeneity of hu-

man ES cells compared to the rest of the progenitors.

NPCs (ectoderm), TBs (extraembryonic), and HFFs

(fibroblasts) were distantly positioned on the PCA plot

while ECs and DE cells showed some overlapped domains,

suggesting a closer lineage relationship. This result is con-

sistent with the notion that mesoderm and DE cells may

arise from a common progenitor pool during development

and differentiation [20, 36, 37]. Hierarchical clustering

analysis of key lineage markers further demonstrates dis-

tinct but rather uniform expression within each progenitor

state (Fig. 1c). Specifically, all of the single undifferentiated

H1 cells uniformly expressed high levels of pluripotency

markers including POU5F1, NANOG, DNMT3B, and

ZFP42 (REX1). By contrast, NPCs are enriched for the ex-

pression of SOX2, PAX6, and MAP2; ECs are enriched for

PECAM1 and CD34; TBs are enriched for GATA3 and

HAND1; and DE cells are enriched for CER1, EOMES,

GATA6, LEFTY1, and CXCR4 (Additional file 2: Table S1).

These analyses indicate that scRNA-seq of the pro-

genitors is competent to reveal lineage-specific tran-

scriptomic features.

The bulk-projected PCA shows that the majority of

variation could be captured by the first five PCs

(Additional file 1: Figure S2). Interestingly, PC5 clearly

separates DE cells from all the other progenitors

(Fig. 1d). This result suggests that PC5 gene loadings are

a signature exclusively exhibited by differentiating DE

cells. We also observed single DE cells distributed along

the PC5 axis, indicating that this gene loading captured

a heterogeneous or asynchronous pool of DE cells.

Moreover, DE cells showed the greatest heterogeneity

compared to the other three types of progenitors by cor-

relation analysis (Additional file 1: Figure S2). To deter-

mine the signaling pathways associated with the DE

signature, we performed Gene Ontology (GO) analysis

utilizing the Allez algorithm, which used absolute gene

loadings to weight gene-specific contribution to PC5

(see “Methods”) [38]. Allez enrichment analysis identified

endoderm development, organ morphogenesis, NODAL

signaling pathway, regulation of WNT receptor signaling

pathway, and energy reserve metabolic processes among

the significantly enriched GO terms (Fig. 1e and

Additional file 3: Table S2). While it is well estab-

lished that both NODAL and WNT signaling are

crucial for endoderm development [1–3, 11], little is

known about how the metabolic state could influ-

ence DE differentiation. Based on these analyses, we

investigated whether manipulating the metabolic

conditions could impact DE differentiation.

Acute hypoxic treatment enhanced DE differentiation

It has been previously shown that lowering oxygen

tension can reduce oxidative stress, shifting metabolic

fueling pathways from oxidative phosphorylation to

glycolysis to aid in maintaining pluripotency and re-

programming [39, 40]. We therefore set out to meas-

ure the impact of lowering oxygen concentration in

the cell culture microenvironment during the differ-

entiation toward DE (see “Methods”). We chose to

monitor the expression of Chemokine (C-X-C Motif )

receptor 4 (CXCR4) in live cells as a surrogate

marker for DE differentiation because: (1) CXCR4 ex-

pression is specific to DE but absent in the visceral

endoderm compartment at the late primitive streak

stage (~E7.5) mouse embryo [41]; and (2) human ES-

derived CXCR4+ cells have been shown to display

hallmarks of DE [7, 15, 42].

At three days of differentiation, H1 or H9 ES cells

cultured in severe hypoxia (1.5 % O2) significantly in-

creased the percentage of CXCR4+ cells by FACS analysis

compared to hypoxia (5 % O2) or normoxia (20 % O2)

conditions (Fig. 2a and b). The percentages of cells co-

expressing CXCR4 and SOX17 also increased in 1.5 % O2

condition (Additional file 1: Figure S3). Marker studies by

quantitative real-time PCR (qPCR) analysis confirmed that

the expression of pluripotency genes POU5F1, NANOG,

and SOX2 were effectively downregulated in all conditions

(Fig. 2c). Importantly, key DE markers CXCR4, SOX17,

HNF1B, KIT, and KRT19 were all significantly upregulated

in 1.5 % O2 but not in 5 % O2, compared with nor-

moxic conditions. Interestingly, hypoxic conditions

also significantly suppressed T expression, which is a

(See figure on previous page.)

Fig. 1 Snapshot scRNA-seq analysis of human ES-derived progenitors. a Schematics of experimental strategy. Human ES-derived lineage-specific

progenitors were profiled at the single-cell resolution. b Principal component analysis (PCA) of all the cell types profiled. Shown are PC4 vs. PC1

and PC2 vs. PC4. c Hierarchical clustering analysis of progenitors differentiated from H1 cells with selected lineage-specific markers shown on the

right. d PCA of all the cell types profiled, shown are PC5 vs. PC6. The light green shade highlights all the single DE cells. e Enrichment analysis of

PC5 shown in (d). Bar graph shows the significant z scores of selected GO terms. Summary on collections of GO terms are shown on the right.

Dashed line indicates statistical significant threshold at z score = 1.62 (one tailed p value <0.05). NPC neuronal progenitor cell, DEC definitive

endoderm cell, EC endothelial cell, TB trophoblast-like cell, HFF human foreskin fibroblasts

Chu et al. Genome Biology  (2016) 17:173 Page 4 of 20



Fig. 2 (See legend on next page.)
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pan-mesendoderm marker whose expression precedes

DE marker expression (Fig. 2c).

While differentiating human ES cells with 1.5 % O2

has a profound effect on the induction of DE markers,

we also observed that proliferation decreased and cell

death increased after prolonged hypoxic differentiation

(Additional file 1: Figure S3). Thus, we speculate that

1.5 % O2 treatment stimulates the emergence of nascent

DE cells but may not be beneficial for long-term prolif-

eration and maturation. To determine the critical timing

when the effects of severe hypoxia could take place, we

performed acute-hypoxia treatment in our differenti-

ation protocols (Fig. 2d). In this set of experiments, H1

or H9 ES cells were first differentiated in 1.5 % O2 envir-

onment for various lengths (zero, one, two, three, or

four days of differentiation) and then switched back to

normoxic conditions for up to four days of differenti-

ation (Fig. 2d). Consistently, qPCR analysis showed that

continuous hypoxic treatment throughout the first three

days of differentiation resulted in substantially enhanced

expression of key DE markers, such as CXCR4, FOXA2,

SOX17, HNF1B, and KIT (Fig. 2d). Remarkably, the

marker expression showed significant upregulation

within just two days of hypoxic treatment. Immuno-

fluorescence staining of SOX17 and FOXA2 confirmed

areas with an increased number of SOX17+ and FOXA2+

cells within two days of severe hypoxic differentiation con-

dition compared to normoxia control (Fig. 2e). These re-

sults corroborate a recent mouse ES cell study in which

hypoxia culture facilitated DE differentiation [43]. Most

importantly, this observation suggests that the birth of

nascent DE cells is a well-timed event. Intervention of this

process by enhancing factors (in this case, with severe

hypoxia) allows us to close in on the key moments in

which DE cells become specified from their mesendoderm

precursors. These results motivated us to closely examine

the transition from mesendoderm to DE state at a higher

temporal resolution.

Reconstruction of temporal single-cell states identifies

regulators for nascent DE cell differentiation

To precisely pinpoint the staging and timing during DE

emergence, we performed scRNA-seq at time points

along the differentiation protocol to produce DE cells

from human ES cells (see “Methods”). A total of 758 sin-

gle cells were captured and profiled by scRNA-seq at 0,

12, 24, 36, 72, and 96 h of differentiation (Fig. 3a). PCA

revealed that single cells from each time point along the

differentiation course occupied a unique dimensional

space, indicating a robust directional differentiation

(Fig. 3a and Additional file 1: Figure S4). However, we

noticed overlapping domains between single cells col-

lected from 72 and 96 h of differentiation, indicating a

similar transcriptome profile (see “Discussion”).

To further characterize the genes participating in

each stage of differentiation, we performed differential

expression analysis by SCPattern, which identifies signifi-

cantly upregulated or downregulated genes between each

pair of adjacent sampling time points (see “Methods”).

SCPattern is a novel algorithm developed for differential

expression analysis on time course scRNA-seq data [29].

Existing differential expression tools developed for bulk

RNA-seq make distributional assumptions that are in-

appropriate for scRNA-seq data. In general, for a given

gene, the bulk RNA-seq methods usually assume expres-

sion values within a biological condition follow a uni-

modal distribution such as negative binomial distribution

[44–48] or Poisson distribution [49]. However, such as-

sumptions are often violated in scRNA-seq data due to the

present of sub-populations and technical dropouts [50, 51].

SCPattern makes no parametrical assumptions on the dis-

tribution of the single-cell gene expression values; instead,

it performs non-parametric tests based on a Kolmogorov–

Smirnov statistic and is able to detect various types of

changes over multiple ordered conditions [29].

At 12 h of differentiation, the majority of the cells

responded to BMP4, Activin A, and CHIR 99021 (small

molecule used as a WNT signaling agonist) treatment by

robustly expressing NODAL, EOMES, and ID1. At 24 h

of differentiation, a second wave of genes exhibited high

levels of expression such as T, MSX2, and CDX1, all in-

dicating a transition of the cells towards a primitive

streak state. At 36 h of differentiation, the level of T

transcripts rapidly decreased, characterized by upregula-

tion of early DE-specific genes, such as CER1 and

GATA4. At 72 h of differentiation, the majority of the

(See figure on previous page.)

Fig. 2 Acute hypoxic treatment enhanced DE formation. a FACS analysis of anti-CXCR4 staining of H1 cells differentiated for three days towards

(blue population) under various hypoxia conditions. Undifferentiated H1 cells were gated as negative controls (gray populations). The x-axis

indicates the APC channel. b Summary of the percentages of CXCR4+ cells (with various oxygen concentrations) from H1 or H9 differentiation for

three days toward DE cells. c QPCR analysis of experiments performed in (b). All expression levels were first normalized to endogenous GAPDH.

For pluripotency markers (upper panels), samples were normalized to undifferentiated H1 or H9 samples, which were arbitrarily set to 1. For other

markers (mid and lower panels), samples were normalized to the 20 % O2 samples, which were arbitrarily set to 1. d Left panel, schematics of

various lengths of hypoxic treatment. Right panel, qPCR analysis at day four of differentiation for H1 or H9 cells. The x-axis indicates the number

of days treated with 1.5 % O2 as indicated in the left panel. Samples were normalized to those from normoxia, which were arbitrarily set to 1. e Con-

focal images of OCT4, FOXA2, and SOX17 immunofluorescence staining at day two of differentiation under 20 % or 1.5 % O2. Scale bars = 50 μm. All

data are mean ± S.D. ***p <0.001; **p <0.01; *p <0.05, by one-tailed t-test. n.s. no significant difference
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Fig. 3 (See legend on next page.)
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cells expressed endogenous DKK4 and MYCT1. Key DE

markers continue to be expressed at high levels among

single cells at the 96-h time point, including EOMES,

CER1, GATA4, PRDM1, and POU2AF1, indicating that

cells progressed toward the DE state [52, 53] (Fig. 3b

and Additional file 4: Table S3).

At any time point during a differentiation protocol,

each sampled cell is not necessarily identical to the

others; likely a result of differences in the cell cycle and

the local microenvironment of the differentiating cells.

We capitalized on the asynchronous nature of the cells

to reconstruct a single-cell order following the differenti-

ation trajectory toward DE. By reconstructing this

single-cell transcriptomic order, we hoped to identify

novel regulators whose expression could mediate the

transition from mesendoderm toward a DE state. We

devised a novel statistical tool, Wave-Crest, to re-

order single cells according to the expression of key

gene markers. The cell order reconstruction step of

Wave-Crest takes a group of genes of interest and

aims to recover a smooth expression profile along

time for each of the genes in consideration. To do

so, Wave-Crest implements a constrained extended

nearest-insertion (ENI) algorithm to reorder cells

within each time point utilizing boundary informa-

tion from other time points. In particular, if a cell’s

expression profile is closer to the cells from the pre-

vious (next) time point, the cell will be placed in an

earlier (later) position in the reconstructed order.

The reordering is under the constraint that cells

from different collection times are not allowed to be

mixed in the recovered order. After ENI, Wave-Crest

utilizes the 2-opt algorithm to further refine the cell

order (see “Methods”) [54]. When applied Wave-

Crest to the scRNA-seq DE differentiation time

course data, we selected the genes of interest by

combining empirical results from SCPattern and

prior knowledge [1, 2, 5, 7, 9, 20]. Our reconstruc-

tion focus on markers representing the pluripotent,

mesendodermal, and DE states to build a directional

reordering of single cells without characterizing the

branching structure of single cells (Additional file 1:

Figure S5). In particular, pluripotency marker POU5F1

gradually decreased over the course of 96 h of differenti-

ation, whereas mesendoderm marker T expression first

peaked at 24 h and gradually decreased at 36–72 h of dif-

ferentiation (Fig. 3c, left panel). Remarkably, in the recon-

structed order, CXCR4 and SOX17 both showed a subtle

but significant upregulation as early as 36 h of differenti-

ation and continued to increase in later time points

(Fig. 3c, right panel). Importantly, in the recovered cell

order at the 36-h time point, CXCR4+ and SOX17+ single

cells appear later and are almost mutually exclusive to the

POU5F1high and Thigh cells, indicating our reconstructed

cell order is indeed aligned with the differentiation

trajectory toward a DE fate (Additional file 1: Figure S5).

These results also suggest that the presumptive DE

transcriptional program begins between 24 and 36 h,

which is surprisingly early considering most estab-

lished human pluripotent stem cell protocols typically

consider DE cells to emerge around days 4 or 5 of

differentiation [7, 11, 15, 42, 52].

The second step of Wave-Crest involves application of

polynomial regression models to identify genes whose

expression profile best fits this reconstructed differen-

tiation trajectory, a strategy we call “fishing” (see

“Methods”). We focused on fishing genes at 36 h of

differentiation because this appears to be the transi-

tion time characterized with a steep downregulation

of POU5F1 and T as well as upregulation of CXCR4

and SOX17 (Fig. 3c and Additional file 1: Figure S5).

Wave-Crest extracted the reconstructed cell order

from the 172 cells collected at 36 h of differentiation

and then fished against a curated list of transcrip-

tional regulators (Additional file 5: Table S4). The

top-fished genes were defined as the genes which had

small fitting error in the polynomial regressions. Per-

mutation tests were applied to infer the significance.

These top-fished genes were then classified into up-

regulated and downregulated groups by the coefficient

sign of gene-specific slope fitting. The top-fished gene

list included known markers for mesendoderm or

mesoderm (downregulated genes), such as GATA3

(No. 3), HAND1 (No. 4), FOXF1 (No. 11), LEF1 (No. 15),

and markers for DE specification (upregulated genes),

such as SOX4 (No. 3) and OTX2 (No. 18), further demon-

strating the power of Wave-Crest reconstruction (Fig. 3d

and Additional file 6: Table S5). We reasoned that the top

upregulated genes are likely to promote the transition

from mesendoderm to DE (Fig. 3d). To test these genes, a

(See figure on previous page.)

Fig. 3 Time course scRNA-seq data analysis and reconstructing DE differentiation trajectory. a Upper panel, schematics of experimental strategy

illustrating time points of scRNA-seq sampling along the differentiation from pluripotent state though mesendoderm to DE cells. Lower panel,

PCA of scRNA-seq data, shown is PC1 vs. PC2. b Violin plots of selected stage-specific markers identified by SCPattern analysis. The y-axis indicates

normalized expression value, Log2(expected count + 1). The x-axis indicates time points of sampling. c Reconstructed single-cell order by Wave-Crest.

Shown are four of the eight genes used for temporal reconstruction. The x-axis indicates cells following Wave-Crest recovered cell order. The y-axis indicates

normalized expression value. Fitted lines of gene-specific expression are shown in black. d Top 25 upregulated or downregulated genes identified by

Wave-Crest at 36 h of differentiation. The x-axis indicates gene symbol, the y-axis indicates the significance value, -Log (p value) of each gene
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reporter was devised to measure the effect of manipula-

tion of candidate genes during the transition from a T+

state to a CXCR4+ state in live cells.

H9-T-2A-EGFP reporter line is a robust tool to monitor the

mesendoderm to DE transition

In order to measure the levels of real-time endogenous

T protein expression, we inserted a 2A-EGFP-PGK-Puro

cassette into the endogenous T locus via CRISPR/Cas9-

mediated gene targeting (Fig. 4a) [55, 56]. Collective

analyses from copy number qPCR, junction PCR, and

southern blotting confirmed that clone 39 was a cor-

rectly targeted clone with only one copy of the EGFP

and Puro cassette knock-in into the endogenous T locus.

(Fig. 4b and Additional file 1: Figure S6). Upon removal

of the PGK-Puro cassette with transient Cre expression,

this T-2A-EGFP line (clone 39) was used in all the subse-

quent experiments. Cytogenetic test also verified a nor-

mal karyotype after gene targeting and clonal expansion

(Additional file 1: Figure S6). Importantly, qPCR analysis

Fig. 4 Generation of T-2A-EGFP knock-in reporter cell line. a Gene targeting strategy of knock-in T-2A-EGFP-PGK-Puro cassette to replace the

endogenous T stop codon, facilitated by the CRISPR/Cas9. Gray boxes indicate the exons of the endogenous gene. The arrow indicates the position of

the Cas9/sgRNA cut site. The position of the probe for southern blot is indicated. E EcoRI sites. The lengths for each EcoRI-digested genomic DNA

fragments are indicated. b Southern blot shows the targeted allele shifted from 4.2 (wild type genomic fragment, WT) to 4.8 kb (knock-in genomic

fragment, KI). c Confocal images of SOX2, T, and EGFP immunofluorescence staining over three days of differentiation. Hours of differentiation

are indicated. Scale bars = 50 μm. d FACS analysis monitoring the dynamics of the percentage of CXCR4+ and T-2A-EGFP+ cells over three days

of differentiation. The x-axis indicates GFP/FITC channel. The y-axis indicates APC channel
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on EGFP-sorted cells and immunofluorescence staining

confirmed that the dynamics of EGFP expression is

highly correlated with both the endogenous T transcript

and protein expression, respectively, making the T-2A-

EGFP reporter a robust readout for T+ state in the

course of our DE differentiation (Fig. 4c and Additional

file 1: Figure S6).

Simultaneously measuring both T and CXCR4 protein

levels by FACS provided both the precision and reso-

lution required to detect cell state transitions. After just

24 h of differentiation, more than 70 % of the cells be-

came T-2A-EGFP+. The percentage of T-2A-EGFP+ cells

reached a zenith (approximately 90 %) between 28 and

32 h of differentiation and then gradually decreased over

time (20 % at 48 h and below 10 % at 72 h of differenti-

ation, Fig. 4d). Co-staining cells with anti-CXCR4 anti-

bodies revealed that less than 1 % of the cells were

CXCR4+ at 24 h of differentiation. After 48 h, approxi-

mately 25 % of the cells became CXCR4+, increasing to

above 40 % after 72 h of differentiation (Fig. 4d). There-

fore, while T expression transiently peaked around 32 h,

CXCR4 expression continually increased, starting as

early as 36–40 h of differentiation, a dynamic expression

pattern mirroring the temporal profiling by scRNA-seq

described above (Fig. 3c). Thus, monitoring the expres-

sion of T-2A-EGFP and CXCR4 over time presented a

tractable means to screen candidate genes identified in

the Wave-Crest analysis.

KLF8 mediates the mesendoderm to DE transition

We hypothesized that if a regulator plays a promotional

role during the transition from mesendoderm toward

DE, then knocking down its expression would delay this

progression. On the other hand, overexpression of such

regulators should accelerate this progression. We con-

ducted a siRNA knockdown screen focused on the top

25 upregulated genes identified by Wave-Crest (Fig. 3d).

We accounted for both the percentages of EGFP+ and

CXCR4+ of each gene knockdown at day two of differen-

tiation (between 45 and 48 h), defined as a “Differenti-

ation Score” for each gene tested (see “Methods”). When

compared with non-target siRNA controls (Differenti-

ation Score arbitrarily set to 1), knockdown of CXCR4

reduced the percentage of CXCR4+ cells from greater

than 30 % to approximately 10 %; whereas knockdown

of T substantially reduced the percentage of EGFP+ cells

and increased percentage of CXCR4+ cells, validating the

efficacy of siRNA knockdown protocols (Fig. 5a). Among

all the genes tested, TERF1, SPEN, and KLF8 knock-

downs displayed the lowest Differentiation Score (i.e. the

most potent blockade of differentiation) (Fig. 5b). Be-

tween the top three genes, KLF8 knockdown showed the

smallest increase of T-2A-EGFP expression, indicating a

more specific blockade of DE differentiation rather than

enhancing mesendoderm or mesoderm differentiation

(Fig. 5a and Additional file 1: Figure S7). KLF8 is

expressed at a much lower level in undifferentiated hu-

man ES cells than TERF1 or SPEN (Additional file 1:

Figure S7). KLF8 was also detected as a differentially

expressed gene in our SCPattern analysis (Additional

file 4: Table S3). Collectively, these data support the

idea that KLF8 may play a specific role during the

transition from mesendoderm toward DE cells.

To further examine this possibility, we generated a

doxycycline (DOX)-inducible KLF8 transgene integrated

by the PiggyBac system [57] into the T-2A-EGFP reporter

cell line. Upon differentiation, induction of KLF8 (DOX

treatment from 20 to 40 h of differentiation) robustly in-

creased the percentage of CXCR4+ cells from ~5 % to

above 40 % in a dosage-dependent manner (Fig. 5c), ac-

companied by the loss of T-2A-EGFP+ cells (Fig. 5c). This

result was confirmed by examining a total of three inde-

pendent KLF8 overexpression clones. Furthermore, DOX

induction of KLF8 led to significant activation of DE

markers including CXCR4, HNF1B, SOX17, and KIT, as

judged by qPCR analysis from all three clones (Fig. 5d).

Importantly, KLF8 overexpression did not induce the ex-

pression of mesendoderm or mesoderm markers such as

T, EOMES, GSC, MSX2, and PDGFRA (Fig. 5d). We also

observed that overexpressing KLF8 increased cell mobility

as evident by the upregulation of TWIST1, an epithelial-

to-mesenchymal transition (EMT) marker (Fig. 5d). These

results indicate that KLF8 plays a specific role promoting

the transition from T+ mesendoderm to CXCR4+ DE fate,

perhaps through the suppression of T or by enhancing the

EMT during DE differentiation. These results also suggest

that the cell state transition from mesendoderm to DE is a

complex and dynamic process, coupling the expression of

specific transcriptional regulators with changes in cell

migratory behavior. Altogether, our single-cell analysis

identified KLF8 as a previously unrecognized positive

regulator of the transition from mesendoderm to nascent

DE (Fig. 6). Other genes identified by the single-cell ana-

lysis are additional candidates for being regulators of this

transition as well. We anticipate that the strategy used in

this study – using scRNA-seq analysis to form hypotheses

that can be tested by more conventional techniques –

may be further applied to uncover novel regulators in

other lineages during cell fate decisions both in vitro and

in vivo.

Discussion

scRNA-seq from lineage progenitors and the role of

hypoxia on DE differentiation

Our scRNA-seq analysis of distinct progenitors derived

from human ES cells revealed that one of the principal

components (PC5) discriminated the DE cells from all

other progenitors (Fig. 1d). Allez enrichment analysis on
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he gene loadings from PC5 revealed a role for metabol-

ism in the genesis of DE cells (Figs. 1e and 2). Among

the human ES cells tested, culture conditions of 1.5 %

O2, but not 5 % O2, consistently increased the per-

centage of CXCR4+ cells (Fig. 2b). Most importantly,

the impact of hypoxia is pronounced in the first two

days of differentiation (Fig. 2d and e). Interestingly,

only one recent report thus far described a positive

effect of hypoxia on differentiating mouse ES cells to

DE [43]. However, given that mouse and human ES

cells are maintained by distinct signaling pathways

[58, 59], it was not entirely clear if the hypoxia-

enhanced DE differentiation may or may not directly

translate to human ES system. To the best of our

knowledge, our study is the first to investigate the ef-

fects of hypoxia during early definitive endoderm dif-

ferentiation from human ES cells.

Most importantly, the implications from these re-

sults are twofold. First, there is a critical time window

when the precursors of DE are responsive to hypoxic

conditions, causing the initial upregulation of DE

markers (Fig. 6). Second, it is plausible that cells des-

tined to become DE cells, experience a lower oxygen

concentration that prompts their specification to DE

fate. Future whole embryo culture experiments will

determine if a hypoxic microenvironment can en-

hance DE formation/specification.

Temporal scRNA-seq analysis highlights the transcriptomic

transitions from pluripotent to mesendoderm to DE states

We compared scRNA-seq profiles between each pair of

neighboring time points over four days of differentiation

(Fig. 3a) and found that the number of differentially

expressed genes generally decreased over time (2224

Fig. 6 Snapshot and temporal scRNA-seq profiling on progenitor cell states. scRNA-seq from snapshots of lineage-specific progenitors revealed that

hypoxia enhances DE differentiation in a time-sensitive manner, likely acting on the mesendodermal progenitors. The differentiation trajectory was

reconstructed by Wave-Crest (blue arrow) using time course scRNA-seq along the differentiation towards DE cells. Results from loss-of-function and

gain-of-function experiments demonstrated that KLF8 function as a positive regulator mediating cell states transitions from T+ mesendoderm

to CXCR4+ DE cells. We hypothesize that KLF8 can suppress T+ state and in turn enhance the activation of CXCR4+ state. The molecular

mechanisms of how KLF8 directly or indirectly suppress T+ state require future investigation

(See figure on previous page.)

Fig. 5 KLF8 mediates mesendoderm to DE differentiation. a Schematics of siRNA knockdown strategy. FACS analysis of CXCR4 and T-2A-EGFP

expression at day two of differentiation with representative gene-specific siRNA transfection results. b Summary Differentiation Scores of siRNA

knockdown experiments of the top 25 genes tested. The dashed line indicates a Differentiation Score of 1, set by the non-target siRNA control.

Genes in blue font indicate control experiments. c Upper panel, schematics of KLF8 overexpression strategy during differentiation. Lower panel,

FACS analysis shows CXCR4 and T-2A-EGFP expression at day two of differentiation. DOX Doxycycline. d QPCR analysis of three independent KLF8

overexpression clones tested at day two of differentiation. All data are shown as mean ± S.D. ***p <0.001; **p <0.01; *p <0.05, all by one-tailed t-

test. In all FACS plots, the x-axis indicates GFP/FITC channel, the y-axis indicates APC channel
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genes [0–12 h], 830 genes [12–24 h], 1317 genes

[24–36 h], 466 genes [36–72 h], and 11 genes (72-96 h)].

This observation suggests that transcriptional changes

gradually decrease with continual BMP4 and Activin A

signaling. Interestingly, our PCA plot (Fig. 3a) shows over-

lapped individual cells collected between 72 h and 96 h,

suggesting that cells could gradually transition into a rela-

tively “stable” state at 72 h of differentiation.

When focusing on the 36 h time point of differenti-

ation, the reconstructed cell order provides a glimpse of

how the cells progress over time (Fig. 3c and Additional

file 1: Figure S5). This analysis reveals that DE markers

SOX17 and CXCR4 are activated surprisingly early in a

small number of cells with low or no expression of T

(Fig. 3c and Figure S5). This trend, consistent with pre-

vious findings, confirmed the reconstructed trajectory

from mesendoderm toward DE and provided a measure

of confidence in the subsequent fishing step. While we

only tested upregulated genes from the Wave-Crest ana-

lysis, it is possible that our top downregulated genes are

playing regulatory roles for mesendoderm or mesoderm

fate differentiation (Fig. 3d). Given the high quantity of

reconstructed single-cell information, follow-up experi-

ments are needed to investigate the full set of regulators

governing the decision to bifurcate from mesendoderm

to either mesoderm or DE.

It is not surprising that scRNA-seq data revealed

cell state asynchrony during differentiation as the

phenomenon has been reported in other cell types

subjected to scRNA-seq analysis [26–28]. However,

what factors contribute to the cell-to-cell delay or ad-

vancement of transcriptomic progression is still un-

clear. One possible factor is the cell cycle, which is

unsynchronized across the population of cells [25] ei-

ther at the initiation of differentiation and/or when

single cells were collected for RNA-seq. For example,

recent reports suggest that the cell cycle status can

influence signaling pathways directing exit from the

pluripotent state [60–62]. To resolve this, future ef-

forts will need to monitor real-time expression of

lineage specification markers while simultaneously tra-

cing cell division.

Two new statistical tools to characterize our temporal

scRNA-seq data are reported in this study. The first is

SCPattern, an empirical Bayes model to identify genes

with expression changes over time, specifically designed

to tackle the analytical challenges of scRNA-seq data.

The statistical power and simulations of SCPattern are

detailed in a companion study [29]. The second tool,

Wave-Crest, is composed of a first step to reconstruct

temporal cell order and a second step focused on identi-

fying novel regulators (fishing) (see “Methods”). Evaluat-

ing the performance of Wave-Crest by simulation

studies can be found in Additional file 1: Supplementary

Results and Figure S8 with Additional file 7. Wave-Crest

attempts to reorder cells along their differentiation pro-

gression based on known markers expression and fo-

cused on identifying novel regulators at transition state

(particularly from mesendoderm to DE). Wave-Crest

also uses known temporal information to improve its

performance. While the development of Wave-Crest was

not intended to perform pseudo-temporal reconstruc-

tion, its reconstructed single-cell order could represent a

particular differentiation trajectory guided by preselected

markers. While comparing the performance between

Wave-Crest and other pseudo-temporal approaches is

beyond the scope of this study, a preliminary compari-

son of using known markers to guide single-cell reorder-

ing between Wave-Crest and Monocle [63] could be

found in Additional file 1: Supplementary Results and

Figure S9. It is important to note that this comparison

only used our preselected markers. A graphical user

interface implementation of Wave-Crest is also available;

details may be found in Additional file 1: Supplementary

Methods and Figure S10. To decide candidate genes to

use for reordering, the algorithm currently utilizes differ-

ential expression results from SCPattern combined with

prior knowledge of markers (Additional file 1: Figure S5).

Although supervised or semi-supervised learning plays a

role in most of the single-cell analyses [27, 64–66], it

would be ideal to extract markers from high dimensional

data in an unsupervised fashion. The fishing step is per-

formed primarily for transcriptional regulators in this

study. It will be of great interest to perform fishing

for other categories of gene families, such as post-

translational regulators or regulatory RNA species

shown to be critical for cell fate transitions. Finally,

control of cell-to-cell variabilities by spike-ins was

not applied in our scRNA-seq data due to technical

challenges in our initial in-house trial experiments.

Future efforts to employ novel computational ap-

proaches to access scRNA-seq variability should

greatly improve our ability to identify additional

novel regulators [30, 32, 50, 66–68].

T-2A-EGFP reporter line as a robust platform to define the

role of KLF8 in mediating DE differentiation

In order to directly test the candidate genes identified

from scRNA-seq analysis, we generated the first T-knock-

in reporter human ES cell line that faithfully reflects the

endogenous T protein expression level, rather than at the

transcriptional level [69, 70]. As T activation marks the

onset of gastrulation, this reporter line will be useful for

future studies involving the earliest molecular events dur-

ing the formation of the primitive streak state in human

pluripotent stem cells. While CXCR4 antibody staining

provided a robust readout for DE state, combining our T-

2A-EGFP reporter with other genetically tagged reporters
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of transcription factor whose expression is important for

DE cell fate would be beneficial.

Our siRNA screen resulted in mostly delayed differen-

tiation phenotypes among the candidate genes (top up-

regulated genes) tested (Fig. 5b), consistent with the

hypothesis that this group of genes is mostly positive

regulators of the DE fate. Specifically, TERF1, SPEN, and

KLF8 stand out as the strongest candidates to reduce the

percentage of CXCR4+ cells (Fig. 5b and Additional

file 1: Figure S7). We concentrated on KLF8 because it

displayed a dynamic expression pattern over the course of

four days of differentiation (Additional file 1: Figure S7).

The knockdown of TERF1 and SPEN are likely reflecting a

pleiotropic rather than specific effect on DE differenti-

ation. Interestingly, our data also indicate that KLF8 could

negatively regulate T expression since KLF8 knockdown

increased T expression (Fig. 5a) and KLF8 overexpression

decreased T expression (Fig. 5c). Whether T is a direct

target of KLF8 requires further examination (Fig. 6). The

positive regulation role of KLF8 in DE differentiation is

best demonstrated by overexpression of KLF8 alone

(which is sufficient to induce DE markers) suggesting an

acceleration of the transition from mesendoderm to DE

(Figs. 5d and 6).

While the exact role(s) of KLF8 during early embryogen-

esis has not been examined in detail, a hemizygous gene-

trapped KLF8 allele exhibits developmental delay at mid-

gestation; although with variable penetrance in the gene-

trapped embryos examined [71]. Furthermore, recent

studies indicate that KLF8 mediates a number of onco-

genic processes including transformation and metastasis

in ovarian, breast, bladder, and colorectal cancers [72–74].

It is plausible that KLF8 may regulate the EMT that is

coupled with DE specification (Fig. 6). Future efforts may

elucidate the molecular mechanisms by examining the dir-

ect targets of KLF8 during DE cell fate specification.

Conclusions

In this study, we reported the analysis of scRNA-seq

data from a total of 1776 single cells generated from

various lineage-specific progenitors and from time

course profiling along mesendoderm toward DE lineage.

To our knowledge, this is one of the most complete

scRNA-seq studies characterizing human ES cells and

their progenies to date. We describe new algorithms for

scRNA-seq analysis: Wave-Crest and SCPattern. Our

scRNA-seq analyses uncovered a cohort of novel regula-

tors potentially responsible for the transitioning phase

from mesendoderm toward endodermal progenitors. We

have demonstrated that KLF8 plays a pivotal role in ac-

celerating the differentiation of DE cells. Altogether, we

believe that the combination of scRNA-seq analysis and

genetic approaches will shed light on novel molecular

mechanisms governing cell fate decisions.

Methods
Cell culture and differentiation

H1 and H9 human ES cells were routinely maintained at

the undifferentiated state in E8 medium on Matrigel

(BD Bioscience) coated tissue culture plates with daily

medium feeding [34]. Human ES cells were passaged

every 3–4 days with 0.5 mM EDTA in PBS at 1:10 to

1:15 ratio for maintenance. H1 were differentiated ac-

cording to previously established protocols [6, 17, 35]. In

brief, H1 cells were individualized with Accutase (Life

Technologies), washed once, and then seeded onto

Matrigel coated plates at a density of 1–2.0 × 104 cells/

cm2 and cultured in various differentiation medium. For

TBs, H1 were seeded in E7 (E8 minus FGF2) with

50 ng/mL BMP4 and SB431542 (5 μM). For ECs, H1

were seeded in E8 with 5 ng/mL BMP4 and 25 ng/mL

Activin A for the first two days, then switched to supple-

ment with VEGF and WNT for three days. For DE cells,

H1 cells were seeded in E8 with BMP4 (5 ng/mL), Acti-

vin A (25 ng/mL), and CHIR99021 (1 μM) for the first

two days, then withdraw CHIR99021 for the remaining

period of differentiation. This differentiation protocol is

used in all RNA-seq, hypoxic, siRNA knockdown and

KLF8 overexpression experiments. For NPCs, the undif-

ferentiated H1-SOX2-mCherry reporter line was treated

with 0.5 mM EDTA in PBS for 3–5 min and seeded in

NPC differentiation medium (1–2 × 104 cells/cm2). The

NPC differentiation medium consists of E6 (E8 minus

FGF2, minus TGFβ1), with 2.5 μg/mL insulin, SB431542

(10 μM) and 100 ng/mL Noggin [35]. DE cells, ECs, and

TBs were harvested at the end of day 5 for antibody

staining and subsequent FACS sorting. Specifically, ECs

were enriched from the PECAM1+/CD34+ double posi-

tive sorted population; DE cells were enriched from the

CXCR4+ sorted population; TBs were enriched from the

TROP2+ sorted population; and NPCs were enriched

from sorting for the Cherry + population from a SOX2-

Cherry+ knock-in line at the end of day 7 of differenti-

ation. For the time course scRNA-seq experiments, no

cell sorting or marker enrichment was performed prior

to capture single cells. All differentiation media were

changed daily. HFFs were cultured in DMEM/F12 sup-

plemented with 10 % FBS. All 1.5 % O2 hypoxia experi-

ments were conducted in a hypoxic glove box (Coy

Labs). All 5 % O2 hypoxia experiments or normoxia

20 % O2 are conducted in standard cell culture incuba-

tors with [N2] regulators. All the cell cultures performed

in our laboratory have been routinely tested as negative

for mycoplasma contamination and authenticated by

cytogenetic tests.

Single-cell capture and single-cell cDNA library preparation

Single-cell loading, capture, and library preparations were

performed using the Fluidigm C1 system as described
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previously [25]. 5000–8000 cells were loaded onto a

medium-sized (10–17 μm) C1 Single-Cell Auto Prep IFC

(Fluidigm) and the cell-loading script was used according

to the manufacturer’s instructions. The capture efficiency

was inspected using EVOS FL Auto Cell Imaging system

(Life Technologies) to perform an automated area scan-

ning of the 96 capture sites on the IFC. Empty capture

sites or sites having more than one cell captured were first

noted, and those samples were later excluded from further

library processing for RNA-seq. Immediately after capture

and imaging, reverse transcription and cDNA amplifica-

tion were performed in the C1 system using the SMARTer

PCR cDNA Synthesis Kit (Clontech) and the Advantage 2

PCR Kit (Clontech) according to the instructions in the

Fluidigm user manual. Full-length, single-cell cDNA li-

braries were harvested the next day from the C1 chip and

diluted to a range of 0.1–0.3 ng/μL. Diluted single-cell

cDNA libraries were fragmented and amplified using the

Nextera XT DNA Sample Preparation Kit and the Nextera

XT DNA Sample Preparation Index Kit (Illumina). Librar-

ies were multiplexed at 24 or 48 libraries per lane, and

single-end reads of 67 bp were sequenced on an Illumina

HiSeq 2500 system.

Immunofluorescence staining and confocal image analysis

Cells were seeded and cultured on Matrigel coated

glass-bottom culture dishes (MatTek, 12- or 24-well

dishes) for differentiation or treatments. Cultured cells

were then washed with PBS and with BD Perm/wash

buffer and then fixed with BD Cytofix at 4 °C for

15 min. Cells were then permeablized with 0.2 %

TritonX-100 (in PBS) at room temperature for 30 min.

Cells were then blocked with blocking buffer (2 % BSA

and 1 % FBS in PBS) for 1 h at room temperature

followed by staining with primary antibody diluted in

blocking buffer at 4 °C overnight. The next day, cells

were washed three times with blocking buffer before in-

cubated with AlexaFluor secondary antibodies (Invitro-

gen, 1:1000 dilutions in blocking buffer) and DAPI for

1 h at room temperature. Cells were then washed three

times with blocking buffer and mounted on glass slides

(Vectors Labs) for imaging. All the primary antibodies

used in this study can be found in Additional file 8:

Table S7. Immunofluorescence images were collected

using a Nikon A1R laser scanning confocal microscope

with Plan Apo 10x, Plan Fluor 20x Ph1 DLL, or Plan

Apo 20x DIC M objectives. Images were processed using

NIS Elements or ImageJ. Some z-stacks were presented

as maximum intensity projection images.

Gene targeting and plasmids construction

Brachyury (T)-2A-EGFP reporter

T-2A-EGFP-PGK-Puro targeting vector (donor vector)

with ~480 bp homology arms on each side of the stop

codon was cloned into the targeting vector backbone

(modified from Addgene 31938) [75]. FseI and SacI

linearized T-2A-EGFP-PGK-Puro cassettes were used for

gene targeting experiments. All the DNA oligos used in

this study are listed in Additional file 9: Table S8.

CRISPR/Cas9 mediated gene targeting experiments were

performed as previously described [55]. Briefly, H9 cells

were individualized with Accutase, washed once with E8

medium, and resuspended in E8 medium with 10 mM

HEPES buffer (pH 7.2–7.5) (Life Technologies). For elec-

troporation, 2.5 × 106 cell were mixed with 7.5 μg of

pCMV-hCas9 plasmid (Addgene 41815) [56], 7.5 μg of

sgRNA construct, and 10 μg of linearized donor DNA

template in a total of 500 μL of cell/DNA suspension,

transferred to a 4-mm cuvette (Bio-Rad) and electropo-

rated with a Bio-Rad Gene Pulser Xcell. Electroporation

parameters were 250 V, 500 μF, and infinite resistance.

Cells were then plated into Matrigel-coated culture

dishes in E8 medium supplied with 10 μM ROCK inhibi-

tor Y-27632 (Tocris). Medium was changed daily.

Puromycin selection was started three to four days after

electroporation. Puromycin-resistant colonies were picked

five to seven days after drug selection was applied. In the

T-2A-EGFP targeting experiments, clone 39 was verified

as correctly targeted clone with normal karyotype and is

used for all the subsequent experiments in this study

(Additional file 1: Figure S6). For the SOX2-Cherry re-

porter, a Cherry-2A-Puro cassette (donor vector) with

~480 bp homology arms on each side of the stop codon

was cloned into the targeting vector backbone (modified

from Addgene 31939) [75]. FseI and SacI linearized SOX2-

Cherry-2A-Puro cassettes were used for gene targeting

performed in the same manner as described above. Cor-

rected targeted clones were confirmed by PCR and south-

ern blot analysis. Details about the SOX2 gene targeting

will be reported elsewhere (Chu et al., in preparation). All

vectors and their sequences are available upon request.

The Wave-Crest method

Wave-Crest extends the nearest-insertion algorithm to

recover single-cell order following the expression of pre-

selected markers in time course scRNA-seq data. Prior

to the analyses, we scaled expression within each gene to

values with mean 0 and variance 1 to ensure the values

across different genes are comparable. Wave-Crest reor-

ders cells within each time point by utilizing information

from its other time points. Similar to Leng et al. [25],

the Wave-Crest algorithm implements an extended

nearest insertion (ENI) algorithm to reorder the cells,

but with a constraint that cells from different collection

time are not allowed to be mixed in the recovered order.

The Wave-Crest ENI starts with τ randomly selected

cells, one from each time point. These τ cells are sorted

by the time course order. A τ + 1 th cell is chosen at
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random and inserted into the series of cells. Suppose

that this cell is from time point t1, this forms two candi-

date orders – insert this cell between the t1 − 1 th and t1
th cell in the original order, or between t1 th and t1 + 1

th. We evaluate each order using the aggregated mean

squared error (MSE) of a polynomial regression. For a

given order, the polynomial regression is fitted to the

rescaled expression of each gene. For each order, the ag-

gregated MSE of a candidate gene group is defined as

the summation of the MSEs among all genes of interest.

The optimal order of the first τ + 1 cells is then selected

as the one that minimizes the aggregated MSE. This

process is repeated to insert the τ + 2 th cell and so on,

until all cells are considered. A 2-opt algorithm is then

applied to avoid finding local maxima and to refine the

global expression profile [54]. Evaluation of the ENI al-

gorithm and the 2-opt algorithm may be found in

Additional file 1: Supplementary Results and Figure S8e.

Wave-Crest also incorporates a detection step to further

identify genes with a smooth profile following the recon-

structed pseudo-time, which we called “fishing”. This

detection (fishing) step again utilizes polynomial regres-

sion. For a gene g, we reorder its rescaled expression fol-

lowing the recovered order, fit a polynomial curve, and

calculate its gene-specific MSE (observed MSE). A per-

mutation test is then conducted to determine the good-

ness of the fit by comparing the observed MSE to a large

group of simulated genes. To generate a permuted gene,

we randomly pick a gene from the full set of genes

under consideration and permute its cell order, fit a

polynomial regression as above and calculate the MSE of

the permuted gene. The MSE distribution of the per-

muted genes is then used to make inference about the

MSE distribution under the null hypothesis (no expres-

sion change associated with the reconstructed cell

order). An empirical gene’s permutation p value is then

calculated as #permuted MSE≤ observed MSE
#permuted MSE

, where the ob-

served MSE indicates the g’s MSE based on the recon-

structed order. Genes with small permutation p values

are considered detected. Wave-Crest is available as an R

package, freely available at (https://github.com/lengning/

WaveCrest). The softwares are licensed under the terms

of the Apache License 2.0. A graphical user interface is

also provided (Additional file 1: Figure S10), which al-

lows users with little computational background to per-

form the analysis.

In the DE differentiation time course analysis de-

scribed in this manuscript, the ENI algorithm and 2-opt

algorithm were applied on 758 cells across six time

points (0 h, 12 h, 24 h, 36 h, 72 h, and 96 h). Genes

whose median expression is less than 10 were omitted.

The fishing step was applied on the 172 cells collected at

36 h of differentiation (following the ENI reconstructed

cell order). A total of 2178 transcriptional regulators

were considered in this fishing step (Additional file 5:

Table S4). We defined the top genes with expression

trend within 36 h by taking the ones with small MSE in

the polynomial fitting along these 172 cells. The genes

were further classified into upregulated and downregu-

lated groups by their expression trend along the recovered

order of these 172 cells. The two groups were defined by

the sign of the slope coefficient in gene-specific linear fit-

ting. The genes with positive (negative) slope coefficient

were defined as up- (down-) regulated from early-36 h

cells to late-36 h cells. A total of 100,000 permutations

were conducted in the permutation test.

Reverse transcription (RT) and qPCR analysis

All procedures were performed as described previously

[76]. Total RNAs were purified using RNeasy kits (Qia-

gen) with either on-column DNase treatment or gen-

omic DNA removal columns. Between 100 ng to 500 ng

of purified RNAs were reverse transcribed with Super-

Script VILO Master mix (Life Technologies). To per-

form TaqMan qPCR reactions (10 μL total volumes),

1 μL of the cDNA was subsequently used in each of the

triplicate qPCR reactions with individual 1× TaqMan

Gene Expression assays and 1× TaqMan Universal PCR

Master Mix II (Life Technologies). qPCR was performed

using ViiA™ 7 System and data analysis was performed

using ExpressionSuite™ (all from Life Technologies). All

TaqMan Gene Expression assays are from Life Tech-

nologies and are listed in Additional file 9: Table S8.

siRNA knockdown experiments

All the siRNA are from ON-TARGETplus siRNA

SMARTpool (Healthcare/Dharmacon), listed in Additional

file 10: Table S9. siRNA were dissolved in 1 × siRNA buf-

fer and stored as 16 μM stock in –80 °C. One hour after

cells were plated for differentiation, a final concentration of

50 nM of each siRNA pool was transfected with RNAi

MAX with OPTIM-DMEM following manufacture’s proto-

cols (Life Technologies). Each gene knockdown was per-

formed with at least two replicates of experiments. FACS

analysis was performed to measure the percentages of

CXCR4+ and EGFP+ cells for each gene knockdown at 42–

48 h post differentiation. The Differentiation Score is calcu-

lated as the (% of CXCR4+ cells)/(% of T-2A-EGFP+ cells).

The score obtained from non-targeting control siRNA (as

transfection control, arbitrarily set to 1), was used to

normalize all the results obtained from individual gene-

specific siRNA transfection experiments.

PiggyBac vector construction and KLF8 overexpression

clones

The cDNA of KLF8 was obtained from GeneCopoeia as

Gateway Entry vectors (GC-T1091), and was subsequently
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cloned into a PiggyBac Gateway Destination vector using

Gateway LR clonase (Life Technologies), placing KLF8

downstream of a DOX-inducible promoter (pB-TetO-

KLF8) as previously reported [57]. A separate PiggyBac

vector encoding pEF1a-rtTA-IRES-Puro cassette (DOX-re-

sponsive transactivator along with puromycin resistance

gene) was co-electroporated with pB-TetO-KLF8 and

CMV-hyPBase plasmids or hyPBase mRNA. For electro-

poration, 2.5 × 106 of H9-T-2A-EGFP reporter cells were

mixed with 30.0 μg of pB-TetO-KLF8 plasmid, 1.5 μg of

pEF1a-rtTA-IRES-Puro plasmid, and 1.5 μg of CMV-hyP-

Base in a total of 500 μL of cell/DNA suspension, trans-

ferred to a 4-mm cuvette (Bio-Rad), and electroporated

with a Bio-Rad Gene Pulser Xcell. Electroporation param-

eters were 250 V, 500 μF, and infinite resistance. Cells

were then plated into Matrigel-coated culture dishes in E8

medium supplied with 10 μM ROCK inhibitor Y-27632

(Tocris). Medium was changed daily. Puromycin selection

(1.0 μg/mL) was applied three days after electroporation.

Puromycin-resistant colonies were picked approximately

seven days after drug selection was applied. Three inde-

pendent clones with the most uniformed expression of

KLF8 upon DOX treatment (2.0 μg/mL) were selected for

subsequent experiments. The vectors and their sequences

are available upon request.

Bulk RNA-seq library construction

Bulk RNA samples were collected at the time when the sin-

gle-cell samples were processed. Cell pellets were lysed in

Buffer RLT (Qiagen) and stored in –80 °C until RNA isola-

tions. Total RNA of each cell type was purified using the

RNeasy Kit (Qiagen). cDNA libraries were prepared and

indexed with Illumina’s TruSeq RNA Sample Prep Kit v2

and sequenced on Illumina’s HiSeq 2500 system with 4–6

indexed samples per lane with 51 bp single-end reads.

Read processing and mapping

Reads were mapped via Bowtie 0.12.8 [77] against the

hg19 RefSeq reference (“NM_” designated genes and

mitochondrial genes from the Illumina iGenomes anno-

tation). The mapping allows up to two mismatches and

up to 20 multiple hits. The expected counts and TPMs

were quantified via RSEM 1.2.3 [78].

Bulk data – snapshot of progenitor cell types

A total of 19 bulk samples from seven cell types were se-

quenced: duplicates for DEC, NPC, and TB; triplicates

for H9, EC, and HFF; and four replicates for H1. The

bulk RNA-seq data were normalized by median-by-ratio

normalization.

scRNA-seq data – snapshot of progenitor cell types

In total, seven cell types were considered. Cells hav-

ing fewer than 5000 genes with TPM >1 were

removed in quality control. A total of 1018 cells

passed the quality control. In more detail, 212, 162,

138, 105, 159, 173, and 69 cells were considered in

H1, H9, DEC, EC, HFF, NPC, and TB, respectively.

The scRNA-seq data were normalized by median-by-

ratio normalization. Genes with potential ordering ef-

fect (OE) were removed prior to downstream ana-

lyses. The OE genes were detected using OEFinder

[79]. A gene is called OE if it has an OEFinder p value

≤0.01 in at least one cell type. A total of 392 OE genes

were removed in various cell type datasets.

Bulk data – time course experiment

Triplicates were sequenced from each of the six time

points – 0 h, 12 h, 24 h, 36 h, 72 h, and 96 h. The bulk

RNA-seq data were normalized by median-by-ratio

normalization.

scRNA-seq data – time course experiment

In total, six time points were considered. Cells having

fewer than 5000 genes with TPM >1 were removed in

quality control. A total of 758 cells passed the quality

control. In more detail, 92, 102, 66, 172, 138, and 188

cells were considered in 0 h, 12 h, 24 h, 36 h, 72 h, and

96 h, respectively. The scRNA-seq data were normalized

by median-by-ratio normalization. Genes with potential

OE were removed prior to downstream analyses. A total

of 536 OE genes were removed in the time course

dataset.

Bulk-supervised PCA

Previous publications showed that directly perform-

ing PCA on single-cell data may capture unwanted

noise [80]. Therefore, bulk-supervised PCA were

conducted to investigate differences between differ-

ent cell types in the following manner. Denote the

normalized bulk RNA-seq expression of gene g in

sample s as Yg
s. Prior to PCA analysis, for each gene

g, the bulk RNA-seq expression values were rescaled

to values with mean 0 and standard deviation 1 (de-

note as Ỹg
s). Similarly, denote normalized scRNA-seq

expression of gene g in cell j as Xg
j and denote the

rescaled data as ~X
j

g . We applied PCA on the rescaled

bulk RNA-seq data and obtain loadings of PCs.

Denote loading of gene g in PC n as Wg
n. The bulk-

supervised PCA transformed data of cell j in PC n is

then calculated as
X

g
W n

g
~X
j

g .

Differential expression analysis in scRNA-seq time course

data by SCPattern

SCPattern was used to identify genes with expression

changes in the scRNA-seq time course data. For each
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gene, SCPattern calculates the posterior probability of

being each possible expression path (e.g. Up-Up-Up-

Up-Up, Up-Up-Up-Up-Down, etc.). A gene is called

“differentially expressed” if its most likely path is not

EE-EE-EE-EE-EE (EE, equal expression). A total of

3247 differentially expressed genes were identified in the

scRNA-seq time course experiment listed in Additional

file 4: Table S3. The development of SCPattern is detailed

in a companion study [29]. Both SCPattern and its graph-

ical interface implementation are freely available at

https://github.com/lengning/SCPattern. The software is li-

censed under the terms of the Apache License 2.0.

Additional software used in this study

To generate figures and text, the following software

packages were used: Microsoft Word, Excel, and Power-

Point for Mac v14.5.6; Adobe Illustrator CSS v15.0.2;

Endnote X7.3.1; and Prism 6 for Mac v6.0e. Fluidigm

SINGuLAR Analysis Toolset (fluidigmSC v.3.0.3).

Additional files

Additional file 1: Figure S1. Experimental outline and qualities of

scRNA-seq on human ES-derived progenitors. Figure S2. PCA and

heterogeneity analysis of human ES-derived progenitors. Figure S3.

Characterizations of the impacts of hypoxia on DE differentiation.

Figure S4. Quality control and PCA of time course scRNA-seq experiments.

Figure S5. Genes used for Wave-Crest to reconstruct DE differentiation

trajectory. Figure S6. Characterizations of T-2A-EGFP knock-in reporter.

Figure S7. Summary of siRNA experiments and characterization of

top candidate genes. Figure S8. Simulation results evaluating

Wave-Crest. Figure S9. Monocle results on DE differentiation. Figure S10.

Screenshot of Wave-Crest graphical user interface. Supplementary Results

and Supplementary Methods. (PDF 2613 kb)

Additional file 2: Table S1. List of genes used in Fig. 1c for hierarchical

clustering. (XLSX 30 kb)

Additional file 3: Table S2. List of the GO terms by Allez enrichment

analysis. (XLSX 62 kb)

Additional file 4: Table S3. List of SCPattern identified stage-specific

3247 genes. (XLSX 167 kb)

Additional file 5: Table S4. List of 2178 genes used for Wave-Crest

fishing step. (XLSX 54 kb)

Additional file 6: Table S5. List of the top 150 genes identified by

Wave-Crest fishing step. (XLSX 56 kb)

Additional file 7: Table S6. List of kernel signals for Wave-Crest

simulation studies. (XLSX 21 kb)

Additional file 8: Table S7. List of the antibodies used in this study.

(XLSX 43 kb)

Additional file 9: Table S8. List of the DNA oligos and qPCR assays

used in this study. (XLSX 32 kb)

Additional file 10: Table S9. List of the siRNA used in this study.

(XLSX 46 kb)
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