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ABSTRACT Single-cell RNA-sequencing (scRNA-seq) data provide opportunities to reveal new insights
into many biological problems such as elucidating cell types. An effective approach to elucidate cell types
in complex tissues is to partition the cells into several separated subgroups via clustering techniques, where
the cells in a specific cluster belong to the same cell type based on gene expression patterns. In this work, we
present a novel multiple kernel clustering framework for scRNA-seq data clustering via locality preserving
kernel alignment. Specifically, we first generate a series of similarity kernel matrices by using different
kernel functions. Then we transfer the clustering task to a multiple kernel k-means problem with the kernels
aligned in a local manner, i.e., the similarity of a sample to its k-nearest neighbours are aligned with the
ideal similarity matrix. In our method, the clustering process focuses on closer sample pairs that shall stay
together, and avoids involving unreliable similarity evaluation for farther sample pairs. In addition, we
construct a local Laplacian matrix for each sample to constrain that closer samples should be allocated
similar labels. In such a manner, the local structure of the data can be well preserved and utilized to produce
better alignment for clustering. An alternate updating algorithm with theoretical analysis is developed to
solve the proposed problem. We evaluate the performance of the proposed method on various real scRNA-
seq data, and the results show that our method can obtain superior results when compared with other state-
of-the-art approaches.

INDEX TERMS scRNA-seq clustering, elucidating cell types, tissues, similarity kernel matrices, locality
preservation.

I. INTRODUCTION

Recent literature indicate that single-cell measurements plays
an important role in understanding cellular heterogeneity
[1]–[5] and cell differentiation [6], [7]. Thanks to the rapid
development of Single-cell RNA-sequencing (scRNA-seq)
techniques, a tremendous amount of transcriptome datasets
have been generated at single-cell resolution [8], [9]. On
the one hand, these datasets provide opportunities to reveal
new insights into many biological problems, e.g., elucidating
cell types, on the other hand, there are also computational
challenges due to the amount of data. A straightforward
approach to elucidate cell types in complex tissues is to
partition the cells into some separated subgroups via clus-

tering techniques [10]–[13], which can be regarded as an
unsupervised classification problem [14]–[16]. Many previ-
ous clustering techniques can be used for this task, such as
principal component analysis (PCA) [17], spectral clustering
[18], and k-means [19]. However, different to bulk RNA-
seq or gene expression microarrays, there are high level of
noise and many missing values in scRNA-seq data due to
technical and sampling issues [20]–[22]. In addition, the high
variability exists in gene expression levels even between cells
of the same type, and this could degenerate the performance
of those existing clustering approaches [23]–[27].

In order to address the issues in scRNA-seq data analysis,
a various of novel clustering methods have been proposed
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in recent years. For subtype classification and detection of
relationships between the subtypes, some iterative clustering
methods have been proposed [28]–[31]. Haghverdi et al.
[32] used the diffusion maps to perform dimension reduction
of the data, which stresses continuity of cell states along
putative developmental pathways. Nonnegative Matrix Fac-
torization (NMF) technique has also been used to decompose
the high-dimensional scRNA-seq data into biologically inter-
pretable compositions [33], and the functional cell subgroup-
s and biologically relevant features can be simultaneously
obtained with NMF. Several graph theory-based algorithms
have also been applied to scRNA-seq data clustering prob-
lems. Xu and Su [34] developed a quasi-clique-based clus-
tering algorithm named SNN-Cliq to identify tight groups
of highly similar nodes that are likely to belong to the same
genuine clusters. In SNN-Cliq, the clusters are identified by
using the proposed SNN graph. Spectral clustering, as a typi-
cal graph based clustering method, has also been successfully
deployed for this task. Park and Zhao [35] first constructed a
series of symmetric doubly stochastic similarity matrices by
using the Gaussian kernel function with varying parameters,
then they learned a target similarity matrix from the previous
constructed matrices for spectral clustering. In [36], Wu et al.
integrated dimension reduction and clustering of single-cell
RNA-sequencing data into a unified framework.

Multiple kernel clustering is also a kind of popular modern
clustering method which aims to optimally integrate a group
of pre-specified kernels to improve clustering performance.
A critical issue in multiple kernel clustering is to learn the
kernel combination weights. Margolin [37] made the com-
bination weights adaptively change with respect to samples
to better capture their individual characteristics. Du et al.
[38] presented a robust multiple kernel k-means algorith-
m that simultaneously finds the best clustering labels and
the optimal combination of multiple kernels by replacing
the squared error in k-means with an l2,1-norm based one.
Lu et al. [39] employed kernel alignment maximization to
jointly perform the k-means clustering and multiple kernel
learning. Wang et al. [40] presented an analytic framework
(SIMLR) via multi-kernel learning which learns a similarity
measure from scRNA-seq data in order to perform dimension
reduction, clustering and visualization. Compared to other
previous methods, SIMLR learns a distance metric that best
fits the structure of the data by combining multiple kernels.
Standard dimension reduction or clustering algorithms often
work under certain statistical assumptions which the diverse
statistical characteristics of scRNA-seq data could not easily
fit well. Qi et al. [41] proposed to automatically learn simi-
larity information from data and introduced a new clustering
method in the form of a multiple kernel combination, which
can directly discover groupings in scRNA-seq data. In this
paper, we propose a new scRNA-seq data clustering method
via locality preserving multiple kernel alignment (referred
to as LPKA briefly). Considering that previous kernel align-
ment methods often rigidly constrain closer and farther sam-
ple pairs to be equally aligned to the same ideal similarity,

and the intra-cluster variation of samples is inappropriately
neglected, we propose to align the kernels in a local manner,
i.e., the similarity of a sample to only its k-nearest neighbours
are aligned with the ideal similarity matrix. In our method,
the clustering process focuses on closer sample pairs that
shall stay together, and avoids involving unreliable similarity
evaluation for farther sample pairs. In addition, we construct
a local Laplacian matrix for each sample to constrain that
closer samples should be allocated similar labels. In such a
manner, the local structure of the data can be well preserved
and utilized to produce better alignment for clustering. Ex-
periments on 9 scRNA-seq datasets are conducted to demon-
strate the superiority of our proposed method.

II. MATERIALS AND METHODS

A. DATASETS COLLECTION AND KERNEL MATRICES

GENERATION

1) Datasets

In order to evaluate the efficacy of our proposed LPKA, we
use some real-world scRNA-seq datasets to test the clustering
performance. Similar to [35], we test the performance of
LPKA on 9 scRNAseq datasets which represent several types
of dynamic processes such as cell cycle, cell differentiation,
and response upon external stimulus. For each dataset, the
types of cells are known as a priori. The number of cells,
number of cell types, number of genes for each dataset are
summarized in Table 1.

TABLE 1: Brief information of the 9 used scRNA-seq
datasets in our experiments.

Datasets No. of cells No. of genes No. of cell types

Treutlein 80 9352 5
Ting 114 14405 5
Deng 135 12548 7

Ginhoux 251 11834 3
Buettner 182 8989 3
Pollen 249 14805 11
Tasic 1727 5832 49
Zeisel 3005 4412 47

Macosko 6418 12822 39

For the readability and integrity of this paper, we also give
the detailed information of the datasets as follows:

• Treutlei [42]. This dataset is composed of single
cell RNA-seq expression data for 80 lung epithe-
lial cells at E18.5 together with five putative cel-
l types including AT1, AT2, Clara, BP, and ciliat-
ed. Similar to [42], we considered data with selected
genes with 959 highest loadings in the first four P-
CA coefficients. The dataset is downloaded from: http-
s://www.nature.com/articles/nature13173.

• Ting. This dataset contains contains 5 subtypes from
Single-cell transcriptomes from MEFs, the NB508 pan-
creatic cancer cell line, normal WBCs, bulk primary
tumors diluted to 10 or 100 pg of RNA, and classical
CTC. We downloaded the data from GEO (GSE51372).

• Deng [43]. This dataset consists of transcriptomes for
individual cells isolated from mouse embryos at dif-
ferent preimplantation stages. There are 135 cells and
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19,703 genes, where cells belong to zygote, early 2-cell-
stage, mid 2-cell-stage, late 2-cellstage, 4-cell-stage,
8-cell-stage, and 16-cell-stage. The processed data is
downloaded from GEO (GSE45719).

• Ginhoux. This dataset consists of the expression values
of 15,752 genes for 251 dendritic cell progenitors in
one of following three cellular states: Monocyte and
Dendritic cell Progenitors (MDPs), Common Dendritic
cell Progenitors (CDPs), and Pre-Dendritic Cells (PreD-
Cs). The dataset contains 59 MDPs, 96 CDPs, and 96
PreDCs. We downloaded the processed data from GEO
(GSE60783).

• Buettner [44]. This dataset contains the transcriptional
profile of 182 ESCs that has been staged for cell-cycle
phase (G1, S, and G2M) based on sorting of the Hoechst
33342-stained cell area of a flow cytometry (FACS)
distribution. The cells were sorted for three stages of
the cell cycle, and they were validated using gold-
standard Hoechst staining. The data have been deposited
at ArrayExpress: E-MTAB-2805.

• Pollen. There are 249 single cells from 11 populations
using microfluidics, including neural cells and blood
cells. The 11 clusters in the dataset were from differ-
ent sources (CRL-2338, CRL-2339, K562, BJ, HL60,
hiPSC, Keratinocyte, Fetal cortex (GW21+3), Fetal cor-
tex (GW21), Fetal cortex (GW16), and NPC) that are
expected to show robust differences in gene expression.
Data were pre-filtered to exclude genes where more than
90% of cells had zero measurements and include only
single cells with greater than 500000 reads (n = 249).

• Tasic [45]. There are 49 transcriptomic cell types in
this dataset, including 23 GABAergic, 19 glutamatergic
and 7 non-neuronal types. To identify cell types, Tasic
et al. [45] applied two parallel and iterative approach-
es for dimensionality reduction and clustering, itera-
tive principal component analysis (PCA) and iterative
weighted gene coexpression network analysis (WGC-
NA), and validated the cluster membership from each
approach using a non-deterministic machine learning
method (random forest). We downloaded the processed
data from GEO (GSE71585).

• Zeisel [28]. In this dataset, Zeisel et al. [28] used
large-scale single-cell RNA sequencing to classify cells
in the mouse somatosensory cortex and hippocampal
CA1 region. 3005 Cells from the mouse cortex and
hippocampus collected. Zeisel et al. (2015) found 47
molecularly distinct subclasses identified by hierarchi-
cal biclustering and validated by gene markers.

• Macosko. This dataset contains mouse retina cells with
39 subtypes, it is obtained by droplet-based high-
throughput technique. The dataset consists of 44808
cells. The 39 cell types were identified via PCA and
density-based clustering, and they were validated by
differential gene expression. We filtered out cells with
less than 1200 genes (yielding 6418 cells) for clus-
tering analysis. We downloaded the data from GEO

(GSE63473).

2) Kernel matrices generation

In our experiments, three kinds of kernels are used to gener-
ate kernel matrices, including Gaussian kernel, linear kernel
and polynomial kernel.

For Gaussian kernel, it is one of the most widely used ker-
nel function and it can obtain steadily performance whether
the data size is large or small. We follow [40] and consider
multiple kernel functions to construct kernel matrices as
follows:

GKθ,k(i, j) = exp(−
||xi − xj ||

2

2σ2
ij

), (1)

where σij =
θ(πi+πj)

2 , and πi =
∑

k∈KNN(i) ||xi−xj ||2

k
.

KNN(i) represents a set of sample indices that are the
top k nearest neighbors of the sample xi. As can be seen,
parameters θ and k control the width of the neighborhoods.
For generality, we also vary θ from {1, 1.25, · · · , 2} and k
from {10, 12, · · · , 30}. Thus, a total number of 55 Gaussian
kernel matrices can be obtained.

For linear kernel, it is suitable for the data samples which
are linear separable. In addition, it has no parameter. We
generate a linear kernel matrix as follows:

LK(i, j) = xi · xj . (2)

For polynomial kernel, it projects low dimensional feature
space to a higher dimensional feature space. It is defined as
follows:

PK(i, j) = ((xi · xj) + 1)d. (3)

In this work, we vary d from {0.1, 0.2, · · · , 1} and obtain 10
polynomial kernel matrices.

Finally, for each dataset, we combine different kinds of
kernel matrices to obtain a kernel matrix with size n×n×66
for further computation, where n is the number of samples in
the dataset.

B. KERNEL K-MEANS CLUSTERING

Given a set of n data samples from k clusters {xi}
n
i=1 ⊆ X ,

let φ(·) : x ∈ X 7→ H be a feature mapping which maps x
from original space onto a reproducing kernel Hilbert space
H. Kernel k-means aims to minimize the sum-of-square loss
over the cluster assignment matrix Z ∈ {0, 1}n×k, and the
problem can be solved by minimizing following objective
function:

min
Z∈{0,1}n×k

n
∑

i=1

k
∑

c=1

Zic||φ(xi)− ξc||
2
2, s.t.

k
∑

c=1

Zic = 1,

(4)
where nc =

∑n

i=1 Zic and ξc =
1
nc

∑n

i=1 Zicφ(xi) represent
the sample number and centroid of the c-th cluster in H.

By some algebra, (4) can be transferred to following matrix
form:

min
Z∈{0,1}n×k

Tr(K)− Tr(L
1
2ZTKZL

1
2 ), s.t. Z1k = 1n,

(5)
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where Tr(·) denotes the trace of a matrix and K is
a kernel matrix with Kij = φ(xi)

Tφ(xi), L =
diag([n1

−1, n2
−1, · · · , nk

−1]), and 1l ∈ R
l is a column

vector with all elements 1.
The problem (5) is hard to solve since Z is discrete. Fortu-

nately, this problem can be usually approximated through re-
laxing Z to take arbitrary real values. By defining H = ZL

1
2

and letting H take real values, the relaxed version of (5) can
be obtained as:

min
H∈Rn×k

Tr(K(In −HHT )), s.t. HTH = Ik, (6)

where Ik is a k × k identity matrix. Since ZTZ = L−1, we
have L

1
2ZTZL

1
2 = Ik, then it is easy to get the orthogonality

constraint on H . Finally, (6) can be solved by taking the k
eigenvectors that correspond to the k largest eigenvalues of
K.

C. MULTIPLE KERNEL K-MEANS CLUSTERING

With a multiple kernel setting, each sample is rep-
resented via a group of feature mappings {φ(·)}mp=1

[46]. In detail, each sample can be represented as
φξ(x) = [ξ1φ1(x)

T , ξ2φ2(x)
T , · · · , ξmφm(x)T ]T , where

ξ = [ξ1, ξ2, · · · , ξm]T represents the coefficients of each base
kernel that we need to learn. As a consequence, the corre-
sponding kernel function over the above mapping function
can be written as:

κξ(xi, xj) = φξ(xi)
Tφξ(xj) =

m
∑

p=1

ξ2pκp(xi, xj). (7)

By replacing the kernel matrix K in (6) with Kξ calculated
via (7), the multiple kernel k-means clustering problem can
be re-rewritten as following form [37]:

min
H∈Rn×k,ξ∈Rm

+

Tr(Kξ(In−HHT )), s.t. HTH = Ik, ξ
T 1m = 1.

(8)

D. PROPOSED MULTIPLE KERNEL K-MEANS

CLUSTERING VIA LOCALITY PRESERVING MULTIPLE

KERNEL ALIGNMENT

Kernel alignment maximization has been widely used to
learn kernel parameters in supervised learning. However, it
is not suitable to unsupervised learning that the true labels
are absent [47]. An effective solution is to update kernel
coefficients by maximizing the alignment between the com-
bined kernel Kξ and HHT , where H can be regarded as
pseudo-labels in the last iteration [48]. In specific, the kernel
alignment maximization for multiple kernel clustering can be
formulated as following:

max
H∈Rn×k,ξ∈Rm

+

〈

Kξ, HHT
〉

√

〈Kξ,Kξ〉
s.t. HTH = Ik, ξ

T 1m = 1,

(9)
where

〈

Kξ, HHT
〉

= Tr(KξHHT ), 〈Kξ,Kξ〉 = ξ̃TMξ̃

with ξ̃ = [ξ21 , ξ
2
2 , · · · , ξ

2
m]T and M is a positive semi-definite

matrix with Mpq = Tr(KT
p Kq) [47]. Directly optimizing (9)

is difficult since it is a fourth-order fractional optimization
problem. Thus, we need to derive a new and approximated
optimization problem.

Following we use Theorem 2 to get a second-order upper
bound for the denominator in (9).
Theorem 1: ξTMξ is an upper bound of ξ̃TMξ̃.
Theorem 1: For a pair of semi-definite matrices Kp

and Kq , there exists matrices Up and Uq such that
Kp = UpU

T
p and Kq = UqU

T
q . As a results, we

have Mpq = Tr(KT
p Kqj) = Tr(UpU

T
p UqU

T
q ) =

Tr((UT
p Uq)(U

T
p Uq)

T ) = ||UT
p Uq||

2
F ≥ 0, where || · ||F

denotes the Frobenius norm of a matrix. We also have
ξTMξ =

∑m

p,q=1 Mpqξpξq ≥
∑m

p,q=1 Mpqξ
2
pξ

2
q = ξ̃TMξ̃.

This completes the proof.
ξTMξ is much easier to handle than ξ̃TMξ̃ since it leads
to a well studied quadratic programming. In addition, this
term also works as a regularization on the kernel coefficients
to prevent ξp and ξq from being jointly assigned to a large
weight if Mpq is relatively high.

In addition, we find that minimizing the negative of nu-
merator, i.e., −Tr(KξHHT ), together with ξTMξ simulta-
neously cannot guarantee that the whole objective is convex
w.r.t ξ with fixed H . This would degenerate the quality of
solution at each iteration, leading to sub-optimal solution.
Here we use the following theorem to give a good substitute
of −Tr(KξHHT ) while with convexity.
Theorem 2: Tr(Kξ(In −HHT )) is convex w.r.t ξ with fixed
H .
Theorem 2: Since HTH = Ik, we have HHTH = H .
By denoting H = [h1, h2, · · · , hk], we can obtain that
HHThc = hc, ∀1 ≤ c ≤ k. This means HHT has k
eigenvalues with 1 and its rank is no more than k, which
implies that it has n − k eigenvalues with 0. As a con-
sequence, In − HHT has n − k and k eigenvalues with
1 and 0. This induces Tr(Kp(In − HHT )) ≥ 0. With
Tr(Kξ(In −HHT )) =

∑m

p=1 ξ
2
pTr(Kp(In −HHT )), we

can conclude that Tr(Kξ(In−HHT ) is convex w.r.t. ξ with
fixed H .

According to the above-mentioned observations, the maxi-
mization problem described by (9) can be turned to following
minimization problem:

min
H∈Rn×k,ξ∈Rm

+

Tr(Kξ(In −HHT )) +
λ

2
ξTMξ

s.t. HTH = Ik, ξ
T 1m = 1,

(10)

where λ is a parameter used to balance the two terms.
As can be seen from (9) and (10), they maximize the

kernel alignment between the combined kernel matrices Kξ

and the ideal kernel matrix HHT globally. In such a way,
closer and farther sample pairs will be equally aligned to
the same ideal similarity, intra-cluster variation of samples
will be neglected. In other words, the discrimination be-
tween samples are not fully exploited. In addition, the closer
samples are not constrained to share similar label vectors.
Therefore, the locality of samples are not well preserved,
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which is a critical priori in unsupervised learning. In this
paper, we propose to locally align the similarity of each
sample to its k-nearest neighbours with corresponding ideal
kernel matrix rather than enforce the global alignment of
all the samples, which is flexible and able to well handle
the intra-cluster variations. In addition, for each sample, we
construct a local Laplacian matrix to regularize that closer
samples being allocated similar labels. Thus the locality of
data samples can be well preserved.

If we use K
(i)
ξ and H(i) to represent the sub-matrices

of Kξ and H , and their indices are specified by the τ -
nearest neighbors of the i-th sample, then we have K

(i)
ξ =

S(i)TKξS
(i) and H(i) = S(i)TH , where S(i) ∈ {0, 1}n×τ

is a matrix indicating the τ -nearest neighbors of the i-th
sample. For each pair of sample, if they are close to each
other, then their label vector should be also similar, this can
be formulated as following:

min
H∈Rn×k

1

2

n
∑

i=1

τ
∑

p,q=1

||h(i)
p − h(i)

p ||22[K
(i)
ξ ]

pq
, (11)

where h
(i)
p and h

(i)
q represent the p-th and q-th row of H(i),

respectively. (11) can be easily rewritten as the following
trace form:

min
H∈Rn×k

n
∑

i=1

Tr(H(i)TL(i)
τ H(i)), (12)

where L
(i)
τ is the local Laplacian matrix of sample i with

local similarity matrix K
(i)
ξ .

Then we rewritten (10) in a locally regularized form and
combine it with (12) to induce our final LPKA model:

min
H∈Rn×k,ξ∈Rm

+

n
∑

i=1

Tr(K
(i)
ξ (Iτ −H(i)H(i)T )) +

λ

2
ξTM (i)ξ

+ βTr(H(i)TL(i)
τ H(i))

s.t. HTH = Ik, ξ
T 1m = 1,

(13)
where Iτ and is an identity matrix with size τ×τ . By defining
A(i) = S(i)S(i)T , we obtain the objective function of our
proposed LPKA:

min
H∈Rn×k,ξ∈Rm

+

n
∑

i=1

Tr(Kξ(A
(i) −A(i)HHTA(i))) +

λ

2
ξTM (i)ξ

+ βTr(HTS(i)L
(i)

τ S(i)TH)

s.t. HTH = Ik, ξ
T 1m = 1

(14)

1) Optimization algorithm

Note that (14) is not jointly convex with respect to H and ξ,
while it is convex to each variable if the other one is fixed.
Thus, we design a two-step algorithm to solve this problem
alternately.

Step 1: Updating H with fixed ξ
When ξ is fixed, H can be obtained by solving the following
optimization problem:

max
H∈Rn×k

Tr(HT

n
∑

i=1

(A(i)KξA
(i))H)

− βTr(HT

n
∑

i=1

S(i)L
(i)

τ S(i)TH)

s.t. HTH = Ik, ξ
T 1m = 1

(15)

If we set Ω =
n
∑

i=1

A(i)KξA
(i) and Θ =

n
∑

i=1

S(i)L
(i)

τ S(i)T ,

then (15) can be rewritten as:

max
H∈Rn×k

Tr(HT (Ω− βΘ)H), s.t. HTH = Ik, (16)

which is a standard kernel k-means clustering problem and
can be efficiently solved.

Step 2: Updating ξ with fixed H
Given fixed H , the optimization (14) w.r.t ξ is a quadratic
programming with linear constraints, which turns to the
following problem:

min
ξ∈Rm

+

n
∑

i=1

1

2
ξT (2∆ + λΨ)ξ s.t. ξT 1m = 1, (17)

where ∆ = diag([Tr(K1V ), · · · , T r(KmV )]), V =
n
∑

i=1

(A(i) −A(i)HHTA(i)), and Ψpq =
n
∑

i=1

Tr(KpA
(i)KqA

(i)).

In summary, our algorithm for solving (14) can be outlined
in Algorithm 1. objt denotes the objective value at the t-th
iterations.

Algorithm 1: Optimization Algorithm for the proposed
LPKA.

Input: Multiple kernel matrices {Kp}
m
p=1, k, λ, β and a

small positive constant ε.
Initialization: ξ = 1m/m, and t = 1. Calculating S(i)

for the i-th sample (1 ≤ i ≤ n) by Kξ.
while not converged do

1. Update Kξ by Kt
ξ =

∑m

p=1 (ξ
t
p)

2
Kp;

2. Update Ht by solving Eq. (15);
3. Update ξt by solving Eq. (17);
4. t=t+1
5. Check convergence condition:

(objt−1 − objt)/objt ≤ ε.
end while

Output: H and ξ.

2) Convergence analysis

In Algorithm 1, the neighborhood of each sample is kept un-
changed during the optimization. Specifically, the τ -nearest
neighbors of sample i are measured by K

(i)
ξ . In such a

manner, the objective value of Algorithm 1 is guaranteed
to be monotonically decreased when updating one variable
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FIGURE 1: The objective value of our algorithm at each iteration on each dataset.

with the other fixed at each iteration. Meantime, the whole
optimization problem is lower-bounded. As a sequence, the
proposed algorithm can be guaranteed to be convergent. In
order to empirically study the convergence of Algorithm 1,
we show the variation of the objective values of Eq. (14) on
different datasets in Figure 1, which demonstrate that our
proposed optimization algorithm is very efficient, i.e., the
objective value is monotonically decreased and the algorithm
quickly converges in less than five iterations.

III. RESULTS AND DISCUSSIONS

A. EXPERIMENT RESULTS

1) Experimental settings

To systematically evaluate the clustering performance of
LPKA on the collected datasets, three metrics including
Normalized Mutual Information (NMI) [49], Purity [50], and

Adjusted Rand Index (ARI) [51] are used in our experiments.
NMI and Purity take on values between 0 and 1, but ARI can
be negative. The three metrics measure the concordance be-
tween the ground truth cell types and the cell types calculated
by clustering algorithms, thus higher values indicate better
performance for all metrics.

Given two clustering results U and V on a set of N data
points with NU and NV clusters, respectively, the mutual
information NMI is defined as

NMI(U, V ) =

∑NU

p=1

∑NV

q=1 |Up ∩ Vq| log
N |Up∩Vq|
|Up|×|Vq|

max
(

−
∑NU

p=1 Up log
|Up|
N

,−
∑NV

q=1 Vq log
|Vq|
N

)

(18)
where the numerator is the mutual information between U
and V , and the denominator represents the entropy of the
clustering U and V .
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FIGURE 2: NMI evaluation of different clustering methods on different datasets.

For Purity, each identified cluster is assigned to the one
which is most frequent in the cluster, and then the accuracy
of this assignment is computed by counting the number of
correctly assigned samples divided by the number N :

Purity(U, V ) =

∑

p maxq|Up ∩ Vq|

N
. (19)

The ARI depends on the following four quantities:

• Ouv , the number of objects in a pair that are placed in
the same group in U and V ;

• Ou, the number of objects in a pair that are placed in the
same group in U but in different groups in V ;

• Ov , the number of objects in a pair that are placed in the
same group in V but in different groups in U ;

• O, the number of objects in a pair that are placed in the
different group in U and V .

Then, ARI is defined as

ARI(U, V ) =

(

n
2

)

(A)− [(B) (C) + (Ov +O) (Ou +O)]
(

n
2

)

− [(B) (C) + (Ov +O) (Ou +O)]
,

(20)
where A = Ouv +O, B = Ouv +Ou and C = Ouv +Ov .

As can be seen from Eq. (14), there are three parameters
in LPKA including λ, β and τ need to be set. In our experi-
ments, we tune all the parameters by a “grid-search" strategy.
Specificaly, λ and β are chosen from {0.01, 0.1, 1, 10, 100},
and τ is chosen from {0.3n, 0.4n, 0.5n}. Finally, the best
clustering results are used for comparison.

2) Compared with other methods

We compare the proposed LPKA with several existing meth-
ods, including PCA, traditional k-means, t-SNE [52], spectral
clustering (“SC"), sparse spectral clustering (“SSC") [53] and
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FIGURE 3: Purity evaluation of different clustering methods on different datasets.

SIMLR [40]. For all the compared methods, their parame-
ters are turned carefully as suggested in their corresponding
papers for fair comparison. We show the NMI, Purity and
ARI of different clustering algorithms on different datasets in
Figure 2, Figure 3 and Figure 4, respectively. As can be seen,
the proposed LPKA has higher performance than all of other
methods on the 9 datasets in terms of three different metrics,
which demonstrates the superiority of LPKA. Therefore, our
proposed LPKA can be used as a reliable pre-processing
step to distinguish different cell types, which can reveal new
insights into many other biological problems.

3) Parameter sensitivity

In our experiment, we turn the parameters λ, β and τ to
obtain the optimal results. To study the sensitivity of the
LPKA with regard to the parameters in Eq. (14), we con-

duct experiments by fixing one of the three parameters and
varying the other two ones. Firstly, we fix β = 1, and vary
τ and λ. Figure 5-7 plot the values of the NMI, Purity and
ARI, respectively, with fixed β. Secondly, we fix λ = 1,
and vary τ and β. Figure 8-10 plot the values of the NMI,
Purity and ARI, respectively, with fixed λ. Thirdly, we fix
τ = 0.4n, and vary λ and β. Figure 11-13 plot the values
of the NMI, Purity and ARI, respectively, with fixed τ . As
can be seen, the clustering results are robust with respect to
the varying of λ, while the results are a little sensitive to β
and τ to some extend, which demonstrate the significance of
preserving the local structure of original data. We can obtain
optimal clustering results with different combinations of the
three parameters.
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FIGURE 4: ARI evaluation of different clustering methods on different datasets.

IV. CONCLUSIONS

In this work, we present a novel multiple kernel clustering
framework for scRNA-seq data clustering via locality pre-
serving kernel alignment. A series of similarity kernel matri-
ces are firstly generated by using different kernel functions.
Then we transfer the clustering task to a multiple kernel k-
means problem with the kernels aligned in a local manner. In
order to preserve the local structure of the data for boosting
final clustering performance, we construct a local Laplacian
matrix for each sample to constrain that closer samples
should be allocated similar labels. An alternate updating
algorithm with theoretical analysis is developed to solve the
proposed problem. Experiments with parameter sensitivity
analysis on various real scRNA-seq data are conducted to
demonstrate that our method can obtain superior results when
compared with other state-of-the-art approaches.
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FIGURE 9: Purity of our method w.r.t τ and β on different datasets (λ = 1).

[37] A. A. Margolin, “Localized data fusion for kernel k -means clustering with
application to cancer biology,” in Neural Information Processing Systems,
2014, pp. 1305–1313.

[38] L. Du, P. Zhou, L. Shi, H. Wang, M. Fan, W. Wang, and Y. D. Shen,
“Robust multiple kernel k-means using âĎŞ 2;1 -norm,” in International
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FIGURE 10: ARI of our method w.r.t τ and β on different datasets (λ = 1).
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FIGURE 11: NMI of our method w.r.t λ and β on different datasets (τ = 0.3).
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FIGURE 12: Purity of our method w.r.t λ and β on different datasets (τ = 0.3).
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FIGURE 13: ARI of our method w.r.t λ and β on different datasets (τ = 0.3).
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