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Single-cell RNA sequencing demonstrates the
molecular and cellular reprogramming of
metastatic lung adenocarcinoma
Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4,

Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8, Bo Mi Ku9, Hye Hyeon Eum 1,2,3, Soyean Choi 1,

Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12,

Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12✉ & Hae-Ock Lee 1,2,3,6✉

Advanced metastatic cancer poses utmost clinical challenges and may present molecular and

cellular features distinct from an early-stage cancer. Herein, we present single-cell tran-

scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung

cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating

the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell

subtype deviating from the normal differentiation trajectory and dominating the metastatic

stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional

changes that create a pro-tumoral and immunosuppressive microenvironment. Normal

resident myeloid cell populations are gradually replaced with monocyte-derived macrophages

and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances

our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals

potential diagnostic and therapeutic targets in cancer-microenvironment interactions.
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N
on-small cell lung cancer (NSCLC) is histologically divi-
ded into adenocarcinoma, squamous cell carcinoma, and
large-cell carcinoma. Lung adenocarcinoma (LUAD) is

the most common type, accounting for approximately 40% of all
lung cancers. LUAD is often detected at the metastatic stage with
prevalence in the brain, bones, and respiratory system1. Distant
metastasis is the major cause of mortality in lung cancer; how-
ever, specific aspects of metastatic lung cancer and its associated
microenvironments remain poorly understood.

Efforts made for the understanding of lung cancer progression
and metastasis have largely focused on profiling of cancer cells
with genetic aberrations2,3. However, progression and metastasis
are also influenced by complex and dynamic features in tumor
surroundings4. For instance, application of immune-checkpoint
blockades inhibiting PD-1 (programmed cell death protein 1) and
CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) in
immune cells has opened a new therapeutic window for meta-
static NSCLC treatment5. The parsing of unique classes of tumor
microenvironments in advanced cancer can reveal the key ele-
ments involved in the predisposition to tumor-induced immu-
nological changes, and these elements can be exploited for novel
immunotherapeutic strategies6.

Single-cell RNA-sequencing (scRNA-seq) has been recently
used for the profiling of tumor microenvironments7,8. This
technology allows massively parallel characterization of thou-
sands of cells at the transcriptome level. Previous scRNA-seq
studies related to lung cancer have been limited to early stage
primary tumors and normal tissues resected from a small number
of samples of mixed histological types9,10. In the present study,
we report the comprehensive single-cell transcriptome profiling
of LUAD from early to advanced stages of primary cancer and
distant metastases, and unveil cellular dynamics and molecular
features associated with the tumor progression.

Results
Cellular dynamics in early, advanced, and metastatic LUAD. To
elucidate the cellular dynamics in LUAD progression, tumor from
primary lung tissues, pleural fluids, and lymph node or brain
metastases were obtained from 44 patients with treatment-naïve
LUAD during endobronchial ultrasound/bronchoscopy biopsy or
surgical resection (Fig. 1a, Supplementary Data 1). Distant nor-
mal tissues or lymph nodes were also collected for comparative
analyses. We cataloged 208,506 cells into nine distinct cell
lineages annotated with canonical marker gene expression
(Fig. 1b-d, Supplementary Fig. 1, Supplementary Data 2), thus
identifying epithelial (alveolar and cancer cells), stromal (fibro-
blasts and endothelial cells), and immune cells (T, NK, B, mye-
loid, and MAST cells) as the common cell types, and
oligodendrocytes only in brain metastases (mBrain). Due to the
bias introduced during tissue dissociations9, single-cell RNA
sequencing data overestimated the immune cell proportions in
comparison to the stromal and epithelial cell types (Supplemen-
tary Fig. 2a). In addition, the recovery rate of tumor cells was
affected by the histological types of LUAD (Supplementary
Fig. 2b). Therefore, we assessed the compositions of immune cell
subsets after removing the epithelial and stromal populations.
The results faithfully reproduced the immune cell profiles
detected by mass cytometry by time of-flight (CyTOF) in early
LUAD11. The most abundant immune cells at primary tumor
sites were observed to be T lymphocytes and myeloid cells
(Supplementary Fig. 2c, d). Moreover, we confirmed T and B
lymphocyte enrichment and the decline of natural killer (NK) and
myeloid cells in early- and advanced-stage lung cancers (tLung
and tL/B, respectively) compared to the normal lung tissues
(nLung), indicating the activation of adaptive immune responses.

Notably, metastatic lymph nodes (mLN) harbored a significant
number of myeloid cells unlike normal lymph nodes (nLN),
indicating an association of myeloid infiltration with metastasis.
mBrain samples contained immune cells (T, B, and NK cells) at
detectable levels as well as resident oligodendrocytes and myeloid
cells (microglia). These cellular compositions demonstrated dif-
ferences in tissue-specific resident populations, as well as gross
alterations inflicted by tumor growth and invasion. Thus, our
LUAD atlas, revealed cellular dynamics and progression-
associated changes in each cellular component at an unprece-
dented scale and depth.

Tumor intrinsic signatures associated with LUAD progression.
In the present study, we have explored intrinsic characteristics of
adenocarcinoma cells through comparative analysis between
normal epithelial and tumor cells from surgical resection. Normal
epithelial cells mainly comprised four distinct subpopulations,
including alveolar types I (AT1) and II (AT2), and club cells and
ciliated cells, expressing well-defined epithelial markers (Supple-
mentary Fig. 3a-c). AT1 and AT2, the most abundant types, can
initiate LUAD in the distal airway12. In tumor tissues, epithelial
cell types may contain residual non-malignant cells along
with malignant tumor cells. To separate the definitive tumor cells
from a potential non-malignant population, we have used genetic
aberrations by inferring copy number variations (CNVs) from
the gene expression data8,13. The inferred CNV patterns con-
firmed patient-specific perturbations in malignant tLung, tL/B,
mLN, and mBrain cells (Supplementary Fig. 3d). In the sub-
sequent tumor cell analysis, we excluded epithelial cells without
CNV present in tumor tissues, because of their ambiguous
identity.

Using the definitive tumor and normal epithelial cells, we
constructed a transcriptional trajectory14 (Fig. 2a) to adjust the
inter-patient genomic heterogeneity, and find key gene expression
programs governing the tumor progression. Indeed, transcrip-
tional states in the trajectory revealed normal differentiation
paths as well as progression-associated changes in tumors. Firstly,
ciliated epithelial and alveolar cells were located in separate
trajectory branches, marking their distinct differentiation states.
Secondly, club cells were located between the ciliated and alveolar
branches, indicating the intermediate differentiation state15.
Lastly, tumor cells formed a branched structure, with two
transcriptional states (tS1 and tS3) along the normal epithelial
cells; however, one (tS2) was observed to be distinctly positioned
at the opposite ends of the tS1 and tS3 branches (Fig. 2a, b). In
the individual patient-by-patient trajectories, the separation of tS2
from the normal epithelial cells was repeatedly observed
(Supplementary Fig. 3e) despite the different trajectory structure
in each patient due to the limited representation of cellular
components. To identify transcriptional signatures defining
cellular states in the trajectory, we selected differentially expressed
genes specific to each tumor or normal cell state. Sets of 19, 28,
79, 56, 33, and 248 genes were identified as significantly
upregulated signatures in tumor cell states 1, 2, 3 (tS1, tS2, tS3)
or normal cell states 1, 2, and 3 (nS1, nS2, nS3) (Supplementary
Data 3). Most of S1- and S3-associated genes were shared but
differentially regulated between tumor and normal cells, and
related to normal epithelial functions maintaining the surfactant
homeostasis, lung alveolus development, and cilium movement
(Fig. 2c). By contrast, S2-associated genes showed definitive
tumor-oriented characteristics, such as aggressive cell movement
and abnormal proliferation or apoptosis. Hence, tS1 and
tS3 states represented a de-regulation of the normal differentia-
tion programs, whereas the tS2 tumor cell state deviated
completely from the normal transcriptional programs.
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Fig. 1 Comprehensive dissection and clustering of 208,506 single cells from LUAD patients. a Overview of tissue origins in the present study collection.

Single-cell RNA sequencing was applied to cancer tissue-derived whole cells from primary sites (tLung and tL/B), pleural fluids (PE), lymph node (mLN),

and brain metastases (mBrain), as well as normal tissues from lungs (nLung) and lymph nodes (nLN). b tSNE projection within each tissue origin, color-

coded by major cell lineages and transcript counts. c tSNE plot of 208,506 single cells colored by the major cell lineages as shown in (b). d Dot plot of

mean expression of canonical marker genes for nine major lineages from tissues of each origin, as indicated.
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LUAD patients contained both tS1 and tS2 tumor subpopula-
tions at different fractions, with minor numbers of tS3 (Fig. 2d,
tLung). The tS2-specific gene expression was increased for tumor
cells that were isolated from the late-stage biopsies or metastases
(tL/B, mLN, and mBrain), suggesting an association with tumor
progression and metastasis (Fig. 2e). An increase in tS2-specific
gene expression was supported at the protein level through
immunohistochemical staining of LUAD samples (Fig. 2f). We
further tested the clinical impact of the tS2 signature using an
independent LUAD cohort from the Cancer Genome Atlas
(TCGA). Patients with high tS2 signature gene expression showed
worse overall survival (two-sided log-rank test p < 0.01) than
those with low expression (Fig. 2g). By contrast, there was no
survival difference for lung squamous cell carcinoma (LUSC),
indicating an explicit involvement of the tS2 signature with
LUAD progression.

To further identify genes related to LUAD progression and/or
metastasis, we directly compared tumor cells in early- versus
advanced-stage primary, or primary versus metastasis samples
(Supplementary Fig. 4, Supplementary Data 4). These pairwise
comparisons revealed the gene sets to be differentially regulated

during tumor progression and/or metastasis. Survival analysis
using these gene sets revealed that late-stage specific gene sets
have the highest prediction power for poor survival in LUAD
patients.

Stromal cells orchestrate tissue remodeling and angiogenesis. To
investigate stromal cell dynamics in the tumor microenvironment,
we obtained 6168 presumed fibroblasts and endothelial cells as
shown in Fig. 1b, and performed a principal component analysis
(Supplementary Fig. 5a). The first principal component was
observed to split the cells into 2107 endothelial cells and 3794
fibroblasts, with a concordant expression of representative marker
genes (average log-normalized expression > 1).

Sub-clustering of endothelial cells (ECs) revealed eight clusters
(Fig. 3a). Most EC clusters were observed to belong to the normal
tissues and assigned to known vascular cell types, including tip
and stalk-like cells, lymphatic ECs, and endothelial progenitor
cells16,17 (Fig. 3b). By contrast, one distinct cluster was identified
as tumor-derived ECs (EC-C1) present in tLung and mBrain
samples (Fig. 3c, Supplementary Fig. 5b, c). Tumor ECs
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value (p) was calculated using the two-sided log-rank test.
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demonstrated a strong activation of VEGF and Notch signaling
(Fig. 3b), which regulates the development and cell fate
determination of endothelial cells18,19. Gene expression network
analysis of tumor ECs further highlighted angiogenesis as the
upregulated genes’ functional category (Fig. 3d, Supplementary
Data 5). Thus, brain metastases and primary tumors induced
similar vascular changes to accommodate extensive neovascular-
ization. Among the upregulated genes, insulin receptor (INSR)
overexpression in the tumor vasculature was suggested as an
attractive therapeutic target20. Together, these data further
supported the therapeutic strategies targeting pro-angiogenic
pathways in lung cancer and brain metastases21,22. Notably,
significantly downregulated genes in tumor ECs were related to
immune activation (Fig. 3d, Supplementary Data 5), supporting a
previous finding that tumor ECs suppress the immune
responses9,23.

Sub-clustering of fibroblasts revealed 12 distinct clusters,
assigned to seven known cell types, including COL13A1+ and
COL14A1+ matrix fibroblasts, myofibroblasts, smooth muscle
cells, mesothelial cells, fibroblast-like cells in mBrain, and
pericytes24–26 (Fig. 3e). The COL13A1+ and COL14A1+ matrix
fibroblasts comprised the main fibroblast types in normal lung
(FB-C0 and 6) and early stage tumor (FB-C1 and 2) tissues
(Fig. 3f, g; Supplementary Fig. 5d, e). By contrast, myofibroblasts
in FB-C3 exclusively originated from tumor tissues, including
tLung, tL/B, and mLN samples. Myofibroblasts have been
described as cancer-associated fibroblasts promoting extensive
tissue remodeling27, angiogenesis28, and tumor progression29.
The myofibroblasts in mLN might be fibroblastic reticular cells,
which have been reported to be immunologically specialized
myofibroblasts using encapsulated mesenchymal sponges to
gather immune cells into the lymph node30. The fibroblast-like
cells in mBrain (Fig. 3f, g; Supplementary Fig. 5d, e; FB-C7;
CYP1B1+ and APOD+)26 might represent cells within the
perivascular space of central nervous system (CNS) that expanded
after CNS injury31. The infiltration of myofibroblasts in LUAD
was confirmed by the expression of the marker protein alpha
smooth muscle actin (α-SMA) (ACTA2 gene product) in the
tumor stroma (Fig. 3h) and in tumor-derived EPCAM−CD45−

cells (Fig. 3i, j; Supplementary Fig. 10). Partial protein expression
of α-SMA was observed in the vascular smooth muscle cells in
normal tissues. Conclusively, cellular dynamics in endothelial
cells and fibroblasts support a consistent phenotypic shift of
stromal cells towards promoting tissue remodeling and angiogen-
esis in LUAD and distant metastases.

Suppressive immune microenvironment primed by myeloid
cells. Myeloid cells play a critical role in maintaining tissue
homeostasis, and regulate inflammation in the lung. Sub-
clustering of 42,245 myeloid cells, as shown in Fig. 1b, revealed
them to be monocytes, macrophages, and dendritic cells (Fig. 4a,
b). Neutrophils were not recovered in our experimental process.
Two macrophage types are known to populate the normal adult
lung, including the alveolar (AM) type highly expressing the
MARCO, FABP4, and MCEMP1 genes, and the interstitial type
derived from circulating monocytes32,33. Mo-Macs, which are
functionally different from tissue-resident macrophages, are
recruited and induced to express profibrotic genes during lung
fibrosis34. We mainly detected the AM type in normal lung tis-
sues, including anti-inflammatory AM (M−C1 and 6; APOE+,
CD163+, and C1QB+)35–37, pro-inflammatory AM (M-C5;
IL1B+ and CXCL8+)38, and actively cycling AM expressing anti-
inflammatory markers (M-C13)39. By contrast, lung tumor and
distant metastasis tissues were strongly enriched in mo-Macs
(anti- and pro-inflammatory mo-Macs in M-C0 and 2,

respectively). Both normal and tumor tissues contained clusters of
S100A9+ monocytes (M-C3)39 or dendritic cells (DCs). The
remaining clusters displayed origin-specific heterogeneity and
diverse macrophage characteristics, including pleural macro-
phages40 from pleural fluids (PE) (M-C8 and 9) or microglia and
macrophages41 derived from mBrain samples (M-C11). The
pleural macrophages lacked the expression of pro-inflammatory
cytokine genes, such as IL1B and CXCL8, but expressed CD163
transcripts, which are associated with a non-inflammatory phe-
notype. Overall, our data suggest that tumor-associated macro-
phages (TAMs) in primary lung tumors and distant metastases
mainly propagated from mo-Macs that were ontologically dif-
ferent from tissue-resident macrophages (Fig. 4c, Supplementary
Fig. 6a, b).

To understand the transcriptional transition from monocytes
to TAMs, we performed an unsupervised trajectory analysis to
infer changes in the status of macrophages from lung or lymph
node samples (Supplementary Fig. 6c, d). Macrophages can
manifest diverse functional phenotypes in health and disease
conditions, as pro-inflammatory or anti-inflammatory subpopu-
lations42. We have detected a serial transformation of pro-
inflammatory monocytes into macrophages along the pseudo-
time axis, with cells losing their pro-inflammatory nature and
gaining anti-inflammatory signatures (Supplementary Fig. 6e, f,
Supplementary Data 6). This transition eventually reached a
branching point at which the two macrophage subpopulations
either retained part of their pro-inflammatory signatures, or were
skewed to an anti-inflammatory gene expression phenotype.
Normal lung and tumor tissues were enriched in pro- and anti-
inflammatory macrophages, respectively. We have also identified
anti-inflammatory macrophages in mLN, with an additional
population (LN-Mac-S6) expressing the macrophage inflamma-
tory factors (MIF, CXCL3, and CCL20) (Supplementary Fig. 6f).
MIF-expressing macrophages also expressed IL1B and TNF at
levels comparable to those in pro-inflammatory monocytes,
indicating unique macrophage profiles in mLN.

Dendritic cell clusters, as shown in Fig. 4b, manifested a
variegated marker gene expression suggesting the presence of
heterogeneous DC subpopulations. For a more comprehensive
analysis, we re-classified DCs into six subsets, including CD1c+
DCs (Langerhans cells, LCs), CD141+ DCs, CD207+CD1a+
LCs, pDCs (plasmacytoid DCs), CD163+CD14+ DCs, and
activated DCs43,44 (Fig. 4d, e). This refined the minor DC
populations within the total myeloid cell clusters (Fig. 4f).
Interestingly, pDCs were rarely found in normal lung tissues, but
recovered in selected tumor tissues and metastatic lymph nodes
(Fig. 4g, h). The pDCs demonstrated an immunosuppressive
phenotype45 represented by the upregulation of leukocyte
immunoglobulin-like receptor (LILR) family genes46, granzyme
B (GZMB) production47, and loss of CD86, CD83, CD80, and
LAMP3 activation marker expression45,48 (Fig. 4i). The presence
of pDCs in some LUAD tissues was confirmed through flow
cytometry (Fig. 4j, k; Supplementary Fig. 10). Therefore, both
mo-Macs and pDCs could create an immunosuppressive
microenvironment that possibly caused a sub-optimal tumor
antigen presentation in LUAD and distant metastases.

Activation and perturbation of adaptive immunity. Tumor-
infiltrating B cells have been identified in tertiary lymphoid
structures within NSCLC. Mediating an anti-tumor immune
response, these cells have been reported to be associated with
prolonged patient survival49. Relative proportion of B cells was
observed to be increased in primary tumors, compared to the
nLung samples (Supplementary Fig. 2c, d). In the lymph nodes, B
cells were abundantly present regardless of metastases. Sub-
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clustering of 27,657 B cells revealed 14 clusters (Fig. 5a) con-
verging to five differentiation states9,50,51, which were represented
as follicular B cells, plasma B cells expressing immunoglobulin
gamma (IgG), mucosa-associated lymphoid tissue-derived plasma
B cells expressing IgA and joining chain, granzyme B-secreting B
cells, and germinal center (GC) B cells (Fig. 5a, Supplementary
Fig. 7a, b). Specifically, GC B cells50 were separated into either
dark or light zone cells with distinct transcriptional programs for
proliferation or activation, respectively52 (Supplementary Fig. 7a).
Among these, follicular B cells were observed to be the most

abundant in all samples (Fig. 5b, Supplementary Fig. 7c). We have
observed tissue-specific enrichment for other subsets (Supple-
mentary Fig. 7c, d). Firstly, normal lung tissues were enriched in
granzyme B-secreting cytotoxic cells, whose differentiation was
modulated by T-cell-derived IL-12 (ref. 51). Granzyme B secretion
from these cells could play a significant role in mediating cellular
cytotoxicity as an alternative to T cells53. Secondly, we found
more GC B cells in primary tumors and LN metastases than in
normal lung and lymph nodes, respectively. These data strongly
suggest highly activated humoral immune responses in some
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LUAD patients. Each B cell subtype displayed a slightly different
B cell receptor or Ig light chain variable gene expression profile
(Supplementary Fig. 7e), suggesting the generation and clonal
expansion of tumor antigen-specific B cells.

T lymphocytes are the central players mediating anti-tumor
immunity and are the targets of immune-checkpoint therapies.
For the sub-clustering analysis of T lymphocytes, we initially
collected 91,227 cells from T and NK cell clusters (Fig. 1b)
sharing common transcriptome characteristics, and confidently
defined 64,403 T/NK cells with a secondary cell filtration using
marker gene expression (average of log-normalized expression >
2). The T/NK cell sub-clusters reflected heterogeneous cell
lineages and functional states that were identified as CD8+ T
(naïve, effector, exhausted), naïve CD4+ T, exhausted T follicular
helper, T helper, regulatory T, and NK cells (Fig. 5c, Supple-
mentary Fig. 8a). In accordance with previous findings9–11, we
found the depletion of NK cells and the emergence of regulatory
T cells (Tregs) in the primary tumor tissues compared to normal
tissues (Fig. 5d, Supplementary Fig. 8b, c). Treg cells persisted in
tL/B, mLN, and mBrain, delivering a suppressive mechanism of
anti-tumor immunity during tumor progression and metastasis.
CD8+ T cells demonstrated a dynamic functional spectrum as
that in naïve, cytotoxic, or exhausted states from the transcrip-
tional trajectory (Fig. 5e, f, Supplementary Data 7). Exhausted
CD8+ T cells were mainly collected from tumor tissues (tLung,
tL/B, mLN, and mBrain), whereas cytotoxic effector CD8+ T cells
were collected from nLung (Fig. 5g). Naive CD8+ T cells were
mostly derived from nLN and PE. Differences in the T/NK cell
subset dynamics (NK, Treg, and cytotoxic or exhausted CD8+
T cells) between primary tumor and normal lung tissues were
further supported by conventional flow cytometry analysis
(Fig. 5h, Supplementary Fig. 10). Altogether, the changes in
cellular composition and gene expression phenotype of T cells
confirmed the direction of tumor immunity towards immune
suppression in LUAD.

Inference of inter-cellular and molecular interactions. Cellular
dynamics during LUAD progression was further confirmed
through chi-square tests for different tissue distributions of 40
immune and stromal cell subsets (Fig. 6a). Tumor-specific
populations, such as mo-Macs, pDCs, Tregs, myofibroblasts,
and tumor ECs were spread out in primary tumors and distant
metastases, whereas origin-specific immune and stromal cell
subsets (alveolar mac, pleural mac, microglia/mac, and FB-like
cells) were specifically associated with their corresponding tissue
sites. The proportions of exhausted CD8+ T cells and mo-Macs
were markedly increased during LUAD progression and

metastases (Fig. 6b). In addition, increase in these two sub-
populations in the tumor microenvironment was associated with
the high tumor mutation burden (TMB) (Fig. 6c). As high TMB is
the principal predictor of successful immune checkpoint therapy,
our results support the role of mo-Macs and exhausted CD8+
T cells in the successful application of immune checkpoint
therapies in advanced LUAD.

To delineate the molecular associations underlying inter-
cellular relationships, we first constructed a cellular communica-
tion network using potential receptor-ligand pair interactions. In
the tLung, we substantiated the dominant crosstalk between the
tS2, a novel cancer cell state associated with LUAD progression
and metastases, with myeloid or stromal cell types (Fig. 6d,
Supplementary Fig. 9, Supplementary Data 8). In the network,
interactions between the tS2 cells and mo-Macs were predicted to
be most significant, whereas interactions between mo-Macs and
exhausted CD8+ T cells were observed to be the most prominent
within the immune cell network. The proportion of mo-Macs and
exhausted CD8+ T cells also demonstrated positive correlations
with an increase in tS2 cancer cells (Fig. 6e). For other cell types,
we found potential interactions between tS2/Malignant cells and
tumor ECs through angiogenesis signaling molecules, such as
VEGF-VEGFRs and ephrin-Eph receptors54 (Fig. 7a, b). Tumor
ECs would receive angiogenic stimulatory signals from mo-Mac/
malignant cells through VEGF and its receptor FLT1/VEGFR1,
KDR/VEGFR2, as a key mediator of angiogenesis in cancer55–57

for samples of all tumor stages or for brain metastasis samples.
Further, we predicted the molecular interactions between mo-

Macs, exhausted CD8+ T, and cancer cells in primary tumors
(tLung and tL/B) or distant metastases (mLN and mBrain), which
had a dominant crosstalk in LUAD (Fig. 7c). Most ligand-
receptor pairs between mo-Macs and tS2/Malignant cells were
involved in signaling of growth factors, such as VEGFA and
VEGFB for all stage samples. Malignant cells would receive
activation signals from mo-Macs through TNFR (TNF-
TNFRSF1A), TGFBR (TGFB1-TGFBR2), and EGFR (EREG-
EGFR) in metastatic lymph nodes. The TNFR signaling was also
prominent in the late-stage tL/B. In return, malignant cells from
the metastatic lymph nodes would provide the growth signal to
mo-Macs (CSF1-CSF1R). Potential signal transduction to the
exhausted CD8+ T cells was mostly inhibitory, delivered by tS2/
malignant cells for samples of all tumor stages (NECTIN2-TIGIT)
or for metastatic lymph nodes (LGALS9-HAVCR2). Interestingly,
mo-Macs were predicted to deliver both activating (TNF-
TNFRSF1B/ICOS) and inhibitory (LGALS9-HAVCR2) signals to
exhausted CD8+ T cells. Therefore, our results have demon-
strated the complex nature of mo-Macs in LUAD, which greatly

Fig. 4 Diversity within the myeloid cell lineage and functionality according to tissue origins. a tSNE plot of myeloid cells, color-coded by clusters and cell

subsets as indicated. b Complex heatmap of selected myeloid cell marker genes in each cell cluster. Left: Tissue preference of each cluster. Right: Relative

expression map of known marker genes associated with each cell subset. Mean expression values are scaled by mean-centering, and transformed to a

scale from -2 to 2. Pro-: Pro-inflammatory; Anti-: Anti-inflammatory. c Average cell number and relative proportion of myeloid cell subsets from each tissue

origin (excluding undetermined cells). nLung, n= 11 samples; tLung, n= 11; tL/B, n= 4; nLN, n= 10; mLN, n= 7; PE, n= 5, mBrain, n= 10. d, e tSNE plot

of DCs, color-coded by clusters, cell subsets, and canonical marker gene expression (gray to red). f Partitioning of dendritic cell (DC) subsets on tSNE plot

of myeloid cells in (a). g Cell number and relative proportion of DC subsets in each sample. h Tissue preference of DC subsets. RO/E is the relative score of

observed cell numbers over expected cell numbers calculated by chi-square test. The RO/E values of all tissue origins are shown in different colors. Black

dots represent different patients. *p < 0.05; **p < 0.01, two-sided Student’s t test. i Median expression of selected marker genes for DC subsets associated

with their functionality in each DC subset. **, one-way ANOVA test p-value < 0.01. pDCs, n= 172 cells; Activated DCs, n= 456; CD1c+ DCs, n= 1,782;

CD141+ DCs, n= 303; CD207+CD1a+ LCs, n= 177; CD163+CD14+ DCs, n= 1,197. j Representative flow cytometry plots showing pDC (CD11c-CD123+

DCs) populations in primary tumor (T09) and normal lung (N09) tissues. k Paired dot plot of the percentage of pDC (CD11c-CD123+ DCs) population in

myeloid cells (CD45+Lin-HLA-DR+) derived from nLung-tLung paired samples (four pairs; P0009, P0014, P0019, P0041). The increase of pDC

populations was detected in the selected primary tumor tissues (T09, T14, and T41). P-value = 0.26, two-sided Student’s t test. In the box plot in (h) and

(i), each box represents the interquartile range (IQR, the range between the 25th and 75th percentile) with the mid-point of the data, whiskers indicate the

upper and lower value within 1.5 times the IQR.
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Fig. 5 B cell- and T/NK cell-mediated immune responses during lung cancer progression. a tSNE plot of B cells, color-coded by clusters and cell subsets

as indicated. DZ: dark zone; LZ: light zone; GrB, granzyme B; MALT: mucosa-associated lymphoid tissue. b Average cell number and relative proportion of B

cell subsets from tissues of each origin (excluding undetermined cells). nLung, n= 11 samples; tLung, n= 11 samples; tL/B, n= 4 samples; nLN, 10 samples;

mLN, n= 7 samples; PE, n= 5 samples, mBrain, n= 10 samples. c tSNE plot of T/NK cells, color-coded by clusters and cell subsets as indicated. Tfh: T

follicular helper; Th: T helper. d Average cell number and relative proportion of T/NK cell subsets from tissues of each origin (excluding undetermined

cells). nLung, n= 11 samples; tLung, n= 11 samples; tL/B, n= 4 samples; nLN, 10 samples; mLN, n= 7 samples; PE, n= 5 samples, mBrain, n= 10 samples.

e Unsupervised trajectory of CD8+ T cell functional state transitions. f Correlation of Monocle components with T cell functional features (mean

expression of signature genes in Supplementary Fig. 8a). Each dot indicates single cells colored by their clusters. Solid black line and the top-right text (r)

denote LOESS fit and Pearson’s correlation, respectively (top). Violin plot of T cell functional features in each cluster (bottom). **, one-way ANOVA test p-

value < 0.01. g Tissue distribution along functional states in CD8+ T cells. h Flow cytometry plots gated on NK and T cell subsets (Treg, cytotoxic and

exhausted CD8+ T cells) from primary tumor (T08) and normal lung (N08) tissues.
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influences T cell functionalities to balance immune activation and
exhaustion. Taken together, the inter-cellular interactions suggest
a tight relationship between immune cell dynamics and molecular
features of cancer cells that may determine the prognostic and
therapeutic responses in LUAD.

Discussion
In the present study, we have depicted the cellular landscape of
LUAD from the early to the advanced stages, encompassing the
primary and metastatic sites. This LUAD atlas has revealed the
characteristics of tumor cells and associated microenvironments,
and further illuminated changes in cellular and molecular net-
works during tumor progression. To the best of our knowledge,
this provides the most comprehensive cellular interaction map of
LUAD and a framework for future discoveries of molecular and
cellular therapeutic targets.

Through systemic multi-patient analyses, we have uncovered
malignant molecular features of cancer cells previously masked by
inter- and intra-patient genomic heterogeneity. In particular, the
projection of cancer and normal epithelial cells into a joint tran-
scriptional trajectory has revealed their similarities and disparities,
implicating the paths of malignant transformation. Two transcrip-
tional branches reflected the differentiation programs for ciliated
(S3) or alveolar (S1) cells in the lung. Club cells were located at the

root of all three branches, suggesting versatile progenitor properties.
Normal samples demonstrated a variable branch distribution
indicating regional heterogeneity with differential proximal (ciliated
and club) or distal (alveolar type) cells58 (Supplementary Fig. 3c).
On the contrary, cancer cells were found mostly in the S1 and S2
branches, showing de-regulation or complete deviation from nor-
mal epithelial transcriptional programs. The cancer cell signature at
the S2 branch, tS2, was specifically associated with lung cancer
progression and metastases in LUAD patients.

Intriguingly, club cells in the S1 and S3 branches expressed a
touch of distal alveolar cell marker and microtubule assembly
genes, respectively. This suggested the commitment towards
alveolar or ciliated cells (Supplementary Data 3). On the contrary,
club cells at the S2 branching point highly expressed genes
involved in innate immune response and detoxification, repre-
senting their original protective function. This club cell subset
might include tumorigenic progenitors susceptible to oncogenic
transformation, as evidenced by sharing of S2 branch formation
with tS2 cells.

We have also found that most alterations in the tumor
microenvironment from normal lung tissues were inflicted at an
early stage, and then sustained in later stages. First, tumor ECs
acquired highly angiogenic, yet immune-compromised proper-
ties. Second, myofibroblasts gradually replaced matrix fibroblasts
in the tumor stroma. Third, mo-Macs and dendritic cells (CD163
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Fig. 6 Phenotypic changes during LUAD progression and metastases. a Tissue distribution map for each of the 40 immune and stromal cell subsets.

Pearson residual calculated using the chi-square test was used to adjust cell-sampling biases between tissue origins. Brown and green colors indicate

enrichment and depletion, respectively. Circle size is proportional to the contribution of a given cell. b Increased proportion of exhausted CD8+ T cells/

mo-Macs during LUAD progression and metastases. Immune cell proportion was estimated within a non-epithelial compartment. *p < 0.05; **p < 0.01,

two-sided Student’s t test. nLung, n= 11 samples; tLung, n= 11 samples; tL/B, n= 4 samples; nLN, 10 samples; mLN, n= 7 samples; PE, n= 5 samples,

mBrain, n= 10 samples. c Enrichment of exhausted CD8+ T cells/mo-Macs in tLung samples with a high mutational burden (TMB). The significance was

determined using two-sided Student’s t test. high, n= 3 samples, int, n= 3 samples, low, n= 5 samples. d Heat map depicting the number of significant

interactions between tLung cell subsets. e Association between proportional changes in exhausted CD8+ T cells/mo-Macs and tS2 cancer cells in tLung.

The proportion of tS2 cells was estimated with respect to all malignant cells in each sample. Top-right text (r and r2) represents Pearson’s correlation and

its coefficient of determination. In the box plot in b and c, each box represents the interquartile range (IQR, the range between the 25th and 75th

percentile) with the mid-point of the data, whiskers indicate the upper and lower value within 1.5 times the IQR.
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Fig. 7 Significant ligand-receptor pair genes accounting for specific inter-cellular interactions. Heatmap depicting significant interactions between (a)

Tumor ECs and cancer cells; (b) mo-Macs and tumor ECs; (c) Exhausted CD8+ T cells, mo-Macs, and cancer cells in our LUAD collections (tS2 in tLung

and malignant cells in tL/B, mLN, and mBrain). One-sided p-value is calculated from permutation test.
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+CD14+ DCs) expanded and differentiated towards an overall
anti-inflammatory phenotype, and overpowered alveolar macro-
phages in lung tissues and conventional DCs in the LNs. Fourth,
B cells were activated and expanded in tumor tissues, suggesting
humoral immune responses against tumor antigens. Fifth, cyto-
toxic NK cells were diminished; however, regulatory T cells were
observed to be increased. Within the CD8+ T cell subsets, an
exhausted T cell phenotype has expanded throughout cytotoxic
effector populations. These alterations in stromal and immune
populations cooperatively transformed immune-competent tis-
sues into an immune-suppressive tumor microenvironment.
Aberrant anti-tumor immune responses involving antibodies or
regulatory and exhausted T cells also provide therapeutic
opportunities to direct the immune reaction into productive
directions using immune checkpoint inhibitors and other
immune modulators.

Finally, we demonstrated vibrant cell-population dynamics and
molecular interactions between the tumor, stromal, and immune
compartments. Numerous highly significant interactions were
inferred between mo-Macs and aggressive/metastatic tumor cells
involving the activation of TNF, TGF-β, and EGFR signaling
pathways in tumor cells; these interactions may induce ERK-
MAPK signaling, invasive mesenchymal phenotypes, and tumor
growth. Malignant cells differentially induced the activation of
cellular and humoral immune responses in individual patients;
however, they concomitantly provided inhibitory signals to
induce immune exhaustion. This dual function of immune acti-
vation and regulation was also predicted for mo-Mac populations,
as they provided both stimulatory and inhibitory signals to
T cells. In conclusion, these results illustrate a complex biological
picture, but also suggest a therapeutic opportunity to target mo-
Macs in addition to the other T cell populations for the redir-
ection towards immune activation.

Methods
Human specimens. The present study has been reviewed and approved by the
Institutional Review Board (IRB) of the Samsung Medical Center (IRB no. 2010-
04-039-052), and all subjects have provided their written informed consent. Forty-
four patients diagnosed with pathological LUAD were enrolled in the present study
(Supplementary Data 1). The average age was 62.2 years old and 38.6% of them
were female. A total of 58 samples were collected and immediately transferred for
single-cell isolation. Tumor tissue, distant normal lung, normal lymph node, and
metastatic brain tissues were obtained during conserving surgery at the Samsung
Medical Center (Seoul, Korea) from LUAD patients that had not received prior
treatment. Normal lung tissues were separated from the malignant region by at
least 5 cm. Metastatic lymph node and lung tumor tissues were collected from
advanced-stage LUAD patients through endobronchial ultrasound and broncho-
scopy. Pleural fluids were obtained from LUAD patients through malignant pleural
effusion.

A total of six tissue samples (tumor-normal pair) from three LUAD patients
were additionally collected and immediately dissociated for the flow cytometry
analysis. The collected tissues were as follows: LUNG_T14 (stage IIIA),
LUNG_N14, LUNG_T41 (stage IIIA), LUNG_N41, LUNG_T42 (stage IA),
LUNG_N42, LUNG_T43 (stage IB), LUNG_N43.

Sample preparation. Single-cell suspensions of the collected tissues were prepared
through mechanical dissociation and enzymatic digestion within 16 h after surgery.
Single-cell isolation was performed differently depending on the sample conditions.
(1) Tumor and distant normal lung tissue dissociation was performed using a
tumor dissociation kit (Miltenyi Biotech, Germany) following the manufacturer’s
instructions. Briefly, tissues were cut into pieces that were 2–4 mm in size and
transferred to a C tube containing the enzyme mix (enzymes H, R, and A in
RPMI1640 medium). The GentleMACS programs h_tumor_01, h_tumor_02, and
h_tumor_02 were run with two 30-min incubations on the MACSmix tube rotator
at 37 °C. (2) Normal lymph node tissue and biopsy samples of metastatic lymph
nodes and lung tumor tissues were dissociated using collagenase/hyaluronidase
(STEMCELL Technologies, Vancouver, Canada) and DNase I, RNase-Free (lyo-
philized) (QIAGEN, Hilden, Germany). The tissues were chopped into pieces that
were 2–4 mm in size using a sterile pair of scissors, placed in a 35−mm dish, and
incubated in an enzyme solution (collagenase/hyaluronidase (STEMCELL Tech-
nologies, Vancouver, Canada) and DNase I, RNase-Free (lyophilized) (QIAGEN,
Hilden, Germany) prepared in RPMI1640 medium at 37 °C for 1 h. The tissue

pieces were re-mixed by gentle pipetting at 20-min intervals during incubation. (3)
Metastatic brain tissue was chopped into pieces that were 2–4 mm in size using a
sterile pair of scissors, placed in a 100-mm dish, and incubated in an enzyme
solution (collagenase (Gibco, Waltham, MA, USA), DNase I (Roche, Basel, Swit-
zerland), and Dispase I (Gibco, Waltham, MA, USA); prepared in DMEM) at 37 °C
for 1 h. The tissue pieces were re-mixed by gentle pipetting at 15-min intervals
during incubation. (4) Pleural fluids were transferred to a 50-ml tube, and the cells
were centrifuged at 300g.

Each cell suspension was transferred to a new 50-ml (15-ml tube for biopsy
samples) tube after being passed through a 70-µm strainer. The volume in the tube
was readjusted to 50 ml (or 15 ml) with RPMI1640 medium, and the contents were
centrifuged to remove the enzymes. The supernatant was aspirated, the cell pellet
was resuspended in 4 ml of RPMI1640 medium, and the dead cells were removed
using Ficoll-Paque PLUS (GE Healthcare, Chicago, IL, USA) separation.

Single-cell RNA sequencing and read processing. Each cell suspension was
subjected to 3′ single-cell RNA sequencing using Single Cell A Chip Kit, Single Cell
3′ Library and Gel Bead Kit V2, and i7 Multiplex Kit (10x Genomics, Pleasanton,
CA, USA) with a cell recovery target of 5000, following the manufacturer’s
instructions. Libraries were sequenced on an Illumina HiSeq2500, and mapped to
the GRCh38 human reference genome using the Cell Ranger toolkit (version 2.1.0).

Whole-exome sequencing and data processing. Exomes of 11 formalin-fixed
and paraffin-embedded lung tumor tissues and paired blood samples were captured
using the SureSelectXT Human All Exon V5 kit (5190-6208, Agilent, Santa Clara,
CA, USA). Sequencing libraries were constructed for the HiSeq2500 system (Illu-
mina, San Diego, CA, USA) and sequenced using the 100-bp paired-end mode of
the Hiseq PE Cluster kit v4 (PE-401-4001, Illumina, San Diego, CA, USA), and the
Hiseq SBS kit v4 (PE-401-4003, Illumina, San Diego, CA, USA). Exome-sequencing
reads were aligned to the hg38 reference genome using BWA-0.7.17. Putative
duplications were marked by Picard (version picard-tools-2.18.2-SNAPSHOT).
Sites potentially harboring small insertions or deletions were realigned, and reca-
librated by employing GATK (v4.0.5.1) modules with known variant sites identified
from phase 3 of the 1000 Genomes Project and dbSNP-151. GATK4 Mutect2 was
used to call somatic mutations. The whole-exome sequencing (WES) coverage used
was 100× for the tumors and 50× for the paired blood samples.

Immunohistochemistry. Patient tissue samples subjected to 3′ single-cell RNA
sequencing and obtained from BioBank were fixed in 10% formalin, and embedded
in paraffin. Thereafter, 4-µm-thick sections were prepared. The following anti-
bodies and dilutions were used to detect the respective proteins: anti-IGFBP3
(mouse, 1:100, NBP2-12364, Novus Biologicals, Centennial, CO, USA), anti-CK19
(rabbit, 1:500, NB100-687, Novus Biologicals), anti-AG2 (rabbit, 1:200, NBP2-
27393, Novus Biologicals), anti-S100a2 (rabbit, 1:300, ab109494, Abcam, Cam-
bridge, UK), and anti-αSMA (Mouse, M0851, DAKO Agilent, Santa Clara,
CA, USA).

Flow cytometry. Dissociated cells were multi-stained with three to five antibodies
at 4 °C for 1 h, and then washed once with phosphate buffered saline. All antibodies
were used at concentrations recommended by the manufacturer. After filtering
through a round-bottom tube with a 40-μm strainer-cap, the cells were analyzed
using FACSVerse and FACSuite v1.2 software (BD Biosciences, San Jose,
CA, USA).

In order to examine myofibroblasts, we first stained cells with anti-human
EpCAM-PerCP/Cy5.5 (Cat# 347199, BD) and CD45-PE (555483, BD) antibodies.
Then cells were fixed in 2% paraformaldehyde/PBS, permeabilized in Intracellular
staining Perm Wash Buffer (BioLegend, San Diego, CA, USA), and stained with the
anti-aSMA-Alexa 488 (ab197240, Abcam) antibody.

The pDC populations in lung tissues were identified using anti-CD45-BV421
(368521, BioLegend) and anti-Human 4-Color Dendritic Value Bundle (340565,
BD). Due to a low proportion of pDCs in the lung tissues, only samples in which
CD45+Lin-HLA-DR+ cells exceed 1% of the total cell number were used for the
analysis.

In order to examine NK, T, and regulatory T cells, we stained cells with FITC-
conjugated anti-human CD56 (CD56-FITC, Cat# 318303), CD3-PerCP (300428),
CD4-APC/Cy7 (317417), CD8-BV421 (344747), and CD25-PE (302605)
antibodies. CD3-PerCP (300428), CD8a-PE (300908), CD16-FITC (360715), and
PD-1-BV421 (329920) antibodies were used together to label cytotoxic or
exhausted T cells.

Filtering and normalization of scRNA-seq data. We applied three quality
measures on raw gene-cell-barcode matrix for each cell: mitochondrial genes
(≤20%, unique molecular identifiers (UMIs), and gene count (ranging from 100 to
150,000 and 200 to 10,000). The UMI count for the genes in each cell was log-
normalized to TPM-like values, and then used in the log2 scale transcripts per
million (TPM) plus 1 (ref. 59). For each batch, we used the filtered cells to remove
genes that are expressed at low levels by counting the number of cells (min.cells)
having expression of each gene i, and excluded genes with min.cells < 0.1% cells.
For the remaining cells and genes, we defined relative expression by centering using
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the Seurat ScaleData function with the following parameters: do.scale= FALSE, do.
center= TRUE, scale.max= 10. The relative expression levels across the remaining
subset of cells and genes were used for subsequent analysis.

Unsupervised dimensional reduction and clustering. Variably expressed genes
with mean expression between 0.0125 and 3 and quantile-normalized variance
greater than 0.5 were selected using Seurat v2.3.4 (ref. 60) (https://satijalab.org/
seurat/) in R version 3.4, and then used to compute the principal components
(PCs). A subset of significant PCs was selected using the JackStraw and PCEl-
bowPlot functions of Seurat. Cell clustering and tSNE visualization were performed
using the FindClusters and RunTSNE functions, respectively. The annotations of
cell identity on each cluster were defined by the expression of known marker genes.

We compared the results for cell lineage annotations based on independent cell
clusters from different clustering methods as follows: Seurat, CIDR61, RCA62, and
SC3 (ref. 63) (Supplementary Fig. 1b). The clustering by Seurat algorithm showed
high agreement with the results obtained using the other methods.

Inference of CNV from scRNA-seq data. In order to separate malignant tumor
cells from non-malignant cells, CNV aberrations were inferred from the pertur-
bation of chromosomal gene expression. First, we adjusted the proportion of
putative malignant cells below 20%, by adding normal cells derived from normal
lung tissues to the individual tumor samples collected from tLung, tL/B, mLN, and
mBrain. Secondly, we filtered out less informative genes that were expressed in less
than 10 cells and that had a mean expression of less than 0.1 across all cells at the
log2 scale. Third, the expression of each gene was transformed into a Z-score on a
limited scale from −3 to 3. Fourth, after sorting the genes by their chromosomal
position, the signal for CNV was estimated using the moving averages of 100 genes
as the window size within individual chromosomes, and adjusted using centered
values across genes64. Finally, we summarized the CNV signal with two parameters,
including mean squares of estimates across all windows in the x-axis, and corre-
lation of the CNV of each cell with the average of the top 5% of cells in the y-axis8.
Cancer cells showing perturbation in their CNV signal (>0.02 mean squares or >0.2
CNV correlation) were classified as malignant. The codes for CNV inference are
available at the Github repository (https://github.com/SGI-LungCancer/SingleCell).

Prediction of tumor mutation burden. The tumor mutation burden (TMB) was
estimated from bulk WES data for 11 formalin-fixed and paraffin-embedded lung
tumor tissues. The TMB is defined as the total number of mutations per coding
area of a tumor genome. The TMB status of tLung samples was determined by a
range of TMB values: high TMB, >30 mutations/Mb; int, intermediate; low TMB,
<25 mutations/Mb.

Marker gene selection specific to cancer cells. For pairwise comparisons
between early- versus advanced-stage primary, or primary versus metastatic cancer
cells, we filtered out non-malignant cells among cancer cells from tLung, tL/B,
mLN, and mBrain. A total of 6352, 6400, 2961, and 15423 malignant cells,
respectively, were used to identify the differentially expressed genes. Malignant cells
from tLung were used as a control group to evaluate the advanced stage- and
metastasis-specific gene regulation. We manually calculated the log2 fold change
(log2FC) between two groups (tL/B, mLN, mBrain versus tLung) using the Seurat
FindMarkers function. The significance of the difference was determined using
two-sided Student’s t test with Bonferroni correction. Signature genes were
required to be expressed in >25% of cells within either of the two cell groups
(marked as PCT, percentage of cells). Genes were selected as signatures based on
the statistical threshold (absolute log2FC > 0.585, two-sided Student’s t test p-
value<0.01, and adjusted p-value (Bonferroni) <0.01).

Inference of tumor cell state using trajectory analysis. We first extracted the
epithelial cell clusters (Fig. 1b) from the single-cell RNA sequencing data on nLung
samples. In order to generate a trajectory, we adopted only malignant cells, as
estimated by CNV inference, among the epithelial cells in the tLung samples. We
employed the Monocle (version 2) algorithm14 using variable genes selected by
Seurat as the input to determine the differential tumor cell states referenced against
normal epithelial cells. The gene-cell matrix in the scale of UMI counts was pro-
vided as input to Monocle, and then, its newCellDataSet function was called to
create an object with the parameter expressionFamily= negbinomial.size. The
epithelial cell trajectory was inferred using default parameters of Monocle after
dimension reduction and cell ordering.

Inference of the developmental trajectory for immune cells. The cell state
transitions for monocytes/mo-Macs and T cells were estimated using the Monocle
(version 2) algorithm14. For monocytes/mo-Mac, we first selected single cells in
clusters defined as monocytes and monocyte-derived macrophages (mo-Macs)
from the whole dataset. We then generated separate trajectories for lung tissues and
lymph nodes. For CD8+ T cells, we took single cells expressing CD8A and CD8B
(average of log-normalized expression > 0) within the CD8+ T cell clusters (T-C5,
6, 8, 11, and 15). Similar to the trajectory analysis for tumor cells, the gene-cell

matrix in the scale of UMI counts was provided as an input to Monocle, and then,
its newCellDataSet function was called to create an object with the parameter
expressionFamily= negbinomial.size. For the macrophages, variably expressed
genes were selected to have normalized variance over the fitting curve and mean
expression greater than 0.001, as estimated by the Monocle dispersionTable
function. For CD8+ T cells, variably expressed genes selected by Seurat that had a
mean expression between 0.0125 and 3 and quantile-normalized variance larger
than 0.5 were used as inputs. The cell trajectory was inferred using default Monocle
parameters after dimension reduction and cell ordering.

Identification of signature genes. We applied the Seurat FindAllMarkers func-
tion to identify specific genes for each cell subset. For the selection of marker genes
specific to each cell state (as estimated by the trajectory analysis), we calculated the
log2 fold change (log2FC) between two groups (a cell state/subset vs. other cells)
using the Seurat FindMarkers function. The significance of the difference was
determined using two-sided Student’s t test with Bonferroni correction. Signature
genes were required to be expressed in >25% of cells within either of the two cell
groups (marked as PCT, percentage of cells). Genes were selected as signatures
based on the statistical threshold (log2FC > 1, two-sided Student’s t test p-value
< 0.01, and adjusted p-value (Bonferroni) < 0.01). The selected genes were cate-
gorized according to the functional gene sets in the Gene Ontology (GO) Biological
Process using database for annotation, visualization and integrated discovery
(DAVID)65,66 (https://david.ncifcrf.gov/) pathway enrichment analysis.

Survival analysis. RNA-seq and clinical data from patients’ LUAD and squamous
cell carcinoma (LUSC) samples were obtained from the Cancer Genome Atlas
(TCGA) to evaluate the prognostic effects of gene sets derived from specific cell
states. The RNA-seq data (Level 3) included 494 LUAD and 490 LUSC (updated in
2017) tumors, and the expression of each gene was represented using the log2
(TPM+ 1) scale. We acknowledged patient survival if the time of death after
diagnosis was longer than 10 years for a more refined analysis of survival rate. The
tumor samples were divided into two classes along the 25th and 75th percentiles of
the mean expression of the target genes. Survival curves were fitted using the
Kaplan–Meier formula in the R package ‘survival’, and visualized using the
ggsurvplot function of the R package ‘survminer’.

Gene–gene functional association network. We constructed a network between
marker genes specific to tumor ECs to represent their functional association. The
network was quantified using the Jaccard index, known as an intersection over the
union, between the GO Biological Process terms for all possible pairs of genes. A
total of 68 genes (22 upregulated and 46 downregulated genes) were identified as
marker genes significantly expressed in tumor ECs in comparison to all other ECs
(absolute log2FC > 1, two-sided Student’s t test p-value<0.01, adjusted p-value
(Bonferroni) < 0.01, and PCT > 0.25). For visual clarity, we constructed the
gene–gene network using only associations with a Jaccard index exceeding 0.05, for
a total of 56 genes (18 upregulated and 38 downregulated genes). This network was
visualized with the force-directed layout algorithm in the open-source platform
Cytoscape (version 3.5.1)67.

Cell–cell interaction network. We mapped the receptor-ligand pairs using Cell-
PhoneDB (www.cellphonedb.org)68,69 onto our cell subsets within tissues of each
origin to identify cell–cell interactions. This method infers the potential interaction
strength between two cell subsets based on gene expression level, and provides the
significance through permutation test (1000 times). Only receptors and ligands
expressed in more than 25% of the cells in the specific cell subsets were considered
in each run. The resulting adjacency matrices were generated for all cell–cell
interactions within our collection. For the analysis, we applied four filtering steps to
the raw adjacency matrices: (1) interaction pairs with collagens were removed, (2)
cell–cell interactions within identical cellular lineages were excluded, (3) only cell
subsets defined in more than 0.1% of the cells in immune and stromal cells were
analyzed, and (4) and significant interactions (satisfied with one-sided p-value for a
permutation test <0.05) were identified between cell subsets in tissues of each origin.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Processed data can be accessed from the NCBI Gene Expression Omnibus database

(accession code GSE131907). Raw single-cell RNA sequencing and bulk WES data are

available in the European Genome-phenome Archive database (accession code

EGAD00001005054). Single-cell expression data can be explored online at http://ureca-

singlecell.kr.

Code availability
The codes generated during this study are available at Github repository (https://github.

com/SGI-LungCancer/SingleCell).
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