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Abstract
Breast cancer is one of the most common malignant tumors in women. It is a heterogeneous disease related to

genetic and environmental factors. Presently, the treatment of breast cancer still faces challenges due to recurrence

and metastasis. The emergence of single-cell RNA sequencing (scRNA-seq) technology has brought new strategies to

deeply understand the biological behaviors of breast cancer. By analyzing cell phenotypes and transcriptome

differences at the single-cell level, scRNA-seq reveals the heterogeneity, dynamic growth and differentiation process of

cells. This review summarizes the application of scRNA-seq technology in breast cancer research, such as in studies on

cell heterogeneity, cancer cell metastasis, drug resistance, and prognosis. scRNA-seq technology is of great significance

to deeply analyze the mechanism of breast cancer occurrence and development, identify new therapeutic targets and

develop new therapeutic approaches for breast cancer.

Facts

● scRNA-seq technology is a potent tool to study cell

heterogeneity, including normal breast cells, breast

cancer cells, fibroblasts and immune cells.
● scRNA-seq technology provides a useful method to

distinguish the molecular characteristics and

investigate the mechanisms of breast cancer

metastasis.
● The emergence of scRNA-seq technology provides

more possibilities for in-depth exploration of drug

resistance mechanisms and identification of novel

therapeutic targets for breast cancer therapy.
● scRNA-seq technology can be used to identify

markers to predict the prognosis of breast cancer

patients.

Open Questions

● scRNA-seq technology is a powerful tool to study

single-cell biology, and it is powerful for studying the

heterogeneity of cancer cells. Can it finally reveal the

origin of breast cancer from stem cells or

differentiating epithelial cells?
● Different treatment methods to the breast cancer,

such as chemotherapy, target therapy and endocrine

therapy, have been established based on the

molecular subtypes, however, drug resistance to

these therapies have been frequently observed in

breast cancer patients. Can scRNA-seq reveal the

molecular mechanisms of therapeutic resistance or

failure in the breast cancer?
● Can the molecular characteristics of a single cell be

transformed into molecular signatures based on bulk

RNA expression profiles to predict the breast cancer

treatment response or prognosis in the clinic?

Introduction
Breast cancer is the most common malignant tumor in

women with high recurrence and mortality1. Many risk
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factors, such as sex, age, estrogen status, family history,

and unhealthy lifestyles, may augment breast cancer risk2.

Breast cancer usually starts from atypical ductal hyper-

plasia and develops into benign tumors and even meta-

static cancer under the constant stimulation of various

carcinogenic factors, such as gene mutations, obesity, and

the use of hormone therapies (progestin and estrogen),

etc2. Two models, the cancer stem cell (CSC) hypothesis

and stochastic model, have been developed to explain

breast cancer occurrence and development3,4. The former

holds that all tumor subtypes are produced by the same

stem or progenitor cells. These cells undergo acquired

genetic and epigenetic events, leading to different tumor

phenotypes. The latter includes all tumor subtypes

derived from any cell type (stem, progenitor, or differ-

entiated cells). After accumulating sufficient random

genetic events and epigenetic changes, it can gradually

transform into a neoplastic cell. Although they disagreed

concerning the origin of breast cancer, both models seem

to explain the heterogeneity of breast tumor cells.

Many researchers have proposed that the heterogeneity

of breast cancer is critical to diagnosis and treatment. The

recognized molecular types of breast cancer are basal-like,

luminal A, luminal B, human epidermal growth factor

receptor-2 positive/progestrogen receptor negative (HER2

+/ER–), and normal breast-like5,6. Currently, clinical

therapies are based on the molecular subtypes and their

features. For example, HER2-positive patients receive

HER2-targeted antibody or small-molecule inhibitor

treatment combined with chemotherapy, and patients

with hormone receptor-positive or triple-negative breast

cancer (TNBC) receive endocrine therapy (ET) and che-

motherapy, respectively7. However, despite recent pro-

gress, this systemic treatment relying on the molecular

classification of breast cancer has problems and poor

efficacy for some patients due to drug resistance caused by

the heterogeneity of cancer cells8. Regarding resistance

mechanisms, several molecular mechanisms exist, such as

increased drug efflux, drug target mutations, DNA

damage repair, activation of alternative signaling path-

ways, and avoidance of cell death9. Epigenetic changes

and the influence of the local tumor microenvironment

are also considered crucial factors for drug resistance10. In

addition, molecular and genetic heterogeneity is increas-

ingly recognized in many tumors and can contribute

considerably to drug resistance11. The emergence of

single-cell RNA sequencing (scRNA-seq) technology can

detect these heterogeneous individuals, decode the het-

erogeneity of breast cancer cells, refine molecular types,

and open up new ways to overcome resistance12.

scRNA-seq is a new-generation sequencing technology

based on nanopore equipment after second-generation

sequencing was first developed in 2009. It has become a

revolutionary tool to reveal the uniqueness of each cell

and solve problems that cannot be answered by traditional

techniques. scRNA-seq technology mainly includes the

following processes: tissue dissociation to obtain a single-

cell suspension, cell lysis, reverse transcription of RNA

into cDNA, PCR amplification, high-throughput sequen-

cing, and data analysis13. Many analytical methods for

scRNA-seq are currently available, such as nanogrid

single-nucleus RNA sequencing, the ISOP method, and

UQ-pgQ2 combined with DESeq2 (Table 1). In recent

years, scRNA-seq has been used to reveal the hetero-

geneity of cells, cell dynamic differentiation processes,

tumor prognosis, treatment, and other aspects in can-

cer14–17. In this review, we will summarize the current

application of scRNA-seq in breast cancer research and

discuss the new progress of breast cancer heterogeneity

and mechanism of breast cancer occurrence and devel-

opment. This study will provide a theoretical basis and

new ideas for clinical treatment and prognosis.

scRNA-seq reveals the heterogeneity of breast
epithelial cells
Breast cancer originates from breast epithelial cells and

is caused by genomic alteration and loss of tissue home-

ostasis in breast epithelial cells18. Understanding normal

breast epithelial cells helps to recognize the occurrence of

breast cancer. Breast epithelium can form a ductal net-

work structure that connects the nipple with a complex

system comprising 12–20 lobules through a collecting

duct and is embedded in adipose tissue. In the ductal and

lobular system of the breast, the epithelium comprises two

known cell types: inner secretory lumen cells and outer

basal or myoepithelial cells. Recent reports have indicated

that these two types of mouse breast cells are hetero-

geneous19. Karsten et al. isolated mammary gland epi-

thelial cells from four developmental time points—

nonbirth, 14.5 days of pregnancy, 6 days of lactation and

11 days after natural degeneration20. They found lineage

differentiation of the breast epithelium via scRNA-seq

technology. At the same time, common luminal pro-

genitor cells in the luminal epithelium differentiated into

intermediate restricted alveolar progenitor and hormone-

sensing progenitor cells. Another study reported that

breast epithelial cells are highly heterogeneous and divi-

ded into different subpopulations based on genetic mar-

kers18. scRNA-seq of normal breast epithelial cells from

breast reduction surgery revealed three different epithelial

cell populations: basal (KRT14+), secretory luminal1

(KRT18+/SLPI+), and hormone-reactive luminal2

(KRT18+/ANKRD30A+) cell types. These three epithelial

cell populations can be directly associated with several

established breast cancer subtypes, suggesting that dif-

ferent breast cancer molecular subtypes may originate

from different cell subpopulations. This discovery con-

tributes to understanding the initiation, development and

Ren et al. Cell Death Discovery           (2021) 7:104 Page 2 of 11

Official journal of the Cell Death Differentiation Association



pathogenesis of breast cancer. In summary, researchers

found that normal breast cells are highly heterogeneous at

the single-cell level. Reconstruction of the mammary

gland epithelial cell growth trajectory via scRNA-seq

technology further revealed obvious changes in the gene

expression and biology of breast cells during develop-

ment18. These studies are critical in understanding the

correlation between different cell phenotypes in the

mammary gland and breast cancer initiation.

Application of scRNA-seq in confirming and
validating the heterogeneity of breast cancer
Heterogeneity of breast CSCs in breast cancer identified by

scRNA-seq

The occurrence and development of breast cancer are

inseparable from CSCs, which can self-renew21. The sys-

tematic analysis of CSCs is critical for understanding

tumor progression and developing new treatment strate-

gies. Chen et al.22 used a label-free algorithm to reveal the

high-potency cell state enrichment of human breast epi-

thelial cells using scRNA-seq data. The algorithm further

predicts and proves that the stem-like state is bipotent

and can differentiate into basal and luminal states.

In addition, the bipotent stem cell-like state is associated

with the clinical outcome, and the high expression of the

Y-box binding protein 1 (YBX1) and enolase 1 (ENO1)

transcription factor genes can regulate the risk of basal

breast cancer22. Wu et al. used Fluidigm’s Polaris platform

to analyze the heterogeneity of the TNBC cell line

SUM149 at the single-cell level for the first time23. Breast

cancer cells were divided into 5 subpopulations by CSCs

and epithelial-mesenchymal transition (EMT)-related

genes: EMT CSCs, mesenchymal-epithelial transition

(MET) CSCs, dual-EMT-MET CSCs, EMT non-CSCs and

non-CSCs. Interestingly, SUM149 is usually classified as

triple-negative breast cancer, but its stem cells show

heterogeneous expression of marker receptors (ER, PR,

and HER2). In addition, these cells exhibit a high degree

of heterogeneity in alternative splicing patterns. For

example, CSCs show different expression patterns of

CD44v6 exons and differential expression of epidermal

growth factor receptor (EGFR) transcripts. CD44v6 can

promote tumor cell proliferation, while CSCs with high

expression of EGFR-211 and EGFR-201 show low inva-

sion and high proliferation features. These results indicate

that the heterogeneity of CSCs determines their different

Table 1 Methods for analysis sc-RNA sequencing data in the breast cancer.

Algorithm name Function Ref.

Nanogrid single-nucleus RNA sequencing Developed a high-throughput 3′single-core RNA sequencing method, which

combines nano-grid technology, automatic imaging, and cell selection, and can

sequence up to 1800 single-cores in parallel.

55

ISOP method It provides a novel method to express the isoform level and heterogeneity in

single-cell RNA sequencing data.

56

UQ-pgQ2 combined with DESeq2 It improves the analysis based on intra-group comparison and applies it to the public

RNA-seq breast cancer data set.

57

Average-based approach (gene-level expression) to

isoform abundance/splicing event

It highlights the importance of splicing mechanisms in defining tumor heterogeneity. 58

SSCA and SSCVA methods It can recover known biological characteristics from the data set and the shallow

sparse connection autoencoders used for gene set projection.

59

SCmutt It is a new and reliable statistical method which identifies specific cells with mutations

found in bulk cell data.

60

CSMF method It can reveal common and specific pattern scenarios with important biological

significance from interrelated biological data.

61

EVA It is used for evaluating the heterogeneity of gene expression in pathways or gene

sets in single-cell RNA-seq data.

62

Digitaldlsorter The algorithm deep learning scRNA-Seq deconvolution gene expression data. 63

VDJView It can mine and analyze single-cell multi-omics data. 64

DUSC The system integrates feature generation based on deep learning architecture and

model-based clustering algorithms to obtain compact and useful single-cell

transcription data.

65

CSMF common and specific patterns via matrix factorization, DUSC deep unsupervised single-cell clustering, ISOP ISOform-patterns, EVA expression variation analysis,
SSCAs shallow sparsely connected autoencoders, SSCVAs shallow sparsely connected variational autoencoders.
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proliferation and invasion potential. Emma et al. identified

the tumor stem cell subpopulations in the breast cancer

cell line MDA-MB-231 and conducted in-depth studies

on their biological characteristics24. Three breast cancer

cell subpopulations were determined via scRNA-seq gene

expression profiling and cluster analysis, one of which was

a CSC-like subgroup. In addition, pseudotime analysis

revealed that these cancer subpopulations have a dynamic

process of differentiation from the CSC-like subgroup to

the other two groups, confirming that the CSC-like sub-

group is the CSC subpopulation. The investigation

demonstrated 14 significantly upregulated genes in the

CSC-like group, some of which are related to stem cell

characteristics and clinical survival data and may be used

as potential breast cancer biomarkers to predict and

confirm their function, while their role in tumor cells

remains to be elucidated24. In addition, breast cancer

patients with a high risk of recurrence showed higher

expression levels of breast CSC markers than breast

cancer patients with a low risk of recurrence, illustrating

the significance of using breast CSC markers for the

prognosis of breast cancer25.

In general, potential breast cancer biomarkers related to

the characteristics of CSCs have been identified, and other

model systems will be used for further experimental

verification to confirm their functions and potential

clinical applications.

Heterogeneity of fibroblasts identified by scRNA-seq

In addition, scRNA-seq can be used to analyze the

heterogeneity of the components of the breast cancer

microenvironment, such as tumor-associated fibroblasts

(CAFs) and immune cells26,27. CAFs are the main com-

ponent of the tumor microenvironment. CAFs can pro-

mote the proliferation, invasion, metastasis, and immune

escape of tumor cells by secreting various cytokines,

chemokines, extracellular matrix regulatory molecules,

extracellular matrix components, and inflammatory

mediators28. However, their origin and role in the initia-

tion, development, and treatment response of the disease

remain ambiguous.

To improve the classification accuracy of CAFs in breast

cancer at the cellular and functional levels, Michael et al.

used scRNA-seq to detect mesenchymal cells isolated

from tumors in a breast cancer model of MMTV-PyMT

mice26. Because CAFs do not have a common cell surface

marker, a negative screening strategy (EpCAM−/CD4−/

CD31−/NG2−) was adopted to remove the corresponding

epithelial cells, immune cells, endothelial cells, and peri-

cytes in the advanced cancer tissue through fluorescence-

activated cell sorting (FACS). Finally, they identified four

different cell subpopulations: vascular CAFs (vCAFs),

matrix CAFs (mCAFs), cycling CAFs (cCAFs), and

developmental CAFs (dCAFs) by functional analysis of

gene ontology (GO). The temporal and spatial distribu-

tion of cell subsets in the tumor is based on the marker

genes of the histological localization. vCAFs originate

from vascular pericytes and then invade the tumor matrix

area; mCAFs are derived from tissue-resident fibroblasts,

cCAFs are the proliferation state of vCAFs, and dCAFs are

derived from tumor cells and undergo EMT. In addition,

the genetic profile of each CAF subtype is associated with

a specific function, and the signature of vCAFs or mCAFs

has prognostic power because of its association with

metastatic dissemination26. Therefore, if the current

generalized CAF population resolution is improved, it will

enable the development of precisely targeted drugs

for CAFs.

Heterogeneity of immune cells in the tumor

microenvironment

Another important component of the tumor micro-

environment is immune cells. Their phenotype and

characteristics are also vital for understanding tumor

progression and immunotherapy. Chung et al. analyzed

175 immune cells from 11 patients (including luminal A,

luminal B, HER2, and TNBC patients) and divided the

cells into three groups—T lymphocytes, B lymphocytes,

and macrophages—according to gene expression profiles

at the single-cell level27. Both T lymphocytes and mac-

rophages exhibit immunosuppression characteristics.

Specifically, T cells have a regulatory or exhausted phe-

notype, and macrophages have an M2 phenotype. This

study used scRNA-seq technology to describe the het-

erogeneity of immune cells in the tumor microenviron-

ment, but no additional in-depth research has been

conducted. The impact of immune cell heterogeneity on

the tumor microenvironment warrants more attention.

Although immune cells have remarkable similarities

between the normal environment and tumor tissues,

Elham et al. observed that immune cells in the tumor

microenvironment have a significant expansion of their

specific phenotypes29. The increased heterogeneity of the

intracellular state and apparent phenotypic expansion

within the tumor may be due to the diversity of the local

microenvironment within the tumor, which differs in its

inflammatory levels, hypoxia, activation, and inhibition of

receptor-ligand expression, and nutrient supply. By ana-

lyzing paired scRNA-seq data and T-cell receptor (TCR)

sequencing data, TCR utilization in T-cell phenotypic

diversity was discovered29. The differences in the TCR

clonotype composition and key gene expression of indi-

vidual T-cell clusters indicate that the phenotypic state

may be formed by antigenic TCR stimulation and envir-

onmental stimulation29. These observations will con-

tribute to a better understanding of the underlying

mechanisms by which immune cells promote and resist

tumor progression. In addition, Hamad et al. analyzed the
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gene expression profiles of bone marrow-derived sup-

pressor cells (MDSCs) in the breast cancer model of

MMTV-PyMT mice and revealed two different clusters of

neutrophils and mononuclear cell lineages in MDSCs (G-

and M-MDSCs)30. G-MDSCs are produced through the

abnormal neutrophil maturation trajectory in the spleen,

making them immunosuppressive cells. This study helps

to understand the characteristics of MDSCs in breast

cancer and their contribution to breast cancer. Therefore,

an in-depth study of tumor-infiltrated immune cells

provides a way to overcome immune suppression and

monitor immune escape in a more illustrative manner.

In summary, the study of subpopulation identification

and features of the heterogeneity of tumor cells and

tumor microenvironment cells in breast cancer by

scRNA-seq is critical for our understanding of the role of

these cells and provides potential new targets for clinical

treatment (Fig. 1).

Identifying the characteristics contributing to
breast cancer metastasis by scRNA-seq
Re-evaluating the EMT using scRNA-seq

The role of EMT in tumor migration and invasion has

been widely recognized. Tumor epithelial cells lose

polarity and disconnect connections with neighboring

cells through EMT while gaining migration and invasion

capabilities and showing resistance to apoptosis, in addi-

tion to restoring the characteristics of tumor stem cells31.

To assess the EMT status of single cells, an EMT lineage

tracing model (Tri-PyMT) was subjected to scRNA-seq32.

By comparing pre-EMT and post-EMT cells at the single-

cell level, a specific EMT characteristic was determined.

This signature contains many EMT markers, such as

Vimentin, Fibronectin 1 (Fn1), S100 calcium-binding

protein A4 (S100a4), paired related homoeobox 1 (Prrx1),

and zinc finger E-box-binding protein 1/2 (ZEb1/2).

However, its overlap with the published EMT gene set is

limited, suggesting the diversity of EMT programs in

Fig. 1 Schematic illustration of the heterogeneity of normal breast epithelium, cancer stem cells, and stromal cells in the tumor

microenvironment. A The heterogeneity of normal breast epithelial cells. KRT14 and KRT8/18 are genetic markers of basal and luminal breast

epithelium, respectively. The luminal epithelial cells are composed of luminal 1 (SLPI+) and luminal 2 (ANKRD30A+). B According to EMT-related

genes, cancer stem cells are divided into EMT CSCs, MET CSCs, dual-EMT-MET CSCs, EMT non-CSCs, and non-CSCs. C The heterogeneity of tumor-

associated fibroblasts and MDSCs in the tumor microenvironment. The tumor-associated fibroblasts at least include the subpopulations of vascular

CAFs (vCAFs), matrix CAFs (mCAFs), and developmental CAFs (dCAFs), whereas the MDSCs are identified to be derived from neutrophils (G-MDSCs)

and mononuclear cells (M-MDSCs).
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different tumors. The study also showed that pre-EMT

cells play a leading role in tumor metastasis, while post-

EMT cells are not metastasis-initiating cells and secrete

more pro-angiogenic factors to support tumor angio-

genesis32. Importantly, post-EMT cells did not perma-

nently exhibit mesenchymal phenotypes in the Tri-PyMT

model and restored the epithelial phenotypes and caused

secondary tumors, indicating sustained EMT plasticity.

Because single- or small cell subpopulations may cause

metastasis, Chen et al.33 used a microfluidic device to

enrich breast cancer cells with migration ability and

scRNA-seq to study the heterogeneity between individual

migrating breast cancer cell lines and patient-derived

cells. The observed gene expression characteristics clearly

distinguished between migratory and wild-type cancer

cells for all cell populations. Although all migrating breast

cancer cells consistently showed elevated EMT and CSCs,

the expression of specific markers of these states were

quite heterogeneous. In addition, migrating breast cancer

cells showed different gene expression profiles related to

oxidative stress, mitochondrial morphology, and protea-

some33. These cells with EMT characteristics showed

unique gene expression distributions, and the new specific

genes may be related to the migration and prognosis of

breast tumor cells. Yuan et al.34 revealed that metastatic

tumors contain a higher proportion of EMT markers and

cells expressing S100A4 through scRNA-seq. The S100A4

gene related to metastasis is used as a potential diagnostic

and therapeutic target. These studies illustrate the sig-

nificant effect of EMT on breast cancer migration and

invasion and can become a new therapeutic target.

A highly heterogeneous tumor subpopulation possesses

enhanced metastasis potential

Another interesting finding elucidated that a subgroup

of highly heterogeneous tumors may show enhanced

metastasis ability compared with less heterogeneous

tumors35. This heterogeneity may play a role when the

tumor faces strong selective pressures, such as che-

motherapy and metastasis barriers. For example, the

variable expression of small nuclear ribonucleoprotein 40

(SNRNP40) in spliceosomes promotes the metastasis of

tumors. Clinically, subsets with low expression of

SNRNP40 are associated with metastasis and recur-

rence35. Michalina et al. also proposed highly hetero-

geneous tumors with higher metastasis capability. They

found that small subclones of breast cancer cells expres-

sing IL11 and vascular endothelial growth factor D

(VEGFD) synergistically promoted metastasis, among

which scRNA-seq of CD45+ cell populations from pri-

mary tumors, blood, and lungs showed that IL11 acts on

bone marrow-derived mesenchymal stromal cells and

induces pretumorigenic and premetastatic neutrophils to

promote the progression of tumor metastasis36. In

addition, Cai et al.37 proposed the chemical probe argi-

nine methyltransferase CARM1 to combat the invasion of

breast cancer cells by changing epigenetic plasticity using

scRNA-seq. The study revealed that high heterogeneity

caused by genetic and epigenetic characteristics of cancer

subsets serves as a mechanism to promote tumor

metastasis. Overall, scRNA-seq provides a potential

reference for studying the development and metastasis

mechanism of breast cancer and selects a suitable regimen

in real-world clinical practice.

Application of scRNA-seq in the drug resistance of
breast cancer treatment
For nonmetastatic breast cancer, the purpose of treat-

ment is to remove tumors from the breast and regional

lymph nodes and avoid metastatic recurrence, including

surgery, radiotherapy, chemotherapy (neoadjuvant/adju-

vant), ET, targeted therapy, and immunotherapy7. For

metastatic breast cancer, the therapeutic goals are

prolonging life and relieving symptoms. Although clinical

treatment regimens are effective for many breast cancer

patients, some patients show poor treatment effects due

to drug resistance, which reduces overall survival. Pre-

sently, the development and molecular mechanism of

drug resistance remain unclear.

It remains debatable among scientists whether the

emergence of drug resistance results from the selection of

pre-existing rare clones or acquisition of new genome

mutations. Previously, conducting in-depth research and

discussion on this issue was challenging because of the

lack of more accurate methods for detecting the genomic

information of rare subclones38. However, the emergence

of scRNA-seq technology provides more possibilities for

in-depth exploration of drug resistance mechanisms and

further accurate analysis of transcriptome information.

Pre-existing drug-resistant cells are revealed by scRNA-seq

Through long-term follow-up studies, Samuel et al.

conducted an in-depth analysis of the genetic and phe-

notypic subclonal evolution of four metastatic ER+ breast

cancer patients to better understand how breast cancer

cells acquire drug resistance at the single-cell level39. The

results revealed that the tumor cells had a resistant phe-

notype, which pre-existed in subclones before che-

motherapy and showed characteristics related to drug

resistance after chemotherapy. The existence of these

drug-resistant phenotypes has also been found by Kim’s

teams by dissecting 20 TNBC samples during neoadjuvant

chemotherapy8. These resistant phenotypes were adap-

tively selected by chemotherapy, accompanied by the

reprogramming of the transcriptome, and eventually

evolved into a completely resistant phenotype. Moreover,

these phenotypes exhibit characteristics associated with

drug resistance, such as mesenchymal signal transduction
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and the enhancement of growth factors, thereby pro-

moting the drug resistance of tumor cells40. The down-

regulation of antigen presentation and TNF-α signaling

also makes it easier for tumor cells to escape attack by the

immune system41. These findings indicate the selection of

drug-resistant phenotypes and highlight the ability of

cancer phenotypic evolution. These results suggest a

phenotype-targeted treatment strategy, which offers new

ideas for improving chemotherapy resistance in breast

cancer.

Pre-adapted (PA) cells found by scRNA-seq are essential for

the resistant phenotypes of breast cancer

Interestingly, Sung et al. analyzed the drug resistance of

ET in luminal breast cancer at single-cell resolution and

obtained completely different conclusions42. They used

scRNA-seq and imaging techniques to analyze the tran-

scriptional variability of plastic cells in tumor cells during

ET, and defined a rare PA cell subset in plastic cells.

These PA cells are highly enriched in circulating tumor

cell clusters and have unique transcriptional signatures,

such as dormant characteristics and mixed epithelial and

mesenchymal traits. However, it is different from the

resistant phenotypes mentioned above8. PA cells do not

express chemoresistance-related genes—i.e., PA subgroup

cells do not show a drug-resistant phenotype. The survival

rate of PA cells under acute ET was increased twice

compared with that of other plastic cells, while nonplastic

cells disappeared completely under selective pressure.

After long-term treatment, further transcriptional repro-

gramming and copy number changes are required to

obtain complete drug resistance and further metastasis of

breast cancer. Therefore, PA cells are an essential step in

achieving drug resistance, but considerable reprogram-

ming is still required to reproduce the characteristics of

fully resistant cells42. Interestingly, early metastatic cells

have been reported to have partially overlapping PA cell

characteristics of survival, dormancy, and EMT43. PA cells

may not only show a survival advantage in the early stages

of treatment but also may be a precursor to micro-

metastases. In addition, the ET multistep resistance model

established by Sung et al. may explain the delayed

recurrence of patients after ET—i.e., after ET, PA-like

cells are adaptively selected and retained for more than 10

years42.

Overall, the emergence of drug resistance in breast

cancer may be caused by pre-existing rare clonal sub-

populations. Some of these subpopulations have drug-

resistant phenotypes and do not exhibit drug resistance

but have survival advantages or other features, such as PA

cells (Fig. 2). However, simply summarizing the drug

resistance factors as the adaptive selection of clonal sub-

groups is not sufficient to describe the late recurrence of

breast cancer caused by ET42. These seemingly

contradictory results indicate the complex interaction

between genetic and nongenetic factors. Therefore,

research on the drug resistance mechanism of breast

cancer requires more diversified, in-depth, and compre-

hensive mining and analysis.

Characteristics of the immunotherapy response in breast

cancer identified by scRNA-seq

In recent years, immune checkpoint inhibitors (ICIs)

have been reported to improve the condition of patients

with advanced malignancies in clinical trials. However,

the efficacy of ICIs is limited to 15–30%, except for

melanoma44. At the single-cell level, Jang et al.45 analyzed

the transcriptome and mutation profiles focusing on the

tumor mutation burden (TMB), immune checkpoint

crosstalk, and radiosensitivity from breast cancer cells and

immune cells. They found that, compared with

radiotherapy-sensitive cells (RS), a basal subtype, high

PD-L1 expression, and high TMB with a mutational sig-

nature of microsatellite instability (MSI) are shown by

radiotherapy-resistant (RR) cells, while the mutation

characteristics of RS cells are mainly gene mutations

related to mismatch repair. In addition, in patients with

the TNBC or HER2 subtype, the number of immune

checkpoint ligand-receptor interactions between tumor

and immune cells, such as PD-L1 and CTLA-4, is

increased46,47. The immune checkpoint crosstalk between

tumor and immune cells is related to the subtypes in

breast cancer patients48. Therefore, for patients who are

not sensitive to radiotherapy, ICI therapy can be com-

bined to improve the efficacy. These findings may help

determine the potential biomarkers and best combination

treatment strategy of immune checkpoints in addition to

radiotherapy in breast cancer.

Furthermore, the latest research has found that heme

oxygenase-1 (HO-1) can be used as a latent immune

checkpoint target in the antitumor immune response

caused by chemotherapy. HO-1 is expressed in various

cancers as an immune suppressive enzyme, whose activity

affects the antitumor response of CD8+ T cells in the

tumor microenvironment49. Tin mesoporphyrin (SnMP)

targets both HO-1 and HO-2 as a potent HO inhibitor.

James et al. found that SnMP inhibits the immunosup-

pressive response of HO-1 to CD8+ T cells induced by

chemotherapy in the tumor microenvironment49. In

addition, scRNA-seq data showed that HO-1 is mainly

derived from the myeloid lineage and is coexpressed with

the immune checkpoint PD-L1/2 in human breast

tumors. The efficacy of immunostimulatory chemother-

apy targeting PD-L1 and HO-1 was compared, proving

that SnMP is better than PD-L1 ICIs in preclinical mod-

els. Therefore, SnMP can be used as a new immune

checkpoint treatment method to improve the sensitivity

of the immune system to chemotherapy. Overall, ICIs
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combined with chemotherapy or radiotherapy are an

important strategy for clinical breast cancer treatment in

the future.

Application of scRNA-seq in the prognosis of
breast cancer
CD8+ T tissue-resident memory T cells predict a better

prognosis in TNBC

Peter et al. performed scRNA-seq of 6311 T cells iso-

lated from human breast cancer. They found a population

of CD8+ tissue-resident memory T (TRM) cells which

highly expressed immune checkpoint molecules and

effector proteins50. The genetic characteristics of these

CD8+ TRM cells were significantly related to improving

the survival rate of early TNBC patients and had a better

prognosis than CD8 expression alone. Therefore, CD8+

TRM gene signatures can be used as a marker for a good

prognosis of patients.

The marker genes of BCSC identified by scRNA-seq predict

the prognosis of breast cancer

Tong et al. analyzed the gene expression profile of

breast cancer stem cells (BCSCs) at the single-cell level

and found that the transcriptome of tumor cells is sig-

nificantly different25. Notably, 74 BCSC marker genes

were enhanced during the transcription process. Breast

cancer patients with a high risk of relapse exhibited higher

expression levels of these BCSC markers than those with a

low risk of relapse, highlighting the clinical significance of

BCSC markers in predicting the prognosis of breast

cancer. The 74 identified BCSC markers may become new

targets and prognostic markers for breast cancer

treatment.

An alternative polyadenylation (APA) signature predicts

the prognosis of breast cancer

In addition to the cellular level, scRNA-seq can also

analyze the guidance of posttranscriptional modifications

on patient prognosis. APA in 3′ untranslated regions (3′

UTRs) is vital in the modification of transcript abundance,

localization, and interaction with microRNAs51. APA is a

posttranscriptional modification of the 3′UTR that affects

tumor cell proliferation by adjusting the length of the 3′

UTR52. It was recently reported to be linked to the

prognosis of breast cancer patients53. Kim et al. studied

the changes in the 3′UTR of breast cancer cells at the

single-cell level and found that most breast cancer

patients have a shorter 3′UTR54. In addition, 3′UTR

shortening is closely related to cell proliferation and the

dedifferentiation state. They analyzed 10 meaningful

Fig. 2 The potential mechanisms of breast cancer cells acquiring drug resistance revealed by the scRNA-seq. The pre-adapted and pre-

existing resistant cells exist in the luminal breast cancer and TNBC respectively, and they are expanded contribute to drug resistance after endocrine

therapy or chemotherapy.
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genes related to APA that were highly expressed in tumor

cells and affected the prognosis of patients. In summary,

the expression of APA genes in breast cancer was linked

to the clinical outcome of earlier stage breast cancer

patients—i.e., the APA signal can be used as a prognostic

indicator of early breast cancer.

Conclusion and perspective
As a powerful tool, scRNA-seq technology is convenient

to address breast cancer cell heterogeneity, metastasis,

drug resistance, breast cancer treatment, and prognosis-

related problems (Fig. 3). This opens up a new way to

determine new therapeutic targets. However, scRNA-seq

technology still faces challenges. The limitations include

the high costs and dropout rate, which are often difficult

to solve. As the scale and complexity of scRNA-seq data

sets increase, faster and more effective computing

instruments are needed for processing and analysis. Fur-

thermore, because of incomplete RNA capture and bias/

batch effects of PCR amplification on patients or samples,

scRNA-seq data sets often contain technical noise sour-

ces, which will cause bias in the analysis and interpreta-

tion of the data if left unresolved. To meet these

challenges, a set of calculation tools has been developed to

process, analyze and visualize the scRNA-seq data set to

achieve higher resolution clustering and trajectory infer-

ence. However, manually annotating cell types with

marker genes is very time-consuming. Although new

automated and semiautomated methods are being

exploited to classify cell types to resolve this problem, new

cell types and states must be manually marked. Regarding

scRNA-seq, the efficiency of existing technologies,

including sensitivity, multiplexing, throughput, and cost-

effectiveness, must be improved to develop new

technologies.

In conclusion, scRNA-seq technology allows analysis of

the single-cell transcriptome with high sensitivity, high

precision and high throughput. In addition, the further

development of scRNA-seq combined with multiomics

will enable obtaining a more comprehensive under-

standing of cell types and cell states. Combining single-

cell transcriptome data and proteome data will help

understand how the transcriptome cell state transforms

into a functional phenotypic state and the possible het-

erogeneity at the transcription and translation levels to

obtain an in-depth comprehension of tumor evolution.

The integration of live cell imaging data and scRNA-seq

data could analyze more complex cell phenotypes and

spatial positioning and status. In some cases, treatment

failure is attributed to the presence of CSCs, which are

inherently highly resistant to many treatment methods.

Using high-throughput screening technology and systems

biology methods can identify new mechanisms of drug

resistance and predict molecular markers and genotypes

Fig. 3 Recapitulation of the contents of the review. Summary of the current application of the scRNA-seq technology in the cell heterogeneity,

metastasis, drug resistance, immunotherapy, and prognosis of breast cancer.

Ren et al. Cell Death Discovery           (2021) 7:104 Page 9 of 11

Official journal of the Cell Death Differentiation Association



of drug response and involve determining the respon-

siveness of tumors to specific drug treatments. More

importantly, the results of scRNA-seq studies can help

design better treatment strategies, such as targeting rare

cell populations and highly variable populations, to solve

the problem of drug resistance caused by heterogeneity

and develop new treatment options. Future research will

focus on developing more powerful scRNA-seq technol-

ogy, which will help unlock the mystery of single cells in

various human diseases, provide more cutting-edge data,

and show great prospects in biology and clinical treatment

for breast cancer and other tumors.
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