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Abstract

An ongoing technological revolution is continually improving our ability to carry out very high- 

resolution studies of gene expression patterns. Current technology enables the global gene 

expression profiles of single cells to be defined, facilitating dissection of heterogeneity in cell 

populations that was previously hidden. In contrast to gene expression studies that use bulk RNA 

samples and provide only a virtual average of the diverse constituent cells, single-cell studies 

allow the molecular distinction of all cell types within a complex population mix, such as a tumour 

or developing organ. For instance, single-cell gene expression profiling has contributed to 

improved understanding of how histologically identical, adjacent cells make different 

differentiation decisions during development. Beyond development, single-cell gene expression 

studies have enabled the characteristics of previously known cell types to be more fully defined 

and facilitated the identification of novel categories of cells, contributing to improvements in our 

understanding of both normal and disease-related physiological processes and leading to the 

identification of new treatment approaches. Although limitations remain to be overcome, 

technology for the analysis of single-cell gene expression patterns is improving rapidly and 

beginning to provide a detailed atlas of the gene expression patterns of all cell types in the human 

body.

The gene expression pattern of a cell defines its protein components. Essentially, all cells of 

the human body contain the same set of ~20,000 genes, but different cells express different 

sets of these genes, leading to between-cell differences in the expression of membrane 

components, ion transporters, cytoskeletal elements, growth factors, receptors and 
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transcription factors. The gene expression profile therefore describes in exquisite detail the 

phenotype of a cell, which underlies its molecular functions.

Historically, gene expression studies have been lim-ited to the analysis of pooled populations 

of cells, which was necessary to obtain sufficient RNA for analysis. For example, the 

combined expression pattern of all cells of a tumour would be examined in aggregate to 

identify perturbed molecular pathways. However, a tumour contains a heterogeneous 

population of cells, including vascular cells, fibroblasts, invading immune cells and rapidly 

dividing cancer cells as well as more quiescent cancer stem cells, and the resulting gene 

expression profile of a pooled population of tumour cells therefore provides only an 

ensemble average of the cell types present. Analysis of pooled cell populations does not 

enable identification of the cell types that express certain genes but instead provides a virtual 

average of the multiple cellular components, which may well say very little about any 

specific cell type present. Similar problems are encountered when pooled populations are 

used to assess gene expression associated with other disease conditions.

Cell heterogeneity is also a feature of organ development, wherein progenitor cells that are 

often histologically indistinguishable undergo diverse differentiation decisions to become 

specific cell types. Analysis of the gene expression of pooled populations of progenitor cells 

does not enable distinction of the signals that drive a progenitor down a particular 

differentiation pathway; for instance, the signals that determine whether a nephron 

progenitor cell becomes a podocyte or a proximal tubule cell. To better understand the 

signals that drive cell differentiation and cell fate decisions, developmental biologists need to 

define the early gene expression events associated with the lineage choice of individual cells.

The past decade has witnessed powerful technological advances, enabling gene expression 

analysis to be carried out at much higher resolution than previously possible. Indeed, the 

expression level of every gene, even in a single cell, can now be defined. This technology, 

known as single- cell RNA sequencing (scRNA- seq), enables rapid determination of the 

precise gene expression patterns of tens of thousands of individual cells. Such analysis of the 

constituent parts — the single cells — provides much more meaningful insights into cell 

behaviour than analysis of aggregated blocks. For example, scRNA- seq of tumour cells can 

enable separation of tumour fibroblasts from the endothelial and cancer cells on the basis of 

their gene expression signatures. Moreover, each cell type can be further divided into 

subtypes; for example, tumour fibroblasts might be separated into fibroblast subtypes1. Such 

single- cell studies have also enabled identification of previously unknown cell types2–4 and 

have provided insights into the heterogeneity of non- cancer cell populations within 

tumours5, highlighting the power of this research tool.

This technological revolution is providing stunning new insights into the underlying 

mechanisms of organ development and disease. Just as the Human Genome Project 

previously defined our full complement of genes, several Human Cell Atlas Projects, 

including the Human Cell Atlas project6, the Human BioMolecular Atlas Program and the 

Chan Zuckerberg Initiative Atlas Project, are currently underway, each devoted to defining 

how each cell type in the body makes differential use of this set of genes. Application of 

these new tools to the analysis of normal, developing and diseased tissue will enable a much 
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deeper understanding of the human body by providing insights into how a single cell, the 

zygote, develops into a complete person and how perturbed molecular pathways and 

processes can lead to disease. In this Review, I discuss the fundamental concepts of single- 

cell RNA analysis, including discussion of the experimental strategies, and the strengths and 

weaknesses of different technologies. I also describe specific applications of the technology 

for the study of development, cancer and normal and diseased kidneys.

Methodological overview

Principle of RNA sequencing

RNA sequencing — whether of single cells or of pooled populations of cells — is a 

powerful method for analysing gene expression patterns and involves the reverse 

transcription of RNA into cDNA, which then undergoes high- throughput DNA sequencing. 

Genes that are highly expressed within a sample produce more RNA, more cDNA and more 

DNA sequence reads than genes that are more weakly expressed. Thus, RNA sequencing 

provides a digital readout of gene expression, with the number of DNA sequence reads 

aligning with the expression level of a particular gene in a sample.

The concept of scRNA- seq is the same, except that single cells must first be isolated, and 

owing to their minute RNA contents, a powerful amplification process is required to 

generate sufficient cDNA for sequencing (Fig. 1). As with traditional RNA sequencing, a 

higher number of DNA sequence reads for a specific gene corresponds to higher expression 

of that gene within the cell. Remarkably, current scRNA-seq approaches enable expression 

levels of all genes to be defined.

High- throughput single-cell sequencing

A number of scRNA-seq methods allow high-throughput analysis of large numbers of cells. 

The introduction of the Fluidigm C1 microfluidics system in 2012 revolutionized scRNA-

seq, providing gene expression data for up to 96 cells in a single run, over a time frame of ~1 

day. High-throughput7 Fluidigm IFC chips, introduced more recently in ~2015, can examine 

up to 800 cells at once. Following cell lysis, reverse transcription and amplification in 

microchambers, cDNA libraries are produced that are tagged with a cell- specific barcode, 

which enables the resulting DNA sequence reads to be assigned to specific cells. This 

approach provides high- quality gene expression readouts but is relatively expensive per cell 

compared with other available methods.

Microdroplet approaches.—The most popular current scRNA- seq methods use 

microdroplets in place of microchambers6–8 (Fig. 2). Use of microfluidics technology 

enables hundreds of thousands of microdrops to be inexpensively generated. These aqueous 

microdrops, surrounded by oil, have a volume of ~2 nanolitres and contain a bead with a 

uniquely barcoded set of oligonucleotides and a single cell. Following cell lysis, the bar-

coded oligonucleotides hybridize to the polyA tails of the released mRNA. For Drop-seq, the 

beads, along with attached oligonucleotides and annealed mRNAs, are all released from the 

drops and combined into a single tube, and reverse transcription is then carried out. For the 

Chromium and InDrop technologies, the hydrogel beads dissolve in the microdrops, 
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releasing the oligo-nucleotides to hybridize to the mRNAs, and the reverse transcription 

reactions are carried out within the drops. In either case, the bead- specific barcode is 

incorporated into the cDNA, thereby enabling the subsequent DNA sequence reads to be 

aligned with a specific cell. All the microdroplet-based systems allow the beads8 or 

cDNAs9,10 to be pooled and processed through subsequent reactions together, minimizing 

labour and reagent costs. In fact, using these methods, RNA sequencing (RNA- seq) data, 

including DNA sequencing costs, can be generated for approximately US$1 per cell. A 

cross-platform comparative study of Drop- seq, Fluidigm 800 cell IFC and the Chromium 

system found that they performed comparably11, with each technology dividing mouse 

embryonic kidney cells into similar clusters with closely overlapping sets of markers. 

Nevertheless, both microdroplet technologies are considerably less expensive per cell than 

the Fluidigm method.

The Chromium microdrop system, mentioned above, offers some advantages over the Drop-

seq method. First, the data obtained by the Chromium system are somewhat higher quality, 

as it detects more genes per cell than the Drop-seq method. This greater sensitivity, with 

reduced technical noise, is particularly important when trying to separate very closely 

related cell types because noisy data can conceal very subtle differences in gene expression 

patterns (see below). Second, the Chromium system provides gene expression profile data 

for a much higher percentage of input cells. With the Chromium system, almost every cell 

finds itself in a microdrop that includes a bead, but with Drop-seq, the vast majority of cells 

end up in drops without a bead and therefore go unseen. This is because for the Drop- seq 

method, both the barcoded beads and the cells become incorporated into drops in a random 

fashion. The beads and cells must therefore be sufficiently diluted to prevent drops from 

receiving two beads or two cells. Two cells together with a bead in a single drop would 

result in the transcripts from both cells having the same bead barcode and hence assigned to 

a single cell. A somewhat lesser problem, two beads in one drop with one cell, would end up 

giving the transcripts from one cell to two distinct barcodes, thereby counting that cell twice. 

Therefore, Drop- seq protocols typically aim to incorporate about one cell in every 20 drops, 

so that only one drop in 400 on average receives two cells. Moreover, the bead concentration 

of the majority of Drop- seq protocols gives at most one bead per ten drops. Thus, this 

system suffers from double Poisson distribution; the net result, combined with normal bead 

loss during handling, is that only ~5% of Drop- seq input cells give RNA- seq data. By 

contrast, almost all drops generated by the Chromium system have a single bead, as the large 

hydrogel beads used by this system can be loaded at very high, back- to-back concentrations. 

By carefully adjusting the bead input flow rate, it is possible to place one bead in each drop. 

The system still suffers from a single Poisson distribution with the potential for two cells to 

be incorporated in a single drop; however, almost every cell finds itself in a drop with a 

bead. The net result is that over 50% of input cells into the Chromium system give rise to 

RNA- seq data, about a tenfold higher success rate than that of Drop- seq. This difference is 

particularly important when the number of starting cells is limited. Another advantage of the 

commercial Chromium system over the Drop-seq method is the ease of its set-up and 

operation. The main disadvantage of the Chromium system compared with Drop- seq is the 

considerably higher cost of reagents.
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Non-microfluidics approaches.—In addition to the high-throughput microfluidics 

methodologies described above, scRNA- seq can also be carried out in microwell plates by 

performing RNA- seq on cells isolated by simply picking them or via fluorescence- activated 

cell sorting (FACS). A variety of amplification chemistries can be used with the microtitre 

plate format, including SMART- seq2 chemistry12, Cel- seq13, MARS- seq14 and STRT- 

seq15. SMART- seq2 and STRT- seq amplify cDNA products of reverse transcription with 

PCR, whereas Cel- seq and MARS-seq incorporate a bacterial virus promoter into the 

cDNA, which is then amplified by in vitro transcription. These microtitre0 plate methods are 

not restricted by cell- size constraints of the Fluidigm system, which requires different 

micro-fluidic devices for cells of different sizes. Although microdroplet methods are less 

sensitive to cell size than the Fluidigm method, as the droplets are very large compared to 

cells, they are prone to clogging during the generation of microdroplets with certain cell 

types, like neurons and muscle cells. In addition, the equipment requirements and set-up 

costs are minimal for microtitre plate methods. Approaches that enable full coverage of 

cDNA sequencing, for example, SMART-seq2, can also facilitate analysis of alternative 

splicing patterns, enabling the identification of distinct transcripts with potentially very 

different functions. By contrast, other scRNA- seq methods, such as Drop-seq, InDrop, 

Chromium and 800 cell IFC Fluidigm, provide sequence information only for the 3′ or 5′ 
ends of the cDNAs and not the entire transcript, and therefore cannot be used for the 

analysis of alternative splicing patterns. Of interest, a 2017 modification of the STRT- seq 

system, termed STRT- seq-2i, uses a 9,600 microwell array platform, allows microscopic 

confirmation of single cells and generates high-quality scRNA- seq data at a competitive 

cost of ~$1 per cell, including DNA sequencing16.

CytoSeq is another powerful scRNA-seq technology17, whereby single cells are allowed to 

settle by gravity into microwells, upon which a bead suspension is then placed at saturation 

concentration so that each well receives a bead. The beads, similar to Chromium and Drop-

seq technologies, carry uniquely barcoded oligonucleotides to prime reverse transcription 

and are sized so that only one can fit in a microwell. Excess beads are removed, the cells are 

lysed and the mRNA from each cell then hybridizes to the bead oligonucleotides, similar 

again to the Chromium and Drop- seq technologies. The advantages of this system are that it 

can be used without the complicated microfluidics systems required for Fluidigm, Drop-seq 

and the Chromium systems. It is also easily scalable by using plates with more microwells. 

A variant of this method, Microwell-seq, was used to carry out scRNA-seq on over 400,000 

mouse cells to create a single-cell atlas for most major organs, including the kidney18.

Yet another scRNA- seq technology, SPLiT- seq, further reduces equipment requirements 

and can cut the cost of library construction for sequencing to $0.01 or less for each cell19. 

With this method, the cells themselves, following gentle fixation and permeabilization, serve 

as microdrops. The single cells are randomly divided into the wells of a 96-well plate, and 

the reverse transcription reaction is carried out within the cells with well- specific primers. 

The barcodes are ligated onto the cDNAs in a sequential and combinatorial fashion. All the 

cells in a single well of the 96-well microtitre plate have a short well- specific 

oligonucleotide sequence ligated to all their cDNAs. The cells of the entire microtitre plate 

are then pooled into a single tube, mixed thoroughly and randomly distributed into the wells 
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of yet another 96-well plate. Once again, short well-specific oligonucleotides are ligated to 

the cDNAs to further contribute to the barcodes. Three rounds of this pooling and splitting 

process, followed by a fourth round with 24 independent PCRs, gives a total of 21,233,664 

possible barcode combinations. All the cDNAs within one cell travelled the same path 

during the split–pool process of barcoding; therefore, they all have the same cell-specific 

barcode. The resulting scRNA- seq data quality seems similar to that of the Chromium and 

Drop- seq methods. The major advantage of SPLiT-seq is therefore its low cost for 

generating cDNA libraries; at present, however, the major cost component of scRNA-seq is 

the DNA sequencing. As DNA sequencing costs continue to drop, the inexpensive library 

construction costs of technologies such as SPLiT-seq will become increasingly important 

and could facilitate the scRNA-seq analysis of very large numbers of cells, perhaps even 

billions.

Experimental design

scRNA- seq experiments must be designed carefully, with consideration of numbers of cells, 

reads per cell and biological replicates. Each of these variables contributes to the final 

statistical power of the analysis. Higher numbers of each component (that is, cells, readouts 

and biological replicates) are always better than lower numbers, but return must be 

optimized for money spent. Different technologies will have different thresholds for the 

maximum number of sequence reads per cell, beyond which additional sequencing provides 

little additional information. The choice of technologies should depend on the degree of 

similarity of cell types being analysed. In attempting to resolve extremely similar cell types, 

it might be necessary to use a more expensive system that gives a higher resolution of gene 

expression patterns. The degree of biological variability, and hence the number of biological 

replicates required, will be experiment- dependent. Consultation with a statistician is 

recommended as there is no one size fits all solution to these questions.

Challenges of single-cell studies

Working with limited material

The primary challenge for single- cell studies is the very small amount of material available 

to work with. Each cell contains only ~10 picograms of total RNA on average, of which only 

~0.1 picograms is mRNA20. For many genes, there are only tens of transcripts per cell. All 

the scRNA- seq technologies described above therefore require an amplification step to 

generate sufficient cDNA for sequencing from the picogram amounts of RNA in a single 

cell. Unfortunately, cDNA amplification is never perfectly linear, leading to disproportional 

representation of all cDNAs present in a cell. To help overcome this problem, almost all 

current scRNA- seq technologies incorporate a unique molecular identifier (UMI) into the 

primer oligonucleotide used for reverse transcription. For example, the oligonucleotides 

attached to the beads used for Drop- seq each have an identical 12-base bead- specific 

barcode that allows the eventual DNA sequence reads to be aligned to the single cell in the 

drop with that bead. In addition, however, every oligonucleotide on each bead has an 8-base 

UMI barcode that is different for every oligonucleotide. The presence of these UMI 

barcodes means that all the DNA sequence reads with the same UMI can be compressed to a 

single hybridization event between an mRNA and a specific oligonucleotide. The ability to 
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count the initial cDNA product of reverse transcription rather than all the amplicons avoids 

bias in our interpretation of gene expression levels if, for example, cDNA from one 

hybridized mRNA amplifies poorly owing to high GC content, whereas cDNA from another 

hybridized mRNA amplifies particularly well. This compression step during data 

deconvolution can remove most amplification- based distortions of the gene expression data.

Capturing single cells

Another challenge of scRNA-seq is the process of breaking down an organ or tissue into 

single cells for analysis. One approach is simple micromanipulation21, for example, using 

forceps or micromanipulators, a micropipette and a microscope, to isolate single cells from 

histological sections or an early embryo. This approach can be effective and ensures that 

each sample is indeed a single cell, but it is labour intensive and low throughput22,23. Laser 

capture microdissection (LCM) can also be used to isolate single cells by using a laser beam 

to excise cells from cryostat sections24,25. An advantage of this approach is that it can also 

provide some spatial information for the cell of interest, but like micromanipulation, it is low 

throughput and labour intensive. In addition, it is technically challenging to use LCM to 

capture the contents of a single cell cleanly, without any contamination from flanking cells 

and without damaging the cell RNA. If the cell type of interest is quite rare, then FACS can 

be used for enrichment. FACS is high throughput and can also be used to place single cells 

in 96-well plates, which is an important first step for some scRNA-seq methods.

Another approach takes advantage of the very high-throughput nature of currently available 

scRNA- seq technologies by simultaneously examining massive numbers — up to millions 

— of single cells dissociated from the tissue of interest. In this manner, every cell type 

present in the starting tissue is examined, unless it is exceptionally rare. This approach is 

also marker free and does not require cell- specific tags, for example, green fluorescent 

protein (GFP) for FACS- based cell selection, and can be applied to almost any starting 

tissue. Despite the many advantages of this approach, the fact that all spatial information is 

lost during the cell dissociation process presents a challenge. Reconstruction of a three-

dimensional single cell-resolution gene expression atlas with this approach therefore 

requires a second step whereby cell types are bioinformatically assigned spatial positioning 

on the basis of their known gene expression signatures. In the developing mouse or human 

kidney, for example, cap mesenchyme progenitor cells can be identified by their expression 

of Cited1, Six2, Eya1 and Osr1; stromal progenitor cells can be identified by the expression 

of Foxd1; podocytes by Mafb; and proximal tubule cells by Hnf4a. Spatial positioning of 

newly identified cell types requires in situ hybridization or immunofluorescence studies. 

Such analyses can produce a remarkable virtual organ, with all transcription factors, growth 

factors, other secreted proteins and receptors fully defined for every cell type (Fig. 3). This 

strategy has been used, for example, to create a virtual embryo of the genes expressed by 

cells within developing Drosophila larvae, providing a powerfully useful tool for the 

research community26.

A difficulty with the above- described approach is that the enzymes commonly used for 

tissue dissociation, including trypsin, collagenase, TrypLE, dispase, liberase and pronase, all 

require incubation at 37° C. This is also the temperature at which the mammalian enzymes 
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within the cells of interest, including the transcriptional machinery, are maximally active. 

We therefore expect that the cells will change their gene expression patterns in response to 

the foreign environment during the dissociation process. Indeed, early response genes, 

including multiple members of the FOS and JUN families, show dramatic elevations in gene 

expression after only a few minutes of dissociation at 37°C (ReF.27). Therefore, gene 

expression artefacts of the cell separation process almost certainly taint, in some measure, 

most scRNA- seq data sets generated to date.

One way to minimize these dissociation artefacts is to carry out RNA- seq on nuclei instead 

of whole cells. Nuclei can be prepared using mechanical homogenization, such as with a 

Dounce homogenizer, on ice. Sequencing of nuclear RNA has been used, for example, to 

analyse gene expression in autopsy samples, where dead and broken cells have leaked out 

cytoplasmic RNA, and for muscle cells or neurons that are too large to use with the Fluidigm 

C1 system28–32. The major disadvantage of nuclear RNA sequencing is that only a small 

fraction of cellular RNA (generally 10–20%) is in the nucleus, so technical noise (see below) 

is increased. Nuclear RNA analyses will also include a higher proportion of unprocessed 

transcripts that still contain introns, which can complicate analysis. In addition, some 

concern exists regarding the degree to which nuclear RNA content reflects that of 

cytoplasmic RNA. Despite these remaining challenges, this approach has enormous potential 

as a powerful tool for the analysis of gene expression of cells for which the isolation and 

analysis of cytoplasmic RNA is problematic.

In addition to nuclear RNA analysis, preservation of in vivo gene expression patterns during 

cell dissociation can be achieved through the use of transcription inhibitors. In particular, 

addition of α-amanitin — which inhibits transcription by RNA polymerase II — can reduce 

gene expression artefacts during cell dissociation33. One disadvantage of this approach is the 

slow cellular uptake of α- amanitin, which can take hours and requires the presence of 

specific transporters34,35. In addition, transcriptional inhibitors do not block RNA turnover, 

which also influences RNA content.

Another approach to minimize dissociation-induced artefacts in gene expression is to carry 

out the single-cell dissociation using cold- adapted proteolytic enzymes. In contrast to 

thermophilic organisms that can survive extreme heat, for example, deep-sea hydrothermal 

vents and other geothermal heated regions, psychrophilic, or cryophilic, organisms flourish 

in extreme cold. Just as we use DNA polymerase from thermophiles for PCR because it can 

survive the high- temperature step used to denature DNA, we can use proteases from 

psychrophilic microorganisms to carry out cell dissociation at near ice temperatures, thereby 

better preserving in vivo gene expression patterns27.

Of note, some cells in a tissue are more easily dissociated than others. Immune cells, for 

example, tend to be only loosely attached to their neighbours and are easily freed. On the 

other hand, podocytes are firmly attached to glomerular capillaries through their many 

tentacle-like extensions. Likewise, mesangial cells are securely embedded in extracellular 

matrix and are also notoriously difficult to dissociate. Equally important, some cells are 

more fragile than others and can be easily killed by rigorous enzymatic and/or mechanical 

disruption methods that are required to release difficult- to-dissociate cells. These points 
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exemplify some of the challenges of organ dissociation, as the resulting single- cell 

suspension will rarely provide proportional representation of the many starting cell types.

Noise

Important limitations exist in the amount of information that can be obtained by scRNA- 

seq. One important limitation is a consequence of the biological noise that results from the 

pulsatile, bursting nature of gene expression36–38. Genes are not expressed in a steady-state 

manner but rather are actively transcribed in a sporadic fashion in short bursts, meaning that 

for a given cell, the levels of various gene transcripts are in a constant state of flux. This 

gene expression chatter is a consequence of the fundamental nature of gene expression and 

is unavoidable. A second limitation resides in the methodological measurement of transcript 

levels when starting with the limited amount of RNA present in single cells. Current 

estimates suggest that most scRNA- seq technologies detect only about 10–20% of the 

mRNA molecules that are actually present15,39. This poor sensitivity is therefore an area in 

need of improvement. Low levels of gene expression, in particular, are difficult to detect, 

which can be problematic given that the average gene expresses surprisingly few transcripts 

— generally only 10–30 — per cell. Inefficiencies in the reverse transcription and 

amplification steps therefore add a considerable layer of technical noise to single- cell gene 

expression studies. Twenty per cent of noise from scRNA- seq studies is estimated to be of 

biological origin, whereas the remaining 80% is thought to be the result of technical 

limitations40.

Given the noise associated with scRNA- seq, it is perhaps surprising that the gene expression 

profiles obtained using this technology are usually sufficient to allow unsupervised 

clustering of the cells. Unsupervised clustering allows the software analysis programme to 

search for patterns and similarities in groups of cells without any input from the investigator 

with regard to known marker genes expressed by the different cell types. Once similar cells 

are clustered, or grouped together, then all the gene expression data from all the cells of a 

single cell type are combined to obtain a robust measure of the gene expression profile. This 

cluster and combine strategy provides important data complementation (Fig. 4). Genes with 

low expression levels might be detected in only a small fraction of the cells of a cluster but 

would be seen in the aggregate. For example, a rare transcript present at only one copy per 

cell might be detected in only 10% of cells, but in a cluster of 100 cells, 10 cells would show 

expression of this gene. In the combined view of the cells in a cluster, this gene would be 

identified as being expressed. Enormous statistical power therefore exists in analysing large 

numbers of cells, and increasing the number of cells in each cluster improves the 

effectiveness of this complementation approach and the output of the analysis. Thus, perhaps 

unexpectedly, for single- cell studies, we examine single cells to avoid the ensemble average 

effect of pooling multiple distinct types of cells, but once the single cells are divided into 

clusters, the data from each group are pooled to give a more sensitive and complete 

representation of the gene expression pattern of that cell type.

Data analysis

Identification of expressed genes.—The data sets obtained using scRNA-seq 

technologies are extremely challenging, partly owing to the combination of biological and 
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technical noise. Owing to technical limitations, microdroplet- based technologies, such as 

Drop- seq and InDrop, typically detect only 1,000–3,000 genes expressed per cell, which is 

only a fraction of the number of genes actually expressed. Genes that are expressed but the 

transcripts for which are not detected for technical reasons are termed dropouts. Further, a 

gene is considered expressed even if only a single cDNA sequence read is obtained that 

aligns to that gene. Indeed, for many genes that are considered expressed, only a single read 

is observed, providing a very imperfect measure of gene expression level. The fact that 

scRNA- seq data are so remarkably useful despite these shortcomings is a tribute to the data 

analysis programmes that have been developed.

Analysis of gene expression patterns first requires the scRNA- seq data to be deconvoluted, 

with one of the paired DNA sequence reads assigned to a cell- specific barcode and the other 

aligned to a gene sequence, to pair the expression of particular genes to individual cells. As 

described earlier, many of the scRNA-seq techno logies, including Drop-seq and the 

Chromium system, use UMI barcodes that allow compression of sequence reads to 

individual barcoded oligonucleotides, enabling mRNA hybridization events to be counted 

and eliminating nonlinearities in subsequent amplification steps. The net result is a digital 

gene expression readout for each cell, including the total number of DNA sequence reads 

identified for every gene.

Quality control.—Quality control steps during data analysis include the removal of cells 

that have a low number of genes that are considered to be expressed in order to eliminate the 

weakest data sets. A typical threshold is a minimum of 500 genes identified as being 

expressed per cell8. In addition, cells with very high proportional readouts for mitochondrial 

DNA are removed, based on the assumption that these cells are likely to be dead as cells 

with a leaky cytoplasmic membrane lose cytoplasmic RNA, but not mitochondrial 

transcripts, which remain contained in the mitochondria. Red blood cells are also often 

removed based on their high haemoglobin expression.

Analysis strategies.—An important step in the analysis of scRNA- seq data is 

dimensionality reduction. The number of dimensions in a set of gene expression data is 

represented by the expression levels of all genes. If 2,000 genes are considered to be 

expressed in a cell, then there are 2,000 dimensions. Dimensionality reduction involves the 

use of various predictive model algorithms that transform high dimensional space to a space 

with fewer dimensions. Principal components analysis, for example, carries out a linear 

transformation, but many nonlinear dimensionality reduction methods exist8,41–43.

Reiterative clustering is a common strategy used in the analysis of scRNA- seq data. As 

previously noted, the data obtained through scRNA- seq are sufficiently informative to 

enable cells to be grouped according to their gene expression pattern. This clustering is 

carried out on the basis of complex gene expression signatures, involving many genes, and 

not the restricted expression of only a few cell type- specific marker genes. This approach 

overcomes the problem of gene dropout and allows cells to be grouped even if the 

expression of a key marker gene goes undetected. An initial round of clustering typically 

divides cells into the most distinct groups. For example, an analysis of cells in the 

developing kidney might initially divide the cells into stromal cells and various types of 

Potter Page 10

Nat Rev Nephrol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nephron epithelial cells. A second round of analysis can then be carried out, perhaps, for 

example, using only the collecting duct cells, to divide them into subtypes, which would 

include β-intercalated cells, principal cells and other cell types (Fig. 5). Further such rounds 

of analysis can be performed in an attempt to define additional cell sub-types, but at a 

certain threshold, this process begins to ‘cluster on noise’, with the supposed cell 

heterogeneities actually based on data noise. One approach to determine when this threshold 

has been reached is to visually examine a heat map illustrating the differences in gene 

expression between the different clusters to look at the level of reproducibility of gene 

expression between clusters. Real cell subtypes will show consistency in their differential 

gene expression, whereas noise- based clustering will show little reproducibility. In addition, 

real differences in gene expression patterns between cell subtypes will substantiate with the 

use of orthogonal technologies, such as immunofluorescence or fluorescence in situ 

hybridization (FISH), whereas noise-based differences will fail to validate.

Data analysis software.—Software for the analysis of scRNA- seq data is an area of 

rapid development and has been reviewed in detail else where44,45. The programmes in use 

include Seurat8, Sincera46, AltAnalyze47, Monocle48, Backspin49, Pagoda50, scLVM51, 

NMF52, SCDE53, RaceID2 (ReF.54), HiLoadG- HC55, RC1, SCell56 Wishbone57, 

Wanderlust58, DPT59, p- Creode60 and others40,61, all of which have been applied to 

scRNA-seq data with success. My laboratory has used Seurat, Sincera and AltAnalyze and 

found all three to give excellent and comparable results.

Applications

Single-cell gene expression profiling is rapidly becoming a standard analytical tool for 

researchers in many disciplines, including neurobiology, immunology and cardiology, to 

name just a few. In this Review, we focus on the use of this technology for the study of 

development, cancer and the kidney.

Development

Our understanding of development and the gene expression programmes that drive organ 

formation has important practical consequences. For example, using the principles that drive 

normal embryonic kidney development, stem cells can be induced to form kidney organoids, 

which are quite small yet include the many differentiated cell types found in a developing 

kidney62,63. Furthermore, in Nobel prize- winning work, adult fibroblasts were induced to 

de- differentiate and convert into stem cells through the forced expression of just four 

transcription factors64. These advances raise the exciting possibility that at some point in the 

future, it might be possible to take skin cells from a patient and use them to make immuno- 

compatible replacement organs.

scRNA- seq is a very powerful tool for the study of development. Early in organ 

development, collections of cells are often present that look histologically identical yet will 

differentiate in diverse directions to form distinct cell types. Better understanding of the 

precise gene expression programmes that drive these distinct differentiation pathways would 

improve understanding of the process of organ development. Gene expression analyses that 

examine pools of cells are inappropriate in this context, as the analyses would pool cells that 
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ultimately differentiate down different pathways. Single- cell studies, however, can identify 

differential gene expression patterns associated with different lineage decisions in adjacent 

cells.

Multilineage priming.—A pioneering paper published in 2003 examined the gene 

expression patterns of single cells in the developing pancreas65. Using the technology then 

available, the researchers monitored the expression levels of about 100 selected genes in 60 

cells. This study was distinctly ahead of its time in concept, recognizing the potential of 

single-cell studies to define the underlying basis of differentiation decisions, despite the 

histological similarity of cells early in organogenesis. One of the most interesting outcomes 

of this early work was the discovery that during pancreas development individual cells 

expressed genes associated with multiple possible future differentiated cell types65. For 

example, single progenitor cells expressed genes associated with both exocrine and 

endocrine lineages, whereas some single cells expressed multiple endocrine hormones, even 

though such combinations of gene expression do not occur in the adult. Such multilineage 

priming, whereby progenitor cells co- express genes of multiple distinct lineages, has also 

been seen in the haematopoietic system, where the finding was described as gene expression 

promiscuity66. A similar process of stochastic promiscuous gene expression followed by 

more restricted lineage specific transcription patterns occurs during development of the early 

mammalian embryo, as the epiblast and primitive endoderm lineages are established67.

Multilineage priming also occurs in kidney development. The adult metanephric kidney 

initially forms as a result of cross- inductive interactions between the nephric duct and the 

metanephric mesenchyme68. The ureteric bud outgrowth from the nephric duct undergoes 

branching morphogenesis to give rise to the collecting ducts and induces the flanking cap 

mesenchyme progenitor cells to undergo nephrogenesis. These progenitor cells undergo 

mesenchyme- to-epithelial transition to form the renal vesicle, which gives rise to the S- 

shape body and eventually all the epithelial cells of the nephron.

scRNA- seq analysis of the renal vesicle shows that these cells are at an interesting 

intermediate stage of lineage decision. For example, cells at one end of the renal vesicle, the 

distal region that abuts the collecting duct, show almost no expression of genes associated 

with podocytes, indicating that they have already excluded this potential lineage69. At the 

opposite proximal end of the renal vesicle, however, many cells show stochastic yet robust 

expression of multiple podocyte genes, showing that these cells are apparently actively 

considering this direction of differentiation. Many of these same cells, however, also express 

multiple genes associated with other lineages, including, for example, proximal tubules (Fig. 

6). It is clear that the lineage selection process requires both absolute repression of 

inappropriate genes and further activation of appropriate lineage specific genes, but exactly 

how these apparently poised gene states are established and subsequently turned off and on 

during differentiation remains an open question.

Atlases of organ development.—Single-cell transcriptional profiling can be used to 

create a high- resolution gene expression atlas of organ development. Such an atlas would 

define all the transcription factors, growth factors and receptors expressed in each cell type 

at different stages of development. It could globally characterize transcriptional transition 
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states as cells differentiate and elucidate the crosstalk between flanking cell types. In sum, it 

could describe the gene expression programmes that drive development.

One general strategy for creation of such an atlas, as described earlier, is to dissociate the 

cells of a developing organ, perform high- throughput scRNA- seq on thousands of cells, for 

example, using a microdroplet-based technology, and use a bioinformatics-based approach 

to cluster cells into types and subtypes in an unsupervised manner. Spatial reconstruction of 

the single-cell atlas — that is, repositioning the analysed cells within a three-dimensional 

model of the developing organ — can be carried out manually based on prior knowledge of 

the gene expression signatures of different cell types or computationally by combining the 

newly obtained data with an established data set that distinguishes cell types70,71. New cell 

types would need to be positioned within the organ on the basis of immunofluorescent or in 

situ hybridization analysis of cell type specific markers.

Such scRNA-seq analysis of early kidney development revealed stromal cells as an 

important cell source of the glial cell line- derived neurotrophic factor (GDNF) — a growth 

factor that is essential for proper branching morphogenesis of the ureteric bud11,72,73. This 

finding was quite unexpected as the cap mesenchyme nephron progenitors had been thought 

to be the sole source of GDNF68,74. Nevertheless, use of three different scRNA-seq 

approaches — Drop- seq, Fluidigm and the Chromium system — to study gene expression 

in single cells of mouse kidney at embryonic day (E) 14.5 all defined stromal cells as a 

major source of GDNF. This finding was further confirmed using in situ hybridization and 

immunohistochemistry.

scRNA- seq studies of the developing lung have also characterized bipotential cells, 

identified markers of novel cell types, found transcriptional regulators and defined full gene 

expression programmes of the many cell types present at multiple stages of 

development46,55,75,76. The lungMAP consortium (see also the LGEA Web Portal) is using 

scRNA- seq to create a high- resolution gene expression atlas of the developing mouse and 

human lung75. Through the use of scRNA-seq, the adult mouse lung mesenchymal cell 

population, for example, was divided into five subtypes, including the alveolar niche, which 

supports alveolar growth and regeneration, and a myofibrogenic progenitor population, 

which contributes to a population of pathogenic myofibroblasts77. These studies provided 

the first comprehensive atlas of the gene expression patterns of all cell types in the 

developing lung, further defining the multiple transcription factor programmes that underlie 

lung development and the interactions between growth factors and their receptors that take 

place during development.

Implications for organ and organoid development.—In similar fashion to the 

above- mentioned studies, single-cell studies of the heart have defined the changing gene 

expression patterns of the endocardial, fibroblast and cardiomyocyte lineages during 

development7. Comparative analysis of mouse embryonic stem cell (ESC)-derived 

cardiomyocytes showed that they had a level of maturity comparative to that of fetal 

cardiomyocytes aged E14.5–E18.5. In general, gene expression analyses have shown that 

induced pluripotent stem cell (iPSC) and ESC- derived cell types and organoids are not as 

differentiated as originally believed and that further work is needed to understand how to 
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drive their maturation. Of particular interest, the above- mentioned study of the developing 

heart also examined perturbed gene expression patterns present in the developing hearts of 

mice with heterozygous deletion of Nkx2.5, which encodes a transcription factor that is 

essential for normal heart development. Using scRNA- seq, the researchers identified a 

defect in the maturation of cardiomyocyte and endocardial cells, even though Nkx2.5 is only 

expressed in cardiomyocytes, demonstrating that cardiomyocyte crosstalk is required for 

proper endocardial maturation7.

The liver has impressive regenerative capacity, suggesting that it is a prime candidate for 

patient- derived organ replacement therapy. Indeed, human iPSCs can be used to generate 

liver bud- like tissue that, when transplanted, can extend life in a mouse model of liver 

failure78. Deeper understanding of the molecular drivers of liver development could advance 

liver organoids to the point where they could be used for human therapy. An elegant scRNA- 

seq study of the changing gene expression profiles of iPSCs as they formed liver buds79 

defined a sequence of gene expression patterns that were present during the differentiation of 

iPSCs to hepatocytes, with the progressive downregulation of pluripotency genes and 

upregulation of genes controlling endoderm formation. However, similar to other studies that 

have assessed organoid maturity, the gene expression pattern of iPSC-derived hepatocytes 

more closely resembled that of human fetal hepatocytes than those from adult liver. The 

factors that influence vascularization of iPSC- derived liver buds were also investigated 

because vascularization is key to the survival and growth of organoids, which can only grow 

to millimetre size without vascularization. Human liver organoids vascularize following 

transplantation into mice, and scRNA- seq analysis of transplanted organoids suggested 

roles for genes involved in hypoxia, inflammation and matrix remodelling in this 

vascularization process80. Furthermore, analysis of complementary receptor and ligand 

expression in all cell types of the liver organoids defined potential crosstalk between the 

developing endothelial, mesenchymal and hepatocyte cells. Such insights into the processes 

underlying liver development have potential to define growth factor cocktails to facilitate the 

generation of improved liver organoids.

Thus, scRNA- seq is a very powerful tool for the study of developmental processes. It can 

define the transcription factor codes that define different cell types and drive differential 

gene expression. It can characterize the differentiation states of the multiple cell types 

present in organoids and provides a global analysis of potential ligand–receptor interactions. 

It can lend a much deeper understanding of normal developmental mechanisms and aid in 

the generation of improved organoids that could in time be used for the purposes of organ 

replacement therapy.

Cancer

As noted earlier, tumours contain a heterogeneous mix of cells that include cancer, vascular, 

immune and fibroblast cell types. Each of these cell types can be further divided into 

subtypes. Different types of infiltrating immune cells, for example, can stimulate both cancer 

cells and surrounding stromal cells through the production of epidermal growth factor 

(EGF), transforming growth factor- β (TGFβ), tumour necrosis factor (TNF), fibroblast 

growth factors (FGFs), interleukins and chemokines80. Multiple types of cancer- associated 

Potter Page 14

Nat Rev Nephrol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fibroblast cells also exist, some of which can secrete proliferation- inducing factors and pro- 

inflammatory agents that recruit further immune cells81. Multiple types of stromal cells are 

also present, contributing to the tumour microenvironment and driving cancer cell 

proliferation through paracrine and juxtacrine signalling. The study of gene expression 

patterns of stromal cells within the tumour microenvironment can provide prognostic value 

separate to that provided by the study of gene expression of intrinsic cancer cells82,83. 

scRNA-seq technology is clearly a very useful tool to dissect the properties of the multiple 

cell types within and surrounding tumour. Below, I briefly review a few key studies 

illustrating the power of this approach.

One study that used scRNA-seq to study gene expression in normal human colorectal 

tumours and matched normal mucosa1 identified ΤGFb1 to be the most upregulated 

differentially expressed regulatory gene in cancer-associated fibroblasts (CAFs). TGFβ 
secretion by CAFs contributed to activation of the TGFβ signalling pathway in tumour 

epithelial cells, suggesting crosstalk between these two cell types. Of interest, using analysis 

of gene expression patterns, the researchers could divide fibroblasts into three subtypes: 

normal (from control mucosa), those that expressed markers of myofibroblasts (that is, 

ACTA2, TAGLN and PDGFA) and those that expressed a distinct gene signature, including 

MMP2, DCN and COL1A2, with unknown function. Further, the scRNA- seq results could 

be used to reanalyse previous bulk RNA- seq data sets, thereby dividing the tumours into 

three distinct groups. One of the groups showed a strong epithelial cell type signature and 

weak fibroblast and myeloid signatures, and correlated with the best survival rates, 

demonstrating the translational potential of this technology1.

A separate study of human oligodendroglioma — a rare and incurable type of glioma — 

used scRNA-seq to identify a novel type of glioma-specific microglia, which expressed pro-

inflammatory cytokines (IL1A, IL1B, IL8 and TNF), cytokines (CCL3, CCL4) and early 

response genes that distinguished them from the canonical M1 and M2 microglia84. These 

newly recognized micro-glia provide yet another example of cancer- associated cells that 

likely play a key part in the disease process. In addition, characterization of the cancer cells 

identified three types, including astrocytes, oligodendrocytes and a cluster of cells that 

expressed genes congruent with neural progenitor cells, suggesting that these cells have 

properties of stemness. Almost all the dividing cancer cells within the oligodendroglioma 

expressed these stemness markers, suggesting that these cells are responsible for fuelling 

tumour growth, giving rise to both astrocytes and oligodendrocytes, and supporting the 

cancer stem cell model.

scRNA- seq analysis of human breast cancer tissue has defined the variable expression of 

genes associated with epithelial- to-mesenchymal transition, stemness, angiogenesis, 

proliferation and tumour recurrence85. scRNA- seq has also been used to define genes that 

are differentially expressed by cell subtypes within a breast tumour. These studies revealed 

that the majority of non-cancer cells within these tumours were immune cells, including 

cells with the immune-suppressive characteristics of exhausted or regulatory T cells85. The 

exhausted T cell phenotype, indicating loss of T cell function, also emerged in a study of 

liver cancer that focused on T cells86. Patients with late-stage disease showed T cells with a 
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higher level of exhaustion; scRNA- seq analyses enabled the complete gene expression 

patterns for these T cells to be defined and novel exhaustion marker genes to be described.

scRNA- seq has also been used to examine the multicellular composition of melanoma87. 

Non- malignant cells clustered according to cell type, for instance, T cells, B cells, 

macrophages, endothelial cells, natural killer cells and CAFs. Of interest, however, 

malignant cells from each patient clustered separately, indicating a high degree of 

intertumour heterogeneity. Malignant cells could be separated into cycling and noncycling 

cells, and the researchers characterized a subset of KDM5B- expressing, slow cycling, drug- 

resistant, stem- like melanoma cells. The researchers also studied the heterogeneity of 

malignant cells as a function of treatment with RAF proto-oncogene serine/threonine-protein 

kinase and MAP/ERK kinase (MEK) inhibitors and identified a change in the distribution of 

cell types reflecting differing sensitivities of the cells to treatment. Further relationships 

between non- malignant tumour cells, such as CAFs, and malignant gene expression patterns 

and drug sensitivity were also found, and CAF genes implicated in T cell infiltration were 

identified. Once again, this example shows how single-cell analysis can provide deeper 

insights into the biology of cancer than would be possible with bulk analysis of aggregate 

pools of multiple cell types.

One pioneering study used scRNA- seq to define cancer cell heterogeneity in metastatic 

clear cell renal carcinoma88 with the aim of defining active signalling pathways that could 

help guide therapeutic strategy. The researchers examined a limited number of cells from a 

single patient, including 34 from a metastasis, 36 from a patient metastasis- derived 

xenotransplant and 46 from a primary tumour- derived xenotransplant. Different drug target 

pathways were active in the primary and metastatic xenotransplants, and these reflected 

different drug sensitivities. The metastatic cells showed sensitivity to drugs that targeted 

epidermal growth factor receptor (EGFR) (gefitinib, erlotinib and afatinib), SRC family 

kinases (dasatinib) and BRAF–MEK (selumetinib), whereas the primary tumour cells were 

more sensitive to drugs that targeted MET (tivantinib, foretinib and crizotinib) and 

phosphoinositide 3-kinase (PI3K) (BKM120). Detailed analysis of cell heterogeneity within 

the primary and metastatic tumours suggested that treatment with both afatinib and dasatinib 

would be beneficial; indeed, this combination treatment had a synergistic antitumour effect 

on metastatic xenografts. The results from this study provide proof- of-principle that insights 

into cell heterogeneity achieved using scRNA-seq can be used to design therapeutic 

approaches that are optimal for individual patients.

Normal and diseased kidneys

Single- cell studies of adult kidneys, both normal and diseased, have lagged behind other 

areas, such as cancer and immunology, but new studies are emerging. Two studies have used 

the Fluidigm 96 cell IFC system to examine the gene expression profiles of very small 

numbers of mouse podocytes (20 cells)89 and mesangial cells (33 cells)90. Although these 

studies provide an interesting first look at the genes expressed by these cells, they are limited 

by the low numbers of cells examined.

One study used scRNA- seq to examine cells of the collecting duct, which have a major role 

in maintaining electrolyte and fluid balance. Given the relative rarity of collecting duct cells, 
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FACS enrichment was first used to isolate them91, followed by scRNA- seq analysis to 

examine gene expression in 74 principal cells, 87 type A intercalated cells and 23 type B 

intercalated cells. Highlighting the power of scRNA- seq, the findings revealed possible 

crosstalk between the cell types. For example, Notch2 receptor was identified as being 

expressed in principal cells, whereas its ligand Jag1 was expressed in intercalated cells. 

Similarly, Kit was found to be expressed in intercalated cells and its ligand Kitl in principal 

cells. The researchers could also define all the channels and transporters expressed by the 

different cell types. In addition, this study delineated the receptors for humoral factors 

expressed by the different collecting duct cell types, including the extracellular calcium 

sensing receptor by type B intercalated cells and the V2 vasopressin and type 1 

prostaglandin E2 receptors by principal cells. Overall, this work represents an important step 

forward in defining the characteristics of collecting duct cells and furthers our understanding 

of their physiologic regulation.

A more comprehensive scRNA- seq analysis used the Chromium microdroplet system to 

examine the gene expression patterns of 57,979 cells across the adult mouse kidney92. 

Clustering analysis divided the cells into 16 groups, and further analysis divided three of 

these clusters into a total of eight subclusters. Gene expression analysis identified 18 

previously known cell types and 3 novel cell types. One of these novel cell types represented 

a transitional state between collecting duct principal and intercalated cells. This finding is of 

particular interest given that these cells have different functions: principal cells are 

responsible for the reabsorption of sodium and water and the secretion of potassium whereas 

α- intercalated and β- intercalated cells are responsible for acid and alkali secretion, 

respectively. The researchers documented the conversion potential of the principal and 

intercalated cells using a transgenic lineage tag system92 and observed cell plasticity, with a 

fraction of cells labelled with one cell type tag undergoing transition to the other lineage as 

measured by immunofluorescence. Further, the researchers demonstrated that transgene-

mediated activation of the Notch pathway could drive the transition of intercalated cells to 

principal cells. This work therefore provides an exhaustive gene expression atlas of the many 

cell types of the normal adult kidney, connects disease- associated genes to specific cell 

types and demonstrates a surprising differentiation state flexibility in the adult kidney.

Another study examined single-cell gene expression in the zebrafish kidney2. In the adult 

zebrafish, the kidney, rather than bone marrow, is the site of haematopoiesis. Although this 

study mostly focused on haematopoiesis, the researchers also used the microdroplet- based 

InDrop system to examine the gene expression profiles of 1,699 non-haematopoietic kidney 

cells10. Among other achievements, the researchers were able to characterize mucin- 

producing cells, which make mucin barriers that reduce chances of infection. In contrast to 

the adult mammalian kidney, which cannot make new nephrons, the zebrafish adult kidney 

shows a remarkable ability for regeneration. Using scRNA- seq, the researchers were able to 

define the gene expression patterns of zebrafish adult nephron progenitors, showing notable 

similarity to mammalian embryonic cap mesenchyme nephron progenitor cells, with 

expression of Six2, Eya2 and Osr1 (ReF.10). Nevertheless, these adult zebrafish progenitor 

cells had some unique features, including the expression of a large number of genes 

encoding collagen matrix-associated proteins, as well as genes that are normally expressed 

in human CD31-negative stromal stem cells. This study therefore defines a unique resident 
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nephron progenitor cell population present in the adult zebrafish kidney that helps to explain 

its regenerative capacity. Similar cells are not seen in the adult mammalian kidney.

scRNA- seq has also been used to investigate disease processes underlying renal 

manifestations of systemic lupus erythematosus74,93, an autoimmune disease that affects the 

skin, kidneys, joints and other tissues. Using 899 cells from 12 skin and 16 kidney biopsy 

samples from patients with lupus nephritis, the study detected only ~700 genes as being 

expressed per cell — a low number given that most cells express ~5,000–10,000 genes. 

Further, clustering analysis failed to identify podocytes or mesangial cells, suggesting that 

these cell types — which as mentioned earlier are difficult to dissociate — were not isolated 

by the dissociation process. Despite these limitations, the researchers identified a gene 

expression signature characterized by interferon response genes that correlated with disease 

severity. Of interest, the skin samples from patients with lupus nephritis showed a similar 

signature of interferon response genes, suggesting that this more accessible tissue provides 

useful biomarkers of disease state in patients with lupus nephritis.

Thus, scRNA- seq is beginning to provide important insights into normal kidney physiology, 

defining the complete receptor expression profiles for principal and intercalated collecting 

duct cells, and identifying cell– cell crosstalk. It is shedding light on the mechanisms that 

give the adult zebrafish kidney its surprising regenerative capacity. scRNA- seq is also 

providing insights into pathogenic pathways, identifying novel biomarkers and possible 

therapeutic targets for the diseased kidney. Nevertheless, application of this technology in 

the field of kidney research is still in the early stages, and further work is needed.

Conclusions

scRNA- seq is a powerful technology that can provide high- resolution analysis of biological 

systems. It provides deep scrutiny into the gene expression character of diverse cell types, 

lending insight into all the biological processes being carried out. A chief limitation at 

present is the noisy nature of the resulting data, primarily owing to the technical limitations 

of working with such small amounts of RNA. This noise makes it difficult to distinguish 

very similar cell types and is an area that is in need of technological improvement. Another 

limitation is the cost of scRNA-seq experiments: although currently available systems run at 

~$1 per cell, which seems quite reasonable, the combined cost is considerable when many 

thousands of cells are analysed. The most expensive component of the analysis is the DNA 

sequencing; fortunately, we are in the midst of a remarkable revolution in DNA sequencing 

technology that is rapidly driving down this cost. Reduced sequencing costs will facilitate 

deeper scRNA- seq analysis of each cell, with more reads per cell, as well as the inclusion of 

ever greater numbers of cells in an scRNA- seq study, which will increase the statistical 

power in these analyses. This technology has already provided fascinating insights into the 

processes underlying various developmental, physiological and disease systems. Further 

studies in this area will enable even more profound understanding of these processes, 

leading to the development of atlases describing the expression of genes in cells throughout 

the body and contributing to the field of personalized medicine.
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Key points

• RNA sequencing of single cells (scRNA- seq) allows the global gene 

expression patterns of individual cells to be defined.

• Almost all tissues and organs include a heterogeneous mix of cell types; the 

heterogeneity of these cell populations can be defined through the use of 

scRNA- seq.

• scRNA- seq can fully define the expression of transcription factors, growth 

factors, receptors, solute transporters and other proteins for each cell type 

present, providing insights into cell function and cell–cell crosstalk.

• scRNA- seq is an increasingly powerful tool for the analysis of development 

as well as normal and disease processes.
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Splicing patterns

Sequences recognized by RNA processing enzymes of the spliceosome, which splice out 

introns. introns almost always begin with the bases gU and terminate with Ag, but 

additional sequences around splice sites are required to provide sufficient specificity.
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Early response genes

Genes that are activated rapidly in response to a variety of stimuli, including stress and 

growth factors. About 40 immediate early response genes exist, including members of the 

FOS and JUN families.
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Fig. 1 |. General strategy for scRNA- seq.
First the organ or tissue of interest is dissociated to make a single-cell suspension. Single 

cells are then captured for single-cell RNA sequencing (scRNA- seq) analysis. The single 

cells are then lysed, and the RNA is reverse transcribed to synthesize cDNA , which must 

then be amplified, often by PCR , to make sufficient material to generate cDNA libraries for 

sequencing. The resulting sequence reads are assigned to cells via cell- specific barcodes 

incorporated into the cDNA through the primers used for reverse transcription and are 

aligned to specific genes.
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Fig. 2 |. Microdroplet- based scRNA- seq.
A microfluidics system is used to make microdroplets, which contain cells mixed with beads 

that are encapsulated in oil. Each bead has oligonucleotides that are uniquely barcoded for 

that bead and are in a solution that contains a mild detergent, which lyses the cells after 

mixing. The RNAs from the lysed cell anneal to the bead oligonucleotides, and subsequent 

reverse transcription incorporates the bead- specific barcode into the cDNA , thereby 

allowing the sequences of those cDNAs to be assigned to a specific cell. scRNA-seq, single- 

cell RNA sequencing.
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Fig. 3 |. Creation of a single-cell-resolution virtual organ.
The organ of interest, which could be normal, mutant or diseased, is first subjected to 

dissociation to generate a single- cell suspension. Many thousands of the single cells are 

then used for single- cell RNA sequencing (scRNA- seq) gene expression profiling and the 

resulting data analysed to define cell types, which are then spatially assembled to reconstruct 

a virtual organ. The virtual organ includes all cell types and provides a complete gene 

expression pattern for each cell, thereby defining the expression of transcription factors, 

growth factors, receptors and potential pathogenic pathways that contribute to disease. Plot 

of dissociated cells adapted from Development, 144, Adam, M. et al. Psychrophilic 

proteases dramatically reduce single-cell RNA- seq artefacts: a molecular atlas of kidney 

development (2017), with permission from Elsevier.
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Fig. 4 |. Use of cluster and combine methodology to define cell types.
Gene expression profiles for individual cells are noisy and incomplete, with the holes in each 

shape representing the missing information. In this example, there are three different cell 

types, as indicated by different colours and shapes. Although the data sets for each 

individual cell are incomplete, they are sufficient to allow clustering of similar cells into 

groups. The data for all cells within a group are then combined to give a robust view of that 

cell type. The gene expression information missing in one cell can be provided by other cells 

in that group. Thus, through complementation, each cell contributes something to the total 

picture, resulting in a combined profile of the cell type that is very complete, enabling 

detection of very low gene expression levels.
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Fig. 5 |. Use of cluster and subcluster methodology to define cell subtypes.
A common strategy for analysis of scRNA- seq data is to carry out an initial unsupervised 

clustering, which divides cells into the most distinct groupings. In this example, the cells of 

the developing kidney are separated into separate categories, including collecting duct cells, 

stromal cells, endothelial cells, podocytes, cells from the loop of Henle, and so on. A group 

of cells of particular interest, for example, collecting duct cells, can then be separated out 

and subjected to another round of clustering to define subtypes of cells. The collecting duct 

subtypes in this example include principal cells, which express Scnn1b, β- intercalated cells, 

which express Slc26a4, and other unknown cell subtypes. Plot of dissociated cells adapted 

from Development, 144, Adam, M. et al. Psychrophilic proteases dramatically reduce single-

cell RNA- seq artefacts: a molecular atlas of kidney development (2017), with permission 

from Elsevier. UB, ureteric bud.
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Fig. 6 |. Multilineage priming.
During development, cells show the stochastic expression of genes associated with potential 

future differentiation directions. For example, single- cell RNA sequencing (scRNA- seq) of 

cells of the renal vesicle, which will give rise to all the epithelial cells of the nephron, shows 

that some cells express multiple genes that are normally expressed only in differentiated 

podocytes. The expression levels are robust, but the expression patterns are seemingly 

stochastic, with some cells expressing some podocyte markers, other cells expressing other 

podocyte markers, and other cells expressing none. The situation is similar for genes 

associated with cells of the proximal tubule, with multiple cells in the renal vesicle showing 

stochastic expression of different subsets of proximal tubule-associated genes. Furthermore, 

some cells that express multiple podocyte genes also express multiple proximal tubule 

genes, suggesting that they retain the potential to differentiate in either direction. Parietal 

epithelial and distal tubule genes also show apparent stochastic expression patterns.
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