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Background: Renal cell carcinoma (RCC) is the most common type of kidney cancer.

Studying the pathogenesis of RCC is particularly important, because it could provide a

direct guide for clinical treatment. Given that tumor heterogeneity is probably reflected at

the mRNA level, the study of mRNA in RCC may reveal some potential tumor-specific

markers, especially single-cell RNA sequencing (scRNA-seq).

Methods: We performed an exploratory study on three pathological types of RCC with a

small sample size. This study presented clear-cell RCC (ccRCC), type 2 pRCC, and

chRCC in a total of 30,263 high-quality single-cell transcriptome information from three

pathological types of RCC. In addition, scRNA-seq was performed on normal kidneys.

Tumor characteristics were well identified by the comparison between different

pathological types of RCC and normal kidneys at the scRNA level.

Results: Some new tumor-specificmarkers for different pathologic types of RCC, such as

SPOCK1, PTGIS, REG1A, CP and SPAG4 were identified and validated. We also

discovered that NDUFA4L2 both highly expressed in tumor cells of ccRCC and type 2

pRCC. The presence of two different types of endothelial cells in ccRCC and type 2 pRCC

was also identified and verified. An endothelial cell in ccRCC may be associated with

fibroblasts and significantly expressed fibroblast markers, such as POSTN and COL3A1.

At last, by applying scRNA-seq results, the activation of drug target pathways and

sensitivity to drug responses was predicted in different pathological types of RCC.

Conclusions: Taken together, these findings considerably enriched the single-cell

transcriptomic information for RCC, thereby providing new insights into the diagnosis

and treatment of RCC.
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INTRODUCTION

Kidney cancer is a common cancer worldwide; in 2019, it
represented 73,820 new cancer cases in the United States (1).
Renal cell carcinoma (RCC) is a malignant tumor derived from
renal tubular epithelial cells (2). As the most common kidney
cancer, RCC is responsible for up to 85% of all cases (3). In
addition, the global RCC incidence rates have been increasing in
the past decades (4–6). RCC has one of the highest mortality
rates in genitourinary cancers, and metastatic RCC (mRCC)
occurs in 20% of patients following nephrectomy during follow
up (7, 8). RCC is subdivided into several histopathologic and
molecular subtypes. Amongst them, clear-cell RCC (ccRCC) has
the highest incidence; it accounts for approximately 80% of RCC
cases (9). It was followed by papillary RCC (pRCC) and
chromophobe RCC (chRCC), which accounted for 10%–15%
and 4%–5% of RCC, respectively (9). However, different
pathologic types of RCC have different prognosis. In recent
years, the application of immune checkpoint inhibitors has
been significantly beneficial in metastatic RCC (10, 11). And
the magnitude of benefit of the immune checkpoint inhibitors-
tyrosine kinase inhibitors combination over sunitinib
monotherapy in treatment-naïve metastatic RCC patients is
consistent across the clinicopathological subgroups (12).
Therefore, studying the pathogenesis of RCC is particularly
important and could provide a direct guide for clinical treatment.

VHL is the most frequently mutated gene in ccRCC (13, 14).
It is mainly mutated through genetic (point mutations or
deletions) and/or epigenetic mechanisms leading to the
development of cancer (15, 16). Type 1 pRCC is associated
with MET alterations, whilst type 2 pRCC were characterised by
CDKN2A silencing, SETD2 mutations and TFE3 fusions (17).
Although previous studies have provided important clues to the
pathogenesis of RCC, they were limited to the DNA level. Given
that tumor heterogeneity is probably reflected at the mRNA level,
studying mRNA in RCC may reveal tumor heterogeneity,
especially single-cell RNA sequencing (scRNA-seq). In a
previous study, Kim K et al. (18) first performed scRNA-seq
on ccRCC with only more than 100 cells. Although the number
of cells was small, a successful demonstration was made for RCC
scRNA-seq. Young, M. D et al. (19) used more abundant cells for
ccRCC and type 1 pRCC and provided rich transcriptome
information. In addition, previous studies have provided in-
depth coverage of the tumor immune microenvironment of RCC
by using scRNA-seq (20–22). And using scRNA-seq technology,
the origin and differentiation of RCC cells are well explained (23,
24). However, there are few reports on the comparison between
different pathological types of RCC at single-cell level.

scRNA-seq is a powerful technique for identifying
transcriptome characteristic between cells at single-cell
resolution. Tumor heterogeneity includes the heterogeneity
between different patients and different tumor cells of the same
pathological type, which could have prognostic, predictive and
therapeutic relevance (2). In this study, we hope to perform an
exploratory study on three pathological types of RCC with a
small sample size. ScRNA-seq could be used to study the
complex cellular features within tumors. The study would also

benefit from validating principal findings by deconvoluting bulk
RNA-seq data from TCGA and our data, which could help to
relate the finding to tumor progression one each subtype. In the
present study, the tumor characteristics of RCC can be revealed
from the transcriptome level via scRNA-seq of the three
pathological types of RCC and normal kidney.

MATERIALS AND METHODS

Information of RCC and Normal
Kidney Samples
RCC and normal kidney samples (Table S1) were obtained from
patients undergoing radical nephrectomy at The First Affiliated
Hospital and Affiliated Tumor Hospital of Guangxi Medical
University (Figure S1). The normal tissues were obtained at
least 2 cm away from the tumor tissue (Figure S1). This study
was approved by the Institutional Review Board (IRB) of The
First Affiliated Hospital Guangxi Medical University, and all the
patients signed the informed consent.

RCC Sample Procurement and
Single-Cell Isolation
Fresh tumor samples were obtained from the operating room to
the laboratory in cold Hank’s balanced salt solution (HBSS; Gibco,
C11875500BT) with 5% fatal bovine serum (FBS, Gibco, 10099141)
and 1% penicillin/streptomycin (P/S; Gibco,15240062). The entire
transportation process was within 30 min.

After the samples were washed with 4°C Dulbecco’s
phosphate-buffered saline (DPBS; WISENT, 311-425-CL), they
were cut into 2–4 mm pieces with sterile scissors. The tissue
pieces were washed by resuspending in pre-cold DPBS two times.
After the supernatant was removed, the tissue species were
digested for 30 min at 37°C with gentle agitation in a digestion
solution containing 1 mg/mL of collagenase I (Gibco,
5401020001) and 1 mg/mL of DNaseI (Roche, 10104159001)
in HBSS. Then, the digestion was terminated using 10 mL of
DMEM (WISENT, 319-006-CL) with 10% FBS (Gibco,
10099141). Subsequently, the suspended cells and tissue
fragments went through a 70 mm cell strainer (Falcon), which
could filter out large tissue fragments. The cells were washed with
pre-cold DPBS containing 300 g of 1% FBS for 5 min two times.
Next, red blood cells (RBCs) were removed using 5 mL of RBC
lysis buffer (10X diluted to 1X; BioLegend, 420301) for 5 min on
ice and then the cells were filtered using a 40 mm cell strainer.
Subsequently, they were centrifuged at 300 g for 5 min and
washed twice with DPBS. Finally, the cells were resuspended in
DPBS with 1% FBS. The single-cell suspension was obtained and
viability was calculated using trypan blue (Gibco, 15250-061)
staining (Table S2). If the cell viability was above 80%, 10x
Genomics sample processing was performed.

Normal Kidney Sample Procurement and
Single-Cell Isolation
The preparation for single-cell suspension of three normal
kidneys (kidney1, kidney2 and kidney3, Table S1) was
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described in the previous study (25). In this study, the remaining
normal kidney tissue (kidney4) was transported in a cold RPMI
1640 (Gibco, C11875500BT) containing 5% FBS and 1% P/S and
the entire transport process was completed within 30 min.

This sample was sliced into approximately 2–4 mm pieces
and digested for 40 min at 37°C with gentle agitation in a
digestion solution containing 0.1 mg/mL of Liberase TL
(Roche, 5401020001) and 0.5 mg/mL of DNaseI (Roche,
10104159001) in 5 mL of RPMI 1640. The digestion was then
terminated using RPMI 1640 containing 10% FBS. After the
suspension was washed with DPBS two times and centrifuged at
300 g for 5 min at 4°C, it was passed through a 70 µm cell
strainer. Next, RBCs were removed using 5 mL of 1X RBC lysis
buffer for 5 min on ice. Then, the cell suspension passed through
a 40 mm cell strainer. After the cells were centrifuged at 300 g for
5 min, they were resuspended in DPBS with 1% FBS. Finally, the
single-cell suspension was obtained and live cells were detected
via trypan blue staining (Table S2). If the cell viability was above
80%, 10x Genomics sample processing was performed.

Sample Processing With 10x Genomics
and cDNA Library Preparation
ScRNA-Seq was performed on the above single-cell suspensions
in accordance with the standard protocol in the user guide of 10X
Genomics Chromium Single Cell 3′ Reagent Kit V3 (https://
support.10xgenomics.com/single-cell-gene-expression/index/
doc/user-guide-chromium-single-cell-3-reagent-kits-user-
guide-v3-chemistry). In brief, the concentration of the single-cell
suspensions was manually counted using a haemocytometer and
adjusted to 2,000 cells/mL. Appropriate volume was calculated in
each sample to catch 10,000 cells. The samples were then loaded
into a 10X Genomics single-cell chip. After droplet generation,
the samples were transferred onto a PCR tube and reverse
transcription reaction was performed using T100 Thermal
Cycler (Bio-Rad). Then, cDNA was recovered using a recovery
agent provided by 10x Genomics, followed by silane DynaBead
clean up as outlined in the Kit V3 user guide. Before the clean-up
was performed using SPRIselect beads, the cDNA was amplified
for 11–12 cycles.

ScRNA-Seq Processing and
Preliminary Results
All samples were sequenced using Hiseq Xten (Illumina, San
Diego, CA) with the following run parameters: read 1 for 150
cycles, read 2 for 150 cycles and index for 14 cycles. Preliminary
sequencing files (.bcl) were converted to FASTQ files on
CellRanger (version 3.0.2, https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines/latest/what-is-
cell-ranger). The 10x Genomics standard protocol was applied to
shorten the read 1 end (the barcode and unique molecular
identifier) to 26 bp and the read 2 end (mRNA sequence) to
98 bp. The FASTQ files were compared with the human genome
reference sequence GRCh38. After CellRanger was used, a
barcode table, a feature table and a gene expression matrix
were generated.

Using Seurat for Quality Control (QC) and
scRNA-Seq Data Secondary Analysis
R (version 3.5.2, https://www.r-project.org/) and Seurat (26, 27)
R package (version 3.1.1, https://satijalab.org/seurat/) were used
for QC and secondary analysis. The MergeSeurat function was
used to merge the ccRCC samples and the normal kidney
samples. Three normal kidney samples (kidney1, kidney2 and
kidney3) originated from the previous study (25), whilst the
remaining normal tissue (kidney4) was from the same patient of
chRCC. Considering the proportion of mitochondrial genes to all
genetic material may indicate whether a cell is in homeostasis.
For example, type 2 pRCC and ccRCC cells with abundant
unique molecular identifiers (UMIs) were mainly found in cells
with less than 10% proportion of mitochondrial genes, whilst
chRCC cells with abundant UMIs were mainly in less than 30%
proportion of mitochondrial genes (Figures S2A–D). Thus, in
accordance with the median number of genes, the percentage of
mitochondrial genes and the relationship between the percentage
of mitochondrial genes and the mRNA reads (Figures S2A–D),
type 2 pRCC and ccRCC (ccRCC1 and ccRCC2) cells with < 200
and > 5,000 genes (potential cell duplets) and a mitochondrial
gene percentage of > 10% were filtered. The chRCC cells with <
200 and > 5,000 genes and a mitochondrial gene percentage of >
30% and the normal kidney cells with < 200 and > 2,500 genes
and a mitochondrial gene percentage of > 30% were also filtered
(Figures S2A–D). After filtering was conducted, high-quality
RCC cells were obtained and the number of type 2 pRCC,
ccRCC, chRCC and normal kidney were 10,132, 12,915, 7,216
and 23,951, respectively. At the same time, given that our data
were derived from a small number of samples, we needed to
compare the data from scRNA-seq with bulk RNA-seq from
TCGA. We selected the differentially expressed genes of pRCC,
ccRCC and chRCC from TCGA and integrated into our scRNA-
seq data. We found that the results from TCGA were similar to
our scRNA-seq data (Figures S3A–C). In addition, these
differentially expressed genes could be precisely mapped to cell
types in scRNA-seq data (Figures S3A–C).

After the data were normalized, all highly variable genes in
single cells were identified after controlling for the relationship
between average expression and dispersion. All variable genes
were used in the downstream analysis, which was the principal-
component analysis. R package Harmony (28) (version 0.99.9)
was applied to eliminate the batch effect in ccRCC (ccRCC1 and
ccRCC2) and the kidney samples (kidney1, kidney2, kidney3 and
kidney4). Subsequently, significant principal components (PCs)
were identified on the basis of the jackstraw function. Type 2
pRCC, chRCC and the normal kidney used 20 PCs, whilst ccRCC
used 25 PCs as the input for uniform manifold approximation
and projection (UMAP) when statistically significant. The batch
effect between the kidney samples and the ccRCC samples was
detected (Figures S4B, C). With a resolution of 0.25, the cells
were clustered using the FindClusters function and classified into
nine different cell types in the kidney samples. With a resolution
of 0.6, type 2 pRCC and ccRCC were classified into 18 and 21
different cell types, respectively, whilst a resolution of 0.4 was
used for chRCC. The FindAllMarkers function was used to find
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differentially expressed genes (DEGs) between each type of cells
(Tables S3-S6).

Cell Cycle Analysis
The Seurat program was used for cell cycle analysis. A core set of
43 G1/S and 54 G2/M cell cycle genes were defined on the basis
of a previous study (29). Then, the cells were classified by the
maximal average expression (‘cycle score’) in these two gene sets.
In the case when the cycle scores of G1/S and G2/M were both
less than 2, these cells were under non-cycling. Otherwise, they
were considered to be proliferative. After cell cycle analysis was
performed, no bias induced by cell cycle genes was observed in all
samples (Figures S4D–G).

Reconstructing Cell Differentiation
Trajectories Using Monocle2
The Monocle2 (30) R package (version 2.10.1) was used to
reconstruct the cell fate decisions and pseudo-time trajectories
of ccRCC cells, chRCC cells, fibroblast and T cells in pRCC. The
data of these cells were imported from Seurat object. The genes
expressed in at least 10 cells and in greater than 5% of cells were
used. Subsequently, the thresholds on the cell local density (rho)
and the nearest distance (delta) were used to determine the
number of clusters. Then, differential gene expression analysis
was conducted across all cell clusters. The top 1000 most
significant DEGs were used for the set of ordering genes and
dimension reduction and trajectory analysis were performed.
Once a trajectory was established, these key genes that varied
with pseudo-time could be discovered using the differential
GeneTest function.

Comparing Present scRNA-Seq Data With
Those of Previous Studies
The scRNA-seq data of three normal kidneys (kidney1, kidney2
and kidney3) came from a previous study, GSE131685 (25).
Other normal kidney data were obtained from a previous study
(31) and available through the Human Cell Atlas data portal
(https://data.humancellatlas.org/explore/projects/abe1a013-
af7a-45ed-8c26-f3793c24a1f4). UMAP plot representation of
23,951 normal kidney cells from four different samples
(Figures S4A).

Integration of scRNA-Seq Results With
Genome-Wide Association Study (GWAS)
and The Cancer Genome Atlas
(TCGA) Databases
Here, the methods used were based from a previous study (32).
All the GWAS genes associated with RCC were downloaded
from the GWAS catalogue (33) (downloaded 10 February 2020).
Using renal cell carcinoma as keywords, the GWAS catalogue
was searched and the data were downloaded. The genes with p
value greater than 5 × 10−8 were filtered out and obtained for
subsequent correspondence with cell types by using scRNA-seq
(Table S7).

Some special genes were discovered using scRNA-seq; they
may be associated with the prognosis of RCC. Then, these genes

were integrated into the TCGA dataset (17) and the GEPIA (34)
tool was used to plot the Kaplan–Meier survival curves. The
patients were divided into high-risk and low-risk groups, with a
cut-off value of 50%, and the hazards ratio (HR) used 95% CI.
The top 60 DEGs in chRCC1 and chRCC3 were selected. A total
of 25 DEGs were found in chRCC2. The p value less than 0.05
was used to predict prognostic genes.

Gene Ontology (GO) Enrichment Analysis
on Different Types of Tumor Cells
In accordance with the DEGs calculated using Seurat, the top 50
DEGs in each tumor cell type (type 2 pRCC, ccRCC and chRCC)
were selected for GO enrichment analysis (35) (http://
geneontology.org/). Only 25 DEGs were found in chRCC 2
and then all the DEGs were selected for GO enrichment
analysis. Each tumor cell type underwent enrichment analysis
of biological process and the 15 most significant biological
processes were shown (Table S8).

Ligand–Receptor Interactions
The ligand–receptor interaction score was calculated with
reference to a previous study (36). In brief, the ligand–receptor
interaction scores between three different types of RCC cells and
cancer-associated fibroblasts (CAFs), together with immune
cells, were calculated. The higher ligand–receptor interaction
score reflected the stronger potential interaction between the
cells. The ligand–receptor pairs with scores greater than 1
were listed.

Prediction of Activation of Drug
Target Pathways and Sensitivity to
Drug Responses
The GSVA algorithm (37) was used to evaluate the relative
activation status of pathways in different pathological types of
RCC in scRNA-seq data. In the previous studies (2, 38–40), the
progression of RCC may be associated with the activation of
many signaling pathways. Twelve targeted pathways were
selected: EGFR pathway, FGFR pathway, MAPK pathway,
MET pathway, mTOR pathway, PDGFRA pathway, PDGFRB
pathway, PI3K/AKT pathway, RAF pathway, SCF-KIT pathway,
SRC pathway and VEGFR pathway. The GSVA scores were
transformed to binary scores to evaluate whether these gene
signatures were significantly activated. The gene sets with same
size and each original panel of genes were randomly generated
with permutation (×1000) and then calculated for the GSVA
scores. The original GSVA scores were defined as ‘activated’ by
the cut-off values of the averaged scores in the randomly selected
gene sets.

The related targeting drug sensitivities were also predicted in
different pathological types of RCC. In accordance with a
previous study (16), the Cancer Genome Project (41), which
includes measured drug response data from cancer cell line
expression data, was used as a training set. Leave-one-out cross
validation (18) was applied to analyze the total dataset and
evaluate the prediction sensitivity. A total of 13 common
targeted drugs (afatinib, axitinib, cabozantinib, crizotinib,
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dasatinib, erlotinib, foretinib, gefitinib, pazopanib, selumetinib,
sorafenib, sunitinib and temsirolimus) were used to predict drug
sensitivity. The results were transformed into Z-scores. The
nanomolar-scaled IC50 values were also transformed into Z-
scores to ensure accurate prediction of drug sensitivity.

Immunohistochemistry
Each immunohistochemistry paraffin (IHC-P) result was verified in
five patient samples (Table S10). Each antibody was performed in at
least three slides. RCC and normal kidney tissues were obtained from
the Department of Pathology at The First Affiliated Hospital of
Guangxi Medical University. The tissue slices were rehydrated using
solutions of ethanol ranging from 100% to 70% and washed with
PBS (Solarbio; P1010-2). After the slides underwent high-pressure
repair using sodium citrate (Solarbio; C1032), the tissues in goat
serum (ZSGB-BIO; SP-9000) were blocked with PBS for 15 min at
room temperature. Subsequently, the slides were incubated with anti-
SPOCK1 (rabbit anti-human/mouse, 1:100, Abcam; ab229935), anti-
PTGIS (rabbit anti-human/mouse/rat, 1:100, Abcam; ab23668), anti-
NDUFA4L2 (rabbit anti-human, 1:100, Abcam; ab190007),
anti-REG1A (rabbit anti-human, 1:100, Abcam; ab47099), anti-
RHCG (rabbit anti-human, 1:500, Novus; NBP2-30905) and anti-
SPAG4 (rabbit anti-human, 1:50, Novus; NBP2-38937) antibodies
and PBS control group prepared in blocking solution at 4°C
overnight. The tissues then were incubated with secondary
antibody (ZSGB-BIO; SP-9001) for 15 min and with tertiary
antibody (ZSGB-BIO; SP-9001) for 15 min at room temperature
after washing by PBS. Finally, the slides were stained with DAB and
nucleated with haematoxylin.

The same method was used to perform IHC-P in human
normal kidney tissues for the control groups. Anti-SPOCK1,
anti-PTGIS, anti-NDUFA4L2, anti-REG1A, anti-RHCG and anti-
SPAG4 antibodies were also used (Figures S5A–F).

Immunofluorescence (IF)
Before IF was performed, the antibody specificity was confirmed
by labelling the control groups. Two negative controls were set:
PBS and anti-mouse secondary antibody (Alexa Fluor 488, goat
anti-mouse IgG pre-adsorbed, 1:500, Abcam; ab150117) and PBS
and anti-rabbit secondary antibody (Alexa Fluor 594, goat anti-
rabbit IgG pre-adsorbed, 1:500, Abcam; ab150084). These results
indicated no unspecific reaction occurred in secondary antibodies
(Figure S5G). The same protocol as IHC-P was used until high-
pressure repair and incubation with primary antibodies were
finished. Then, the following groups were set to verify the results:
ACTA2 (mouse anti-rabbit/rat/human, 1:200, Abcam; ab7817)
and KRT8 (rabbit anti-mouse/human, 1:200, Abcam; ab53280),
KI67 (rabbit anti-mouse/rat/human, 1:1,000, Abcam; ab15580)
and PDGFRB (mouse anti-rat/human, 1:200, Abcam; ab69506),
KI67 and CD68 (mouse anti-human/rat/rabbit, 1:100, Abcam;
ab955), KI67 and CD3 (mouse anti-human, 1:50, Abcam; ab699),
CD31 (mouse anti-human, 1:1, 000, Abcam; ab9498) and POSTN
(rabbit anti-mouse/rat/human, 1:100, Abcam; ab14041) and
CD31 (rabbit anti-mouse/human, 1:300, Abcam; ab28364) and
COL3A1 (mouse anti-rat/human, 1:100, Abcam; ab6310). After
the slides were incubated with the primary antibodies at 4°C
overnight, they were incubated with secondary antibodies Alexa

Fluor 488 and Alexa Fluor 594 at 37°C for an hour. Finally, the
slides were stained with DAPI (Abcam, ab104139) for 10 min.

Western Blot
The Western blot results were verified in five patient samples
(Table S10) and repeated at least twice. The human normal
kidney (100mg) and ccRCC (106mg) tissues were lysed with
RIPA lysis buffer containing both protease Inhibitor and
phosphatase inhibitor on ice. We collected the supernatant and
used a BSA Quantification Kit to determine the protein
concentrations after centrifugation at 12,000 rpm for 10
minutes. Protein samples (40mg) from supernatants were
separated on SDS-PAGE and transferred onto polyvinylidene
difluoride membrane. The membrane was blocked for 1 hour
with blocking buffer containing 5% nonfat milk. After three
times washings with TBST, membranes were incubated at 4°C
overnight with primary antibodies, anti-Ceruloplasmin (rabbit
anti-human, 1:1000, abcam, ab48614) and anti-GAPDH (mouse
anti-human/mouse/rat, 1:5000, abcam, ab8245). The membranes
were washed three times with TBST and incubated with
secondary antibodies at room temperature for 1 hour, and
then washed three times again. Immunoreactivity was
visualized by an imager (ImageQuant LAS 500; GE
Healthcare). GAPDH was used for a loading control. The
presented results are from at least three repetitions of Western
blot. Except the primary antibody and GAPDH were Abcam, the
other reagents were used the western blotting kit from BOSTER
Biological Technology co. Itd (AR0040).

Cell-Type Markers
The RCC cell types were defined in accordance with the marker
genes reported in previous studies (13, 17, 42–63) (Table 1). The
cell type of normal kidney was assigned on the basis of the
previous study (25).

RESULTS

Single-Cell Transcriptomic Atlas of
Multiple Pathologic Types of RCC and
Normal Kidney
ScRNA-seq was performed in seven different patients, including
four tumor samples and four normal kidney samples (kidney1,
kidney2 and kidney3 came from our previous study (25), and
kidney4 from this study) to explore the cellular diversity and
gene expression characteristics in RCC (Figure 1A and Table

S1). After QC was conducted using Seurat (26, 27), ccRCC, type
2 pRCC and chRCC were presented in 30,263 high-quality
single-cell transcriptome information. We performed merge
UMAP of four tumor samples (Figure 1B). Meanwhile,
scRNA-seq was performed on one normal kidney, providing a
total of 585 single-cell transcriptome information.

Single-cell transcriptomes were acquired in a total of 10,132
cells from type 2 pRCC. They could be classified into 18 different
cell types (Figure 1C). On the basis of the marker genes (Figure
S6A and Table 1), these cell types were defined from cluster 1 to
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FIGURE 1 | Single-cell transcriptomic atlas of multiple pathologic types of RCC and human kidney. (A) Schematic of the overall study design. ScRNA-seq was

applied to type 2 pRCC, ccRCC, chRCC and the normal kidney on 10x Genomics Chromium platform. (B) UMAP plot representation of 30,263 tumor cells from

three pathological types of RCC. (C) Uniform manifold approximation and projection (UMAP) plot representation of 10,132 type 2 pRCC cells with 18 distinct cell

types. (D) UMAP plot representation of 12,915 ccRCC cells from two different samples with 21 distinct cell types. (E) UMAP plot representation of 7,216 chRCC

cells with seven distinct cell types.

TABLE 1 | Cell-type assignment based on the marker genes reported in previous studies.

Cell type Markers Cell type Markers

pRCC CDKN2A (17) ccRCC CA9 (13), NDUFA4L2 (49)

chRCC RHCG (42) CD8+ T

cells

CD3D (43, 44, 58), CD3E (43, 44, 58),

CD8A (43, 44, 58)

Macrophage CD68 (58), CD163 (58), CD4+ T

cells

CD3E (43, 44, 58), CD3D (43, 44, 58), IL7R

(44, 63)

Monocyte CD14 (46, 48, 57), LYZ (57, 58), S100A12 (58), S100A9 (58), S100A8 (58) B cells CD79A (43, 57), CD79B (43, 57), MS4A1

(57)

Dendritic

cells

FCER1A (46–48), CD1E (46–48), CD1C (46–48), HLA-DMA (46–48), HLA-DMB (46–48) Plasma

cells

IGKC (45)

NK cells KLRD1 (61), KLRC1 (61) Mast cells TPSAB1 (62), TPSB2 (62), KIT (59)

Fibroblast SFRP2 (51), SPARC (60), MMP2 (52, 53), COL3A1 (55), COL1A1 (55, 56), COL1A2 (55, 56),

EMILIN1 (54), PDGFRB (52)

CAF ACTA2 (52), TAGLN (53)

Endothelial

cells

PECAM1 (50), PLVAP (50), CDH5 (50), KDR (50) TAM GPNMB (58), SLC40A1 (58), MSR1 (64)
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18 as CD8+ T cells 1, tumor-associated macrophage (TAM) 1,
fibroblast, CAF 1, CAF 2, TAM 2, endothelial cells 1, CAF 3,
proliferative TAM, monocytes, CAF 4, dendritic cells, pRCC,
plasma cells, proliferative T cells, CD8+ T cells 2, endothelial cells
2 and B cells (Figure 1C). In ccRCC, a total of 12,915 single-cell
transcriptome information were acquired from two samples,
including 21 different cell types corresponding to ccRCC 1,
macrophages 1, ccRCC 2, CD8+ T cells 1, NK cells, endothelial
cells 1, TAM, CAF 1, CD4+ T cells, CD8+ T cells 2, FCGR3A+

monocyte, dendritic cells, proliferative fibroblast, endothelial cells
2, ccRCC 3, ccRCC 4, macrophages 2, B cells, mast cells, CAF 2
and CD14+ monocytes (Figure 1D) by the marker genes (Figure
S6B and Table 1). In chRCC, 7,216 high-quality cells were further
analysed and clustering analysis identified seven distinct cell
clusters. In accordance with the marker genes (Figure S6C and
Table 1), these cells could be classified as chRCC 1, chRCC 2,
chRCC 3, NK-T cells, TAM, monocytes and NK cells (Figure 1E).

In addition, 23,951 normal kidney cells were further analysed
and nine distinct cell clusters were identified. In accordance with
the marker genes (Figure S6D), the cells were classified into
clusters 1–9 corresponding to proximal convoluted tubule cells,
proximal tubule cells, glomerular parietal endothelial cells,
proximal straight tubule cells, NK-T cells, monocytes, distal
tubule cells, collecting duct (CD) cells and B cells.

Diversity and Gene Expression
Characteristics in RCC Cells as Revealed
by scRNA-Seq
Unlike bulk RNA sequencing, scRNA-seq could study the
transcriptome of tumor cells at single-cell resolution. In this
study, unbiased clustering analysis not only precisely defined
type 2 pRCC but also classified ccRCC and chRCC into several
different tumor cell types (Figure 2A). Except for the marker
gene CDKN2A (17), epithelial-derived KRT18 and KRT7, type 2
pRCC also differentially expressed SPOCK1, PTGIS and other
genes (Figure 2B). In ccRCC, obvious differences in gene
expression were found amongst four ccRCC cell types
(Figure 2C). For instance, ccRCC1 and ccRCC2 highly
expressed the ccRCC markers CA9 (13) and NDUFA4L2 (49),
whilst ccRCC3 and ccRCC4 only expressed NDUFA4L2
(Figure 2C). The DEGs amongst three chRCC cell types were
also found (Figure 2D). The DEGs amongst the tumor cells of
three pathological RCCs were compared (Figure 2E).

On the basis of the DEGs, GO enrichment analysis was
performed on each tumor cell type and the results showed that
the biological process (BP) of type 2 pRCC was mainly
concentrated in ‘cell adhesion’ and ‘biological adhesion’
(Figure S7A). CcRCC1 was concentrated in ‘response to
decreased oxygen levels’, ‘response to oxygen levels’ and
‘response to hypoxia’ (Figure S7B). Considering that the
pathogenesis of ccRCC was related to hypoxia caused by VHL
mutation (65), ccRCC1 may be associated with this process. GO
enrichment analysis was also conducted on the other tumor cell
types (Figures S7C–H).

The correlation of average gene expression between tumor
cells and normal cells was compared to explore the origin of

tumor cells. We found that chRCC3 was highly correlated with
CD cells (Figure 2F). Considering the specificity of chRCC3 with
high expression of SPAG4 (Figure 2D), this marker was verified
in the chRCC tissue via IHC-P. The positive cells were clustered
around the CD cells (Figure 2G), which further supported
the hypothesis.

Identification and Verification of Some
Novel Tumor-Specific Gene Markers
An important advantage of scRNA-seq is its ability to classify
cells precisely and discover the characteristics of gene expression.
For tumor cells, the specific genes that were expressed
significantly were identified. In type 2 pRCC, five significant
candidate genes were identified (SPOCK1, PTGIS, NDUFA4L2,
C5orf46 and WISP1); they were generally highly expressed in
type 2 pRCC (Figure 3A). Subsequently, to confirm that these
genes were tumor-specific, their expression was enriched in the
scRNA-seq data from normal kidneys. The present study and the
data in a Science paper (31) demonstrated very low or no
expression of these five genes (Figures S8A, B). In addition,
three tumor-specific genes, namely, SPOCK1, PTGIS and
NDUFA4L2, were verified using IHC-P in type 2 pRCC tissues
(Figures 3B–D) and compared with the negative controls in
normal kidney tissues (Figures S5A–C). Interestingly, in a
previous study NDUFA4L2 was a marker for ccRCC (49).
However, we discovered that this gene was also highly
expressed in type 2 pRCC (Figures 3D, E).

Three specific candidate genes (REG1A, CP and FABP7) were
also identified in ccRCC (Figure 4A) and compared with those in
the normal kidney (Figures S8C, D). Then, the expression of
REG1A in ccRCC tissues was verified using IHC-P but not in
normal kidney tissues (Figures 4B, S4D). And the expression of
CP in ccRCC tissues was higher than that in normal kidney

tissues (Figure 4C). In a previous study, RHCG and LINC01187
are identified as marker genes for chRCC (42). In the present
study, we also verified the previous results (Figures 4D, E, S5E,
S8E, F), which further enhanced the reliability of our chRCC
data and tumor cells’ definition. In addition, a novel tumor-
specific gene marker called SPAG4 was discovered in chRCC and
it was more specifically expressed in chRCC3 (Figure 4D). A
positive result in chRCC tissues was obtained via IHC-P
(Figure 4F), whilst a negative result was obtained in normal
kidney tissue (Figure S5F). Thus, the results identified some new
tumor-specific markers and verified SPOCK1, PTGIS, REG1A,
CP and SPAG4 in different types of RCC. And NDUFA4L2 both
highly expressed in tumor cells of ccRCC and type 2 pRCC.

Phylogenetics and Evolution of RCC as
Revealed by scRNA-Seq
The evolution of tumor cells has always been a hot topic in
oncology. Although previous study has predicted the putative
cell of origin for more than 10 RCC subtypes by using a random
forestmodel trained (24), we hope to apply Monocle2 (30) to
reconstruction the different tumor cell subtypes differentiation
trajectory of ccRCC and chRCC. In this study, Monocle2 was
used to construct the evolutionary trajectory of these cancer cells
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on the basis of the single-cell transcriptome information. The
developmental trajectory of ccRCC was reconstructed. CcRCC4
was almost at the beginning stage of development, whilst
ccRCC3 was almost at the end stage of the development
trajectory. CcRCC1 and ccRCC2 were present throughout the
trajectory (Figure 5A). The top six genes that were most critical
to the development of ccRCC were identified as DUSP23,
ERRFI1 , GADD45A , GLUL , MYOCOS and S100A1
(Figure 5C). In chRCC, 6,437 tumor cells were included for
analysis using the same method. ChRCC3, which specifically

expressed SPAG4, was at the beginning of the trajectory, whilst
chRCC1 and chRCC2 were present throughout the development
trajectory (Figure 5B). The top 6 key genes that influenced the
development trajectory was also highlighted. They were IFITM3,
IGFBP3, SOX4, SPP1, SST and TIMP1 (Figure 5D). These genes
were divided into three clusters via a pseudo-temporal
expression pattern to further explore the genes that changed in
pseudo-time. In ccRCC and chRCC, the top 50 genes, which
varied as a function of pseudo-time, were clustered, as shown by
the heat map (Figures 5E, F).
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FIGURE 2 | ScRNA-seq revealed tumor heterogeneity of RCC. (A) UMAP plot of the tumor cells in different pathologic types (type 2 pRCC, ccRCC and chRCC).

(B–D) DEGs of different pathologic types of RCC, as shown by scRNA-seq, avg logFC and average log2 fold change. (E) Comparison of DEGs in different

pathological RCCs. (F) Comparison of normal kidney cell types with RCC cell types by calculating the Pearson correlation coefficient. CD, collecting duct cells; DT,

distal tubule cells; PST, proximal straight tubule cells; GPE, glomerular parietal epithelial; PT, proximal tubule cells; PCT, proximal convoluted tubule cells. (G) IHC-P

verification of SPAG4 positive cells in chRCC tissue. Scale bars, 20 mm.
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FIGURE 3 | Tumor-specific markers in different types of pRCC. (A) Violin plots showing tumor-specific markers expressed in type 2 pRCC. (B–D) IHC-P verification

of tumor-specific markers (SPOCK1, PTGIS and NDUFA4L2) in type 2 pRCC (Table S10). Scale bars, 20 mm (left) and 50 mm (right). (E) IHC-P verification of tumor-

specific marker (NDUFA4L2) in ccRCC. Scale bars, 20 mm (left) and 50 mm (right).
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FIGURE 4 | Tumor-specific markers in different types of ccRCC and chRCC. (A) Violin plots showing tumor-specific markers expressed in ccRCC. (B) IHC-P

verification of tumor-specific marker REG1A in ccRCC. Scale bars, 20 mm (left) and 50 mm (right). (C) Western blot was performed showing the expression of CP

protein in different ccRCC tissues (Table S10) and normal kidney (NK). (D) Violin plots showing tumor-specific markers expressed in chRCC. (E, F) IHC-P verification

of tumor-specific markers RHCG and SPAG4 in chRCC (Table S10). Scale bars, 20 mm (left) and 50 mm (right).

Su et al. scRNA-Seq of Renal Cell Carcinoma

Frontiers in Oncology | www.frontiersin.org October 2021 | Volume 11 | Article 7195649

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Diversity of Fibroblasts (Including Multiple
CAFs) in Type 2 pRCC as Revealed by
scRNA-Seq
Fibroblasts, especially CAF, are major components of the tumor
microenvironment and play an important role in tumor
progression (66). Previous studies have described the diversity
of CAFs in breast cancer via fluorescence-activated cell sorting
(67). In the present study, multiple CAFs were discovered in type
2 pRCC and ccRCC through scRNA-seq (Figures 6A, D). In type
2 pRCC, these cells could be classified into four CAF cell types
and one quiescent fibroblast. The quiescent fibroblast highly
expressed the markers of fibroblast, namely, SFRP2 (51) and
MMP2 (52, 53), but did not express the markers of CAF, namely,
ACTA2 (52) and TAGLN (53) (Figure 6B). All the CAFs in type
2 pRCC expressed TGFB1I1 (Figure 6B), which reflected the
exocrine phenotype of CAFs (68). CAF 2, CAF 3 and CAF 4

expressed these markers associated with epithelium, especially
CAF 3, which expressed KRT8 and KRT18 (Figure 6B). These
CAFs may be epithelial-to-mesenchymal transition (EMT) and
retain epithelial characteristics. Thus, the spatial location of CAF
3 in type 2 pRCC tissues was validated using IF (Figure 6C). CAF
3 was very close to the tumor cells.

Two subpopulations of CAFs, which expressed ACTA2 (52)
and TAGLN (53), the markers of CAF, were discovered in ccRCC
(Figure 6E). CAF 1 highly expressed ACTA2 and TAGLN, whilst
CAF 2 specifically expressed SFRP2, MMP2, TGFBI and TNC.
TGFBI encodes transforming growth factor-b, which is an
important secretion of CAF (66, 68). Thus, CAF 2 was a
secretory phenotype of CAF in ccRCC. The fibroblast that
specifically expressed the proliferation factor MKI67 in ccRCC
was discovered. In view of a previous report of proliferative T
cells in hepatocellular carcinoma by scRNA-seq (58), these cells
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FIGURE 5 | CcRCC and chRCC development trajectories reconstructed using Monocle2. (A, B) Pseudo-time trajectories performed on ccRCC and chRCC tumor

cells. Each dot stands for one cell and is colored in accordance to its cell type. The arrows represent the direction of cell evolution. (C) Scatter plots showing the

expression levels and changes in relative expression of key genes that affected the evolution of ccRCC with pseudo-time. (D) Scatter plots showing the expression

levels and changes in relative expression of key genes that affected the evolution of chRCC with pseudo-time. (E, F) Heatmap showing the top 50 genes that

affected the evolution of ccRCC and chRCC cells along the trajectory.
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were named proliferative fibroblast. In addition, this result was
verified in ccRCC (Figure 6F).

We found that the fibroblast subpopulations of pRCC were
more abundant than that of ccRCC. In pRCC, the CAFs would be
associated with the EMT process, while this characteristic was
not found in ccRCC. Based on the spatial localization of CAFs
and tumor cells, it was inferred that this could be caused by the
interaction between tumor cells and fibroblasts (Figure 6C). In
addition, the expression of CAFs’ marker genes in ccRCC and

pRCC were very similar, except proliferative fibroblast
(Figures 6B, E).

Two Types of Endothelial Cells in Type 2
pRCC and ccRCC and a Type of
Endothelial Cells Associated With
Fibroblast in ccRCC
Two types of endothelial cells (ECs) were found in type 2 pRCC
and ccRCC through scRNA-seq (Figures 7A, C). In type 2
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FIGURE 6 | Diversity of CAFs as identified using scRNA-seq. (A) UMAP plot showing the subpopulation of fibroblast in type 2 pRCC. (B) Gene expression

characteristics of the fibroblasts in type 2 pRCC, including four types of CAF. (C) IF analysis of the expression of ACTA2 (green), which is a CAF marker, in combination

with the epithelial cell marker KRT8 (red) and DNA staining using DAPI (blue) within the paraffin sections from human type 2 pRCC samples. CAF 3 (arrows) was

verified using IF. Scale bars, 50 mm. (D) UMAP plot showing the subpopulation of fibroblast in ccRCC. (E) Gene expression characteristics of the fibroblasts in ccRCC,

including two types of CAF and proliferative fibroblast (pro-fibroblast). (F) IF analysis of the expression of PDGFRB (green), which is a fibroblast marker, in combination

with the marker MKI67 (red) and DNA staining using DAPI (blue) within the paraffin sections to verify the pro-fibroblast (arrows). Scale bars, 50 mm.
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pRCC, EC could be classified into two cell subtypes, namely,
pEC1 and pEC2 (Figure 7A). Although both types of EC
expressed classical endothelial cell markers, such as PECAM1
(50), CDH5 (50) and KDR (50) (Figure 7B), a significant
heterogeneity was observed between them. The heterogeneity
between two types of EC was mainly reflected in the expression
of endothelial growth factor (VEGF). The endothelial cell 1 of
type 2 pRCC (pEC1) specifically expressed VEGFC, whilst pEC2
significantly expressed VEGFA (Figure 7B). Considering that
VEGF is closely related to tumor progression and prognosis,
accurate classification of EC and in-depth understanding of their
potential biological functions may be very helpful for the
treatment of RCC.

A type of EC with fibroblast characteristics was identified in
ccRCC. It expressed COL3A1 (55) and POSTN (Figure 7D).
Although the endothelial-to-mesenchymal transition to CAF has
been reported in previous studies (68), these cells did not express
the markers of CAF (Figure 7D). Given that fibroblast-like EC
has not been previously reported, it may only exist in specific
tumor tissues, such as ccRCC. Therefore, these cells expressing
PECAM1 and POSTN or COL3A1 in ccRCC tissues were labelled.
The results indicated that this type of EC expressing fibroblast
markers was indeed present in ccRCC (Figures 7E, F). Then, the
gene expression similarities between tumor EC and normal renal
EC were compared [data from a previous study (31)]. The result
of Pearson correlation coefficient demonstrated that the average
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FIGURE 7 | scRNA-seq revealed two subpopulations of ECs in pRCC and ccRCC. (A–D) Two types of endothelial cells discovered in type 2 pRCC and ccRCC,

respectively. (A) UMAP plot representation of two types of ECs in type 2 pRCC. (B) DEGs of two types of ECs in type 2 pRCC. (C) UMAP plot representation of two

types of ECs in ccRCC. (D) DEGs of two types of ECs in ccRCC. A novel EC type (POSTN+ and COL3A1+) was identified. (E) IF analysis of the expression of CD31

(green), which is an EC marker, in combination with POSTN (red) and DNA staining using DAPI (blue) within the tissue paraffin sections from ccRCC to verify these

novel ECs. (F) Another marker, COL3A1 (green), used to verify the same result. Scale bars, 20 mm. (G) Heat map indicating Pearson correlation coefficient on the

average gene expression amongst EC population in type 2 pRCC, ccRCC and normal kidney.
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gene expression in these endothelial cells was very similar
(Figure 7G). The heterogeneity amongst these cells may be
due to the differences in the expression of a few genes.

Discovery of Some Characteristics in
Tumor-Immune Microenvironment via
Comparison With Normal Kidney
Monocytes/macrophages were involved in three pathologic
RCCs (Figures 1C–E). Especially in pRCC and ccRCC,
monocytes/macrophages were class ified into many
subpopulations by gene markers (Figure 8A). TAM was
present in three pathologic RCC, which was defined by
GPNMB (58), SLC40A1 (58) and MSR1 (64). Three types of
TAM in pRCC were found, namely, proliferative TAM (Pro-
TAM), TAM 1 and TAM 2. Pro-TAM not only expressed TAM
markers but also specifically expressed the proliferation factor
MKI67 (Figure 8A). Although Pro-TAM was previously
reported in pRCC (69), the transcriptomic characteristics of
such cell in type 2 pRCC have not been reported. In addition,
the Pro-TAM was not found in ccRCC or chRCC (Figure 8A),
which may be characteristic of the tumor immune
microenvironment in pRCC.

T cells are immune cells with tumor-killing characteristic,
especially CD8+ T cells, which were involved in pRCC and
ccRCC (Figures 1C, D). In ccRCC, T cells included CD8+ T
cells 1, CD8+ T cells 2 and CD4+ T cells (Figure 8D). In pRCC, T
cells could be classified into three cell types, namely, CD8+ T cells
1, CD8+ T cells 2 and proliferative T cells (Figure 1C). In
accordance with the characteristics of gene expression, a type
of T cells specifically expressing MKI67 was found and regarded
as proliferative T cells (Figure 8B). Here we found that
proliferation T cells infiltrating was a feature of the ccRCC
immune microenvironment which was consistent with
previously studies (20–22, 70). Pseudo-time trajectory analysis
on all T cells was performed in pRCC to further understand the
proliferation characteristics of this cell type. The result also
verified the feature of proliferative T cells that were almost at
the beginning stage of development trajectory (Figure 8C).

Considering the important role of monocytes/macrophages in
tumor microenvironment, the correlation of monocyte/
macrophage gene expression between three pathologic types of
RCC and normal kidney tissue was compared. The monocytes/
macrophages in RCC had a very high correlation with their gene
expression (Figure 8E). However, the correlation between the
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FIGURE 8 | Identification of the macrophage and T cell in TME of RCC. (A) Gene markers distinguishing the various types of macrophage in different TMEs of RCC.

(B, D) Heat map showing gene expression of T cell in pRCC and ccRCC. (C) Monocle2-generated pseudo-temporal trajectory of three types of T cell. The arrows

represent the direction of cell evolution. (E, F) Comparison of the correlation of TAM and T cells between tumor and normal kidney. (SN: Science paper’s normal

kidney, Mo, monocytes; Mac, macrophage; FMo, FCGR3A+ monocyte; N, normal kidney in this study; ch, chRCC; cc, ccRCC; p, pRCC; TAM, tumor-associated

macrophage; NKT, natural killer T cell; pPT, pro-T cells in pRCC).
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gene expression of monocytes/macrophages in RCC and normal
kidney was slightly lower than T cells (Figures 8E, F). T cells or
NK-T cells did not significantly show this characteristic, and the
correlation between them was almost greater than 0.9
(Figure 8F). This finding may indicate that T cells have slight
difference in gene expression in RCC and normal kidney.

Integration of scRNA-Seq and GWAS
Results and TCGA Data Identified
Specific chRCC Cell Type That May
Affect Prognosis
All the RCC-related susceptibility gene loci were obtained from
the GWAS catalogue (33). After filtering was performed, the
susceptible gene loci with p value less than 1 × 10−8 were selected
and matched to corresponding genes (Table S7). These
susceptible genes were enriched into each cell type of RCC.
Twelve of 17 genes associated with RCC were expressed in
ccRCC 3 (Figure S9B, cluster 15). In type 2 pRCC and
chRCC, no aggregation of susceptible genes in one cell type
was observed (Figures S9A, C).

Then, the chRCC data were applied in TCGA to predict the
prognosis of three chRCC subpopulations. Six DEGs in chRCC 1
were associated with prognosis (Figure S9D), whilst only two
were associated with prognosis in chRCC 2 (Figure S9E). In
addition, 14 of 17 DEGs in chRCC 3 were associated with poor
prognosis (Table S9). Thus, the composition of different tumor
cell types may influence prognosis. chRCC 3 may be a cell type
that leads to poor prognosis in chRCC.

Tumor-Cell Interaction With Ligand–
Receptor in CAFs and Immune Cells
Discovered the Characteristics of Close
Relationships Between Type 2 pRCC
and CAFs
Here, the ligand–receptor interaction scores between tumor cells
and CAFs/immune cells were calculated on the basis of a
previous study (36). The cell–cell interaction between tumor
cells and CAFs was very close in type 2 pRCC. A total of 118
ligand–receptor interaction scores were greater than 1
(Figure 9A). In particular, these ligands–receptors (ITGB1-
COL1A2, ITGB1-COL1A1, ITGB1-COL3A1, CD63-TIMP1 and
ITGB1-FN1) interacted more closely between type 2 pRCC and
CAFs (Figure 9A). CAFs were visualized using immunostaining
to understand the spatial location of CAFs within type 2 pRCC.
They were located around the tumor cells (Figure 9D). The spatial
location of CAFs may contribute to their interaction with tumor
cells. Interestingly, ITGB1 upregulation can promote the
progression and invasion of gastrointestinal tumors, such as
hepatocellular carcinoma and gastric cancer (71, 72). And ITGB1
Upregulation promotes the development and metastasis of renal
cell carcinoma (73). Therefore, the interaction between CAFs and
pRCCmay promote the progression and invasion of pRCC.

Then, the ligand–receptor interactions between four different
ccRCC cell types and CAFs were analysed (Figures 9B, S10A).
CcRCC 3 and CAFs were strongly correlated, especially CAF 2
(Figure 9B).Meanwhile, the cell–cell interaction between RCC

and immune cells was calculated. In type 2 pRCC, the cell–cell
interaction between type 2 pRCC and TAM 1 was strongly
correlated (Figure 9C). However, the interaction between
tumor cells and immune cells was significantly reduced in
ccRCC and chRCC (Figures S10B, C).

Prediction of Drug Target Pathways and
Sensitivity to Drug Responses by scRNA-
Seq Results
Given the heterogeneity of tumor cells, the drug target
pathways differed amongst various pathologic types of RCC.
Using single-cell gene sets involved in drug target pathways and
by calculating the GSVA score (37), the relative activation
status of the drug target signatures across type 2 pRCC,
ccRCC and chRCC was assessed. A total of 12 common drug
target pathways were included in this analysis. Most pathways
were distinctly regulated in the three pathological types, leading
to drug sensitivity difference (Figure 9E). Type 2 pRCC and
ccRCC were more active than chRCC in RCC classical
pathways, such as EGFR and VEGFR pathways, whilst
chRCC was more active in MTOR pathway (Figure 7E).
Subsequently, the sensitivity of 13 targeted drugs in type 2
pRCC, ccRCC and chRCC was predicted. The efficiency of
signaling pathway activation for drug sensitivity was predicted
on the basis of a ridge regression model (74) and public gene
expression profiles and drug sensitivity data were used as a
training set (41). After the prediction of drug sensitivity, the
targeted drugs (afatinib, axitinib, crizotinib, erlotinib and
gefitinib) were more favorably sensitive in ccRCC than in
other types of RCC (Figure 9F). type 2 pRCC was more
sensitive in targeted drugs such as cabozantinib, dasatinib,
foretinib, pazopanib, selumetinib, sorafenib, sunitinib and
temsirolimus but chRCC was resistant to almost all these 13
targeted drugs (Figure 9F).

DISCUSSION

Bulk RNA sequencing almost reflects the average expression of
mRNA in tumor tissues. This expression is difficult to precisely
assess only in tumor cells. In the present study, scRNA-seq of
multiple pathological types of RCC revealed the transcriptome of
tumor tissues at the single-cell level. The tumor cells could be
accurately classified into some subpopulations and separated
from non-tumor cells (Figure 2A). The gene expression
characteristics of tumor cells could also be identified
(Figures 2B–D). Tumor-specific markers could be identified
by the characteristics of gene expression in tumor cells
(Figures 3A, 4A, D). NDUFA4L2, considered as a specific
marker of ccRCC in a previous study (49), was also highly
expressed in type 2 pRCC which was verified by our scRNA-
seq and IHC-P results. A previous study reported tumor-specific
markers (RHCG and LINC01187) of chRCC through bulk RNA
sequencing data from TCGA (42), similar results and new
tumor-specific markers (SPAG4) were achieved in the present
study using scRNA-seq (Figures 4E, F). Although RCC a disease
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with a potentially high level of tumor heterogeneity (13, 75), we
have verified that our results are widely feasible through a certain
number of samples (Table S10). The discovery of these tumor
markers may provide a new horizon for the clinical diagnosis of
RCC. Therefore, scRNA-seq of tumor is a robust method to
discover tumor-specific markers.

In addition, the tumor cell type that may be associated with
poor prognosis, such as chRCC 3, could be found. DEG analysis
in chRCC 3 showed that most of these DEGs led to poor
prognosis (Table S9). SPAG4 was a specific marker of chRCC
3, which showed a tendency to have a poor prognosis but no
statistical significance (Figure S9F). This result may be reason

A B

D

E

F

C

FIGURE 9 | Ligand–receptor interactions in RCC, prediction of drug target pathways and sensitivity to drug responses. (A) Ligand–receptor interactions in type 2

pRCC and CAFs. (B) Ligand–receptor interactions in ccRCC and CAFs. (C) Ligand–receptor interactions in type 2 pRCC and immune cells. (D) Spatial CAF location

verified in type 2 pRCC using the CAF marker ACTA2 (green), epithelial cell marker KRT8 (red) and DNA staining via DAPI (blue) within the tissue paraffin sections

from human type 2 pRCC samples. Scale bars, 50 mm. (E) Prediction of activation of drug target pathways. (F) Prediction of activation of drug sensitivity to drug

responses. *p < 0.05, ***p < 0.01 and ****p < 0.001.
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for the small number of chRCC samples (n=64) in TCGA
database. A larger sample database is needed to verify this result.

In this study, some subpopulations of CAFs were found in
type 2 pRCC and ccRCC (Figures 6A, D). In type 2 pRCC, most
CAFs expressed epithelium markers (KRT8 and KRT18), such as
CAF 2, CAF 3 and CAF 4. In previous studies, scholars suggested
that EMT is a common source of CAFs (66, 68). In the present
study, EMT was hypothesized to be a common biological pattern
in type 2 pRCC.

ECs play an important role in tumor growth. Although
remarkable progress has been made in the clinical efficacy of
anti-vessel drugs, the effect of these agents remains transient
(76). Many reasons could be attributed to this result. Therefore,
the scRNA-seq of ECs in tumor tissues may provide more
valuable biological characteristics. A previous study identified
CLEC14A as a marker of tumor ECs (77). Indeed, this result was
also verified in the present study. In addition, CLEC14A was
highly expressed in all the captured tumor EC types (Figures 5B,
D). ECs also expressed VEGFA or VEGFC in type 2 pRCC
(Figure 7B). Although previous studies have reported how
VEGF regulates the growth of ECs (78–80), few studies have
reported that tumor ECs self-regulates through autocrine VEGF.
Not all tumor ECs possess this characteristic, which may be
associated with tumor heterogeneity, and scRNA-seq is a good
method to reveal this. Given the samples for scRNA-seq were
small, there were some limitation in this study. It is difficult to
compare the tumor heterogeneity between more patients who
suffered from type 2 pRCC and chRCC. Fortunately, the number
of cells captured in each sample was abundant and the
transcriptome information of these cells was of high quality.
And some of the important results that we discovered with
scRNA-seq have been validated by at least 5 different human
samples. Thus, we deem that our results are reliable. We hope to
apply single-cell multi-omics techniques in future RCC studies,
such as chromatin accessibility, cellular transcriptome and
spatial transcriptome techniques. The heterogeneity of RCC
may be better revealed by integrating multiple dimensions of
DNA, mRNA and spatial location at single-cell level.

In conclusion, a comprehensive, single-cell resolution,
multiple pathologic transcriptome map of RCC was provided
in this study. A number of novel tumor markers of RCC were
discovered, which could have a potential value in diagnosing
RCC by scRNA-seq. In addition, some new cell types, such as
proliferative fibroblast and fibroblast-associated EC, were
identified using scRNA-seq. Comparative analysis between
normal kidney and RCC enhanced the understanding of
tumor-immune microenvironment. Taken together, this study
considerably enriched the single-cell transcriptomic information
for RCC, which could provide new insights into the diagnosis
and treatment of RCC.
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78. Melincovici CS, Bos ̧ca AB, Şus ̧man S, Mr M, Mihu C, Istrate M, et al. Vascular

Endothelial Growth Factor (VEGF) - Key Factor in Normal and Pathological

Angiogenesis. Rom J Morphol Embryol (2018) 59(2):455–67.

79. Coultas L, Chawengsaksophak K, Rossant J. Endothelial Cells and VEGF in

Vascular Development. Nature (2005) 438(7070):937–45. doi: 10.1038/

nature04479

80. Herbert SP, Stainier DY. Molecular Control of Endothelial Cell Behaviour

During Blood Vessel Morphogenesis. Nat Rev Mol Cell Biol (2011) 12(9):551–

64. doi: 10.1038/nrm3176

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Su, Lv, Lu, Yu, Ye, Guo, Liu, Yan, Li, Zhang, Cheng andMo. This is

an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Su et al. scRNA-Seq of Renal Cell Carcinoma

Frontiers in Oncology | www.frontiersin.org October 2021 | Volume 11 | Article 71956419

https://doi.org/10.1038/nature04479
https://doi.org/10.1038/nature04479
https://doi.org/10.1038/nrm3176
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Single-Cell RNA Sequencing in Multiple Pathologic Types of Renal Cell Carcinoma Revealed Novel Potential Tumor-Specific Markers
	Introduction
	Materials And Methods
	Information of RCC and Normal Kidney Samples
	RCC Sample Procurement and Single-Cell Isolation
	Normal Kidney Sample Procurement and Single-Cell Isolation
	Sample Processing With 10x Genomics and cDNA Library Preparation
	ScRNA-Seq Processing and Preliminary Results
	Using Seurat for Quality Control (QC) and scRNA-Seq Data Secondary Analysis
	Cell Cycle Analysis
	Reconstructing Cell Differentiation Trajectories Using Monocle2
	Comparing Present scRNA-Seq Data With Those of Previous Studies
	Integration of scRNA-Seq Results With Genome-Wide Association Study (GWAS) and The Cancer Genome Atlas (TCGA) Databases
	Gene Ontology (GO) Enrichment Analysis on Different Types of Tumor Cells
	Ligand–Receptor Interactions
	Prediction of Activation of Drug Target Pathways and Sensitivity to Drug Responses
	Immunohistochemistry
	Immunofluorescence (IF)
	Western Blot
	Cell-Type Markers

	Results
	Single-Cell Transcriptomic Atlas of Multiple Pathologic Types of RCC and Normal Kidney
	Diversity and Gene Expression Characteristics in RCC Cells as Revealed by scRNA-Seq
	Identification and Verification of Some Novel Tumor-Specific Gene Markers
	Phylogenetics and Evolution of RCC as Revealed by scRNA-Seq
	Diversity of Fibroblasts (Including Multiple CAFs) in Type 2 pRCC as Revealed by scRNA-Seq
	Two Types of Endothelial Cells in Type 2 pRCC and ccRCC and a Type of Endothelial Cells Associated With Fibroblast in ccRCC
	Discovery of Some Characteristics in Tumor-Immune Microenvironment via Comparison With Normal Kidney
	Integration of scRNA-Seq and GWAS Results and TCGA Data Identified Specific chRCC Cell Type That May Affect Prognosis
	Tumor-Cell Interaction With Ligand–Receptor in CAFs and Immune Cells Discovered the Characteristics of Close Relationships Between Type 2 pRCC and CAFs
	Prediction of Drug Target Pathways and Sensitivity to Drug Responses by scRNA-Seq Results

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


