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Single-cell RNA sequencing of blood
antigen-presenting cells in severe COVID-19
reveals multi-process defects in antiviral immunity

Melissa Saichi'’, Maha Zohra Ladjemi?3?, Sarantis Korniotis'®, Christophe Rousseau?,
Zakaria Ait Hamou?3, Lucile Massenet-Regad ©'4, Elise Amblard ©'5, Floriane Noel ®, Yannick Marie®’,
Delphine Bouteilleré, Jasna Medvedovic', Frédéric Péne?* and Vassili Soumelis ©'8X

COVID-19 can lead to life-threatening respiratory failure, with increased inflammatory mediators and viral load. Here, we per-
form single-cell RNA-sequencing to establish a high-resolution map of blood antigen-presenting cells (APCs) in 15 patients with
moderate or severe COVID-19 pneumonia, at day 1and day 4 post admission to intensive care unit or pulmonology department,
as well as in 4 healthy donors. We generated a unique dataset of 81,643 APCs, including monocytes and rare dendritic cell (DC)
subsets. We uncovered multi-process defects in antiviral immune defence in specific APCs from patients with severe disease:
(1) increased pro-apoptotic pathways in plasmacytoid DCs (pDCs, key effectors of antiviral immunity), (2) a decrease of the
innate sensors TLR9 and DHX36 in pDCs and CLEC9a* DCs, respectively, (3) downregulation of antiviral interferon-stimulated
genes in monocyte subsets and (4) a decrease of major histocompatibility complex (MHC) class ll-related genes and MHC
class Il transactivator activity in cDC1c* DCs, suggesting viral inhibition of antigen presentation. These novel mechanisms may

explain patient aggravation and suggest strategies to restore the defective immune defence.

infection is at the origin of coronavirus disease 2019

(COVID-19), characterized by a first phase of benign flu-like
symptoms with an efficient control of the infection in most cases.
In a second phase, disease aggravation may lead to acute respira-
tory failure, sepsis and death'-°. This is due to a multiplicity of fac-
tors: (1) an exacerbated inflammatory reaction, with systemic and
organ-specific manifestations, (2) persistent viral load and (3) defec-
tive antiviral defence pathways'~’. Identifying the underlying cellular
and molecular mechanisms is of paramount importance to under-
stand COVID-19 physiopathology and guide the development of
appropriate therapies.

Studies have characterized the systemic inflammatory response,
revealing an excess production of inflammatory cytokines such as
interleukin-6 (IL-6) and IL-1, tumour necrosis factor-o (TNF-a)
and interferon-y (IFN-y)>**, suggesting new therapeutic targets.
The endothelium may also contribute to the overt inflammatory
reaction through the production of soluble mediators*>**. Anti-IL-6
compounds have given promising results in severe COVID-19".
However, the cellular mechanisms underlying the excessive inflam-
matory response remain mostly unknown.

Another unresolved question relates to the inefficiency of the
innate and adaptive immune system to control the infection in
patients with severe COVID-19. It has been suggested that pro-
duction of IFN-a, a major antiviral cytokine, is decreased in these
patients compared to those with moderate disease®”*"**-**. However,
a recent study argued that increased IFN-a production might

f evere acute respiratory syndrome coronavirus-2 (SARS-CoV-2)

contribute to the pathogenic inflammatory response'’. Other antivi-
ral mechanisms and their cellular source remain to be studied.

Dendritic cells (DCs) form a family of innate antigen
(Ag)-presenting cells (APCs) that contribute to the control of
pathogens and subsequent presentation of pathogen-specific Ag
to T cells®. Their study is challenging for three main reasons: (1)
they are found in very low numbers in the circulation and in tissue,
(2) they lack specific lineage-defining markers and (3) they include
an ever-increasing number of subsets’?. All DC subsets may
potentially and variably contribute to modulating the inflamma-
tory response following viral sensing, producing antiviral effector
molecules and priming an Ag-specific adaptive immune response®.
Plasmacytoid pre-DCs (pDCs) are a particular subset specialized in
antiviral immunity through the production of large amounts of type
I IFN*. Despite their central role in antiviral defence, the contribu-
tion of DCs to severe COVID-19 pathogenesis is not yet known.

In this paper we perform a high-resolution single-cell
RNA-sequencing (scRNAseq) analysis of all APC subsets from fresh
peripheral blood of patients with COVID-19. A pre-enrichment
step enables the characterization of even rare DC subsets that
were not captured in previous peripheral blood mononuclear cell
(PBMC) scRNAseq studies'>'”*. We reveal previously unrecog-
nized multi-process defects in patients with severe COVID-197>%%,

Results
APC subset distribution in patients with COVID-19. To char-
acterize the molecular profile of circulating APCs, we performed
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Fig. 1| Circulating APC subset diversity in COVID-19 from the discovery set. a
PBMCs of healthy donors and patients with COVID-19 with either moderate or

UMAP 1

, Schematic of the experimental workflow. APCs were enriched from fresh
severe clinical symptoms at both day 1and day 4 post hospital admission.

The total APCs were sequenced using the 10X Genomics facility. b,¢, Cellular maps of APC subsets (n=42,784 cells) from the discovery set at single-cell

resolution level displayed on UMAP dimension reduction based either on identi

fied cell types (b) and severity (¢). Proportions of the APC subtypes are

displayed on the doughnut plot. d, UMAP plot of detected APC populations split by severity group (healthy controls and patients with moderate and
severe COVID-19). The discovery set comprises a total of 12 samples (n=2 controls, n=4 moderate and n=6 severe samples) collected from a total of

seven patients and two healthy donors.

scRNAseq on freshly sampled APC-enriched PBMCs from five
patients with moderate COVID-19 (non-mechanically ventilated,
oxygen supply <101 min~") and ten patients with severe COVID-19
(mechanically ventilated or oxygen supply >101min"), at day
1 and day 4 following hospital and/or intensive care unit (ICU)
admission, as well as four elderly healthy controls (HC) (Fig. la
and Supplementary Tables 1 and 2). To obtain single-cell suspen-
sions and minimize DC-DC and DC-T cell clusters and clumps,
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EDTA-containing medium was used for the enrichment steps in
the first set of samples, which we further define as the ‘discov-
ery set. This set is composed of a total of 12 samples from two
HCs, three patients with moderate COVID-19 and four patients
with severe COVID-19 from both day 1 and day 4 time points
(results are presented in the figures and Extended Data Figs. 1
and 2). However, EDTA is known to decrease reverse transcrip-
tion (RT) efficiency through RT deactivation and ion chelation,
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resulting in reduced amounts of complementary DNA (cDNA) dur-
ing amplification. We therefore validated the main results derived
from the discovery set by using RPMI (EDTA-free) medium for
the enrichment steps in a second set of samples, including a total
of 15 samples (defined as the ‘validation set’) from two HCs, two
patients with moderate COVID-19 and six with severe COVID-19
(Extended Data Figs. 3-7).

For each fresh sample, 25,000 cells (~20,000 monocytes and 5,000
total DCs) were loaded onto the 10X lane (10X Genomics technol-
ogy) (Fig. 1a). As expected, more cells per sample were effectively
sequenced in the EDTA (discovery set) than the RPMI (validation
set) dataset (mean: 3,360 versus 2,528 cells, respectively) (Extended
Data Fig. 3a), confirming that EDTA optimizes single-cell suspen-
sion efficiency for rare DC types. This retrospectively justified the
importance of using two complementary experimental protocols,
split into two independent datasets, to avoid biasing the results. All
main findings were validated in both datasets, indicating the repro-
ducibility and robustness to experimental procedures. Altogether,
we analysed a total of 81,643 APCs, split into 42,784 cells in the
discovery set and 38,859 cells in the validation set. The two sets
were analysed separately after sample integration using Harmony**.
Graph-based clustering (SNN-based), community detection and
nonlinear dimension reduction, using uniform manifold approxi-
mation and projection (UMAP), were independently applied to
both sets for cell cluster visualization. Manual annotation of the cell
clusters using canonical gene signature markers for each APC sub-
set established a comprehensive map of APCs in HCs and patients
with COVID-19 in both sets (Fig. 1b,c and Extended Data Fig. 3b,c).
In our discovery set, among the 42,784 APCs, we recovered six
subsets: 22,690 CD14* monocytes; 866 CD16* monocytes; 13,252
CDIlc* DCs; 1,754 CLEC9a* DCs; 3,538 pDCs; 684 Axl*Siglec6*
AS-DCs (Extended Data Fig. 3a). The validation set included 29,409
CD14" and 1,021 CD16" monocytes, 5,754 CD1c*, 197 CLEC9a*
DCs, 1,602 pDCs and 876 AS-DCs (Extended Data Fig. 3a). In both
sets, APC populations were captured across all the collected samples
(Supplementary Table 3).

The accurate identification of all six APC populations was con-
firmed by the expression of canonical markers defining each sub-
set (Extended Data Fig. 3d). All DC populations expressed higher
levels of human leukocyte antigen HLA-DR and CD86 compared
to monocytes (Extended Data Fig. 3d). None of the cells expressed
CD19 (B-cell marker), GNLY (natural killed (NK) marker) or CD3E
(T-cell marker), validating the pure APC populations. CD14* mono-
cytes expressed lineage-defining CD14, whereas CD16* monocytes
expressed FCGR3A. AXL expression distinguished AS-DCs from
pDCs, whereas CDIc and CLECYa characterized the respective cDC
subsets™*. In both sets (discovery and validation), UMAP embed-
dings coloured by severity revealed the heterogeneity of APC distri-
bution between the three groups (Fig. 1c). This was confirmed by
splitting the UMAP embeddings per severity (Fig. 1d). Overall, our
enrichment strategy allowed the efficient identification of all APC
populations including the rare pDCs, AS-DCs and CLEC9A* DCs,
enabling further molecular and phenotypic characterization.

Inflammation-related pathways are hallmarks of COVID-19
APCs. We performed differential expression and pathway enrich-
ment analyses among APC severity groups, revealing 368 differen-
tially expressed genes (DEGs) among the three groups (absolute fold
change>1.4). Among them, 101 genes were upregulated in HCs
(as compared to patients with moderate and severe COVID-19),
109 in patients with moderate COVID-19 and 134 in patients with
severe COVID-19 as compared to the two other groups, respec-
tively (Fig. 2a). The top 50 DEGs upregulated in severe APCs as
compared to HCs and patients with moderate COVID-19 included
pro-inflammatory molecules (ILIB, CXCR4), surface mark-
ers (CD36, CD83, AREG, ITGAM), enzymes (CTSD, CTSB) and
secreted molecules (RETN, EREG, ANXA2) (Fig. 2b). Next, we
sought to identify enriched pathways discriminating each severity
group from HCs. We found enriched IFN-y and IFN-a response
pathways in APCs from patients with moderate COVID-19, whereas
hypoxia and TNF-a signalling were enriched in patients with severe
COVID-19 (Fig. 2¢).

We next compared the enriched pathways upregulated in severe
versus moderate COVID-19 and in moderate versus severe, respec-
tively. We found that IFN-y and IFN-a pathways could be used to
discriminate moderate from severe APCs at the global level (Fig. 2d).

To allow for an accurate comparison between the two transcrip-
tional signatures, we ranked the DEGs of the pairwise comparison
according to decreasing fold change. Severe APCs significantly
upregulated AREG (amphiregulin), ILIR2 (IL-1 receptor), NRGN
(calmodulin binding protein) and pro-inflammatory molecules
(S100A12) (Fig. 2e). However, moderate APCs overexpressed
interferon-stimulated genes (ISGs; IFITM2, ISG15 and IFI27)
and HLAII molecules (HLA-DRB5 and HLA-DQA2), suggesting
decreased Ag presentation and antiviral programs in severe as com-
pared to moderate APCs (Fig. 2e). Similar observations were recov-
ered from our validation set (Extended Data Fig. 4a-d). Additional
upregulated genes in severe as compared to moderate APCs were
found in the validation set, including CXCL8, NAMPT and G0S2
(Extended Data Fig. 4e).

Defective IFN responses in COVID-19 APCs. Increases in inflam-
matory cytokines have been reported in COVID-19. We addressed
the global contribution of APCs to the expression of inflammatory
cytokines and their receptors. As compared to APCs derived from
HCs, IL1B, CXCL2, CXCL8 and CCL3 were significantly increased,
whereas IL18 was decreased in both severity groups (Fig. 3a and
Extended Data Fig. 1a). TGFBI and ILIORA expression decreased
in severe, but not in moderate subsets, as compared to HCs (Fig. 3a
and Extended Data Fig. 1a), whereas IL6 was not detected in our dis-
covery set (Extended Data Fig. 1a). Despite the low expression lev-
els of most cytokines, we explored downstream biological pathways
associated with inflammatory cytokine signalling (mainly IL1B, IL6
and TNF-a). In comparison to APCs from HCs, both moderate and
severe APCs showed higher score levels for hallmark inflamma-
tory pathways, including IL6_JAK_STAT3, ‘TGF-, ‘P53, “TNFa_
SIGNALLING_VIA_NFKB’ and ‘KRAS_SIGNALLING’ (Fig. 3b).

>
>

Fig. 2 | Global increase in inflammation-associated pathways in COVID-19 APCs (discovery set). a, Barplot of the number of differentially expressed genes
(DEGs) for each severity group (healthy versus patients with moderate and severe COVID-19; moderate versus healthy and severe; severe versus healthy
and moderate). Upregulated (log fold change (FC) > 0.25) genes are shown in black, downregulated (log FC < —0.25) genes are shown in grey. b, Heatmap
representation of the top upregulated genes in severe APCs, as compared to moderate and healthy groups. The z-score values of average expression levels
of cells per severity group are colour-coded. ¢,d, Comparative analysis of enriched pathways from the upregulated genes in moderate or severe APCs as
compared to healthy cells (¢), as well as pairwise comparison of upregulated genes in moderate compared to severe (shown in pink) and upregulated
genes in severe compared to moderate (shown in yellow) (d). Horizontal axes display the adjusted P values (—log,,). e, Representation of ranked genes in
descending order according to their absolute log FC, upregulated in moderate as compared to severe (red plot) and upregulated in severe as compared to
moderate (blue plot). Top genes, with an absolute value of log FC above 0.5, are shown. In a-e, comparative analyses were performed on the discovery set
(n=42,784 cells), composed of n=2 HC, n=4 moderate and n=6 severe samples. The two-sided Wilcoxon rank-sum test was used for comparison,

P values were adjusted to multiple testing using ‘Bonferroni’ correction, and only genes with adjusted P < 0.05 were considered.

540

NATURE CELL BIOLOGY | VOL 23 | MAY 2021 538-551 | www.nature.com/naturecellbiology


http://www.nature.com/naturecellbiology

NATURE CELL BIOLOGY

Healthy Moderate

. Downregulated

. Upregulated

100

Number of DEGs

100

Healthy Moderate Severe

Pairwise comparison

severe vs moderate
TNFA_SIGNALING_VIA_NFKB -

HYPOXIA -

KRAS_SIGNALING_UP -

COMPLEMENT ~

EPITHELIAL_MESENCHYMAL_TRANSITION-

INTERFERON_GAMMA_RESPONSE

B up Moderate
Up Severe

INTERFERON_ALPHA_RESPONSE-

T T T T
—40 -30 -20 -10 0 10
—log,,(adjusted P value)

NATURE CELL BIOLOGY | VOL 23 | MAY 2021 538-551 | www.nature.com/naturecellbiology

Severe

(4
REACTIVE_OXYGEN_SPECIES_PATHWAY -

IL6_JAK_STAT3_SIGNALING -

APOPTOSIS -

INFLAMMATORY_RESPONSE -|

TNFA_SIGNALING_VIA_NFKB

COMPLEMENT -

INTERFERON_GAMMA_RESPONSE -

INTERFERON_ALPHA_RESPONSE -

RESOURCE

INTERFERON_GAMMA_RESPONSE -

MTORC1_SIGNALING -

1L6_JAK_STAT3_SIGNALING -

| |

| | Enriched in
moderate
vs healthy

| |

||

|

=

=

(T ——

: : : : :

0o 5 10 15 20

—log, (adjusted P value)

Enriched in
severe vs
healthy

IL2_STAT5_SIGNALING

KRAS_SIGNALING_UP

INFLAMMATORY_RESPONSE -

COMPLEMENT ~

HYPOXIA -

TNFA_SIGNALING_VIA_NFKB -

125 — L Y‘HZ

AREG

1.00 —

NRGN
'

N
THBS1

log(FC)

075 — _ 7
S100A12

MT-C03
RETN

0.50 — =
\.

0.25 —

| | |
0 25 50

T T T
0 5 10
~log,  (adjusted P value)

Upregulated genes in severe APC vs moderate

| | |
75 100 125
Rank

Downregulated genes in severe APC vs moderate

,
3 — IFi27

IFITM3
v

2 —

logFC

HLA-DRB5

1 —IFTME | yee

F'S]Q

k

| |
0 50

| |
100 150
Rank

541


http://www.nature.com/naturecellbiology

RESOURCE NATURE CELL BIOLOGY

a b
k) 3
2 g
k] 2
= =
S S
2 2
® 4
o o
3 3 Sev. { ®
Mod. o L ] L] @ ®
Z% g HC -| . .
= =
o S
;i_ ;i_ T T T T T T
= = - — - - - -
Percent expressed g g B % a %
= 30 3 5 P4 = L |
< < o T z [0}
® 40 z z & E ! Z
@ =< < 3
® 50 % % % n_‘ >' ;
HC Mod. Sev.
@ ¢ o < > 3 g o
P = = T o 3 9
70 < w o 3 |
= o 2
IL6R ) il 2 % g
Kkkk kkkk Averagr expression E © g o, X
1.0 < 3 Py
g T 5
= - 05 = z =
[ [} 0
3 3
< s -05
2 2 -1.0
4 4
I I
2 2
w w
e Mx2 1SG15
*kkk Kkkk *kkk *hkk
T T T 4 4
HC Mod. Sev. 34
® °
c d 3 3 3
Healthy Moderate Severe S 5 c
2 7 S
e — 73 @ o
2 2
o 4
TMEM173 ’ LI - 3
IFNL1 i @ 14
IRF9 4 . .
i 04 0
IFNLR1 IRF7 L » : : : : : :
IRF3 - % x HC Mod. Sev. HC Mod Sev.
o
g
IFNAR1 = IRF1 - [ ] L] IRF7 BST2
5 Kkkk Kkkk Fkkk *okkk
% EIF2AK2 4 . ¥ 4
IFNAR2 z cGAS
= 7 : T 5 37
e starz . . 28 8
IFNGR1 5 o 2 ,
g i
S STATT ® . B 24 2
3 2 2
@ 4 o
IFNGR2 o USP18 53 S
w 14 w 7
S0CS1 v
mxz BST2 - ) [3 ® 0 == . : 0= . :
RSAD2 | HC Mod. Sev. HC Mod. Sev.
1SG15
OAS1 - " ¥ IFITM2 ADAR
—— o — — m— m— =
SEL . *kkk NS *% *kkk
IRF7 RNASEL - . 6
ISG15 4 . . 3
3 2 2
BST2 @ TRIM22 - L = 2 44 °
K I § 2
= IFITM3 [ ] ® 9 2
IFITM2 g 3 3
IFITM2 - L] ® -2 -
ADAR CH25H -
MX1 - . = 0 04
T T T T T T
Low [l W Hion i ! ! HC Mod.  Sev. HC Mod Sev.
HC Mod. Sev.

Fig. 3 | Activation of downstream pathways associated with pro-inflammatory cytokines is correlated with defective IFN responses in severe COVID-19
APCs from the discovery set. a, Violin plot representation of cytokine (IL1B, TGFBT and IL-18) receptor (IL6R, TNFRSFTA) and chemokine (CXCL8) gene
expression levels detected by scRNAseq and comparison between severity groups. Each dot represents a cell and horizontal lines display the mean
expression value. b, Dot plot of enrichment scores of pathways downstream of IL-1B, IL-6 and TGFBT inflammatory cytokines; score levels are colour-coded,
and the percentage of cells expressing the pathway score is size-coded. ¢, Heatmap representation of expression levels of IFN genes (ligands and
receptors) and ISG expression levels in healthy, moderate and severe APCs. Expression levels are colour-coded. d, Dot plots of regulators of IFN signalling
and antiviral ISG genes in HCs and patients with moderate and severe COVID-19. Expression levels are colour-coded, and the percentage of cells expressing
the respective gene is size-coded. e, Violin plot representation of antiviral ISGs among the severity groups; the small horizontal line indicates the mean
expression value for each plotted gene expression. In a and e, the violin plots were designed using the total APC subsets from the discovery set (n=42,784
cells), composed of n=2 HC, n=4 moderate and n=6 severe samples. Comparative analysis was performed using the two-sided Wilcoxon rank-sum test;
P values were adjusted to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate P values for severe versus control; asterisks above
moderate indicate significance of moderate versus control. *P < 0.05, **P < 0.01, ***P< 0.001; NS, not significant.
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Fig. 4 | Multi-process defects in severe COVID-19 pDC effector pathways in the discovery dataset. a, pDCs displayed on UMAP (n=3,538 cells)
coloured by severity group of origin. b, Violin plot distribution of enrichment scores for enriched hallmark pathways from upregulated genes from pairwise
comparison between the three severity groups; severity groups are colour-coded, each dot represents a cell and the horizontal line displays the mean value
of the enrichment score of each given pathway ¢, UMAP representation of density scores corresponding to IFN-a receptors (IFNART and IFNAR2) and

pDC sensors (TLR9 and DHX36). Density levels were computed using Nebulosa and are colour-coded. d, Dot plot of in-house constructed pDC-related
functional modules (cytotoxicity, antiviral effector molecules, innate sensing and attraction) and comparison among severity groups. Expression levels

are colour-coded, and the percentage of cells expressing the respective gene is size-coded. e, Violin plot representation of genes involved in pDC defined
biological functions between severity groups; each dot represents a cell, and horizontal lines display the mean expression value. In b and e, the violin plots
were designed using the total pDC subsets from the discovery set, including n=2 HC, n=4 moderate and n=6 severe samples. Comparative analysis was
performed using the two-sided Wilcoxon rank-sum test, P values were adjusted to multiple testings using ‘Bonferroni’ correction. Asterisks above severe
indicate P values for severe versus control; asterisks above moderate indicate significance of moderate versus control. *P<0.05, **P<0.01, ***P < 0.001.

The IFN family of cytokines is one of the most important for innate
and adaptive antiviral responses. We showed the expression levels
of IFNLI, IFNLIR, IFNAR1, IFNAR2, IFNA1, IFNGR1 and IFNGR2
and further explored their distribution in the three severity groups
via a scaled heatmap (Fig. 3c). Both IFN receptor types (IFNARI,
IFNAR2, IFNGRI and IFNGR2) were broadly expressed in the

APC subsets, whereas detection of IFNL1 and IFNLR1 was patchy
in our discovery dataset (Extended Data Fig. 3b). The heatmap
representation indicated that severe APCs expressed lower levels
of IFN molecules, suggesting a potential defect in IFN signalling
(Fig. 3c). To further validate this hypothesis, we investigated the
expression levels of ISGs. We observed higher expression levels of
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ISGs (MX2, ISG15, IRF7, BST2, IFITM2 and ADAR) in moderate
APCs, but lower levels in severe APCs, supporting the hypothesis of
defectiveantiviral programscontributingtotheseverityof COVID-19
(Fig. 3c). We further stratified a more exhaustive ISG signature
according to their respective functions related to ‘antiviral’ and ‘reg-
ulators of IFN signalling. Moderate APCs displayed higher levels
of these two ISG families compared to both severe and HC groups
(Fig. 3d,e). These results suggest a global perturbation of IFN down-
stream functions in severe COVID-19 APCs.

Multi-process effector defects in severe COVID-19 pDCs. After
having analysed COVID-19 APCs at the global level, we sought
to decipher alterations occurring in specific APC subsets. To
depict the alterations occurring in pDC subsets, we isolated and
sub-clustered pDCs (Fig. 4a) and performed pairwise differential
expression among the three severity groups. Pathway enrichment
analysis using MsigDB hallmark signatures was conducted on the
upregulated genes in each subset. Compared to both moderate and
HC pDCs, severe pDCs were enriched for the “TNFa_SIGNALING,
‘IL2_STAT5’ and ‘HYPOXIA signalling pathways. In parallel, com-
pared to pDCs from patients with moderate COVID-19, pDCs
from patients with severe COVID-19 were enriched in the TL6_
JAK_STAT3], ‘P53’ and ‘MTORC’ signalling pathways (Fig. 4b).
When comparing pDCs between patients with moderate and severe
COVID-19, the most notably enriched pathways were related to
IFN signalling (IFNG and IFNA response), along with MYC tar-
gets signalling pathways (Fig. 4b). We asked whether apoptosis and
pro-inflammatory signalling signatures would be associated with
changes in pDC innate sensing receptors, including TLR9, DHX36,
IFNARI and IFNAR2. We imputed the expression values to recover
the signal from dropped-out features using Nebulosa (https://github.
com/powellgenomicslab/Nebulosa), and plotted the density estima-
tion values on UMAP embeddings (Fig. 4c). We observed zero-value
density levels for TLRY, along with decreased density levels for
DHX36, IFNARI and IFNAR2, in pDCs from patients with severe
COVID-19 (Fig. 4c). To explore whether these modulations may
impact pDC functions, we defined four original functional mod-
ules using a literature-driven manual curation: ‘immune cell attrac-
tion’ (hereafter ‘attraction’) (18 genes), ‘innate sensing’ (12 genes),
‘antiviral effector molecules’ (23 genes) and ‘cytotoxicity’ (12 genes)
(Fig. 4d). Each of these modules was crossed with the pDC expres-
sion matrix, and detected genes were depicted for each patient group
(Fig. 4d). No major differences between groups were detected within
the ‘attraction’ module. On the contrary, many genes in the ‘innate
sensing, ‘antiviral effector molecules’ and ‘cytotoxicity’ modules
were detected in the three groups, and followed the same pattern:
baseline in HCs, increased in patients with moderate COVID-19
and decreased in patients with severe COVID-19 (Fig. 4d,e and
Extended Data Fig. 5). This was particularly striking for the viral
sensors TLR7, DHX9 and DHX36, the cytotoxic molecule TNFSF10
and the antiviral effector IRF7. These results were supported by the
downregulation of antiviral ISGs and innate sensors in pDCs from
patients with severe COVID-19, including BST2 and PYCARD
(Fig. 4e), in both experimental datasets (Extended Data Fig. 5).

Coordinated transcriptional adaptation in monocyte subsets.
Monocytes have been implicated in the physiopathology of severe
sepsis and COVID-19. We performed dimensionality reduction
through independent component analysis (ICA) and highlighted
cells according to their severity group. We observed that IC1 clearly
separated moderate from severe and HC CD14* monocytes, whereas
IC2 distinguished HC from COVID-19 CD14" monocytes (Fig. 5a).
The top 50 genes contributing to either IC1 or IC2 revealed distinct
transcriptional signatures for the CD14" monocyte subsets identi-
fied in each severity group: the severe subset expressed higher levels
of complement (CIGC and CIGB), B7 family (VSIG4) and CD163,
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which may function as an innate immune sensor and inducer of
local inflammation. The moderate monocyte subset expressed
increased levels of antiviral ISGs (IFITM1, IFITM3, IFI27, MZBI
and IFI6) and the HLA-II gene (HLA-DRB5), suggesting an effi-
cient antiviral program (Fig. 5b). Compared to HCs, several tran-
scription factors (TFs) were downregulated in both moderate
and severe groups, including the AP-1 superfamily (FOS, JUNB
and ZFP36) and DUSPI, involved in MAPK dephosphorylation
(Fig. 5b). Pathway enrichment analysis on the top 50 genes con-
tributing to IC1 and IC2 identified key pathways that segregated
COVID-19 CD14* monocytes from HCs (Fig. 5¢). The ‘complement,
‘TNF-a, KRAS and ‘hypoxia’ signalling pathways were upregulated
in COVID-19 monocytes, whereas TFN-o’ and TFN-y’ response
signalling were decreased in the severe subset, as compared to the
HC and moderate subsets (Fig. 5¢). To estimate antiviral effector
functions, we used our manually curated gene functional module
across patient groups (Fig. 5d). We observed a decrease of almost
all antiviral effector molecules in patients with severe COVID-19,
as compared to either HCs or patients with moderate COVID-19,
in both experimental datasets (Fig. 5d and Extended Data Fig. 6).
In parallel, we subclustered CD16* monocytes and reduced the
data dimension using UMAP projection to depict the correspond-
ing clusters for each severity group (Fig. 5e). Differential expression
between the three severity groups of this subset indicated similar
trends as described in CD14" monocytes (Fig. 5b,f). This included
overexpression of ‘complement’-related genes (CIQA, CIQB and
CI1GC) by the severe subset, upregulation of antiviral ISGs (ISGI15,
IFI6 and IFI44L) in the moderate subset, as compared to the HC
subset (Fig. 5f). Overall, these disease-associated changes in CD16*
paralleled those observed in CD14* monocytes, suggesting com-
mon adaptation mechanisms.

CLEC9A* DC- and AS-DC-specific transcriptional alterations.
Thanks to our APC enrichment protocol, we could recover rare
CLEC9a* DC and AS-DC subsets. Differential expression of AS-DC
severity groups revealed significant upregulated genes in severe
AS-DCs (SEPT7 and AREG), compared to the moderate and HC
subsets. We could also observe a significant downregulation of the
HLA-DQA?2 gene and antiviral IFI27 gene in severe, compared to
moderate AS-DCs (Fig. 6a). In the search for upstream regulatory
mechanisms, we inferred TF activity using the Dorothea algorithm*
and scored the activity of each regulon using the Viper inference
tool”. This identified a large number of highly variant TF activity
scores (Fig. 6b). In moderate AS-DCs, we observed a higher activity
scored for IRF1, IRF9 and STAT2, reported to be involved in the ISG
transcription cycle (Fig. 6b). In AS-DCs from patients with severe
COVID-19, we found increased TF activities for RELA, NFKBI,
STATS5 and STATS3, indicative of a higher activation of NFKB/STAT
signalling, potentially induced by the pro-inflammatory cytokines
described in the APC subset distribution in patients with COVID-19
section, along with hypoxia activation, indicated by a higher activity
of HIF1A (Fig. 6b).

DEGs among the CLEC9a™ DC subclusters included specific
transcriptional signatures segregating patients with moderate and
severe COVID-19 from HCs (Fig. 6¢). We remarkably observed
a downregulation of HLA-II genes, including HLA-DQBI and
HLA-DPBI, in severe as compared to HCs, along with a significant
upregulation of a larger subset of ISGs, including IRFI, IFI44L,
IFI6, IFI27, IFITM2, IFITM3, IFI44L, ISG15 and ISG20, in moder-
ate as compared to both HC and severe subsets (Fig. 6¢). Expression
values representation indicated a significant increase of AREG
and SEPT7 genes, which were also upregulated by severe AS-DCs
(Fig. 6a,d). Most importantly, we noted a significant decrease of the
IFNGRI CLEC9a* DC subset in patients with moderate and severe
COVID-19 as compared to HCs (Fig. 6d), supporting a defective
antiviral program.
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Fig. 5 | Dissection of inflammatory and antiviral response pathways in all monocyte (CD14+ and CD16+) subsets from the discovery set. a, ICA
representation of CD14+ monocytes derived from all severity groups (n=22,690 cells). IC1 and IC2 components allowed the separation of CD14+
monocytes according to severity. b, Heatmap representation of the top 50 unique genes contributing to either IC1 or IC2 in the CD14* monocytes
subset; z-scores of average expression levels are colour-coded. ¢, Violin plot distribution of enrichment score values of enriched pathways in the top
50 genes contributing to either IC1 or IC2; severity groups are colour-coded, each dot represents a cell and the horizontal line displays the

mean value of the enrichment score of each given pathway. The violin plots were designed using the total CD14* monocyte subsets from the discovery
set, obtained from n=2 HC, n=4 moderate and n=6 severe samples. Comparative analysis was performed using the two-sided Wilcoxon rank-sum
test. P values were adjusted to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate P values for severe versus control;
asterisks above moderate indicate significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001. d, Dot plot of in-house constructed
antiviral effector molecule modules across CD14+ monocytes and severity groups. Expression levels are colour-coded, and the percentage of cells
expressing the respective gene is size-coded. e, UMAP representation of CD16" monocytes (n=866 cells) labelled according to severity group.

f, Heatmap representation of top 50 DEGs among the three groups from the CD16* monocytes subset; z-scores of average expression levels

are colour-coded.
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significant. b, Heatmap of top 50 highly variable TF activities among the three severity groups; the z-scores of TF activities are colour-coded. ¢, Heatmap
representation of top 50 DEGs among the three severity groups isolated from the CLEC9a* DC subset (a total of 1,754 cells); z-scores of expression level
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Downregulation of MHC-II and CIITA activity in CD1C* DCs.  (Fig. 7a). We noted a global decrease of HLA-II genes (mainly
We next focused on disease-induced alterations in CD1c* DCs. We  HLA-DQA2 and HLA-DRB5) in patients with severe COVID-19
first explored the gene expression levels of MHC-II-related genes  (Fig. 7a). Similar findings were reported for the validation set

546 NATURE CELL BIOLOGY | VOL 23 | MAY 2021 538-551 | www.nature.com/naturecellbiology


http://www.nature.com/naturecellbiology

NATURE CELL BIOLOGY

(Extended Data Fig. 7). We then grouped the expression values
of these MHC-II genes (HLA-DRBI1, HLA-DMA, HLA-DQA2,
HLA-DRB5, HLA-DPB1, HLA-DQBI and HLA-DMB), constructed
a signature that we named the ‘HLAII’ module, and scored CD1c*
DCs using the ‘AddModuleScore’ Seurat function. The ‘HLAIT
signature was significantly reduced in severe as compared to HC
CDI1c* DCs (Fig. 7b). This was associated with decreased expres-
sion of upstream MHC-II regulators (including RFX5, RFXANK
and CIITA) in the severe group (Fig. 7b). Comparison of the
scaled values revealed a reduction of IRFI and RFX5 TF activities,
mainly described to be involved in MHC-II gene synthesis, whereas
C/EBP family member (CEBPB and CEBPD) TF activities, known
to be involved in myeloid fate differentiation, were increased in
severe subsets (Fig. 7c). We also noted higher TF activities for RELA
(NFKB superfamily) and the AP-1 family in patients with severe
COVID-19, including FOSL1, FOSL2 and JUN, which regulate a
large range of cellular processes, including cell survival, death and
proliferation (Fig. 7c).

To further decipher the transcriptional changes occurring in
DCs when transitioning from healthy to moderate and severe con-
ditions, we conducted pseudo-temporal inference using Monocle3,
using the UMAP embedding two-dimensional space of the DC
subsets (Fig. 7d). The pseudotime tree revealed a continuous tra-
jectory from healthy to moderate, and a marked transition to the
severe subsets. This trajectory was correlated to pseudotime values
(Fig. 7d, right). To recover the genes contributing to this transition
tree, we conducted a graph-based test to assess the most significant
genes. The top genes were associated with Ag presentation, includ-
ing B2M and HLA-DPA1, along with genes related to ISG expres-
sion (GABARAP and IFITM3; Fig. 7e).

Given that MHC-II genes are involved in the DC-T cell interac-
tion, we hypothesized that a more global dysfunction of DC-T cell
communication may occur in COVID-19 APCs. To test this hypoth-
esis, we applied our cell communication inference computational
framework ICELLNET®. Using our ‘reference partner cell’ meth-
odology, we inferred potential communication between each of the
APC subsets and CD4" T cells in each of the disease groups (Fig. 8a).
Cell connectivity networks revealed a global decrease in APC-T cell
communication in patients with severe, as compared to moderate
COVID-19 and HCs, predominantly in CD1c* DCs, CLEC9a* DCs
and CD14* monocytes (Fig. 8a,b). We then explored the various
molecular families that may explain this decrease. This revealed a
dominant contribution of immune checkpoint molecules and cyto-
kines for CD1c* DC-T cell communication (Fig. 8b), in particular
decreased JAG-NOTCH, CD80-CD28 and CD48-CD2 interactions
(Fig. 8c). Cytokines were mostly underlying the decrease in CD14*
monocytes-T cell communication (Fig. 8b). As expected, signal-
ling through HLA-II-related genes (HLA-II/LAG3 pairs) was sig-
nificantly decreased in moderate and severe subsets as compared
to HCs. Among the cytokines, IL10-, CCL5- and TGFb-mediated
interactions were predominantly damped in patients with severe
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COVID-19, which may contribute to immunopathology through
excessive Th1 responses (Fig. 8c).

Persistent defects in severe COVID-19 APCs across samples. We
also asked whether functional pathway alterations observed across
APC subtypes were sustained over time. In parallel, we wanted to
ensure that our main findings were not driven by a single patient
and/or time point. We compared scRNAseq datasets generated at
day 1 versus day 4 post hospital admission for each patient, in all
severity groups. We used a focused approach, by selecting genes
involved in previously identified altered functions, in APCs from
patients with severe COVID-19, and systematically compared day
1 and day 4 expression levels. Most of the day 1 defects were sus-
tained at day 4, in particular the low score of the HLA-II module
in CD1c* DCs (Extended Data Fig. 2a) together with the decreased
expression of the antiviral effector molecules in CD14* monocytes
(Extended Data Fig. 2b) and increased ‘apoptosis p53 pathway’
in pDCs (Extended Data Fig. 2c). At a patient level, we observed
that HC samples displayed similar score (or expression) levels for
these three biological processes, whereas both moderate and severe
samples displayed slight differences due to inter-individual hetero-
geneity. Overall, we confirmed that our findings were not associated
with either a specific time point or a dominant single patient effect.
However, this does not exclude changes in APC molecular profiles
at later times in the course of moderate and severe COVID-19.

Discussion

Severe COVID-19 harbours a complex physiopathology stemming
from host-pathogen interactions evolving over time, and involves
a large number of underlying cellular and molecular mechanisms.
Hence, detailed studies on various immune cell compartments are
required to obtain a global view of the process. DCs are central to
immune responses by linking innate and adaptive immunity, in
particular during infection®’. DCs are rare cell types composed of
multiple subsets™, justifying dedicated studies to uncover putative
dysfunctions. So far, very little is known about the role of DC sub-
sets in COVID-19*-*, scRNAseq atlas studies of total PBMCs in
patients with severe and moderate COVID-19 identified inflamma-
tory monocytes defective for MHC-II molecules'?, as was previously
shown in severe sepsis patients”, and increased apoptosis pathways
in both NK cells and monocytes”**#->°, So far, none of these studies
were tailored to provide sufficient resolution into the DC compart-
ments. The challenge is even greater knowing that some DC subsets,
such as pDCs and CD141 (CLEC9A)* DCs, are depleted from the
blood in severe COVID-19*"'. A recent study analysed PBMCs by
scRNAseq, after DC enrichment in EDTA-containing medium, but
focused only on the IFN pathway and ISGs®. Most of these stud-
ies utilized frozen/thawed PBMCs as a starting biological mate-
rial, potentially inducing loss in some rare DC subsets. Through
dedicated enrichment steps performed immediately after blood
sampling (fresh samples), we were able to capture sufficient cell

>
>

Fig. 7 | Downregulation of MHC-Il and upstream transcriptional regulators in severe COVID-19 CD1c* DCs of the discovery set. a, Dot plot distribution

of HLA-II-related genes at the patient level within the CD1c* DC subset; expression levels are colour-coded, and the percentage of cells expressing the
respective gene is size-coded. b, Violin plot distribution of HLA-II and the upstream regulators’ (HLAII_Regulators) module scores among the three severity
groups within the CD1c* DC subset; severity groups are colour-coded, each dot represents a cell and the horizontal line displays the mean value of the
enrichment score of each given pathway. The violin plots were designed using the total CD1c* DC subsets from the discovery set obtained from n=2

HC, n=4 moderate and n=6 severe samples. Comparative analysis was performed using the two-sided Wilcoxon rank-sum test. P values were adjusted

to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate P values for severe versus control; asterisks above moderate indicate
significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant. ¢, Heatmap representation of top 50 highly variable TF
activities between CD1c* DC severity groups; the z-score of activity scores is colour-coded. d, Pseudotime inference tree on UMAP embeddings (left) of the
CD1c* DC subset using Monocle3; pseudotime values are colour-coded (right). e, UMAP representation of density scores for the top genes contributing to
the pseudotime tree initially inferred in d. Density scores were computed using Nebulosa and are colour-coded. All statistical tests displayed in this figure
were performed using the discovery set, comprising a total of 12 samples (n=2 controls, n=4 moderate and n=6 samples) collected from seven patients

and two healthy donors.
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numbers to define molecular profiles and identify specific defects
in all known DC subsets.

As with most immune cells, DCs are not limited to a single func-
tion®'. They play a key role in the first line of immune defence by
sensing microbial pathogens, and also contribute to direct patho-
gen control through the production of antimicrobial peptides and
antiviral effector molecules™. Other effector functions include
the secretion of pro- and anti-inflammatory cytokines, and cyto-
toxic molecules®. Finally, they function as APCs to T cells, with
which they communicate through secreted and surface molecules
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expressed within the immune synapse™. By using scRNAseq, and a
combination of supervised and unsupervised bioinformatics meth-
ods, we were able to uncover defects in almost all of these processes,
in specific APC subsets, associated with COVID-19 severity. This
provides the first detailed molecular map of DC subsets and under-
lying molecular pathways in COVID-19.

Several studies have shown an increase of inflammatory cyto-
kines in severe COVID-19, which may contribute to the sever-
ity of the disease*’. Increased circulating levels of IL-1p and IL-6
were detected in patients with severe COVID-19°2>**. However,
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Fig. 8 | Perturbation of DC-T cell communication in patients with severe COVID-19 from the discovery set. a, Connectivity maps describing outward
communication from APCs from the single-cell dataset at day 1to T lymphocytes (n=39), according to patient severity (healthy, moderate and severe).
The T lymphocyte transcriptomic profiles are from the Human Primary Cell Atlas, included in the ICELLNET R package. For APCs, average cluster gene
expression profiles were considered. Only DC-T cell interactions are taken into account to compute the communication score (manually curated, n=144
interactions). b, Barplot of each communication score with contribution by families of communication molecules for outward communication from APCs
to T lymphocytes. ¢, Focus on CD1c* DC outward communication to T lymphocytes, representing specific individual interaction scores that differ by at
least 10 between patients with moderate and severe COVID-19 (cutoff chosen for the purpose of clarity).

the cellular source does not seem to be from circulating cells, but
rather from inflammatory monocytes attracted to the lung™, as
well as endothelial cells****. Our study corroborates these findings
for IL-6, with no significant expression detected across APC sub-
sets. However, we did find increased expression of IL-18, CXCL8
and CXCL2 in APCs at the global level, and this may contribute
to systemic inflammation. In parallel, we observed increased TNF
signalling in pDCs, but decreased in monocytes, suggesting that
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distinct APCs may respond differently to circulating inflamma-
tory mediators.

Type I and III IFNs are critical antiviral cytokines”. APCs
are a central source of IFN following viral sensing. Studies
have shown that type I IFN responses are impaired in severe
COVID-19%%172128-304648%  which may contribute to persistent viral
load. Our data support these findings, as we did not detect any
expression of IFN-a and IFN-A1 across all APC subsets. However,
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we were also able to detect critical defects in the response to type
I IEN. First, expression of IFNARI and 2 was globally decreased in
APC subsets from patients with severe COVID-19. Second, most
downstream ISGs (both antiviral and regulators of IFN signalling)
were expressed at lower levels in patients with severe COVID-19
compared to HCs, which themselves are expected to express low lev-
els of ISGs given the absence of innate stimulation. Overall, the IFN
pathway was defective in severe COVID-19 APCs at several levels:
IFN production, receptor expression and downstream ISG responses.

pDCs are a cell type that is highly specialized in antiviral immu-
nity, producing large amounts of all type I IFN”. Circulating
pDCs have been shown to be diminished in COVID-19"', but the
underlying mechanisms remain unknown. We identified increased
expression of pro-apoptotic molecules in pDCs from patients
with severe COVID-19. This suggests that pDCs could be globally
altered through increased cell death. In a separate study, we have
shown that in vitro SARS-CoV-2 stimulation of pDCs from healthy
donors leads to improved pDC survival®®, suggesting that the
increased apoptosis we observed in pDCs from patients with severe
COVID-19 was not due to direct virus-induced killing. In paral-
lel, we detected several defects in various pDC functions: decreased
innate sensing, through loss of TLR7 and DHX36, which are key
viral sensors®, decreased antiviral effector functions and cytotox-
icity. Hence, we report multi-process defects affecting key aspects
of pDC antiviral functions. Interestingly, a recent study performed
ex vivo stimulation of PBMCs of a patient with COVID-19 with
TLR7/9 ligands, and showed decreased type I IFN production®.
This provides an independent functional validation, while our study
provides molecular mechanisms, in particular the increased pDC
apoptosis and the decrease in TLR7 expression.

Transcriptomic data, including scRNAseq, allow for the applica-
tion of methods to infer TF activity, as a way to provide potential
upstream mechanisms. We found that several important TF activi-
ties were decreased in CD1* DCs, suggesting defective immune
effector functions in patients with severe COVID-19. STAT2 activ-
ity downregulation may indicate a deficiency to cross-present to
CD8" T cells and license their cytotoxic function®. Subversion of
DC immunogenicity by targeting STAT2 was observed in other
viral infections. ZIKV evades type I IFN responses by antagoniz-
ing STAT2 phosphorylation®'. The low estimated activity of ESRI,
CIITA, USFI and RFX5 in CD1* DCs may explain the decrease in
MHC-II molecules we observed in patients with severe COVID-19,
through decreased trans-activation of the MHC-II promoter®>*.
Finally, the low activity of EGRI and RUNXI TF in CD1* DCs of
patients with severe COVID-19 may contribute to an impaired
function in CD8 T-cell activation and induction of IFN-y®®,
Collectively, our results suggest that several aspects of CD1* DC
effector functions may be altered through decreased activity of key
TFs controlling MHC-II expression and T-cell stimulation.

Our study provides a unique insight into the physiopathology
of APCs in severe COVID-19, uncovering previously unknown
defects in multiple functional pathways, related to both innate
and adaptive immunity. We were able to map molecular pathways
in rare DC subsets, many of them previously unexplored in the
context of COVID-19. Combined with studies in other anatomical
sites*, in particular the lung*, and other disease severity stages, our
results should contribute to a better understanding of COVID-19
immunopathology. They also open interesting perspectives for
clinical applications. Simple molecular markers of defective APC
subsets may be explored as prognostic and stratification biomark-
ers. This hypothesis echoes the immune pathology of bacterial
sepsis, for which multiple defects in APCs have already been
described* . A persistent decrease in circulating DCs, as well as
monocyte deactivation as assessed by decreased HLA-DR expres-
sion or decreased CD74 messenger RNA (mRNA) expression, are
already known to be predictive of ICU-acquired superinfections
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in patients with bacterial sepsis®“. It would be interesting to
explore whether such markers, for example pDC apoptosis or
CD1c* DC MHC-II downregulation, appear earlier in the course
of COVID-19 and may predict aggravation. From a therapeutic
standpoint, many innate adjuvants have been developed to target
DC subsets®’’, and could be considered as personalized immuno-
therapies depending on patient-specific DC dysfunction®. Finally,
DCs are being considered in preventive vaccine development
(ClinicalTrials.gov: NCT04386252). Ultimately, our study may
form the ground for novel therapies to restore defective APC func-
tions in patients with COVID-19.
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Methods

Patient characteristics and recruitment into the study. Our study is compliant
with all relevant ethical regulations regarding research involving human
participants.This study was part of the DENDRISEPSIS project, aimed at
investigating the functional profiles of APCs in patients with sepsis. The full study
protocol can be accessed at https://clinicaltrials.gov/ct2/show/NCT03788772%ter
m=dendrisepsis&cond=sepsis&draw=2&rank=1. The study was approved by the
appropriate institutional review board and independent ethics committee (Comité
de Protection des Personnes I (CPP), Rouen, France, ref: #2018-A01934-51).

We included adult HCs, and patients with PCR-proven COVID-19 pneumonia,
within 48 h of admission to ICU or to the pulmonology department from an
urban tertiary care centre. Exclusion criteria were the following: haematological
malignancy or significant history of bone marrow disease, HIV infection, any
immunosuppressive drugs, bone marrow or solid organ transplant recipients,
leucopenia (<1,000 mm~?) except if due to COVID-19 or pregnancy. With respect
to HCs, exclusion criteria were the following: history of inflammatory disease,
corticosteroid treatment at any dose and infection symptoms within the previous
month. Informed consent was obtained from patients or next of kin. Patients were
classified into moderate pneumonia if requiring oxygen supply of <101l min™' and
severe pneumonia if requiring invasive mechanical ventilation or oxygen supply
of >101.min~". Patients were sampled at admission (day 1) and at day 4. HCs were
sampled once. Detailed patient characteristics are provided in Supplementary
Tables 1 and 2.

Cell purification. Blood samples (20 ml) were collected from each patient at

days 1 and 4 post hospital admission, and from HCs. PBMCs were isolated by
centrifugation on a density gradient (Lymphoprep, Proteogenix). After FICOLL
(GE Healthcare and Lymphoprep StemCell) gradient centrifugation, total

PBMCs were enriched in CD14* monocytes using human CD14 microbeads
(Miltenyi Biotec) for positive magnetic selection according to the manufacturer’s
instructions. The negative fraction remaining after the positive selection of CD14*
cells was used for pan-DC enrichment employing the EasySep human pan-DC
enrichment kit (StemCell Technologies). Total pan-DCs were resuspended with
20,000 CD14* cells and sent for sequencing. Monocyte and pan-DC enrichments
were performed immediately after sampling. To avoid DC-T cell clusters, which
often form in DC-enriched preparations, EDTA-containing medium (DPBS 1x,
0.5% EDTA, 1% human serum) was used for sample enrichment in the first set, the
‘discovery set. The latter was composed of a total of 12 samples from two healthy
donors, three patients with moderate COVID-19 and four with severe COVID-19
from both day 1 and day 4 time points. The reported results in the main figures
(Figs. 1-8) along with Supplementary Figs. 1 and 2 were generated based on

the discovery set. Because EDTA can decrease reverse transcription efficiency,

we validated the findings derived from the discovery set by using RPMI for all
enrichment steps (1640 + Glutamax, 2% BSA, 1% penicillin/streptomycin, 1%
sodium puryvate, 1% minimum essential medium-non-essential amino acids) in
a second set of samples, including a total of 15 samples, defined as the ‘validation
set. The latter included two healthy donors, two patients with moderate COVID-19
and six with severe COVID-19. The results of the validation set are presented in
Supplementary Figs. 3-7. All main findings were validated in both datasets.

Preparation and isolation of single-cell suspensions. Cell suspensions were
subjected to gel bead emulsion using the Chromium 10X Genomics controller
according to the manufacturer’s guidelines. To perform scRNAseq after cDNA
amplification, the concentration of each sample was measured using a Tapestation
2200 system (Agilent). To prepare the cDNA libraries for the 10X Genomics
Chromium controller, we used the single-cell 3’ v3.1 kit. Quality control libraries
were performed using the Tapestation 2200 (Agilent). An Illumina Novaseq6000
system (100-cycle cartridge) with a sequencing depth of at least 50,000 reads per
cell was used for sequencing. The input number of cells was estimated at 20,000
cells per sample.

Quality control and pre-processing of expression matrices. The raw scRNAseq
fastq files were processed using Cell Ranger 3.1.0 from 10X Genomics Technology
and aligned to the Grch38 reference genome. Bam files and filtered expression
matrices were generated using ‘cellranger_count. All expression matrices were
loaded into R 4.0.0 using the ‘Read 10X’ function from the Seurat library (https://
github.com/satijalab/seurat) version 3.1.5. The latter library was used to perform
the analysis.

Pre-processing steps were applied to remove genes expressed in fewer than 20
cells, and to remove cells with fewer than 50 genes or displaying more than 50%
mitochondrial transcripts. To minimize technical confounding factors related to
the sequencing steps, we evaluated the violin plot distribution of the number of
unique molecular identifiers (nUMI), along with the total number of detected
genes (nFeatures) per cell for all samples. Two upper cutoffs of 6,000 and 50,000
were manually set for the nUMi and nFeatures, respectively, for each sample. These
quality control metrics filtered out low-quality cells. Normalization to 10,000
reads, centering and scaling were sequentially applied on the expression matrices
to correct for the sequencing depth variability. To reduce the computational time
for sample integration, we filtered out cells from cell types other than APCs. Cell

type annotation is detailed in the section ‘Manual annotation of cell types’). To
decipher specific alterations occurring in each specific APC subset, we separately
subclustered each cell subtype, scaled the data and applied graph-based clustering
to obtain cell clusters. Genes encoding for immunoglobulins were removed before
performing the subclustering step for each cell type to get rid of ambient RNA.

Integration of individual cell matrices into a merged expression matrix from
all the samples. To allow comparison across severity states, we integrated the
whole expression matrices from all the samples using the Harmony algorithm.
Integration anchors, retrieved from the first 50 principal components using

the ‘FindIntegrationAnchors’ Seurat function, were then used to integrate the
datasets using the ‘IntegrateData’ function. This crucial step added an ‘integrated’
assay to the Seurat object. Scaling and principal component analysis dimension
reduction were performed on the integrated assay with 50 principal components.
High-resolution (resolution=0.8) graph-based clustering and UMAP dimension
reduction were conducted to retrieve and visualize cell clusters. ICA dimension
reduction was specifically performed for CD14* monocytes, using 30 dimensions.

Manual annotation of cell types. Cells were manually annotated based on their
expressing levels of their respective set of cell-type markers, defined as ‘cell-type
signatures. For each cell-type signature, enrichment scores were computed using
the AddModuleScore()’ function per cell with 100 randomly selected control
genes, split on 25 bins. Each cell cluster was annotated with a particular cell type
if its signature score median value was >0. Cell-type signatures included the
following: pDCs, expression of (‘TCF4, ‘CLEC4C;, IRF7,, ‘IRFS, ‘LILRA4, TL3RA,
“TLRY;, ‘SPIB’), cDCs (ANPEP;, ‘CD1C; ITGAX; ‘CST3; ‘FCER1A’), monocytes
(‘CD14), ‘FCGR1A4;, ‘S100A12;, FCGR3A, ‘MS4A7, ‘LYZ, ‘CXCR3’), AS-DCs (AXL,
‘SIGLECS, ‘CD22’), NK cells (NCAMLI’, ‘FCGR3A; ‘GNLY’, XCL1, XCL2} ‘NCRI;
‘NKG7’), T cells (‘CD3D, ‘CD3E, ‘CD3G), B cells (CD19, ‘MS4AT, ‘CD79A,
‘CD79B’), plasma cells (IGHG2), TIGHGI, TGLC2) TGHATL, TGHA?2, TGHA3),
JCHAIN;, IGHM, XBP1, ‘MZB1, ‘CD38;, ‘IGLL5’), erythrocytes (‘HBB, ‘HBA1’)
and platelets (PPBP). Cells that were annotated as non-APC were discarded for
each sample, before integration, to avoid high computational load during the
integration step. For monocytes and cDCs, a subsequent classification of cells

was performed according to their expression levels of monocytes and ¢cDC subset
markers (CD14 and FCGR3A for monocytes, CD1C and CLEC9A for cDCs).

Statistical analysis. Differential expression analysis between severity groups was
performed using the ‘FindAllMarkers” Seurat function, using the MAST test and

a cutoff set to log FC > 0.3 to filter out false-positive DEGs. We regressed out the
‘gender’ confounding factor by using the ‘MAST’ test for comparative analysis

and precising ‘gender’ as a latent variable. This ‘gender’ variable was added in

the metadata slot for each cell from the discovery and validation sets: a cell is
annotated as from a female’ sample if the expression level of the XIST gene is
higher than 0.1, otherwise the gender is annotated as ‘male’ P values were corrected
using the Bonferroni correction method. We only tested genes that were detected
in a minimum fraction of 10% of each severity group. Median values of violin plot
distributions of either gene expression levels or pathway-enrichment scores were
compared using a Mann-Whitney-Wilcoxon ranked test, taking as a reference the
HC. Note that the statistical calculations for the violin plot distributions are derived
from the cell count in expression values/enrichment scores comparisons.

Pathway enrichment analysis. Pathway enrichment analysis was performed to
seek for the perturbed or enriched pathways in severity groups, as compared to
the HCs. Human MsigDB hallmark signatures (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) were loaded into the R session using the ‘msigdbr’ library
version 7.0.1, and the category was set to ‘H’ for human’ The enrichment test was
performed using the ‘enricher’ function from ‘ClusterProfiler’ version 3.16.0. Msig
Database hallmark signatures were given as input to the ‘enricher’ function. The

P values were corrected using the Bonferroni correction method. Encoding genes
for each enriched pathway were extracted and used as the module to construct a
‘pathway-score’ signature using AddModuleScore’ from the Seurat library.

TF activity inference. We sought to decipher the variation of TF activity between
severity groups within particular cell types to avoid capturing differentially active
TFs related to lineage markers. The Dorothea (https://saezlab.github.io/dorothea/)
resource was used to infer TF activity. In this context of single-cell-level resolution,
we constructed regulons based on the mRNA expression levels of each TF from

a manually curated database, along with the expression level of its direct targets.
In this context, TF activity is considered as a proxy of the transcriptional state of
its direct targets. We created TF regulons using the ‘dorothea_regulon_human’
wrapper function from ‘dorothea’ library version 0.99.10, and chose ‘A’ and ‘B’
high-confidence TF selection. Viper scores were computed on the dorothea
regulons, scaled and added as the ‘Dorothea’ slot on the integrated Seurat object.
To allow comparison of TF score activities, mean and standard deviation values
of the scaled viper scores were computed per severity group. TFs were ranked
according to the variance of their corresponding viper scores. The top 50 highly
variable scores per severity group (n=150 TFs in total) were kept for visualization
of their corresponding scores.
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Manual construction of functional signatures. To evaluate the dysregulations
occurring at the functional level for each APC subset from patients with COVID-
19, we established a manually curated list of effector genes involved in specific
APC functions: ‘attraction; ‘antiviral effector molecules’ and ‘cytotoxicity’ The
signature construction relied on a thorough mining of existing literature, using

a combination of MeSH terms and keywords on the PubMed search tool. Each
selected molecule was considered an ‘effector’ of the related function if there

was at least one experimental proof in a human setting. Overall, we outlined 12
‘cytotoxicity’ effector molecules, 29 ‘antiviral’ effector molecules and 18 ‘attraction’
effector molecules. ‘Innate sensing’ effectors included 13 genes (DDX58, DHX58,
CGAS, IF116, AIM2, IRF3, TMEM173, NLRP3, PYCARD, TLR7, TLR9, DHX9 and
DHX36), and were from refs. 7”2, Both ‘regulators of interferon signalling’ and
‘antiviral ISG’ were implemented by literature mining from ref. .

Drop-out correction. To allow drop-out correction and imputation of missing
values, we used Nebulosa (https://github.com/powellgenomicslab/Nebulosa) to
represent density-based values on UMAP embeddings. This R package is designed
to visualize features from single cells, using a kernel density estimation. It recovers
the signal by incorporating the similarity between cells, allowing a convolution

of the cell features. For pDCs from the discovery set, we specifically added a
‘MAGIC_RNA slot to the Seurat object using MAGIC"™ and specifically plotted the
violin distribution of imputed values in Fig. 4e.

Pseudotime inference. For the CD1c* DC subset, we specifically computed
pseudotime inference using Monocle3 (https://cole-trapnell-lab.github.io/), directly
available using the Seurat Wrappers R package™.

Analysis of intercellular communication networks. Communication scores

were generated using the ICELLNET R package (https://github.com/soumelis-lab/
ICELLNET/master). This library allows computation of cell-cell communication
scores between cell subsets, given their corresponding transcriptomic profiles

from the same or different datasets. Considering severity groups separately, only
clusters including more than 15 cells were considered for the analysis. The average
gene expression profiles of APC subset clusters were provided as input to the
ICELLNET package, to compute communication scores between APC subsets and
T lymphocytes for each severity group. As our datasets did not include T cells for
the analysis, we used as reference the T-lymphocyte transcriptomic profile from
the Human Primary Cell Atlas included in the ICELLNET package (n=39). From
the ICELLNET ligand-receptor interaction database, we only selected the 144
interactions known to be involved in DC-T communication™. Barplot and dot plot
representations were generated to compare the proportions of communication type
scores (checkpoint, cytokines, chemokines) among severity groups.

Statistics and reproducibility. Statistical analysis was performed using R (version
4.0.0). A two-sided Wilcoxon ranked-sum test was used to perform pairwise
comparisons. To ensure the reproducibility of our main findings, we split our data
analysis cohort into a discovery and a validation set. We reported our main findings
from the discovery set and conducted similar analyses on the validation set.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this Article.

Data availability

scRNAseq data that support the findings of this study have been deposited in the
Gene Expression Omnibus under accession code GSE169346. Further information
and requests for resources and reagents should be directed to and will be fulfilled
by the V.S. This study did not generate new unique reagents.

Code availability
The R codes are publicly available on GitHub at https://github.com/MelissaSaichi/
Covid_scRNAseq. All of the R packages that were used are available online.
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Extended Data Fig. 1| Pro-inflammatory defects in the discovery set. a, Umap representation of IFN subtypes expression values in the discovery

set, expression levels are color coded; b, Violin representation of other pro-inflammatory cytokines in the discovery set which included: n=2 HC, n=4
moderate and n=6 severe samples; each dot represents a cell, horizontal lines display the mean expression value; Comparative analysis was performed
using the two-sided Wilcoxon Rank-Sum test, P-values were adjusted to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate
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Extended Data Fig. 4 | Increased inflammatory pathways in APC validation set. a. Barplot of the number of Differentially Expressed Genes (DEG)

for each severity group (Healthy versus moderate and severe patients; moderate versus healthy and severe; severe versus healthy and moderate).
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expression levels of cells per severity group is color coded; Comparative analysis of enriched pathways from the upregulated genes in moderate or severe
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version 3.1.5. The latter library was used to perform the analysis workflow; ggplot2 (v 3.3.3) library was used for figure generation;
RColorBrewer (v1.1.2) was used to define the colors; msigdbr (v7.2.1) and clusterProfiler for pathway enrichment; monocle3 ( v0.2.3.3) for
trajectory analysis; Harmony (v1.0) for data integration.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined based on availability and resources
Data exclusions  No Data Exclusion

Replication Due to the rareness and limited size of the human-derived samples, we could not perform replicates, but favored analysing the maximum
number of samples available.

Randomization  Randomization was not relevant to this study as it represents a fully observational study

Blinding Blinding was not relevant to this study as patients were previously categorized on the clinical severity of pneumonia

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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OXXOOOO

Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics Inclusion criteria were patients with moderate or severe clinical presentations of covid-19 infection, age range 60-75 years
old, fulfilling the definitions of sepsis or septic shock according to the Sepsis-3 definitions. Detailed patients characteristics
are available both in supplementary table 1 and 2

Recruitment adult patients with PCR-proven SARS-CoV-2 infection were recruited during business days when fulfilling Sepsis-3 criteria for
sepsis or septic shock without any exclusion criteria (haematological malignancy or significant history of bone marrow
disease, HIV infection, any immunosuppressive drugs, bone marrow or solid organ transplant recipients, leucopenia (<1000/
mm3) except if due to COVID-19, pregnancy). With respect to healthy controls, exclusion criteria were the following: history
of inflammatory disease, corticosteroid treatment at any dose, infection symptoms within the previous month. Informed
consent was obtained from patients or their next-of-kin, and by healthy subjects. Patients were classified on respiratory




severity into moderate pneumonia if requiring oxygen supply < 10 L/min, and severe pneumonia if requiring invasive
mechanical ventilation or oxygen supply > 10 L/min.

Ethics oversight this study was approved by the appropriate institutional review board (Comité de Protection des Personnes |, Rouen, France,
ref. # 2018-A01934-51)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  NCT03788772

Study protocol The full study protocol can be accessed at https://clinicaltrials.gov/ct2/show/NCT03788772?
term=dendrisepsis&cond=sepsis&draw=2&rank=1
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Data collection Hospitalized patients and healthy subjects (elective ambulatory cataract surgery) were recruited from 2020/04/04 to 2020/11/01 in
Cochin hospital, Paris, France.

Clinical data were prospectively collected by the primary clinical investigator (Dr F Péne, MD) and an associate clinical investigator (Dr
Ait Hamou, MD).

Clinical and biological data were collected from patients’ individual medical files and include the following:
Day 1

- Demographics (age, gender)

- Comorbidities

- Source and microbial documentation of the primary infection in septic patients, as well as requirements for surgery,
- SOFA severity score

- Use of stress-dose steroids

- Blood cell counts and formula

- Inflammatory biomarkers (C-reactive protein, procalcitonin)

Days 4/5

- SOFA severity score

- Use of stress-dose steroids

- Blood cell counts and formula

- Inflammatory biomarkers (C-reactive protein, procalcitonin)

Characteristics of ICU-acquired secondary infections

- time of onset from ICU admission

- source,

- microbial documentation.

Outcomes Primary Outcome Measures :
ICU-acquired infections (nosocomial infections) [ Time Frame: up to 3 months after the inclusion ]
Infections not present at the time of ICU admission and diagnosed at least after 48 hours in the ICU

Secondary Outcome Measures :
In-hospital death [ Time Frame: up to 3 months after the inclusion ]
date of death
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