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S
evere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
infection is at the origin of coronavirus disease 2019  
(COVID-19), characterized by a first phase of benign flu-like 

symptoms with an efficient control of the infection in most cases. 
In a second phase, disease aggravation may lead to acute respira-
tory failure, sepsis and death1–6. This is due to a multiplicity of fac-
tors: (1) an exacerbated inflammatory reaction, with systemic and 
organ-specific manifestations, (2) persistent viral load and (3) defec-
tive antiviral defence pathways1–7. Identifying the underlying cellular 
and molecular mechanisms is of paramount importance to under-
stand COVID-19 physiopathology and guide the development of  
appropriate therapies.

Studies have characterized the systemic inflammatory response, 
revealing an excess production of inflammatory cytokines such as 
interleukin-6 (IL-6) and IL-1, tumour necrosis factor-α (TNF-α) 
and interferon-γ (IFN-γ)2,8–22, suggesting new therapeutic targets. 
The endothelium may also contribute to the overt inflammatory 
reaction through the production of soluble mediators23,24. Anti-IL-6 
compounds have given promising results in severe COVID-1925–27. 
However, the cellular mechanisms underlying the excessive inflam-
matory response remain mostly unknown.

Another unresolved question relates to the inefficiency of the 
innate and adaptive immune system to control the infection in 
patients with severe COVID-19. It has been suggested that pro-
duction of IFN-α, a major antiviral cytokine, is decreased in these 
patients compared to those with moderate disease6,9,21,28–30. However, 
a recent study argued that increased IFN-α production might  

contribute to the pathogenic inflammatory response17. Other antivi-
ral mechanisms and their cellular source remain to be studied.

Dendritic cells (DCs) form a family of innate antigen 
(Ag)-presenting cells (APCs) that contribute to the control of 
pathogens and subsequent presentation of pathogen-specific Ag 
to T cells31. Their study is challenging for three main reasons: (1) 
they are found in very low numbers in the circulation and in tissue, 
(2) they lack specific lineage-defining markers and (3) they include 
an ever-increasing number of subsets31,32. All DC subsets may 
potentially and variably contribute to modulating the inflamma-
tory response following viral sensing, producing antiviral effector 
molecules and priming an Ag-specific adaptive immune response33. 
Plasmacytoid pre-DCs (pDCs) are a particular subset specialized in 
antiviral immunity through the production of large amounts of type 
I IFN34. Despite their central role in antiviral defence, the contribu-
tion of DCs to severe COVID-19 pathogenesis is not yet known.

In this paper we perform a high-resolution single-cell 
RNA-sequencing (scRNAseq) analysis of all APC subsets from fresh 
peripheral blood of patients with COVID-19. A pre-enrichment 
step enables the characterization of even rare DC subsets that 
were not captured in previous peripheral blood mononuclear cell 
(PBMC) scRNAseq studies12,17,35. We reveal previously unrecog-
nized multi-process defects in patients with severe COVID-1922,36,37.

Results
APC subset distribution in patients with COVID-19. To char-
acterize the molecular profile of circulating APCs, we performed 
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scRNAseq on freshly sampled APC-enriched PBMCs from five 
patients with moderate COVID-19 (non-mechanically ventilated, 
oxygen supply <10 l min−1) and ten patients with severe COVID-19  
(mechanically ventilated or oxygen supply ≥10 l min−1), at day 
1 and day 4 following hospital and/or intensive care unit (ICU) 
admission, as well as four elderly healthy controls (HC) (Fig. 1a 
and Supplementary Tables 1 and 2). To obtain single-cell suspen-
sions and minimize DC–DC and DC–T cell clusters and clumps, 

EDTA-containing medium was used for the enrichment steps in 
the first set of samples, which we further define as the ‘discov-
ery set’. This set is composed of a total of 12 samples from two 
HCs, three patients with moderate COVID-19 and four patients 
with severe COVID-19 from both day 1 and day 4 time points 
(results are presented in the figures and Extended Data Figs. 1 
and 2). However, EDTA is known to decrease reverse transcrip-
tion (RT) efficiency through RT deactivation and ion chelation,  
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Fig. 1 | Circulating APC subset diversity in COVID-19 from the discovery set. a, Schematic of the experimental workflow. APCs were enriched from fresh 

PBMCs of healthy donors and patients with COVID-19 with either moderate or severe clinical symptoms at both day 1 and day 4 post hospital admission. 

The total APCs were sequenced using the 10X Genomics facility. b,c, Cellular maps of APC subsets (n = 42,784 cells) from the discovery set at single-cell 

resolution level displayed on UMAP dimension reduction based either on identified cell types (b) and severity (c). Proportions of the APC subtypes are 

displayed on the doughnut plot. d, UMAP plot of detected APC populations split by severity group (healthy controls and patients with moderate and 

severe COVID-19). The discovery set comprises a total of 12 samples (n = 2 controls, n = 4 moderate and n = 6 severe samples) collected from a total of 

seven patients and two healthy donors.
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resulting in reduced amounts of complementary DNA (cDNA) dur-
ing amplification. We therefore validated the main results derived 
from the discovery set by using RPMI (EDTA-free) medium for 
the enrichment steps in a second set of samples, including a total 
of 15 samples (defined as the ‘validation set’) from two HCs, two 
patients with moderate COVID-19 and six with severe COVID-19 
(Extended Data Figs. 3–7).

For each fresh sample, 25,000 cells (~20,000 monocytes and 5,000 
total DCs) were loaded onto the 10X lane (10X Genomics technol-
ogy) (Fig. 1a). As expected, more cells per sample were effectively 
sequenced in the EDTA (discovery set) than the RPMI (validation 
set) dataset (mean: 3,360 versus 2,528 cells, respectively) (Extended 
Data Fig. 3a), confirming that EDTA optimizes single-cell suspen-
sion efficiency for rare DC types. This retrospectively justified the 
importance of using two complementary experimental protocols, 
split into two independent datasets, to avoid biasing the results. All 
main findings were validated in both datasets, indicating the repro-
ducibility and robustness to experimental procedures. Altogether, 
we analysed a total of 81,643 APCs, split into 42,784 cells in the 
discovery set and 38,859 cells in the validation set. The two sets 
were analysed separately after sample integration using Harmony38. 
Graph-based clustering (SNN-based), community detection and 
nonlinear dimension reduction, using uniform manifold approxi-
mation and projection (UMAP), were independently applied to 
both sets for cell cluster visualization. Manual annotation of the cell 
clusters using canonical gene signature markers for each APC sub-
set established a comprehensive map of APCs in HCs and patients 
with COVID-19 in both sets (Fig. 1b,c and Extended Data Fig. 3b,c). 
In our discovery set, among the 42,784 APCs, we recovered six 
subsets: 22,690 CD14+ monocytes; 866 CD16+ monocytes; 13,252 
CD1c+ DCs; 1,754 CLEC9a+ DCs; 3,538 pDCs; 684 Axl+Siglec6+ 
AS-DCs (Extended Data Fig. 3a). The validation set included 29,409 
CD14+ and 1,021 CD16+ monocytes, 5,754 CD1c+, 197 CLEC9a+ 
DCs, 1,602 pDCs and 876 AS-DCs (Extended Data Fig. 3a). In both 
sets, APC populations were captured across all the collected samples 
(Supplementary Table 3).

The accurate identification of all six APC populations was con-
firmed by the expression of canonical markers defining each sub-
set (Extended Data Fig. 3d). All DC populations expressed higher 
levels of human leukocyte antigen HLA-DR and CD86 compared 
to monocytes (Extended Data Fig. 3d). None of the cells expressed 
CD19 (B-cell marker), GNLY (natural killed (NK) marker) or CD3E 
(T-cell marker), validating the pure APC populations. CD14+ mono-
cytes expressed lineage-defining CD14, whereas CD16+ monocytes 
expressed FCGR3A. AXL expression distinguished AS-DCs from 
pDCs, whereas CD1c and CLEC9a characterized the respective cDC 
subsets39,40. In both sets (discovery and validation), UMAP embed-
dings coloured by severity revealed the heterogeneity of APC distri-
bution between the three groups (Fig. 1c). This was confirmed by 
splitting the UMAP embeddings per severity (Fig. 1d). Overall, our 
enrichment strategy allowed the efficient identification of all APC 
populations including the rare pDCs, AS-DCs and CLEC9A+ DCs, 
enabling further molecular and phenotypic characterization.

Inflammation-related pathways are hallmarks of COVID-19 
APCs. We performed differential expression and pathway enrich-
ment analyses among APC severity groups, revealing 368 differen-
tially expressed genes (DEGs) among the three groups (absolute fold 
change > 1.4). Among them, 101 genes were upregulated in HCs 
(as compared to patients with moderate and severe COVID-19),  
109 in patients with moderate COVID-19 and 134 in patients with 
severe COVID-19 as compared to the two other groups, respec-
tively (Fig. 2a). The top 50 DEGs upregulated in severe APCs as 
compared to HCs and patients with moderate COVID-19 included 
pro-inflammatory molecules (IL1B, CXCR4), surface mark-
ers (CD36, CD83, AREG, ITGAM), enzymes (CTSD, CTSB) and 
secreted molecules (RETN, EREG, ANXA2) (Fig. 2b). Next, we 
sought to identify enriched pathways discriminating each severity 
group from HCs. We found enriched IFN-γ and IFN-α response 
pathways in APCs from patients with moderate COVID-19, whereas 
hypoxia and TNF-α signalling were enriched in patients with severe 
COVID-19 (Fig. 2c).

We next compared the enriched pathways upregulated in severe 
versus moderate COVID-19 and in moderate versus severe, respec-
tively. We found that IFN-γ and IFN-α pathways could be used to 
discriminate moderate from severe APCs at the global level (Fig. 2d).

To allow for an accurate comparison between the two transcrip-
tional signatures, we ranked the DEGs of the pairwise comparison 
according to decreasing fold change. Severe APCs significantly 
upregulated AREG (amphiregulin), IL1R2 (IL-1 receptor), NRGN 
(calmodulin binding protein) and pro-inflammatory molecules 
(S100A12) (Fig. 2e). However, moderate APCs overexpressed 
interferon-stimulated genes (ISGs; IFITM2, ISG15 and IFI27) 
and HLAII molecules (HLA-DRB5 and HLA-DQA2), suggesting 
decreased Ag presentation and antiviral programs in severe as com-
pared to moderate APCs (Fig. 2e). Similar observations were recov-
ered from our validation set (Extended Data Fig. 4a–d). Additional 
upregulated genes in severe as compared to moderate APCs were 
found in the validation set, including CXCL8, NAMPT and G0S2 
(Extended Data Fig. 4e).

Defective IFN responses in COVID-19 APCs. Increases in inflam-
matory cytokines have been reported in COVID-19. We addressed 
the global contribution of APCs to the expression of inflammatory 
cytokines and their receptors. As compared to APCs derived from 
HCs, IL1B, CXCL2, CXCL8 and CCL3 were significantly increased, 
whereas IL18 was decreased in both severity groups (Fig. 3a and 
Extended Data Fig. 1a). TGFB1 and IL10RA expression decreased 
in severe, but not in moderate subsets, as compared to HCs (Fig. 3a 
and Extended Data Fig. 1a), whereas IL6 was not detected in our dis-
covery set (Extended Data Fig. 1a). Despite the low expression lev-
els of most cytokines, we explored downstream biological pathways 
associated with inflammatory cytokine signalling (mainly IL1B, IL6 
and TNF-α). In comparison to APCs from HCs, both moderate and 
severe APCs showed higher score levels for hallmark inflamma-
tory pathways, including ‘IL6_JAK_STAT3’, ‘TGF-β’, ‘P53’, ‘TNFa_
SIGNALLING_VIA_NFKB’ and ‘KRAS_SIGNALLING’ (Fig. 3b). 

Fig. 2 | global increase in inflammation-associated pathways in COVID-19 APCs (discovery set). a, Barplot of the number of differentially expressed genes 

(DEGs) for each severity group (healthy versus patients with moderate and severe COVID-19; moderate versus healthy and severe; severe versus healthy 

and moderate). Upregulated (log fold change (FC) > 0.25) genes are shown in black, downregulated (log FC < −0.25) genes are shown in grey. b, Heatmap 

representation of the top upregulated genes in severe APCs, as compared to moderate and healthy groups. The z-score values of average expression levels 

of cells per severity group are colour-coded. c,d, Comparative analysis of enriched pathways from the upregulated genes in moderate or severe APCs as 

compared to healthy cells (c), as well as pairwise comparison of upregulated genes in moderate compared to severe (shown in pink) and upregulated 

genes in severe compared to moderate (shown in yellow) (d). Horizontal axes display the adjusted P values (−log10). e, Representation of ranked genes in 

descending order according to their absolute log FC, upregulated in moderate as compared to severe (red plot) and upregulated in severe as compared to 

moderate (blue plot). Top genes, with an absolute value of log FC above 0.5, are shown. In a–e, comparative analyses were performed on the discovery set 

(n = 42,784 cells), composed of n = 2 HC, n = 4 moderate and n = 6 severe samples. The two-sided Wilcoxon rank-sum test was used for comparison,  

P values were adjusted to multiple testing using ‘Bonferroni’ correction, and only genes with adjusted P < 0.05 were considered.
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Fig. 3 | Activation of downstream pathways associated with pro-inflammatory cytokines is correlated with defective IFN responses in severe COVID-19  

APCs from the discovery set. a, Violin plot representation of cytokine (IL1B, TGFB1 and IL-18) receptor (IL6R, TNFRSF1A) and chemokine (CXCL8) gene 

expression levels detected by scRNAseq and comparison between severity groups. Each dot represents a cell and horizontal lines display the mean 

expression value. b, Dot plot of enrichment scores of pathways downstream of IL-1B, IL-6 and TGFB1 inflammatory cytokines; score levels are colour-coded, 

and the percentage of cells expressing the pathway score is size-coded. c, Heatmap representation of expression levels of IFN genes (ligands and 

receptors) and ISG expression levels in healthy, moderate and severe APCs. Expression levels are colour-coded. d, Dot plots of regulators of IFN signalling 

and antiviral ISG genes in HCs and patients with moderate and severe COVID-19. Expression levels are colour-coded, and the percentage of cells expressing 

the respective gene is size-coded. e, Violin plot representation of antiviral ISGs among the severity groups; the small horizontal line indicates the mean 

expression value for each plotted gene expression. In a and e, the violin plots were designed using the total APC subsets from the discovery set (n = 42,784 

cells), composed of n = 2 HC, n = 4 moderate and n = 6 severe samples. Comparative analysis was performed using the two-sided Wilcoxon rank-sum test; 

P values were adjusted to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate P values for severe versus control; asterisks above 

moderate indicate significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant.
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The IFN family of cytokines is one of the most important for innate 
and adaptive antiviral responses. We showed the expression levels 
of IFNL1, IFNL1R, IFNAR1, IFNAR2, IFNA1, IFNGR1 and IFNGR2 
and further explored their distribution in the three severity groups 
via a scaled heatmap (Fig. 3c). Both IFN receptor types (IFNAR1, 
IFNAR2, IFNGR1 and IFNGR2) were broadly expressed in the 

APC subsets, whereas detection of IFNL1 and IFNLR1 was patchy 
in our discovery dataset (Extended Data Fig. 3b). The heatmap 
representation indicated that severe APCs expressed lower levels 
of IFN molecules, suggesting a potential defect in IFN signalling  
(Fig. 3c). To further validate this hypothesis, we investigated the 
expression levels of ISGs. We observed higher expression levels of 
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Fig. 4 | Multi-process defects in severe COVID-19 pDC effector pathways in the discovery dataset. a, pDCs displayed on UMAP (n = 3,538 cells) 

coloured by severity group of origin. b, Violin plot distribution of enrichment scores for enriched hallmark pathways from upregulated genes from pairwise 

comparison between the three severity groups; severity groups are colour-coded, each dot represents a cell and the horizontal line displays the mean value 

of the enrichment score of each given pathway c, UMAP representation of density scores corresponding to IFN-a receptors (IFNAR1 and IFNAR2) and 

pDC sensors (TLR9 and DHX36). Density levels were computed using Nebulosa and are colour-coded. d, Dot plot of in-house constructed pDC-related 
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are colour-coded, and the percentage of cells expressing the respective gene is size-coded. e, Violin plot representation of genes involved in pDC defined 
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indicate P values for severe versus control; asterisks above moderate indicate significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001.
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ISGs (MX2, ISG15, IRF7, BST2, IFITM2 and ADAR) in moderate 
APCs, but lower levels in severe APCs, supporting the hypothesis of 
defective antiviral programs contributing to the severity of COVID-19  
(Fig. 3c). We further stratified a more exhaustive ISG signature 
according to their respective functions related to ‘antiviral’ and ‘reg-
ulators of IFN signalling’. Moderate APCs displayed higher levels 
of these two ISG families compared to both severe and HC groups 
(Fig. 3d,e). These results suggest a global perturbation of IFN down-
stream functions in severe COVID-19 APCs.

Multi-process effector defects in severe COVID-19 pDCs. After 
having analysed COVID-19 APCs at the global level, we sought 
to decipher alterations occurring in specific APC subsets. To 
depict the alterations occurring in pDC subsets, we isolated and 
sub-clustered pDCs (Fig. 4a) and performed pairwise differential 
expression among the three severity groups. Pathway enrichment 
analysis using MsigDB hallmark signatures was conducted on the 
upregulated genes in each subset. Compared to both moderate and 
HC pDCs, severe pDCs were enriched for the ‘TNFa_SIGNALING’, 
‘IL2_STAT5’ and ‘HYPOXIA’ signalling pathways. In parallel, com-
pared to pDCs from patients with moderate COVID-19, pDCs 
from patients with severe COVID-19 were enriched in the ‘IL6_
JAK_STAT3’, ‘P53’ and ‘MTORC’ signalling pathways (Fig. 4b). 
When comparing pDCs between patients with moderate and severe 
COVID-19, the most notably enriched pathways were related to 
IFN signalling (IFNG and IFNA response), along with MYC tar-
gets signalling pathways (Fig. 4b). We asked whether apoptosis and 
pro-inflammatory signalling signatures would be associated with 
changes in pDC innate sensing receptors, including TLR9, DHX36, 
IFNAR1 and IFNAR2. We imputed the expression values to recover 
the signal from dropped-out features using Nebulosa (https://github.
com/powellgenomicslab/Nebulosa), and plotted the density estima-
tion values on UMAP embeddings (Fig. 4c). We observed zero-value 
density levels for TLR9, along with decreased density levels for 
DHX36, IFNAR1 and IFNAR2, in pDCs from patients with severe 
COVID-19 (Fig. 4c). To explore whether these modulations may 
impact pDC functions, we defined four original functional mod-
ules using a literature-driven manual curation: ‘immune cell attrac-
tion’ (hereafter ‘attraction’) (18 genes), ‘innate sensing’ (12 genes), 
‘antiviral effector molecules’ (23 genes) and ‘cytotoxicity’ (12 genes)  
(Fig. 4d). Each of these modules was crossed with the pDC expres-
sion matrix, and detected genes were depicted for each patient group 
(Fig. 4d). No major differences between groups were detected within 
the ‘attraction’ module. On the contrary, many genes in the ‘innate 
sensing’, ‘antiviral effector molecules’ and ‘cytotoxicity’ modules 
were detected in the three groups, and followed the same pattern: 
baseline in HCs, increased in patients with moderate COVID-19 
and decreased in patients with severe COVID-19 (Fig. 4d,e and 
Extended Data Fig. 5). This was particularly striking for the viral 
sensors TLR7, DHX9 and DHX36, the cytotoxic molecule TNFSF10 
and the antiviral effector IRF7. These results were supported by the 
downregulation of antiviral ISGs and innate sensors in pDCs from 
patients with severe COVID-19, including BST2 and PYCARD  
(Fig. 4e), in both experimental datasets (Extended Data Fig. 5).

Coordinated transcriptional adaptation in monocyte subsets. 
Monocytes have been implicated in the physiopathology of severe 
sepsis and COVID-19. We performed dimensionality reduction 
through independent component analysis (ICA) and highlighted 
cells according to their severity group. We observed that IC1 clearly 
separated moderate from severe and HC CD14+ monocytes, whereas 
IC2 distinguished HC from COVID-19 CD14+ monocytes (Fig. 5a). 
The top 50 genes contributing to either IC1 or IC2 revealed distinct 
transcriptional signatures for the CD14+ monocyte subsets identi-
fied in each severity group: the severe subset expressed higher levels 
of complement (C1GC and C1GB), B7 family (VSIG4) and CD163, 

which may function as an innate immune sensor and inducer of 
local inflammation. The moderate monocyte subset expressed 
increased levels of antiviral ISGs (IFITM1, IFITM3, IFI27, MZB1 
and IFI6) and the HLA-II gene (HLA-DRB5), suggesting an effi-
cient antiviral program (Fig. 5b). Compared to HCs, several tran-
scription factors (TFs) were downregulated in both moderate 
and severe groups, including the AP-1 superfamily (FOS, JUNB 
and ZFP36) and DUSP1, involved in MAPK dephosphorylation  
(Fig. 5b). Pathway enrichment analysis on the top 50 genes con-
tributing to IC1 and IC2 identified key pathways that segregated 
COVID-19 CD14+ monocytes from HCs (Fig. 5c). The ‘complement’, 
‘TNF-α’, ‘KRAS’ and ‘hypoxia’ signalling pathways were upregulated 
in COVID-19 monocytes, whereas ‘IFN-α’ and ‘IFN-γ’ response 
signalling were decreased in the severe subset, as compared to the 
HC and moderate subsets (Fig. 5c). To estimate antiviral effector 
functions, we used our manually curated gene functional module 
across patient groups (Fig. 5d). We observed a decrease of almost 
all antiviral effector molecules in patients with severe COVID-19, 
as compared to either HCs or patients with moderate COVID-19, 
in both experimental datasets (Fig. 5d and Extended Data Fig. 6). 
In parallel, we subclustered CD16+ monocytes and reduced the 
data dimension using UMAP projection to depict the correspond-
ing clusters for each severity group (Fig. 5e). Differential expression 
between the three severity groups of this subset indicated similar 
trends as described in CD14+ monocytes (Fig. 5b,f). This included 
overexpression of ‘complement’-related genes (C1QA, C1QB and 
C1GC) by the severe subset, upregulation of antiviral ISGs (ISG15, 
IFI6 and IFI44L) in the moderate subset, as compared to the HC 
subset (Fig. 5f). Overall, these disease-associated changes in CD16+ 
paralleled those observed in CD14+ monocytes, suggesting com-
mon adaptation mechanisms.

CLEC9A+ DC- and AS-DC-specific transcriptional alterations. 
Thanks to our APC enrichment protocol, we could recover rare 
CLEC9a+ DC and AS-DC subsets. Differential expression of AS-DC 
severity groups revealed significant upregulated genes in severe 
AS-DCs (SEPT7 and AREG), compared to the moderate and HC 
subsets. We could also observe a significant downregulation of the 
HLA-DQA2 gene and antiviral IFI27 gene in severe, compared to 
moderate AS-DCs (Fig. 6a). In the search for upstream regulatory 
mechanisms, we inferred TF activity using the Dorothea algorithm41 
and scored the activity of each regulon using the Viper inference 
tool42. This identified a large number of highly variant TF activity 
scores (Fig. 6b). In moderate AS-DCs, we observed a higher activity 
scored for IRF1, IRF9 and STAT2, reported to be involved in the ISG 
transcription cycle (Fig. 6b). In AS-DCs from patients with severe 
COVID-19, we found increased TF activities for RELA, NFKB1, 
STAT5 and STAT3, indicative of a higher activation of NFKB/STAT 
signalling, potentially induced by the pro-inflammatory cytokines 
described in the ‘APC subset distribution in patients with COVID-19’  
section, along with hypoxia activation, indicated by a higher activity 
of HIF1A (Fig. 6b).

DEGs among the CLEC9a+ DC subclusters included specific 
transcriptional signatures segregating patients with moderate and 
severe COVID-19 from HCs (Fig. 6c). We remarkably observed 
a downregulation of HLA-II genes, including HLA-DQB1 and 
HLA-DPB1, in severe as compared to HCs, along with a significant 
upregulation of a larger subset of ISGs, including IRF1, IFI44L, 
IFI6, IFI27, IFITM2, IFITM3, IFI44L, ISG15 and ISG20, in moder-
ate as compared to both HC and severe subsets (Fig. 6c). Expression 
values representation indicated a significant increase of AREG 
and SEPT7 genes, which were also upregulated by severe AS-DCs  
(Fig. 6a,d). Most importantly, we noted a significant decrease of the 
IFNGR1 CLEC9a+ DC subset in patients with moderate and severe 
COVID-19 as compared to HCs (Fig. 6d), supporting a defective 
antiviral program.
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Downregulation of MHC-II and CIITA activity in CD1C+ DCs. 
We next focused on disease-induced alterations in CD1c+ DCs. We 
first explored the gene expression levels of MHC-II-related genes 

(Fig. 7a). We noted a global decrease of HLA-II genes (mainly 
HLA-DQA2 and HLA-DRB5) in patients with severe COVID-19  
(Fig. 7a). Similar findings were reported for the validation set 
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(Extended Data Fig. 7). We then grouped the expression values 
of these MHC-II genes (HLA-DRB1, HLA-DMA, HLA-DQA2, 
HLA-DRB5, HLA-DPB1, HLA-DQB1 and HLA-DMB), constructed 
a signature that we named the ‘HLAII’ module, and scored CD1c+ 
DCs using the ‘AddModuleScore’ Seurat function. The ‘HLAII’ 
signature was significantly reduced in severe as compared to HC 
CD1c+ DCs (Fig. 7b). This was associated with decreased expres-
sion of upstream MHC-II regulators (including RFX5, RFXANK 
and CIITA) in the severe group (Fig. 7b). Comparison of the 
scaled values revealed a reduction of IRF1 and RFX5 TF activities, 
mainly described to be involved in MHC-II gene synthesis, whereas  
C/EBP family member (CEBPB and CEBPD) TF activities, known 
to be involved in myeloid fate differentiation, were increased in 
severe subsets (Fig. 7c). We also noted higher TF activities for RELA 
(NFKB superfamily) and the AP-1 family in patients with severe 
COVID-19, including FOSL1, FOSL2 and JUN, which regulate a 
large range of cellular processes, including cell survival, death and 
proliferation (Fig. 7c).

To further decipher the transcriptional changes occurring in 
DCs when transitioning from healthy to moderate and severe con-
ditions, we conducted pseudo-temporal inference using Monocle3, 
using the UMAP embedding two-dimensional space of the DC 
subsets (Fig. 7d). The pseudotime tree revealed a continuous tra-
jectory from healthy to moderate, and a marked transition to the 
severe subsets. This trajectory was correlated to pseudotime values 
(Fig. 7d, right). To recover the genes contributing to this transition 
tree, we conducted a graph-based test to assess the most significant 
genes. The top genes were associated with Ag presentation, includ-
ing B2M and HLA-DPA1, along with genes related to ISG expres-
sion (GABARAP and IFITM3; Fig. 7e).

Given that MHC-II genes are involved in the DC–T cell interac-
tion, we hypothesized that a more global dysfunction of DC–T cell 
communication may occur in COVID-19 APCs. To test this hypoth-
esis, we applied our cell communication inference computational 
framework ICELLNET43. Using our ‘reference partner cell’ meth-
odology, we inferred potential communication between each of the 
APC subsets and CD4+ T cells in each of the disease groups (Fig. 8a). 
Cell connectivity networks revealed a global decrease in APC–T cell 
communication in patients with severe, as compared to moderate 
COVID-19 and HCs, predominantly in CD1c+ DCs, CLEC9a+ DCs 
and CD14+ monocytes (Fig. 8a,b). We then explored the various 
molecular families that may explain this decrease. This revealed a 
dominant contribution of immune checkpoint molecules and cyto-
kines for CD1c+ DC–T cell communication (Fig. 8b), in particular 
decreased JAG-NOTCH, CD80-CD28 and CD48-CD2 interactions 
(Fig. 8c). Cytokines were mostly underlying the decrease in CD14+ 
monocytes–T cell communication (Fig. 8b). As expected, signal-
ling through HLA-II-related genes (HLA-II/LAG3 pairs) was sig-
nificantly decreased in moderate and severe subsets as compared 
to HCs. Among the cytokines, IL10-, CCL5- and TGFb-mediated 
interactions were predominantly damped in patients with severe 

COVID-19, which may contribute to immunopathology through 
excessive Th1 responses (Fig. 8c).

Persistent defects in severe COVID-19 APCs across samples. We 
also asked whether functional pathway alterations observed across 
APC subtypes were sustained over time. In parallel, we wanted to 
ensure that our main findings were not driven by a single patient 
and/or time point. We compared scRNAseq datasets generated at 
day 1 versus day 4 post hospital admission for each patient, in all 
severity groups. We used a focused approach, by selecting genes 
involved in previously identified altered functions, in APCs from 
patients with severe COVID-19, and systematically compared day 
1 and day 4 expression levels. Most of the day 1 defects were sus-
tained at day 4, in particular the low score of the HLA-II module 
in CD1c+ DCs (Extended Data Fig. 2a) together with the decreased 
expression of the antiviral effector molecules in CD14+ monocytes 
(Extended Data Fig. 2b) and increased ‘apoptosis p53 pathway’ 
in pDCs (Extended Data Fig. 2c). At a patient level, we observed 
that HC samples displayed similar score (or expression) levels for 
these three biological processes, whereas both moderate and severe 
samples displayed slight differences due to inter-individual hetero-
geneity. Overall, we confirmed that our findings were not associated 
with either a specific time point or a dominant single patient effect. 
However, this does not exclude changes in APC molecular profiles 
at later times in the course of moderate and severe COVID-19.

Discussion
Severe COVID-19 harbours a complex physiopathology stemming 
from host–pathogen interactions evolving over time, and involves 
a large number of underlying cellular and molecular mechanisms. 
Hence, detailed studies on various immune cell compartments are 
required to obtain a global view of the process. DCs are central to 
immune responses by linking innate and adaptive immunity, in 
particular during infection31. DCs are rare cell types composed of 
multiple subsets32, justifying dedicated studies to uncover putative 
dysfunctions. So far, very little is known about the role of DC sub-
sets in COVID-1944–46. scRNAseq atlas studies of total PBMCs in 
patients with severe and moderate COVID-19 identified inflamma-
tory monocytes defective for MHC-II molecules12, as was previously 
shown in severe sepsis patients47, and increased apoptosis pathways 
in both NK cells and monocytes27,35,48–50. So far, none of these studies 
were tailored to provide sufficient resolution into the DC compart-
ments. The challenge is even greater knowing that some DC subsets, 
such as pDCs and CD141 (CLEC9A)+ DCs, are depleted from the 
blood in severe COVID-1945,51. A recent study analysed PBMCs by 
scRNAseq, after DC enrichment in EDTA-containing medium, but 
focused only on the IFN pathway and ISGs30. Most of these stud-
ies utilized frozen/thawed PBMCs as a starting biological mate-
rial, potentially inducing loss in some rare DC subsets. Through 
dedicated enrichment steps performed immediately after blood 
sampling (fresh samples), we were able to capture sufficient cell 

Fig. 7 | Downregulation of MHC-II and upstream transcriptional regulators in severe COVID-19 CD1c+ DCs of the discovery set. a, Dot plot distribution 

of HLA-II-related genes at the patient level within the CD1c+ DC subset; expression levels are colour-coded, and the percentage of cells expressing the 

respective gene is size-coded. b, Violin plot distribution of HLA-II and the upstream regulatorsʼ (HLAII_Regulators) module scores among the three severity 

groups within the CD1c+ DC subset; severity groups are colour-coded, each dot represents a cell and the horizontal line displays the mean value of the 

enrichment score of each given pathway. The violin plots were designed using the total CD1c+ DC subsets from the discovery set obtained from n = 2 

HC, n = 4 moderate and n = 6 severe samples. Comparative analysis was performed using the two-sided Wilcoxon rank-sum test. P values were adjusted 

to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate P values for severe versus control; asterisks above moderate indicate 

significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant. c, Heatmap representation of top 50 highly variable TF 

activities between CD1c+ DC severity groups; the z-score of activity scores is colour-coded. d, Pseudotime inference tree on UMAP embeddings (left) of the 

CD1c+ DC subset using Monocle3; pseudotime values are colour-coded (right). e, UMAP representation of density scores for the top genes contributing to 

the pseudotime tree initially inferred in d. Density scores were computed using Nebulosa and are colour-coded. All statistical tests displayed in this figure 

were performed using the discovery set, comprising a total of 12 samples (n = 2 controls, n = 4 moderate and n = 6 samples) collected from seven patients 

and two healthy donors.
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numbers to define molecular profiles and identify specific defects 
in all known DC subsets.

As with most immune cells, DCs are not limited to a single func-
tion31. They play a key role in the first line of immune defence by 
sensing microbial pathogens, and also contribute to direct patho-
gen control through the production of antimicrobial peptides and 
antiviral effector molecules52. Other effector functions include 
the secretion of pro- and anti-inflammatory cytokines, and cyto-
toxic molecules31. Finally, they function as APCs to T cells, with 
which they communicate through secreted and surface molecules 

expressed within the immune synapse53. By using scRNAseq, and a 
combination of supervised and unsupervised bioinformatics meth-
ods, we were able to uncover defects in almost all of these processes, 
in specific APC subsets, associated with COVID-19 severity. This 
provides the first detailed molecular map of DC subsets and under-
lying molecular pathways in COVID-19.

Several studies have shown an increase of inflammatory cyto-
kines in severe COVID-19, which may contribute to the sever-
ity of the disease44. Increased circulating levels of IL-1β and IL-6 
were detected in patients with severe COVID-199–22,44. However, 
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the cellular source does not seem to be from circulating cells, but 
rather from inflammatory monocytes attracted to the lung54, as 
well as endothelial cells23,24. Our study corroborates these findings 
for IL-6, with no significant expression detected across APC sub-
sets. However, we did find increased expression of IL-1β, CXCL8 
and CXCL2 in APCs at the global level, and this may contribute 
to systemic inflammation. In parallel, we observed increased TNF 
signalling in pDCs, but decreased in monocytes, suggesting that 

distinct APCs may respond differently to circulating inflamma-
tory mediators.

Type I and III IFNs are critical antiviral cytokines55. APCs  
are a central source of IFN following viral sensing. Studies 
have shown that type I IFN responses are impaired in severe  
COVID-196,9,17,21,28–30,46,48,56, which may contribute to persistent viral 
load. Our data support these findings, as we did not detect any 
expression of IFN-α and IFN-λ1 across all APC subsets. However, 
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Fig. 8 | Perturbation of DC–t cell communication in patients with severe COVID-19 from the discovery set. a, Connectivity maps describing outward 

communication from APCs from the single-cell dataset at day 1 to T lymphocytes (n = 39), according to patient severity (healthy, moderate and severe). 

The T lymphocyte transcriptomic profiles are from the Human Primary Cell Atlas, included in the ICELLNET R package. For APCs, average cluster gene 
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least 10 between patients with moderate and severe COVID-19 (cutoff chosen for the purpose of clarity).
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we were also able to detect critical defects in the response to type 
I IFN. First, expression of IFNAR1 and 2 was globally decreased in 
APC subsets from patients with severe COVID-19. Second, most 
downstream ISGs (both antiviral and regulators of IFN signalling) 
were expressed at lower levels in patients with severe COVID-19 
compared to HCs, which themselves are expected to express low lev-
els of ISGs given the absence of innate stimulation. Overall, the IFN 
pathway was defective in severe COVID-19 APCs at several levels: 
IFN production, receptor expression and downstream ISG responses.

pDCs are a cell type that is highly specialized in antiviral immu-
nity, producing large amounts of all type I IFN57. Circulating 
pDCs have been shown to be diminished in COVID-1951, but the 
underlying mechanisms remain unknown. We identified increased 
expression of pro-apoptotic molecules in pDCs from patients 
with severe COVID-19. This suggests that pDCs could be globally 
altered through increased cell death. In a separate study, we have 
shown that in vitro SARS-CoV-2 stimulation of pDCs from healthy 
donors leads to improved pDC survival58, suggesting that the 
increased apoptosis we observed in pDCs from patients with severe 
COVID-19 was not due to direct virus-induced killing. In paral-
lel, we detected several defects in various pDC functions: decreased 
innate sensing, through loss of TLR7 and DHX36, which are key 
viral sensors59, decreased antiviral effector functions and cytotox-
icity. Hence, we report multi-process defects affecting key aspects 
of pDC antiviral functions. Interestingly, a recent study performed 
ex vivo stimulation of PBMCs of a patient with COVID-19 with 
TLR7/9 ligands, and showed decreased type I IFN production30. 
This provides an independent functional validation, while our study 
provides molecular mechanisms, in particular the increased pDC 
apoptosis and the decrease in TLR7 expression.

Transcriptomic data, including scRNAseq, allow for the applica-
tion of methods to infer TF activity, as a way to provide potential 
upstream mechanisms. We found that several important TF activi-
ties were decreased in CD1+ DCs, suggesting defective immune 
effector functions in patients with severe COVID-19. STAT2 activ-
ity downregulation may indicate a deficiency to cross-present to 
CD8+ T cells and license their cytotoxic function60. Subversion of 
DC immunogenicity by targeting STAT2 was observed in other 
viral infections. ZIKV evades type I IFN responses by antagoniz-
ing STAT2 phosphorylation61. The low estimated activity of ESR1, 
CIITA, USF1 and RFX5 in CD1+ DCs may explain the decrease in 
MHC-II molecules we observed in patients with severe COVID-19, 
through decreased trans-activation of the MHC-II promoter62,63. 
Finally, the low activity of EGR1 and RUNX1 TF in CD1+ DCs of 
patients with severe COVID-19 may contribute to an impaired 
function in CD8 T-cell activation and induction of IFN-γ64,65. 
Collectively, our results suggest that several aspects of CD1+ DC 
effector functions may be altered through decreased activity of key 
TFs controlling MHC-II expression and T-cell stimulation.

Our study provides a unique insight into the physiopathology 
of APCs in severe COVID-19, uncovering previously unknown 
defects in multiple functional pathways, related to both innate 
and adaptive immunity. We were able to map molecular pathways 
in rare DC subsets, many of them previously unexplored in the 
context of COVID-19. Combined with studies in other anatomical 
sites44, in particular the lung54, and other disease severity stages, our 
results should contribute to a better understanding of COVID-19  
immunopathology. They also open interesting perspectives for 
clinical applications. Simple molecular markers of defective APC 
subsets may be explored as prognostic and stratification biomark-
ers. This hypothesis echoes the immune pathology of bacterial 
sepsis, for which multiple defects in APCs have already been 
described47,66. A persistent decrease in circulating DCs, as well as 
monocyte deactivation as assessed by decreased HLA-DR expres-
sion or decreased CD74 messenger RNA (mRNA) expression, are 
already known to be predictive of ICU-acquired superinfections  

in patients with bacterial sepsis67,68. It would be interesting to 
explore whether such markers, for example pDC apoptosis or 
CD1c+ DC MHC-II downregulation, appear earlier in the course 
of COVID-19 and may predict aggravation. From a therapeutic 
standpoint, many innate adjuvants have been developed to target 
DC subsets69,70, and could be considered as personalized immuno-
therapies depending on patient-specific DC dysfunction69. Finally, 
DCs are being considered in preventive vaccine development 
(ClinicalTrials.gov: NCT04386252). Ultimately, our study may 
form the ground for novel therapies to restore defective APC func-
tions in patients with COVID-19.
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Methods
Patient characteristics and recruitment into the study. Our study is compliant 
with all relevant ethical regulations regarding research involving human 
participants.�is study was part of the DENDRISEPSIS project, aimed at 
investigating the functional pro�les of APCs in patients with sepsis. �e full study 
protocol can be accessed at https://clinicaltrials.gov/ct2/show/NCT03788772?ter
m=dendrisepsis&cond=sepsis&draw=2&rank=1. �e study was approved by the 
appropriate institutional review board and independent ethics committee (Comité 
de Protection des Personnes I (CPP), Rouen, France, ref: #2018-A01934-51). 
We included adult HCs, and patients with PCR-proven COVID-19 pneumonia, 
within 48 h of admission to ICU or to the pulmonology department from an 
urban tertiary care centre. Exclusion criteria were the following: haematological 
malignancy or signi�cant history of bone marrow disease, HIV infection, any 
immunosuppressive drugs, bone marrow or solid organ transplant recipients, 
leucopenia (<1,000 mm−3) except if due to COVID-19 or pregnancy. With respect 
to HCs, exclusion criteria were the following: history of in�ammatory disease, 
corticosteroid treatment at any dose and infection symptoms within the previous 
month. Informed consent was obtained from patients or next of kin. Patients were 
classi�ed into moderate pneumonia if requiring oxygen supply of <10 l.min−1 and 
severe pneumonia if requiring invasive mechanical ventilation or oxygen supply 
of ≥10 l.min−1. Patients were sampled at admission (day 1) and at day 4. HCs were 
sampled once. Detailed patient characteristics are provided in Supplementary 
Tables 1 and 2.

Cell purification. Blood samples (20 ml) were collected from each patient at 
days 1 and 4 post hospital admission, and from HCs. PBMCs were isolated by 
centrifugation on a density gradient (Lymphoprep, Proteogenix). After FICOLL 
(GE Healthcare and Lymphoprep StemCell) gradient centrifugation, total 
PBMCs were enriched in CD14+ monocytes using human CD14 microbeads 
(Miltenyi Biotec) for positive magnetic selection according to the manufacturer’s 
instructions. The negative fraction remaining after the positive selection of CD14+ 
cells was used for pan-DC enrichment employing the EasySep human pan-DC 
enrichment kit (StemCell Technologies). Total pan-DCs were resuspended with 
20,000 CD14+ cells and sent for sequencing. Monocyte and pan-DC enrichments 
were performed immediately after sampling. To avoid DC–T cell clusters, which 
often form in DC-enriched preparations, EDTA-containing medium (DPBS 1×, 
0.5% EDTA, 1% human serum) was used for sample enrichment in the first set, the 
‘discovery set’. The latter was composed of a total of 12 samples from two healthy 
donors, three patients with moderate COVID-19 and four with severe COVID-19 
from both day 1 and day 4 time points. The reported results in the main figures 
(Figs. 1–8) along with Supplementary Figs. 1 and 2 were generated based on 
the discovery set. Because EDTA can decrease reverse transcription efficiency, 
we validated the findings derived from the discovery set by using RPMI for all 
enrichment steps (1640 + Glutamax, 2% BSA, 1% penicillin/streptomycin, 1% 
sodium puryvate, 1% minimum essential medium–non-essential amino acids) in 
a second set of samples, including a total of 15 samples, defined as the ‘validation 
set’. The latter included two healthy donors, two patients with moderate COVID-19 
and six with severe COVID-19. The results of the validation set are presented in 
Supplementary Figs. 3–7. All main findings were validated in both datasets.

Preparation and isolation of single-cell suspensions. Cell suspensions were 
subjected to gel bead emulsion using the Chromium 10X Genomics controller 
according to the manufacturer’s guidelines. To perform scRNAseq after cDNA 
amplification, the concentration of each sample was measured using a Tapestation 
2200 system (Agilent). To prepare the cDNA libraries for the 10X Genomics 
Chromium controller, we used the single-cell 3′ v3.1 kit. Quality control libraries 
were performed using the Tapestation 2200 (Agilent). An Illumina Novaseq6000 
system (100-cycle cartridge) with a sequencing depth of at least 50,000 reads per 
cell was used for sequencing. The input number of cells was estimated at 20,000 
cells per sample.

Quality control and pre-processing of expression matrices. The raw scRNAseq 
fastq files were processed using Cell Ranger 3.1.0 from 10X Genomics Technology 
and aligned to the Grch38 reference genome. Bam files and filtered expression 
matrices were generated using ‘cellranger_count’. All expression matrices were 
loaded into R 4.0.0 using the ‘Read10X’ function from the Seurat library (https://
github.com/satijalab/seurat) version 3.1.5. The latter library was used to perform 
the analysis.

Pre-processing steps were applied to remove genes expressed in fewer than 20 
cells, and to remove cells with fewer than 50 genes or displaying more than 50% 
mitochondrial transcripts. To minimize technical confounding factors related to 
the sequencing steps, we evaluated the violin plot distribution of the number of 
unique molecular identifiers (nUMI), along with the total number of detected 
genes (nFeatures) per cell for all samples. Two upper cutoffs of 6,000 and 50,000 
were manually set for the nUMi and nFeatures, respectively, for each sample. These 
quality control metrics filtered out low-quality cells. Normalization to 10,000 
reads, centering and scaling were sequentially applied on the expression matrices 
to correct for the sequencing depth variability. To reduce the computational time 
for sample integration, we filtered out cells from cell types other than APCs. Cell 

type annotation is detailed in the section ‘Manual annotation of cell types’). To 
decipher specific alterations occurring in each specific APC subset, we separately 
subclustered each cell subtype, scaled the data and applied graph-based clustering 
to obtain cell clusters. Genes encoding for immunoglobulins were removed before 
performing the subclustering step for each cell type to get rid of ambient RNA.

Integration of individual cell matrices into a merged expression matrix from 
all the samples. To allow comparison across severity states, we integrated the 
whole expression matrices from all the samples using the Harmony algorithm. 
Integration anchors, retrieved from the first 50 principal components using 
the ‘FindIntegrationAnchors’ Seurat function, were then used to integrate the 
datasets using the ‘IntegrateData’ function. This crucial step added an ‘integrated’ 
assay to the Seurat object. Scaling and principal component analysis dimension 
reduction were performed on the integrated assay with 50 principal components. 
High-resolution (resolution = 0.8) graph-based clustering and UMAP dimension 
reduction were conducted to retrieve and visualize cell clusters. ICA dimension 
reduction was specifically performed for CD14+ monocytes, using 30 dimensions.

Manual annotation of cell types. Cells were manually annotated based on their 
expressing levels of their respective set of cell-type markers, defined as ‘cell-type 
signatures’. For each cell-type signature, enrichment scores were computed using 
the ‘AddModuleScore()’ function per cell with 100 randomly selected control 
genes, split on 25 bins. Each cell cluster was annotated with a particular cell type 
if its signature score median value was >0. Cell-type signatures included the 
following: pDCs, expression of (‘TCF4’, ‘CLEC4C’, ‘IRF7’, ‘IRF8’, ‘LILRA4’, ‘IL3RA’, 
‘TLR9’, ‘SPIB’), cDCs (‘ANPEP’, ‘CD1C’, ‘ITGAX’, ‘CST3’, ‘FCER1A’), monocytes 
(‘CD14’, ‘FCGR1A’, ‘S100A12’, ‘FCGR3A’, ‘MS4A7’, ‘LYZ’, ‘CXCR3’), AS-DCs (‘AXL’, 
‘SIGLEC6’, ‘CD22’), NK cells (‘NCAM1’, ‘FCGR3A’, ‘GNLY’, ‘XCL1’, ‘XCL2’, ‘NCR1’, 
‘NKG7’), T cells (‘CD3D’, ‘CD3E’, ‘CD3G’), B cells (CD19’, ‘MS4A1’, ‘CD79A’, 
‘CD79B’), plasma cells (‘IGHG2’, ‘IGHG1’, ‘IGLC2’, ‘IGHA1’, ‘IGHA2’, ‘IGHA3’, 
‘JCHAIN’, ‘IGHM’, ‘XBP1’, ‘MZB1’, ‘CD38’, ‘IGLL5’), erythrocytes (‘HBB’, ‘HBA1’) 
and platelets (PPBP). Cells that were annotated as non-APC were discarded for 
each sample, before integration, to avoid high computational load during the 
integration step. For monocytes and cDCs, a subsequent classification of cells 
was performed according to their expression levels of monocytes and cDC subset 
markers (CD14 and FCGR3A for monocytes, CD1C and CLEC9A for cDCs).

Statistical analysis. Differential expression analysis between severity groups was 
performed using the ‘FindAllMarkers’ Seurat function, using the MAST test and 
a cutoff set to log FC > 0.3 to filter out false-positive DEGs. We regressed out the 
‘gender’ confounding factor by using the ‘MAST’ test for comparative analysis 
and precising ‘gender’ as a latent variable. This ‘gender’ variable was added in 
the metadata slot for each cell from the discovery and validation sets: a cell is 
annotated as from a ‘female’ sample if the expression level of the XIST gene is 
higher than 0.1, otherwise the gender is annotated as ‘male’. P values were corrected 
using the Bonferroni correction method. We only tested genes that were detected 
in a minimum fraction of 10% of each severity group. Median values of violin plot 
distributions of either gene expression levels or pathway-enrichment scores were 
compared using a Mann–Whitney–Wilcoxon ranked test, taking as a reference the 
HC. Note that the statistical calculations for the violin plot distributions are derived 
from the cell count in expression values/enrichment scores comparisons.

Pathway enrichment analysis. Pathway enrichment analysis was performed to 
seek for the perturbed or enriched pathways in severity groups, as compared to 
the HCs. Human MsigDB hallmark signatures (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) were loaded into the R session using the ‘msigdbr’ library 
version 7.0.1, and the category was set to ‘H’ for ‘human’. The enrichment test was 
performed using the ‘enricher’ function from ‘ClusterProfiler’ version 3.16.0. Msig 
Database hallmark signatures were given as input to the ‘enricher’ function. The 
P values were corrected using the Bonferroni correction method. Encoding genes 
for each enriched pathway were extracted and used as the module to construct a 
‘pathway-score’ signature using ‘AddModuleScore’ from the Seurat library.

TF activity inference. We sought to decipher the variation of TF activity between 
severity groups within particular cell types to avoid capturing differentially active 
TFs related to lineage markers. The Dorothea (https://saezlab.github.io/dorothea/) 
resource was used to infer TF activity. In this context of single-cell-level resolution, 
we constructed regulons based on the mRNA expression levels of each TF from 
a manually curated database, along with the expression level of its direct targets. 
In this context, TF activity is considered as a proxy of the transcriptional state of 
its direct targets. We created TF regulons using the ‘dorothea_regulon_human’ 
wrapper function from ‘dorothea’ library version 0.99.10, and chose ‘A’ and ‘B’ 
high-confidence TF selection. Viper scores were computed on the dorothea 
regulons, scaled and added as the ‘Dorothea’ slot on the integrated Seurat object. 
To allow comparison of TF score activities, mean and standard deviation values 
of the scaled viper scores were computed per severity group. TFs were ranked 
according to the variance of their corresponding viper scores. The top 50 highly 
variable scores per severity group (n = 150 TFs in total) were kept for visualization 
of their corresponding scores.
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Manual construction of functional signatures. To evaluate the dysregulations 
occurring at the functional level for each APC subset from patients with COVID-
19, we established a manually curated list of effector genes involved in specific 
APC functions: ‘attraction’, ‘antiviral effector molecules’ and ‘cytotoxicity’. The 
signature construction relied on a thorough mining of existing literature, using 
a combination of MeSH terms and keywords on the PubMed search tool. Each 
selected molecule was considered an ‘effector’ of the related function if there 
was at least one experimental proof in a human setting. Overall, we outlined 12 
‘cytotoxicity’ effector molecules, 29 ‘antiviral’ effector molecules and 18 ‘attraction’ 
effector molecules. ‘Innate sensing’ effectors included 13 genes (DDX58, DHX58, 
CGAS, IFI16, AIM2, IRF3, TMEM173, NLRP3, PYCARD, TLR7, TLR9, DHX9 and 
DHX36), and were from refs. 71,72. Both ‘regulators of interferon signalling’ and 
‘antiviral ISG’ were implemented by literature mining from ref. 73.

Drop-out correction. To allow drop-out correction and imputation of missing 
values, we used Nebulosa (https://github.com/powellgenomicslab/Nebulosa) to 
represent density-based values on UMAP embeddings. This R package is designed 
to visualize features from single cells, using a kernel density estimation. It recovers 
the signal by incorporating the similarity between cells, allowing a convolution 
of the cell features. For pDCs from the discovery set, we specifically added a 
‘MAGIC_RNA’ slot to the Seurat object using MAGIC74 and specifically plotted the 
violin distribution of imputed values in Fig. 4e.

Pseudotime inference. For the CD1c+ DC subset, we specifically computed 
pseudotime inference using Monocle3 (https://cole-trapnell-lab.github.io/), directly 
available using the Seurat Wrappers R package75.

Analysis of intercellular communication networks. Communication scores 
were generated using the ICELLNET R package (https://github.com/soumelis-lab/
ICELLNET/master). This library allows computation of cell–cell communication 
scores between cell subsets, given their corresponding transcriptomic profiles 
from the same or different datasets. Considering severity groups separately, only 
clusters including more than 15 cells were considered for the analysis. The average 
gene expression profiles of APC subset clusters were provided as input to the 
ICELLNET package, to compute communication scores between APC subsets and 
T lymphocytes for each severity group. As our datasets did not include T cells for 
the analysis, we used as reference the T-lymphocyte transcriptomic profile from 
the Human Primary Cell Atlas included in the ICELLNET package (n = 39). From 
the ICELLNET ligand–receptor interaction database, we only selected the 144 
interactions known to be involved in DC–T communication76. Barplot and dot plot 
representations were generated to compare the proportions of communication type 
scores (checkpoint, cytokines, chemokines) among severity groups.

Statistics and reproducibility. Statistical analysis was performed using R (version 
4.0.0). A two-sided Wilcoxon ranked-sum test was used to perform pairwise 
comparisons. To ensure the reproducibility of our main findings, we split our data 
analysis cohort into a discovery and a validation set. We reported our main findings 
from the discovery set and conducted similar analyses on the validation set.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
scRNAseq data that support the findings of this study have been deposited in the 
Gene Expression Omnibus under accession code GSE169346. Further information 
and requests for resources and reagents should be directed to and will be fulfilled 
by the V.S. This study did not generate new unique reagents.

Code availability
The R codes are publicly available on GitHub at https://github.com/MelissaSaichi/
Covid_scRNAseq. All of the R packages that were used are available online.
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Extended Data Fig. 1 | Pro-inflammatory defects in the discovery set. a, Umap representation of IFN subtypes expression values in the discovery 

set, expression levels are color coded; b, Violin representation of other pro-inflammatory cytokines in the discovery set which included: n=2 HC, n=4 

moderate and n=6 severe samples; each dot represents a cell, horizontal lines display the mean expression value; Comparative analysis was performed 

using the two-sided Wilcoxon Rank-Sum test, P-values were adjusted to multiple testings using ‘Bonferroni’ correction. Asterisks above severe indicate  

P values for severe versus control; asterisks above moderate indicate significance of moderate versus control. *P < 0.05, **P < 0.01, ***P < 0.001.
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Extended Data Fig. 2 | Maintenance of dysregulated patterns at time and patient levels. Violin plot representation of a. HLA-II Module Score in 

CD1c+DC, and b. P53 pathway Module Score in pDC, both from the discovery set (composed of: n=2 HC, n=4 moderate and n=6 severe samples); 

asterisks above moderate indicate significance of moderate versus control and asterisks above severe indicate significance of severe versus control. 

Comparative analysis was performed using the two-sided Wilcoxon Rank-Sum test, P-values were adjusted to multiple testings using ‘Bonferroni’ 

correction. *P < 0.05, **P < 0.01, ***P < 0.001. c, Dot Plot representation of antiviral effector molecules in CD14+ Monocytes across patients, Percentage of 

cells expressing the respective gene is size-coded.
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Extended Data Fig. 3 | Cellular map of APC subsets from the validation set. Cellular map of APC subsets at the single-cell resolution level from the 

validation set based on either APC subsets (a) or severity (b), c Proportions of APC subsets within the discovery and validation sets; d. Stuck Violin plot 

representation of canonical APC and non-APC markers for both discovery and validation sets. Validation set included: n=2 HC, n= 4 moderate and n=9 

severe samples from a total of 2 healthy donors, 2 moderate and 6 severe patients.
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Extended Data Fig. 4 | Increased inflammatory pathways in APC validation set. a. Barplot of the number of Differentially Expressed Genes (DEG) 

for each severity group (Healthy versus moderate and severe patients; moderate versus healthy and severe; severe versus healthy and moderate). 

Up-regulated (logFoldChange > 0.25) genes are shown in black, down-regulated (logFoldChange < −0.25) genes are shown in grey; b. Heatmap 

representation of top up-regulated genes in severe APC from the validation set, as compared to moderate and healthy groups, z-score values of average 

expression levels of cells per severity group is color coded; Comparative analysis of enriched pathways from the upregulated genes in moderate or severe 

(c) APC as compared to healthy cells, as well as pairwise comparison of upregulated genes in moderate compared to severe (shown in pink), up-regulated 

genes in severe compared to moderate (shown in yellow) (d); horizontal axis displays the adjusted p-values (-log10), e. Representation of ranked genes 

by descendant order according to their absolute log Fold Change (log FC), upregulated in moderate as compared to severe (plot in red), upregulated in 

severe APC as compared to moderate (plot in blue).Top genes, with an absolute value of logFC above 0.5 are shown. Validation set included: n=2 HC, n= 

4 moderate and n=9 severe samples from a total of 2 healthy donors, 2 moderate and 6 severe patients. The two-sided Wilcoxon Rank-Sum test was used 

for comparison, P-values were adjusted to multiple testing using ‘Bonferroni’ correction; and only genes with adjusted-P Values < 0.05 were considered.
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Extended Data Fig. 5 | global defects in pDC-related functions in the validation set. a. Dot plots of pDC-related functions ‘Attraction’,’Innate sensing’, 

‘Anti-viral effector molecules’, ‘Cytotoxicity’ in pDC from HC, moderate and severe patients in the validation set. Expression levels are color-coded; 

Percentage of cells expressing the respective gene is size-coded, b. Comparative analysis of enriched pathways from the upregulated genes in moderate 

versus severe pDC (in pink),up-regulated genes in severe compared to moderate (shown in yellow); c. Violin plot representation of gene expression for 

IFN receptors (IFNAR1 and 2), IRF7, and anti-viral effector molecules. Asterisks above severe indicate P values for severe versus control; asterisks above 

moderate indicate significance of moderate versus control. Statistical tests were performed using the validation set, including: n=2 HC, n= 4 moderate and 

n=9 severe samples; Comparative analysis was performed using the two-sided Wilcoxon Rank-Sum test, P-values were adjusted to multiple testings using 

‘Bonferroni’ correction. *P < 0.05, **P < 0.01, ***P < 0.001.
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Extended Data Fig. 6 | Defective anti-viral properties in CD14+ monocytes and CD1c+DC. Dot plots of ‘antiviral effector molecules’ in CD14+ 

monocytes from HC, moderate and severe patients in the validation set. Expression levels are color-coded; Percentage of cells expressing the respective 

gene is size coded.
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Extended Data Fig. 7 | MHC-II antigen presentation defects in CD1c+DC. Heatmap representation of top 10 DEG (upregulated) for each severity group in 

CD1C+DC from the validation set.
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