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Single-cell RNA sequencing of 
human kidney
Jinling Liao1,2,3,12, Zhenyuan Yu1,2,3,4,5,12, Yang Chen1,2,3,4,5,12, Mengying Bao1,2,3, Chunlin Zou6,7, 
Haiying Zhang1,2,3, Deyun Liu4,5, Tianyu Li4,5, Qingyun Zhang1,2,3,4,8, Jiaping Li9,10,11, 
Jiwen Cheng1,2,3,4,5* & Zengnan Mo1,2,3,4,5*

A comprehensive cellular anatomy of normal human kidney is crucial to address the cellular origins of 
renal disease and renal cancer. Some kidney diseases may be cell type-specific, especially renal tubular 
cells. To investigate the classification and transcriptomic information of the human kidney, we rapidly 
obtained a single-cell suspension of the kidney and conducted single-cell RNA sequencing (scRNA-seq). 
Here, we present the scRNA-seq data of 23,366 high-quality cells from the kidneys of three human 
donors. In this dataset, we show 10 clusters of normal human renal cells. Due to the high quality of 
single-cell transcriptomic information, proximal tubule (PT) cells were classified into three subtypes and 
collecting ducts cells into two subtypes. Collectively, our data provide a reliable reference for studies on 
renal cell biology and kidney disease.

Background & Summary
The kidney is a highly complex organ with many different functions, and consists of several functionally and ana-
tomically discrete segments1. The glomerulus and renal tubules are important components of the nephron. The 
functional complexity of these structures appears to be associated with different cell types. Along with the glomeru-
lar endothelial cells, podocytes synthesize the glomerular basement membrane, which is the final filtration barrier, 
representing an important seal that prevents the loss of proteins into the urine2. Parietal epithelial cells (PECs) are 
another common glomerular cell type that might contribute to glomerulosclerosis, crescent and pseudocrescent for-
mation3. The proximal tubule (PT) plays an important role in regulating systemic acid-base balance by controlling 
Na+-H+ and HCO3

− transport, while the distal convoluted tubule is more involved in electrolyte transport4–6. In 
previous studies, researchers have performed bulk RNA sequencing of different components of the kidney, provid-
ing a reference for understanding the transcriptome of different segments7–9. However, bulk RNA sequencing cannot 
reflect the transcriptome at the single-cell level, but only the overall average RNA expression.

With the development of next-generation sequencing, high-throughput single-cell analysis10 and the Human 
Cell Atlas11, scRNA-seq of the kidney became feasible. Park, J et al.1 characterised 57,979 cells from healthy mouse 
kidneys using unbiased single-cell RNA sequencing and revealed potential cellular targets of kidney disease. 
Later, Young, M. D et al.12 studied 72,501 single-cell transcriptomes of human renal carcinomas and normal tissue 
from foetal, paediatric and adult kidneys. These studies provided transcriptome maps of mouse and human kid-
neys. At the same time, it was reported that some renal diseases may be cell type-specific. For example, chronic 
kidney disease (CKD) is associated with PT cells13. Thus, PT cells have attracted extensive attention. However, the 
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number of human PT cells obtained in the abovementioned studies was relatively small, i.e. approximately 1,000 
high-quality PT cells which highly expressed marker genes. It is difficult to classify a subpopulation of PT cells. 
Moreover, in previous studies1,13 that considered kidney disease associated with specific cell types, results were 
obtained based on mouse kidney transcriptome data.

To address this problem, we set out to obtain a single-cell suspension of the human kidney and performed 
scRNA-seq with a high throughput droplet-mediated scRNA-seq platform (10x Genomics Chromium14, Fig. 1a). 
We obtained a single-cell transcriptome dataset of 23,366 high-quality human kidney cells from three donors 
(kidneys 1, 2 and 3), including 20,308 PT cells. Considering the important role of PT cells in renal disease, this 
considerable individual cell transcriptome information may validate previously reported susceptibility genes for 
kidney disease. In addition, monogenic disease genes and complex trait genes identified by genome-wide asso-
ciation study (GWAS) may be associated with precise cell types. With the unbiased classification of cells, we can 
discover new genes with specific expression in some cell types. Taken together, the generated data provide more 
abundant transcriptomic information on renal tubular cells, representing an important reference for the accurate 
classification of renal tubular cells and the study of the relationship between renal tubular cells and diseases.

Methods
We present an overview of the kidney scRNA-seq method. The whole process included the acquisition of human 
kidney tissue, the preparation of a single-cell suspension and 10x Genomics sample processing (Fig. 1a).

Ethical approval.  We received approval from the Institution Review Board (IRB) from the First Affiliated 
Hospital of Guangxi Medical University, and signed informed consent was obtained from all patients.

Fig. 1  scRNA-seq reveals the cell populations of the human kidney. (a) Overview of the scRNA-seq process 
using human kidney tissue samples. (b) Uniform manifold approximation and projection (UMAP) plot 
showing the unbiased classification of renal cells. (c) Pie chart showed the proportion of each kidney cell type. 
(d) Heat map showing the marker genes of each cluster, highlighting the selected marker genes for each cluster.
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Human kidney tissue procurement and isolation.  Fresh human kidney samples (Supplementary 
Table S1) were collected at the First Affiliated Hospital of Guangxi Medical University and Affiliated Tumour 
Hospital of Guangxi Medical University. Two out of the three samples were obtained from patients undergo-
ing radical nephrectomy, and the remaining sample was from a patient undergoing radical nephroureterectomy. 
Normal kidney tissues were obtained at least 2 cm away from tumour tissue.

First, fresh samples were taken from the operating room and placed in a solution containing Hank’s bal-
anced salt solution (HBSS; WISENT, 311-512-CL) and 1% Antibiotic-Antimycotic (Gibco, 15240062) on ice, 
which was transported to the laboratory within 20 minutes. Then, 0.5–1 g full-thickness sections of kidney tis-
sue were cut lengthwise using surgical scissors. Subsequently, the tissue was washed twice with cold Dulbecco’s 
phosphate-buffered saline (DPBS; WISENT, 311-425-CL). We placed the tissue on a stainless steel cell filter, 
crushed the tissue with the plunger of a syringe and washed it with DPBS. We added flushing fluid to a centrifuge 
tube, and collected the kidney fragments into the centrifuge tube, which was then spun at 350 g for 5 min at 4 °C; 
we then repeated this step. After discarding the supernatant, we used TrypLE™ Express Enzyme (1X, Gibco, 
12605010) to further digest the sticky clumps of cells for 5–10 min at 37 °C, then terminated digestion using 
Dulbecco’s modified eagle medium (DMEM; WISENT, 319-006-CL) containing 10% fatal bovine serun (FBS; 
Gibco, 10099141). The digested cells were centrifuged at 350 g for 5 min at 4 °C. After discarding the supernatant, 
the cells were resuspended in 5 ml of DPBS and filtered through a 100 μm cell strainer. Next, we removed red 
blood cells using 1X RBC lysis buffer (10X diluted to 1X,BioLegend, B250015) for 5 min and centrifuged the cells 
at 300 g for 5 min at 4 °C. After discarding the supernatant, the cells were suspended in DPBS and centrifuged 
again. After discarding the supernatant, the cells were resuspended in cold DPBS and passed through a 40 μm cell 
strainer. Live cells were counted using trypan blue (0.4%, Gibco, 420301) staining. If the cell viability was above 
80%, we perform 10x Genomics sample processing.

10x Genomics sample processing and cDNA library preparation.  The 10x Genomics Chromium 
Single Cell 3′ Reagents Kit v2 user guide (https://support.10xgenomics.com/single-cell-gene-expression/index/
doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v2-chemistry) was used to prepare the single 
cell suspension. The single cell samples were passed through a 40 μm cell strainer and counted using a haemo-
cytometer with trypan blue. Then, the appropriate volume of each sample was diluted to recover 10,000 kidney 
cells. Subsequently, the single cell suspension, Gel Beads and oils were added to the 10x Genomics single-cell 
A chip. We checked that there were no errors before running the assay. After droplet generation, samples were 
transferred into PCR tubes and we performed reverse transcription using a T100 Thermal Cycler (Bio-Rad). After 
reverse transcription, cDNA was recovered using a recovery agent, provided by 10x Genomics, followed by silane 
DynaBead clean-up as outlined in the user guide. Before clean-up using SPRIselect beads, we amplified the cDNA 
for 10 cycles. The cDNA concentration was detected by a Qubit2.0 fluorometer (Invitrogen). The kidney cDNA 
libraries were prepared referring to the Chromium Single Cell 3′ Reagent Kit v2 user guide.

Single-cell RNA-seq details and preliminary results.  Samples were sequenced by Hiseq Xten (Illumina, 
San Diego, CA, USA) with the following run parameters: read 1 for 150 cycles, read 2 for 150 cycles, index for 
14 cycles. Preliminary sequencing results (bcl files) were converted to FASTQ files with CellRanger (version 3.0, 
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger). We 
followed the 10x Genomics standard seq protocol by trimming the barcode and unique molecular identifier 
(UMI) end to 26 bp, and the mRNA end to 98 bp. Then, the FASTQ files were aligned to the human genome ref-
erence sequence GRCh38. Subsequently, we applied CellRanger for preliminary data analysis and generated a file 
that contained a barcode table, a gene table and a gene expression matrix. We carried out preliminary quality con-
trol (QC) on the FASTQ files to ensure high quality scRNA-seq data. We also made a comparison between three 
different methods (Cell Ranger V2.1 or 2.2 with 150 bp × 2, Cell Ranger V3.0 with 150 bp × 2, Cell Ranger V3.0 
with trimming the FASTQ data to 26 bp × 98 bp). We found that more single cells were actually identified using 
Cellranger V3.0 compared with Cellranger V2.0 or 2.1 (Tables 1 and 2). At the same time, we obtained some basic 
information about sequencing by a website, such as the number of cells, the median number of detected genes, 
sequencing saturation and sequencing depth (Table 2). The strategy of using CellRanger V3.0 and trimming the 
FASTQ data to 26 bp × 98 bp was used to pre-process the scRNA-seq data and perform downstream analysis.

Using Seurat for quality control (QC) and data second analysis after mitigating the batch effect.  
We used the R (version 3.5.2, https://www.r-project.org/) and Seurat15,16 R package (version 3.1, https://satijalab.
org/seurat/). We used the MergeSeurat function to merged the three kidney data sets. The filter criteria of cells 
were determined after reference to previous studies1,12. According to the median number of genes and the per-
centage of mitochondrial genes in the kidney samples (Fig. 2a), cells with <200 and >2,500 genes (potential 
cell duplets) and a mitochondrial gene percentage of >30% were filtered. After QC, 23,366 high quality kidney 
cells were obtained. The relationship between the percentage of mitochondrial genes and the mRNA reads were 
detected and visualised, together with the relationship between the number of mRNAs and the reads of mRNA 
(Fig. 2b).

After data normalisation, all highly variable genes in single cells were identified after controlling for the rela-
tionship between average expression and dispersion. All variable genes (n = 16471) were used in the downstream 
analysis, i.e. principal-component analysis (PCA).

Since this data came from three different samples, in order to avoid the batch effect affecting downstream 
analysis, we adopted a strategy of mitigating the batch effect, called ‘Harmony’. The R package Harmony focuses 
on scalable integration of scRNA-seq data for batch correction and meta analysis17 (version 0.99.9, https://github.
com/immunogenomics/Harmony). To ensure the reliability of Harmony, we also applied another approach 
based on mutual nearest neighbours (MNN)18, which was implemented in the R package scran19 (the “fastMNN” 
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function). We found that these two methods of eliminating batch effects produced similar results (Fig. 2c, 
Supplementary Fig. S1a). However, Harmony may be slightly better than fastMNN for our data. Harmony 
identified collecting duct intercalated cells with the same reduced resolution, but fastMNN could not (Fig. 1b, 
Supplementary Fig. S1b,c). Therefore, we used Harmony to eliminate batch effects and continued downstream 
analysis.

Subsequently, we used PCA with variable genes as the input and identified significant principal components 
(PCs) based on the jackStraw function. Twenty PCs were selected as the input for uniform manifold approxima-
tion and projection (UMAP) and t-distributed stochastic neighbour embedding (tSNE) when statistically signif-
icant. We detected the batch effect between three different kidney samples (Fig. 2c and Supplementary Fig. S2a). 
With a resolution of 0.25, cells were clustered by the FindClusters function and classified into 10 different cell 
types. Next, we used the FindAllMarkers function to find differentially expressed genes between each type of cell 
(Supplementary Table S2).

Cell cycle analysis.  Cell cycle analysis was performed by using the Seurat program. We used a previously 
defined core set of 43 G1/S and 54 G2/M cell cycle genes20. Cells were classified by the maximal average expres-
sion (‘cycle score’) in these two gene sets. When the cycle scores of G1/S and G2/M were both less than 2, we con-
sidered these cells to be non-cycling. Otherwise, we considered cells to be proliferative. After cell cycle analysis, 
no bias induced by cell cycle genes was observed (Fig. 2d and Supplementary Fig. S2b).

Cell type markers.  Cell type assignment was performed based on the marker genes reported in previous 
studies1,3,7–9,12,21–23 (Online-only Table 1).

Reconstructing PT cells differentiation trajectories by Monocle2.  PT cells fate decisions and pseu-
dotime trajectories were reconstructed by the Monocle224 R package (version 2.10.1, http://cole-trapnell-lab.
github.io/monocle-release/). First of all, the three types of PT cells were selected by Seurat. The PT cell data, 
which included 20,308 PT cells, were imported into Monocle2. We used genes that were expressed in at least 10 
cells and in greater than 5% of cells. Subsequently, we used thresholds on the cell local density (rho) and nearest 
distance (delta) to determine the number of clusters. Then, we performed differential gene expression analysis as 

Sample ID
Cellranger version and 
seq strategy

Q30 Bases 
in Barcode

Q30 Bases in 
RNA Read

Q30 Bases 
in UMI

Reads Mapped 
Confidently to 
Genome

Reads Mapped 
Confidently to 
Exonic Regions

Reads Mapped 
Confidently to 
Transcriptome

kidney1 Cellranger 2.1, 150 bp × 2 95.7% 89.6% 95.1% 92.8% 82.8% 79.4%

kidney1 Cellranger 3.0, 150 bp × 2 95.7% 86.6% 95.1% 91.3% 81% 76.5%

kidney1 Cellranger 3.0, 26 bp × 98 
bp, 10x seq protocol 95.7% 89.6% 95.1% 92.9% 82.9% 79.3%

kidney2 Cellranger 2.2, 150 bp × 2 98.3% 94.1% 98.4% 96.1% 90.3% 85.6%

kidney2 Cellranger 3.0, 150 bp × 2 98.3% 94.2% 98.5% 96.1% 90.1% 85%

kidney2 Cellranger 3.0, 26 bp × 98 
bp, 10x seq protocol 98.3% 96.9% 98.5% 87.4% 83.3% 79.6%

kidney3 Cellranger 2.2, 150 bp × 2 98.3% 93.7% 98.4% 96.1% 87.9% 82.8%

kidney3 Cellranger 3.0, 150 bp × 2 98.3% 93.7% 98.4% 96.3% 88% 82.6%

kidney3 Cellranger 3.0, 26 bp × 98 
bp, 10x seq protocol 98.3% 94.6% 98.4% 96.5% 88.5% 83.2%

Table 1.  Detailed QC of FASTQ files.

Sample ID
Cellranger version and 
seq strategy

Number of 
cells

Median number of 
detected genes

Sequencing 
saturation (%)

Mean reads 
per cell

Number of cells 
post filtering

kidney1 Cellranger 2.1, 150 bp × 2 8,091 856 85.9 42,485 NA.

Kidney1 Cellranger 3.0, 150 bp × 2 8,161 825 85.5 42,121 NA.

Kidney1 Cellranger 3.0, 26 bp × 98 
bp, 10X seq protocol 8,164 837 85.7 42,105 7,221

kidney2 Cellranger 2.2, 150 bp × 2 6,472 960 85.6 37,763 NA.

kidney2 Cellranger 3.0, 150 bp × 2 6,493 910 80.2% 25,539 NA.

kidney2 Cellranger 3.0, 26 bp × 98 
bp, 10X seq protocol 6,499 887 79.9% 25,515 5,543

kidney3 Cellranger 2.2, 150 bp × 2 10,705 692 85.7 21,064 NA.

Kidney3 Cellranger 3.0, 150 bp × 2 10,741 683 85.6 20,993 NA.

Kidney3 Cellranger 3.0, 26 bp × 98 
bp, 10X seq protocol 10,741 684 85.6 20,993 10,602

Table 2.  Information and sequencing statistics of three samples and comparison between different sequencing 
strategies. NA, after pre-processing the data, some of them didn’t use for downstream analysis.
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before, but across all cell clusters. We used the top 1,000 most significantly differentially expressed genes as the set 
of ordering genes and performed dimension reduction and trajectory analysis. Once we established a trajectory, 
we used the differential GeneTest function to find genes that had an expression pattern that varied according to 
pseudotime.

Data Records
All kidney sequencing data have been uploaded to the NCBI GEO database. It is possible to access these data 
through the project accession number GSE13168525. These data include barcodes.tsv, features.tsv and gene 
expression matrix (*.mtx) files. The raw data in the bam files have been deposited in the NCBI Sequence Read 
Archive (SRA) and are accessible through the project accession number SRP19929426.

Technical Validation
Kidney specimens were collected fresh, dissected and digested into single cells from organ donors (two males and 
one female) aged 57–65 years (Supplementary Table S1, Methods). We used Seurat for QC, in which the number 
of genes, the number of UMI and the percentage of mitochondrial genes in each cell were calculated (Fig. 2a). We 
made a comparison with the previous kidney single-cell data from GSE1075851 on the number of genes detected 
per cell (Fig. 2e). We found that the median genes per cell were 941. This result was close to our scRNA-seq 

Fig. 2  Quality control (QC) of human kidney single cell data. (a) Scatterplot illustrating the number of genes, 
unique molecular identifiers (UMIs) and the percentage of mitochondrial genes in each cell of three kidney 
samples. (b) The relationship between the percentage of mitochondrial genes and the mRNA reads, together 
with the relationship between the amount of mRNA and the reads of mRNA. (c) We detected the batch effect 
between three different kidney samples. (d) UMAP plot showing the cell cycle status of each cell. (e) Violin plot 
illustrating the number of genes, unique molecular identifiers (UMIs) and the percentage of mitochondrial 
genes in previous kidney single-cell data from GSE1075851.
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results. In general, the proportion of mitochondrial genes in the kidney cells was greater than in other organs, 
such as the liver, prostate, testis and peripheral blood mononuclear cell (PBMC)1,12,23,27–29. Since the proportion 
of mitochondrial genes reflects the state of cells, the exclusion criteria are controversial. Some researchers have 
suggested that kidney cells should discarded if their mitochondrial gene percentage is over 50%1, while other 
researchers remove any cells that have greater than 20% expression originating from mitochondrial genes12. In 
this study, we were conservative, in that cells with a mitochondrial gene percentage of >30% were filtered.

After QC, 23,366 high quality kidney cells were further analysed. We could identify 10 cell clusters that con-
sisted of cells in the range of 79–11,539 cells per cluster (Fig. 1c). We visualised cell clustering using two different 
approaches (UMAP and tSNE), and the results were the same (Fig. 1b and Supplementary Fig. S2c). According 
to the marker genes (Online-only Table 1), we classified cells into clusters 1–10, corresponding to proximal con-
voluted tubule cells, proximal tubule cells, proximal straight tubule cells, NK-T cells, monocytes, glomerular 
parietal epithelial cells, distal tubule cells, collecting duct principal cells, B cells and collecting duct intercalated 
cells (Fig. 1d).

Fig. 3  Subpopulations of PT cells and reconstructing the developmental trajectory of PT cells. (a) Violin plots 
representing the expression of marker genes in PT cells. Clusters 1, 2 and 3 refer to the proximal convoluted 
tubule, proximal tubule and proximal straight tubule, respectively. (b) Monocle2-generated pseudotemporal 
trajectory of three PT cell types (n = 20,308); imported Seurat data are coloured according to the cell name 
designation. (c) Pseudotime was coloured in a gradient from dark to light blue, and the start of pseudotime 
is dark. (d) The pseudotime trajectory was divided into three different states by Monocle2. (e) The trajectory 
showing the distribution of cells from three samples. (f) The top six genes influencing fate decisions are shown 
as line plots displayed as the expression level over pseudotime by Monocle2. (g) Heat map for clustering the top 
50 genes that affected cell fate decisions. These 50 genes were divided into three clusters (cluster 1, cluster 2 and 
cluster 3), showing genes at the beginning stage, the transitory stage and the end stage of the developmental 
trajectory, respectively.
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Our results show that PT cells were very abundant, with 20,308 PT cells. PT cells can be classified into three 
different clusters according to their markers, including the proximal convoluted tubule, proximal straight 
tubule and PT cells of no accurate classification (Figs. 1b and 3a, Online-only Table 1). Furthermore, we applied 
Monocle2 to perform pseudotime trajectories of all PT cells and showed the fate decisions between them 
(Fig. 3b–e). At the same time, we discovered the top six genes that influenced fate decisions (Fig. 3f). To show 
more detailed gene information, we presented the top 50 genes that affect fate decisions (Fig. 3g).

Initially the collecting duct was described as having a role only in water reabsorption, while in recent years the 
understanding of the function of the collecting duct has become greatly enhanced and has led to a new model for 
how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis and 
acid-base status30. Interestingly, our data also provide transcriptomic information for collecting duct cells (Fig. 1b, 
cluster 8, 10). We classified collecting duct cells into principal cells (cluster 8) and intercalated cells (cluster 10), 
according to marker expression (Fig. 4a, Online-only Table 1). Given that the three ‘healthy’ kidney samples 
were collected from renal cancer patients, we had to confirm their universal representativeness. Previous studies 
on human kidney scRNA-seq12 have provided us with many marker genes for proximal, distal and collecting 
tubule cells. We found that almost all the genes for PT cells were highly expressed in our PT cells (Supplementary 
Fig. S3a). Most of these genes for distal and collecting tubules cells were expressed in our data (Supplementary 
Fig. S3b). Thus, we consider these results to be reliable.

Finally, we present a method for the detailed classification of cell subsets. Initially, the parameters of 20 PCs 
and 0.25 resolution were selected to identify 10 cell types (Fig. 1b). We found that cluster 4 highly expressed 
marker genes of both NK cells and T cells, designated as NK-T cells (Fig. 1d, Supplementary Table S2). 
Interestingly, cluster 4 can be further classified into two subtypes (Fig. 4b). By modifying the parameters to 20 
PCs and 0.8 resolution, we could accurately distinguish NKT cells (CD3D+CD3E+GNLY+NKG7+) and T cells 
(CD3D+CD3E+IL7R+) (Fig. 4c–g), which can be used for downstream analysis.

Fig. 4  Detailed classification of collecting duct cells and NK-T cells by scRNA-seq. (a) Violin plot showing the 
expression of the collecting duct principal cell marker AQP2 and the collecting duct intercalated cell markers 
ATP6V1B1, ATP6V0D2 and ATP6V1G3. Clusters 8 and 10 are collecting duct principal cells and collecting 
duct intercalated cells, respectively. (b) UMAP plot showing the spatial location of NKT cells and T cells after 
dimensionality reduction. The red dots represent NKT cells and the green dots represent T cells. (c–g) Violin 
plots showing the expression of the NK cells markers GNLY and NKG7. Violin plots showing the expression of 
the T cell markers CD3D, CD3E and IL7R.
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Taken together, we provide a transcriptomic map of human kidney cells that will help us to study renal cell 
biology and the relationship between cell types and diseases.

Code availability
The R code used in the analysis of the scRNA-seq data is available on GitHub (https://github.com/lessonskit/
Single-cell-RNA-sequencing-of-human-kidney). This R code is also available at figshare31.
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