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Single-cell RNA-sequencing of peripheral blood
mononuclear cells reveals widespread, context-
specific gene expression regulation upon
pathogenic exposure
Roy Oelen 1,2,11, Dylan H. de Vries 1,2,11, Harm Brugge1,2,11, M. Grace Gordon 3,4,5,6, Martijn Vochteloo 1,2,

single-cell eQTLGen consortium*, BIOS Consortium*, Chun J. Ye 4,6,7,8,9,10, Harm-Jan Westra1,2,

Lude Franke1,2,12✉ & Monique G. P. van der Wijst 1,2,12✉

The host’s gene expression and gene regulatory response to pathogen exposure can be

influenced by a combination of the host’s genetic background, the type of and exposure time

to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing

of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to

three different pathogens. These analyses indicate that cell-type-specificity is a more pro-

minent factor than pathogen-specificity regarding contexts that affect how genetics influ-

ences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In

monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants

whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also

affect the co-expression between genes. This indicates widespread, context-specific changes

in gene expression level and its regulation that are driven by genetics. Pathway analysis on

the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-

dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway

specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent

association between IFN activity and CLEC12A co-expression patterns is confirmed in sys-

temic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-

regulated gene. Altogether, this study highlights the importance of context for gaining a

better understanding of the mechanisms of gene regulation in health and disease.
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Over a decade of genome-wide association studies (GWAS)
has revealed thousands of genetic variants associated with
disease risk1, most of them single nucleotide poly-

morphisms (SNPs). Despite this, the cascade of events through
which these variants change disease risk remains largely unclear.
One way to dissect this cascade is by linking disease-associated
SNPs to downstream gene expression through so-called expres-
sion quantitative trait locus (eQTL) analysis2. However, recent
work by Yao et al. indicated that, on average, only 11 ± 2% of
disease heritability is mediated by cis-eQTLs, i.e., SNPs affecting
the expression of nearby genes3. One explanation for this rela-
tively low contribution could be that many of these eQTL effects
are cell-type-specific and context-dependent4,5, which means that
their disease contribution cannot be accurately estimated using
the steady-state expression in bulk-averaged tissues. In other
words, the relevant context for a particular disease-associated
SNP may not have been studied yet, meaning that many of the
true downstream effects of these SNPs remain hidden6. In a first
effort to identify tissue-specific eQTLs, the GTEx consortium
performed eQTL analysis in 44 different human tissues across 449
individuals (70‒361 individuals/tissue)7. However, this study was
limited by the relatively small number of donors for many of the
tissues and the lack of cell-type-specific resolution. More recently,
with the advent of high-throughput, cost-efficient single-cell
RNA-sequencing (scRNA-seq) technologies8,9, it has become
possible to assess both the cell-type-specific and context-
dependent effects of risk SNPs on downstream gene
expression10–12.

While the tissue or cell type is one context that can affect the
association between a SNP genotype and gene expression, many
other contexts can also be of influence. For the immune system,
for example, exposure to specific pathogens commonly occurs
and the immune response following exposure can create the
environmental context required to change specific interactions
between genetics and downstream gene expression4,13–17. In turn,
these context-specific interactions may explain why exposure to
specific pathogens has been associated with the development of
autoimmune diseases in individuals with a genetic
predisposition18. For example, reovirus can disrupt intestinal
immune homeostasis and initiate a loss of tolerance to gluten in
individuals expressing HLA-DQ2 or HLA-DQ8, leading to celiac
disease19. Another example is the strong indications that enter-
oviral infections in the pancreas, such as with coxsackievirus, in
genetically predisposed individuals may accelerate the develop-
ment of type I diabetes (T1D)20–22. Several T1D-associated risk
genes affect the antiviral response through the regulation of type I
interferon (IFN) signaling23. When the insulin-producing pan-
creatic β cells of genetically predisposed individuals are then
exposed to such viruses, incomplete viral clearance and chronic
infection of these β cells may be the consequence. This could then
induce β cell apoptosis that contributes to the development of
T1D24,25. Overall, it is estimated that 11‒30% of autoimmune risk
loci involve cis-eQTLs in blood, and it is hypothesized that trait-
associated eQTLs have increased context-specificity26–28. Given
this hypothesized context-specificity, it is important to study
eQTLs in a variety of different contexts to determine the possible
effect of the environment on the interplay between genetic var-
iation and gene expression in disease.

This study aims to disentangle the gene expression and gene
regulatory processes that are driven by differences in genetics
and/or pathogen exposures, and that could explain how inter-
individual differences can contribute to disease risk. Moreover, we
show how the properties of scRNA-seq data (i.e., cell- and
context-specific resolution, a high number of cellular observations
per individual) can be employed to disentangle the molecular
mechanisms that underlie the context-specificity of the genetic

regulation. By disentangling these mechanisms, we provide novel
insights into how genetics can contribute to disease risk aiding us
to reduce such risk in the future.

Results
Single-cell profiling of immune cells upon pathogen stimula-
tion. Here we present the 1M-scBloodNL study in which we
performed 10x Genomics scRNA-seq on 120 individuals from the
Northern Netherlands population cohort Lifelines. For each
individual, we sequenced peripheral blood mononuclear cells
(PBMC) in an unstimulated condition and after 3 h and 24 h
in vitro stimulation with C. albicans (CA),M. tuberculosis (MTB),
or P. aeruginosa (PA), totaling ~1.3 million cells (Fig. 1, Sup-
plementary Data 1). A combination of 10x Genomics v2 and v3
chemistry reagents was used to capture an average of 1226 cells
per individual per condition (v2: 907 genes/cell, v3: 1861 genes/
cell) (Supplementary Data 2). Souporcell29 was used to identify
the doublets coming from different individuals, followed by
sample demultiplexing using Demuxlet11. This revealed, on
average, 12.0% of cells as doublets. Due to differences in gene
amplification between v2 and v3 chemistry, determination of
quality control (QC) thresholds and analyses were performed
separately per chemistry (Supplementary Fig. 1a–d). Results from
both chemistries were then meta-analyzed for interpretation.
Low-quality cells were excluded, leaving 928,275 cells in the final
dataset used for analysis (see Methods, Supplementary Data 3).
UMAP dimensionality reduction and KNN-clustering were then
applied to the normalized, integrated count data, allowing the
identification of six main cell types: B, CD4+ T, CD8+ T,
monocytes, natural killer (NK), and dendritic cells (DCs) (Sup-
plementary Fig. 1e–g, Supplementary Data 4), for which the latter
five were further subdivided in two subcell types each: naïve and
memory CD4+ T and CD8+ T cells, classical (cMono) and non-
classical monocytes (ncMono), NKdim and NKbright, myeloid
(mDC), and plasmacytoid DCs (pDC).

Gene expression response upon pathogen stimulation reveals
stronger cell-type-specificity than pathogen-specificity. To
assess the transcriptional changes upon pathogen stimulation
with CA, MTB, and PA, we performed differential expression
(DE) analysis using MAST in each of the major cell types and
their subcell types (Supplementary Data 5)30. For the major cell
types, pairwise comparisons between the untreated and pathogen-
stimulated conditions revealed between 688 and 2022 DE genes
after 3 h stimulation, further increasing from 1052 to 2616 DE
genes after 24 h stimulation (Fig. 2a). The number of DE genes
was comparable between the different pathogen stimulations at
the same timepoint but differed strongly between some cell types.
Myeloid cells (monocytes and DCs) showed the highest number
of DE genes, whereas both CD4+ and CD8+ T cells showed the
fewest DE genes. This is consistent with the innate immune cells
being the first responders during pathogen stimulation31.

A total of 5516 unique DE genes were identified across all
conditions and major cell types, and an additional 1621 DE genes
were identified in the subcell types (Supplementary Data 5). This
indicates that most DE genes can already be identified at the
major cell-type level. However, since the statistical power to
detect such DE effects is correlated with the number of cells
within a subcell type32, likely some of the subcell type specificity
remains undetectable. Of the 5516 DE genes within the major cell
types, 31.1% were cell-type-specific and 15.1% were shared across
all major cell types (Fig. 2b). The fraction of DE genes that were
cell-type-specific was comparable for each of the cell types, but, in
absolute numbers, monocytes and DCs had the most unique DE
genes. Sharing between different pathogen stimulations at the
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same timepoint was more prominent than sharing between
different timepoints within the same pathogen stimulation
(Fig. 2c, Supplementary Fig. 1f): 39.8% of the total unique DE
genes were shared across the same timepoint (7.4% at 3 h and
32.4% at 24 h), whereas only 10.3% of DE genes were unique to a
specific pathogen stimulation and 41.3% were shared across all
stimulation‒timepoint combinations. This indicates that the
immune response to our pathogen stimulations of both bacterial
and fungal origin was more specific to timepoint after stimulation

than to the type of pathogen. Consequently, the genetic control of
these responsive genes is expected to be more time-dependent
than pathogen-dependent.

To evaluate the DE results and confirm proper activation of the
cells upon stimulation, we performed two different analyses. In
the first analysis, we measured the activity of a general
stimulation-responsive pathway—the antigen-processing cross-
presentation pathway (REACTOME R-HSA-1236975)—that
should become activated in each of the cell types and upon each
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of the pathogen stimulations. This analysis revealed increased
activity of the antigen-processing pathway-associated genes
across all cell types after 24 h stimulation and for each of the
pathogens (Fig. 2d). In the second analysis, we focused on DE
genes identified upon 24 h stimulation with CA. We had
previously performed similar analyses in a smaller scRNA-seq
study15, so we could use this study for comparison purposes. This
analysis revealed a high concordance between DE genes in our
current study and those from our previous study, varying from
73% for the monocytes up to 93% for the B cells (Supplementary
Fig. 2). In general, these analyses showed that CA stimulation
resulted in the highest activation of genes associated with the
antigen-processing pathway and that monocytes were the cell
type with the strongest response. These two analyses confirmed
proper activation of the cells and stimulation responses that were
in line with previous literature15,33.

Next, we determined which pathways were enriched within the
upregulated DE genes for each cell type and each pathogen‒
timepoint combination (Supplementary Data 6). In line with the
DE results, most of the enriched pathways were shared across the
different pathogen-stimulation conditions within the same time-
point (Fig. 2e). To highlight relevant pathways involved in
pathogen recognition and downstream immune response, we
filtered the enriched pathways for those related to the ‘Immune
system’ REACTOME pathway parent term. For this illustrative
example, we selected monocytes because this was the cell type in
which we observed the most DE genes (Fig. 2e). Here we observed
a general activation of pathogen-recognition receptors and
downstream signaling, including the C-type lectin and toll-like
receptors. Some pathways, such as interleukin-1 (IL-1) signaling,
were clearly enriched at a specific timepoint (3 h stimulation),
whereas others, such as the IFN pathway, showed a notable
difference between different pathogen stimulations (more promi-
nently activated in CA compared to the other two pathogens).
These findings corroborate literature describing IFN as an
important signaling pathway in response to all three
pathogens33–35 and that IL-1 family molecules are part of the
early stages (<14 h) of the inflammatory response in monocytes
with their expression decreasing again in later stages36.

For the subcell types, we were mainly interested in those
pathways that were differentially activated upon pathogen
stimulation between the two subcell types of each major cell
type. For this, we visualized the top 10 most enriched pathways
with the largest difference in significance between both subcell
types (Supplementary Fig. 3). This revealed that most pathways
were enriched in both subtypes, but that the relative activation
could differ. For example, several pathways associated with
interferon signaling were more significantly enriched in the
ncMono as opposed to the cMono (Supplementary Fig. 3,
Supplementary Data 6).

The number of eQTLs decreases in cells with a stronger sti-
mulation response. Our experimental setup, in which we ana-
lyzed pathogen-stimulated PBMCs using scRNA-seq, allowed us
to investigate the extent to which SNPs affect gene expression in
different contexts. To maximize the power to detect eQTLs, we
took advantage of a previously conducted genome-wide cis-eQTL
meta-analysis in 31,684 whole-blood bulk samples (eQTLGen37)
by only testing their top SNP‒gene combinations, i.e., lead-eSNPs.
Due to the power of eQTLGen, they could identify even cis-eQTL
effects with a small effect size. We therefore expected that many
of the context-specific effects, to which only a subset of indivi-
duals or cell types might have been exposed, should have resulted
in an eQTL effect identified in eQTLGen. However, compared to
the eQTLGen bulk whole-blood dataset, our pathogen-stimulated

scRNA-seq data have the additional benefit that it can identify the
cell types and contexts in which these eQTL effects manifest
themselves.

We performed the eQTLGen lead-eSNP cis-eQTL discovery
analysis per cell type and for each stimulation‒timepoint
combination separately (Supplementary Data 7). When deter-
mining the concordance between eQTLGen’s bulk whole-blood
eQTLs and those identified in our study, we observed that the
concordance was high in general despite the compositional
differences between whole blood and the PBMCs or cells in this
study that were pathogen-stimulated. As expected, we obtained
the highest concordance (95.5%) with eQTLGen when compared
to our bulk-like unstimulated PBMC scRNA-seq data, i.e., taking
the average gene expression across all cells from one individual in
the untreated condition (Fig. 3a). We then saw only a minor drop
to 94.7% concordance when comparing eQTLs from eQTLGen
with our pathogen-stimulated (24 h CA) bulk-like scRNA-seq
dataset (Fig. 3b) and a further decrease to 92.6% when compared
to our pathogen-stimulated and cell-type-specific scRNA-seq
dataset (24 h CA in monocytes) (Fig. 3c). Finally, to verify that
our initial selection of eQTLGen lead-eSNPs did not confound
our conclusions, we also compared the output of a genome-wide
cis-eQTL discovery (Supplementary Data 8) in pathogen-
stimulated and cell-type-specific scRNA-seq data (24 h CA in
monocytes) with eQTLGen. In this analysis, the concordance
decreased a little bit further to 87.4% (Fig. 3d). Although up to
19.6% of the eQTLs were only detected in the genome-wide
discovery (and not in the eQTLGen lead-eSNP-confined cis-
eQTL discovery), these unique cis-eQTL gene sets were not
enriched for specific biological pathways. Altogether, this
indicated that the eQTLGen lead-eSNP confinement only had a
minimal impact on our observations and confirmed our initial
assumption that the majority of context-specific eQTLs identified
by our current study can already be detected in very large bulk
RNA-seq datasets. However, we still require single-cell data to
pinpoint their relevant context. As the eQTLGen lead-eSNP cis-
eQTL analysis identified 1.5× more eQTLs, while showing no
clear bias towards common eQTLs rather than cell-type-specific
or context-dependent eQTLs (Supplementary Fig. 4a), we
continued our analysis with these results.

The CD4+ T cells revealed the most eQTL effects, followed by
the monocytes and CD8+ T cells (Supplementary Fig. 4a). The
cell types with the lowest frequencies, the DCs and B cells, also
showed the lowest number of eQTLs (Supplementary Fig. 4b).
This large difference in the number of identified eQTLs per cell
type is, at least in part, explained by the difference in power, given
the number of cells of each cell type (Supplementary Fig. 1g).
When overlapping the identified eQTL genes in the major cell
types with each of their two subcell types (overall stimulation-
timepoint combinations combined), we observed that the
majority of eQTL genes identified in the subcell types were
already detected in the corresponding major cell type (Supple-
mentary Fig. 4c). Nevertheless, 4.6% (for the NKdim) up to 24.5%
(for the pDCs) additional eQTL genes were uniquely identified in
such a subcell type.

In addition to differences between cell types, we also observed
differences between stimulation‒timepoint combinations (Sup-
plementary Fig. 4d). However, direct comparisons of the number
of eQTLs between conditions within the same cell type were
complicated because the number of included individuals varied
among the stimulation‒timepoint combinations as a result of QC
dropouts (UT: 104 individuals, 3 h CA: 120 individuals, 3 h MTB:
104 individuals, 3 h PA: 112 individuals, 24 h CA: 119 individuals,
24 h MTB: 112 individuals, 24 h PA: 111 individuals). Most
interestingly, when comparing the effect of pathogen stimulation
on the number of identified eQTLs between cell types, we
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observed an inverse correlation with the responsiveness of that
cell type to pathogen stimulation (Supplementary Fig. 4e). For
example, the myeloid cells showed the largest DE response upon
pathogen stimulation (Fig. 2a) but a consistent reduction in the
number of eQTLs identified after stimulation (Supplementary
Fig. 4a). In contrast, the lymphoid cells showed a much smaller
DE response upon pathogen stimulation (Fig. 2a) but an increase
in the number of eQTLs identified after stimulation, in about half
of the conditions (Supplementary Fig. 4a). This could indicate

that, for at least a subset of the genes, the influence of genetics on
gene expression may become more restricted when cells have to
orchestrate a response to an environmental stimulus38.

To identify eQTLs for which the strength of the eQTL effect
was affected by pathogen stimulation, we performed a response-
QTL (re-QTL) analysis39. We systematically looked for re-QTLs
in all major cell types and stimulation conditions compared to the
untreated condition (Supplementary Data 9). Most re-QTLs were
specific to a particular timepoint or cell type, but less so to a
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particular pathogen (Fig. 3e). We observed that most re-QTLs
were in the monocytes for each of the stimulation‒timepoint
combinations (Supplementary Fig. 4a), likely the direct conse-
quence of the combination of a high number of DE genes upon
stimulation (Fig. 2a) and the relatively high number of monocytes
per individual (Supplementary Fig. 1g). We also observed that
most re-QTLs describe eQTL effects that became weaker after
stimulation (Fig. 3f). Of those eQTL effects that became stronger
after stimulation, 26.3% on average showed a significant effect
that was already present in the unstimulated samples, whereas
those effects were not yet present for 63.7%. Moreover, we
observed clear enrichment of DE genes within the set of eQTL
and re-QTL genes, but this enrichment was not consistently
greater for re-QTL in comparison to eQTL genes (Supplementary
Fig. 4f).

Finally, when linking the eSNP loci identified in each of the
major cell types to GWAS output of immune-mediated diseases
(see Methods), we observed strong genomic inflation across all
conditions (Supplementary Data 10). This genomic inflation
increased further for the re-QTLs (in monocytes across all
immune-mediated GWASes: p= 0.024) (Supplementary Data 10).
These findings confirmed previous studies showing that
stimulation-responsive eQTL effects provide additional explana-
tion of immune-mediated disease risk over baseline eQTLs4,40.
Additionally, it has been shown that the effect size of GWAS-
associated SNPs becomes larger in the disease-relevant context
(e.g., immune-mediated disease patients as opposed to the healthy
controls)41. Therefore, also the power to detect these disease-
associated effects will be larger in the disease-relevant context.

In summary, we observed that 20.9% of our eQTL genes that
were identified in the major cell types were influenced by a
combination of genetics and environment (Supplementary Data 7,
Supplementary Data 9). We expect this percentage is under-
estimated, as the power to detect re-QTLs is inherently lower than
that of eQTLs, and exposure to additional environmental stimuli
may reveal additional context-dependency. Altogether, our
findings indicate that in addition to cell-type specificity,
context-dependency is also a major driver of genetic regulation
of gene expression and provides an additional explanation of
disease risk.

Pathogen stimulation induces widespread context-specific gene
regulation. We have previously shown that genetics can influence
the co-expression relationship between genes and that scRNA-seq
data are uniquely suitable to do so by taking the individual cells
per cell type per donor as observations over which the individual-
specific co-expression is calculated12. In contrast, bulk RNA-seq
data usually contain a single measurement per donor, and
therefore, co-expression in bulk data cannot be calculated at the
individual level. As a consequence, the co-expression between two
genes as calculated from bulk RNA-seq data may be different

from the true individual-specific co-expression relationship as
extracted from scRNA-seq data (due to Simpson’s paradox42).

In addition, studies that compared co-expression in healthy
versus disease states have indicated that environmental condi-
tions may also impact this gene‒gene interactions43. Here, we
took the next step by determining whether and how the
combination of genetics and environment may affect how genes
are interacting with one another by performing co-expression
QTL analysis, i.e., a SNP genotype affecting the co-expression
relationship of a gene pair. For this purpose, we selected a subset
of 49 SNP‒gene combinations that we then tested against up to
5772 genes. To enrich for SNP‒gene combinations in which we
expect an interaction with the environment, we selected these
based on: (1) the gene being DE and (2) the SNP‒gene
combination being a re-QTL in at least one of the stimulation‒
timepoint combinations; (3) the gene being expressed in at least
50% of the individuals (in each 10x chemistry). For this analysis,
we focused solely on the monocytes because this was the cell type
that showed a strong response to pathogen stimulations and for
which we had sufficient cells per individual (i.e., hundreds) to
perform a robust co-expression QTL analysis44. By making this
pre-selection of 49 SNP‒gene combinations, we could reduce the
multiple testing burden from over 1014 in a genome-wide analysis
to fewer than 283,000 tests.

Across the unstimulated condition and each of the six
stimulation‒timepoint combinations, we found at least one co-
expression QTL for 35 SNP‒gene combinations and more than
100 co-expression QTLs in at least one condition for 9 SNP‒
gene combinations. For each of these 9 SNP‒gene combinations
with a high number of co-expression QTLs, we observed an
interaction between genotype and stimulation condition
(Fig. 4a, Supplementary Data 11). One of these co-expression
QTLs described an interaction between RPS26 and rs1131017,
which was an effect in high linkage disequilibrium(LD) with
one we had identified as a co-expression QTL in CD4+ T cells
in our previous study (rs7297175, R2= 0.92)12. rs1131017
was previously associated with rheumatoid arthritis45

(p= 1.3 × 10−8) and is in high LD with a type I diabetes
GWAS SNP46 (rs11171739, R2= 0.94). For this RPS26‒
rs1131017 SNP combination, we found 1701 co-expression
QTLs in the unstimulated condition. Of the 106 RPS26 co-
expression QTLs that we had previously identified in
CD4+ T cells12, 72 (67.9%) were also found in the unstimulated
monocytes in our current study (91.7% with the same allelic
direction) (Supplementary Fig. 5a). Any discrepancy between
these two cell types might be the consequence of distinct
regulatory mechanisms that are active in those cell types. Next,
looking at the effect of stimulation, the number and strength of
the detected RPS26 co-expression QTLs reduced greatly after
stimulation and were related to the duration of stimulation:
on average we observed 459 co-expression QTLs after 3 h

Fig. 3 eQTLs and re-QTLs upon pathogen stimulation. Concordance between the eQTLs identified in 31,684 bulk whole-blood samples of the eQTLGen
consortium and: a those identified in our eQTLGen lead-eSNP discovery of bulk-like unstimulated PBMC scRNA-seq data, (b) those identified in our
eQTLGen lead-eSNP discovery of bulk-like 24 h C. albicans (CA)-stimulated PBMC scRNA-seq data, (c) those identified in our eQTLGen lead-eSNP
discovery of monocyte 24 h CA-stimulated PBMC scRNA-seq data, and (d) those identified in our genome-wide eQTL discovery of monocyte 24 h CA-
stimulated PBMC scRNA-seq data. e Boxplots showing the effect of the rs4147638 genotype on SMDT1 expression in the untreated (UT) condition and
each of the six stimulation‒timepoint combinations in the monocytes (left) or for the UT and 24 h CA condition in the CD4+ T cells (right). Boxplots show
median, first and third quartiles, and 1.5× the interquartile range, and each dot represents the average expression of all cells per cell type and individual.
Stars indicate a significant effect (FDR < 0.001). The log ratio of SMDT1 expression in the UT cells vs a specific stimulation-timepoint combination is shown
in the bottom. Colored arrows indicate which specific stimulation‒timepoint combination was selected for the corresponding re-QTL boxplot. f The
proportion of re-QTLs of which the eQTL effect became weaker after stimulation, split per cell type and stimulation‒timepoint combination. eQTL summary
statistics for eQTLGen-confined analysis, genome-wide analysis and response-QTL analysis can be found in Supplementary Data 7, Supplementary Data 8,
and Supplementary Data 9, respectively. The number of individuals and cells included in each analysis can be found in the Source Data file.
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stimulation and 112 after 24 h stimulation (Fig. 4a, Supple-
mentary Fig. 5b).

We also observed this general decrease in the strength and
number of co-expression QTLs with increasing duration of
pathogen stimulation for the HLA-DQA2 co-expression QTLs,
but not for any of the other 7 SNP‒gene combinations (Fig. 4a).

These other seven co-expression QTL effects increased in strength
and number upon stimulation (Fig. 4a, Supplementary Data 11).
Interestingly, for some of these co-expression QTL genes, we
observed the most prominent increase at 3 h stimulation (i.e.,
CLEC12A, CTSC, and NDUFA12), whereas others were more
prominent at 24 h stimulation (i.e., TMEM176A/B, DNAJC15,
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and HLADQA1). The observation of different numbers of co-
expression QTLs for a specific gene over the seven stimulation‒
timepoint combinations was not fully explained by the expression
level of that gene. Beyond this variation over the timepoints, we
also observed clear differences between the various pathogen
stimulations. At gene level, there was little overlap between the
co-expressed gene sets between the different pathogen stimula-
tions (Supplementary Data 11), whereas this overlap was much
larger at pathway level (Supplementary Fig. 5). The low gene-level
overlap is likely a consequence of power and is something that
will be largely overcome in the near future with the increase in the
number of cells per dataset47,48. Together, these results indicate
that specific environmental conditions can fulfill the requirements
needed for a specific co-expression QTL interaction to occur.

Previously, re-QTL analyses in cells exposed to highly specific
stimuli were used to disentangle the environmental conditions
that underlie specific genetic regulation of gene expression4,16.
However, this has the disadvantage that either many highly
specific stimuli have to be applied, or, in the case of applying
broad stimuli, the exact environmental context relevant for the
interaction remains vague. Here, we propose using co-expression
QTL analysis upon stimulation with a few broad stimuli to gain
this detailed insight in a more unbiased way, without the need to
apply many highly specific stimuli. As a first example of how co-
expression QTL analysis can help us understand the underlying
mechanisms of gene regulation, we focused on the CLEC12A co-
expression QTLs affected by SNP rs12230244, which were most
prominent at 3 h of pathogen stimulation (Fig. 4a, b). CLEC12A,
also known as MICL, encodes for an inhibitory C-type lectin-like
receptor and is mostly expressed in myeloid cells such as
monocytes and DCs. CLEC12A signaling can be activated by the
binding of uric acid crystals, which are the byproduct of nucleic
acids that can be released from damaged or dying cells49,50.
Activation of CLEC12A signaling can result in inhibition of the
activating C-type lectin receptors and can prevent hyperinflam-
mation during necrosis51.

To identify the potential causal factor underlying the CLEC12A
co-expression QTL, we performed a pathway analysis on the
associated co-expressed gene set of each of the stimulation‒
timepoint combinations. We hypothesized that co-expressed
genes linked to the same co-expression QTL mostly describe the
same (or only a few) biological processes that are driven by a
single (or a few) causal factors being directly involved, and that
most of these co-expressed genes are themselves just a
consequence of being highly co-expressed with the causal factor.
An important category of causal factors is transcription factors.
However, average expression levels of transcription factors are
generally low and, particularly in dynamic situations such as a
pathogen response, mRNA levels might not correlate well with
the nuclear protein expression levels (i.e., the functional
proportion)52,53. Consequently, it can be difficult to define the
direct causal factor solely using co-expression QTL analysis.
Nevertheless, we expected that by taking a pathway-level view, the
downstream genes of transcription factors would have a high
correlation with the functional protein level of the transcription
factor and would be more easily picked up than a single gene.

The pathway analysis of the CLEC12A genotype-dependent co-
expressed gene set after 3 h stimulation (Benjamini-Hochberg
(BH) corrected p= 2.9 × 10−5, 8.7 × 10−7, and 4.3 × 10−4 for 3 h
CA, 3 h PA, and 3 h MTB, respectively), but not in the untreated
or 24 h stimulation conditions, revealed enrichment of the IFN
pathway (Fig. 4c). This result hinted that a component within or
regulating the IFN pathway could be the causal factor that is
regulating the different CLEC12A co-expression responses per
genotype after 3 h stimulation. To provide additional support for
this hypothesis, we performed a functional enrichment analysis
for putative transcription factor binding sites (TFBSs) (TRANS-
FAC database54) on the CLEC12A genotype-dependent co-
expressed genes upon 3 h stimulation. We divided this gene set
into a subset in which individuals with the TT as opposed to the
AA genotype showed a more positive rather than a more negative
co-expression relationship between CLEC12A and its co-

Fig. 4 Interferon regulatory factor affects CLEC12A co-expression QTLs upon 3 h pathogen stimulation in monocytes. a Number of co-expression QTLs
identified in each of the stimulation‒timepoint combinations for those co-expression QTLs with over 100 co-expression QTLs in at least one condition. The
3 h and 24 h timepoint are colored by pathogen stimulation (green: C. albicans (CA), blue: M. tuberculosis (MTB), orange: P. aeruginosa (PA). Co-expression
QTL summary statistics can be found in Supplementary Data 11. b The lines in the top plots show co-expression between CLEC12A and PML (most
significant co-expression QTL across the 3 h stimulation conditions) for individual cells in the untreated (left), 3 h CA (middle) and 24 h CA (right)
condition. In these plots, individual-specific regression lines are shown, split by genotype. The average genotype-specific regression lines are shown in
black. The bottom boxplots depict Spearman’s rank correlation between CLEC12A and PML expression, stratified by SNP rs12230244 genotype in the
monocytes per individual, in the untreated (left), 3 h CA (middle) and 24 h CA (right) stimulated cells (the V2 chemistry data is plotted). Each data point
shows a single individual. Boxplots show median, first and third quartiles, and 1.5× the interquartile range. c Heatmap of the top-5 enriched pathways within
the co-expressed CLEC12A co-eQTL genes per stimulation‒timepoint combination. Per combination, pathways are ranked based on significance. White
indicates that the pathway was not found to be enriched in that specific stimulation‒timepoint combination. The green box highlights pathways that are
associated with all 3 h stimulation conditions. d Top 10 enriched putative transcription factor binding sites within the CLEC12A co-expression QTL genes
that: (1) showed a more positive strength of the co-expression relationship in individuals with the TT as opposed to the AA genotype and (2) were
identified in the 3 h stimulated (outer join) monocytes using the TRANSFAC database. Enrichment of putative transcription factor binding sites was defined
using a g:SCS multiple testing correction method, applying a significance threshold of 0.05. e Co-expression QTL analysis for CLEC12A-SNP rs12230244
against the SLE polygenic risk score (PRS) (calculated using those SLE GWAS SNPs with a P-value threshold of <5 × 10−8) using whole-blood bulk
expression data from 3553 individuals (BIOS consortium). A one-tailed F-test (coefficient=0.04, standard error=0.01, f-value= 19.60, p-value= 9.84 × 10−6,
R2=0.84) was used to determine whether the distribution of the squared residuals with the SLE PRS as interaction term was significantly smaller than without.
f Proposed mechanism of action of CLEC12A co-expression QTLs. When pathogen-associated molecular patterns bind to a pattern recognition receptor (PRR),
a signaling cascade is initiated that eventually results in phosphorylation of interferon regulatory factors (IRFs). Phosphorylated IRF then translocates to the
nucleus, where it binds to specific DNA motifs such as IFN-stimulated response elements. This can then activate transcription of IFNs and IFN-stimulated genes
(ISGs). Additionally, IRF is expected to bind to a region containing SNP rs12230244 (or any another SNP in high LD), thereby regulating CLEC12A expression. In
this case, depending on the SNP genotype, the IRF binding and activation of CLEC12A expression is expected to be stronger (TT genotype) or weaker
(AA genotype). Many of the identified CLEC12A co-expression QTL genes are involved in the IFN pathway (see panel b). This has to be the result of a common
upstream factor (i.e., IRF) of CLEC12A transcription that can also activate IFNs and ISGs, but cannot be the result of a downstream regulator because this would
have led to trans-eQTL effects for the same SNP rs12230244 (which we do not observe). The number of individuals and cells included in each analysis can be
found in the Source Data file.
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expressed genes, as potentially different mechanisms could be
underlying these gene sets. This analysis revealed no enriched
TFBSs in the negative-strength gene set, but a clear enrichment of
various IFN regulatory factors (IRFs) in the positive-strength
gene set, including IRF1, 2, 4, 5, 7, and 8 (Fig. 4d). Additionally,
when overlapping the CLEC12A co-expression QTL SNP
rs12230244 and its accompanying (near-)perfect LD SNPs with
putative TFBSs55, we observed several transcription factors that
may bind to the genomic location of these SNPs. Most notably,
the predicted binding site of IRF1 was shown to be enriched in
the genomic location of two SNPs that are in near-perfect LD
with the CLEC12A co-expression QTL SNP: rs999185
(R2= 0.9943) and rs57106602 (R2= 0.9).

Finally, we used two external datasets and slightly different
approaches to further strengthen our hypothesis that IFN activity
is regulating the CLEC12A co-expression QTL effects. First, we
used the BIOS consortium bulk RNA-seq dataset containing
whole-blood data from 3553 individuals56. For each of those
individuals, we calculated a polygenic risk score (PRS) for the
autoimmune disease systemic lupus erythematosus (SLE), a
disease characterized by increased type I IFN activity57–60. We
reasoned that the genetic risk captured by the SLE PRS could be
used as a proxy for IFN activity. Consequently, the difference in
the co-expression relationship between the SLE PRS and the
CLEC12A per rs12230244 genotype indicated the involvement of
IFN signaling in this interaction (Fig. 4e). Second, we used an
independent scRNA-seq dataset generated in 68 healthy controls
and 117 SLE patients of European (EUR) and East Asian (EAS)
origin61. We reasoned that since IFN activity is characteristic for
SLE57–60, SLE patients would mimic the 3 h pathogen-stimulation
state in which high IFN activity seems to drive the observed
CLEC12A co-expression QTL effects. We also reasoned that the
healthy controls would mimic the untreated cells in our study and
therefore show fewer CLEC12A co-expression QTL effects driven
by IFN activity. To define whether the SLE patients mimicked the
results as observed after 3 h pathogen stimulation, we performed
a co-expression QTL analysis for CLEC12A and SNP rs12230244
in the monocytes of SLE patients and healthy controls
(Supplementary Data 12). Pathway analysis on the CLEC12A
co-expression QTL genes revealed stronger enrichment for the
IFN pathway in the SLE patients (FDR= 1.965 × 10−7) compared
to the healthy controls (FDR= 1.203 × 10−3), again supporting
that this pathway is involved in the regulation of CLEC12A
through the locus with the rs12230244 SNP.

As a second example, we applied a similar strategy to learn the
underlying regulatory mechanism by which the co-expression
QTLs identified for SNP rs6945636 affect the heat-shock protein
response gene ZFAND2A. The heat-shock protein response is a
pathway that, among others, can be activated by bacterial and
viral infections62. We selected this specific SNP‒gene combina-
tion for further analysis because the co-expression QTLs
identified were both pathogen- and timepoint-specific (only at
the 24 h timepoint, 96% of the genes being detected in CA only).
Pathway analysis of the co-expressed genes revealed ‘Intracellular
pH reduction’ (GO:0051452) as the top associated biological
process (adjusted p= 3.8 × 10−4). Interestingly, HSF1, a known
regulator of ZFAND2A63 was shown to be pH sensitive in yeast64.
Moreover, the ZFAND2A-associated co-expression QTL SNP
rs6945636 was in almost perfect LD with previously identified
HSF1 binding sites in K562 cells (R2= 0.99, rs715188378;
R2= 0.99, rs79849558; R2= 0.99, rs11767061, retrieved from
dbSNP release 153)65. Together, this indicates that CA-induced
pH regulation activated HSF1, which in turn bound with stronger
(TT genotype) or weaker (AA genotype) strength to rs6945636
SNP locus, and thereby strongly or weakly activated ZFAND2A,
respectively.

These two examples provide clear use cases for how co-
expression QTL analysis can be applied to gain detailed insights
into the underlying context of gene expression regulation. For
example, in the case of CLEC12A, without co-expression QTL
analysis we could only reveal that CLEC12A is a re-QTL regulated
by a factor active 3 h downstream of pathogen stimulation
(Supplementary Data 9). In contrast, using co-expression QTL
analysis, we were directed to the causal regulatory factor for this
re-QTL. This enabled follow-up analyses that gathered solid
evidence for the following mechanism of action through which
the rs12230244 SNP locus affects CLEC12A expression specifi-
cally upon 3 h pathogen stimulation: (1) pathogen-associated
molecular patterns bind to a pattern recognition receptor (PRR)
and initiate a signaling cascade that eventually results in
phosphorylation of interferon regulatory factors (IRFs), (2)
phosphorylated IRF then translocates to the nucleus where it
binds to specific DNA motifs such as IFN-stimulated response
elements, and 3. this can then activate transcription of IFNs and
IFN-stimulated genes (ISGs). Additionally, IRF is expected to
bind to a region containing SNP rs12230244 (or any other SNP in
high LD), thereby regulating CLEC12A expression. In this case,
depending on the SNP genotype, the IRF binding and induction
of CLEC12A expression is expected to be stronger (TT genotype)
or weaker (AA genotype) (Fig. 4f).

Interestingly, we identified a number of (near-)genome-wide
significant PheWAS traits related to immune cell composition
and size to be associated with these two co-expression QTL loci
(extracted from 452,264 White British individuals of the UK
Biobank66): platelet counts (p= 2.1 × 10−8), monocyte percen-
tage (p= 1.8 × 10−5) and eosinophil counts (p= 6.4 × 10−5) for
CLEC12A and mean corpuscular volume (p= 1.5 × 10−14) and
mean sphered cell volume (p= 2.6 × 10−9) for ZFAND2A.
However, no direct association was found for any of the
immune-related GWAS tested (SLE67, inflammatory bowel
disease68, celiac disease69, rheumatoid arthritis45, multiple
sclerosis70, type I diabetes mellitus71, and candidemia72, which
had 10–2541-fold smaller sample sizes than the PheWAS. This
overlap with immune-related PheWAS traits indicates the
relevance of these SNPs for immune function.

Moreover, looking at the function of the affected genes, we also
expect immunological consequences of the identified co-
expression QTLs. For example, previously CLEC12A was shown
to act as an early adaptor molecule for antibacterial autophagy,
and in mice, complete knockout of Clec12a resulted in higher
susceptibility to Salmonella infection73. Additionally, CLEC12A is
known to contribute to the pathogenesis of rheumatoid arthritis.
For example, upon collagen-induced arthritis, CLEC12A knock-
down mice show increased joint inflammation74, and in
monocytes of early rheumatoid arthritis patients reduced
expression of CLEC12A correlated with more severe disease
6 months later75. Together, this suggests that individuals with the
AA allele on rs12230244 may be at increased risk of bacterial
infection and of developing joint inflammation, acting through
reduced induction of CLEC12A expression when exposed to
pathogens or other factors inducing IFN signaling.

Summarized, using co-expression QTL analysis, we can now
dissect the underlying mechanism by which such an effect is
regulated. This information will help explain the downstream
consequences on immune function, and potentially enable new
routes for medical intervention.

Discussion
GWAS studies have provided important insights into the genetic
architecture of phenotypic traits and diseases1. However, the
exact mechanisms by which genetic variation leads to these traits
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or diseases largely remain a black box. To uncover these
mechanisms, various approaches have been successfully applied,
for example coupling the trait-associated risk factor to the nearest
positional gene76, downstream gene expression56, or gene
regulation12. Nevertheless, a large knowledge gap remains that
may, in part, be filled by taking into consideration the context in
which the genetic variant can lead to disease7,16,17.

To uncover the interplay between genetics and cellular and
environmental context, we single-cell RNA-sequenced PBMCs
from 120 individuals from Lifelines, a large population-based
cohort from the Northern Netherlands, that had been exposed to
various pathogens or left untreated. Subsequent DE, eQTL, and
co-expression QTL analysis revealed that there are widespread
interactions between an individual’s genetics and the cellular and
environmental context, both at the level of gene expression and in
its regulation. We identified hundreds of eQTLs in the individual
cell types and upon pathogen stimulation and observed strong
context-specificity for 25.7% of the identified co-expression QTLs.
In general, we observe more interactions between genetics and
cell-type-specific context, as opposed to context induced by
pathogen stimulation. However, some of these differences may
have been the result of differences in detection power. Contrary to
expectations, in the cell types with the strongest response to
pathogen stimulation (i.e., the myeloid cells), the total number of
eQTLs were reduced after stimulation. Moreover, in all cell types,
we observed that eQTLs more often became weaker rather than
stronger after stimulation and that neither category of eQTL
genes was associated with a specific pathway. In contrast, for the
co-expression QTL genes, the number of co-expressed genes
more often increased upon pathogen stimulation. However, this
might in part have been the result of our selection, i.e., choosing
re-QTLs in monocytes as the starting point for the co-expression
QTL mapping. Moreover, we observed genomic inflation of
eQTLs that further increased when focusing solely on the re-
QTLs. Altogether, these observations indicate that context, here
the pathogen-stimulation condition, is an important contributor
that affects the association between SNPs and gene expression or
co-expression, and that taking this context in consideration fur-
ther improves our understanding of disease risk.

A major advantage of co-expression QTL analysis, as opposed
to re-QTL analysis, is that we do not require many highly specific
stimuli to disentangle the mechanisms that underlie the context-
specificity of the genetic regulation. Instead, in this study, we have
shown that, after applying a broad stimulation (i.e., whole-
pathogen stimulation), a wide range of contexts are activated, and
that, through subsequent co-expression QTL analysis, the specific
context and mechanism of action could be uncovered. For
example, we revealed that an interferon-regulated transcription
factor was affecting the SNP rs12230244‒dependent downstream
activation of CLEC12A. Additionally, we showed how pH-
dependent regulation of the heat-shock protein response tran-
scription factor HSF1 affected the SNP rs6945636‒dependent
downstream activation of ZFAND2A. Even though the causal
SNP cannot be conclusively determined using co-expression QTL
analysis, understanding the underlying mechanism can help to
further fine-map the genetic signal. These examples clearly show
the potential of the technology and provide an outlook into where
the field will be moving as more population-scale scRNA-seq
datasets become available. We foresee that newly developed
methodology, such as inCITE-seq53 and NEAT-seq77, combining
measurements of multiple omics layers from the same cell,
including RNA and nuclear protein levels (which allows mea-
suring active transcription factors levels), will further enhance the
interpretability of the identified co-expression QTLs in the future.

Importantly, this study was conducted on European indivi-
duals with a white background. Although we do not expect

general conclusions to be different in other populations, it may be
that the upstream regulators or downstream consequences of
some of the specific genetic variants act differently across popu-
lations. Moreover, as the infection history with the three patho-
gens understudy is unknown for the individuals included in our
study, there is a small chance that this may have introduced
additional noise or confounding in our analyses.

In the last few years, scRNA-seq has become a mature, high-
throughput technology8,9. This has led to several initiatives
aiming to study population genetics at single-cell resolution, such
as the sc-eQTLGen consortium47 and others78. Such efforts bring
together many single-cell eQTL studies, conducted on individuals
from different ethnicities and exposed to different environments
or diseases. This will not only increase the power to detect eQTLs
and co-expression QTLs, it will also further extend our findings to
additional contexts and enable genome-wide cell-type and
context-specific trans-eQTL mapping. Moreover, instead of
linking individual genetic variants, linking polygenic risk scores
to cell-type-specific gene expression (i.e., eQTS analysis37) may
provide a more disease-focused insight into how the combination
of disease-associated variants together contributes to changes in
gene expression levels. By integrating GWAS signals, PRSes, and
context-specific QTL information, we expect that these efforts can
drive major leaps forward in disease understanding and precision
medicine79.

Methods
Ethics approval and informed consent. The LifeLines DEEP study was approved
by the ethics committee of the University Medical Centre Groningen, document
number METC UMCG LLDEEP: M12.113965. All participants signed informed
consent from prior to study enrollment. All procedures performed in studies
involving human participants were in accordance with the ethical standards of the
institutional and/or national research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards.

PBMC collection and stimulations. Whole blood from 120 European white
background individuals of the northern Netherlands population cohort Lifelines
Deep80 was drawn into EDTA-vacutainers (BD). PBMCs were isolated and
maintained, as previously described12. In short, PBMCs were isolated using Cell
Preparation Tubes with sodium heparin (BD) and were cryopreserved until use in
RPMI1640 containing 40% FCS and 10% DMSO. After thawing and a 1 h resting
period, unstimulated cells were washed twice in a medium supplemented with
0.04% BSA and directly processed for scRNA-seq. In contrast, for stimulation
experiments, 5 × 105 cells were seeded in a nucleon sphere 96-well round-bottom
plate in 200 μl RPMI1640 supplemented with 50 μg/mL gentamicin, 2 mM L-glu-
tamine, and 1 mM pyruvate. Then, in vitro stimulations were applied for either 3 h
or 24 h using 1 × 106 CFU/ml heat-killed C. albicans blastoconidia (strain ATCC
MYA-3573, UC 820), 50 μg/ml heat-killed M. tuberculosis (strain H37Ra, Invivo-
gen) or 1 × 107 heat-killed P. aeruginosa (Invivogen) while incubating the cells at
37 °C in a 5% CO2 incubator. After stimulations, cells were washed twice in a
medium supplemented with 0.04% BSA. Cells were then counted using a hemo-
cytometer, and cell viability was assessed by Trypan Blue.

Single-cell library preparation and sequencing. 105 sample pools were prepared,
each aimed to yield 1400 cells/individual from eight individuals (11,200 cells). In
general, pools contained a mixture of both sexes and two different stimulation
conditions. Each sample pool was loaded into a different lane of a 10× chip (Single
Cell A Chip Kit for v2 or Single Cell B Chip Kit for v3 reagents). The 10x
Chromium controller (10x Genomics), in combination with v2 (72 libraries) or v3
(33 libraries) reagents, was used to capture the single cells and generate sequencing
libraries, according to the manufacturer’s instructions (document CG00052 and
CG000183 for v2 and v3, respectively) and as previously described12. Sequencing
was performed with a 150 bp paired-end kit using a custom program (V2: 27-9-0-
150, V3: 28-8-0-150) on the Illumina NovaSeq 6000 at BGI (Hong Kong).

scRNA-seq alignment, preprocessing, and QC. CellRanger v3.0.2 was used with
default parameters to demultiplex, generate FASTQ files, align reads to the hg19
reference genome, filter both cell- and unique molecular identifier (UMI) barcodes,
and count gene expression per cell. To assign cells to one of the eight individuals in
a lane, Demuxlet was used11. The genotype information used by Demuxlet was
previously generated as described in Tigchelaar et al.80 and was phased with Eagle
v2.322 using the HRC reference panel and the Michigan Imputation Server. Only
exonic variants with a MAF of at least 0.02 were used for demultiplexing.
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Subsequently, Souporcell v1.029 was used to remove doublets coming from dif-
ferent individuals, by looking for the different genotypes within a single-cell
assignment. We limited the SNP calling to positions that were also used for
demultiplexing.

Version 3.1 of the Seurat81 package was used for further quality control and
processing. Due to mRNA capture differences between the v2 and v3 chemistries, a
version-chemistry-specific maximum mitochondrial gene content percentage of 8%
and 15% was used, respectively. Cells with less than 200 detected genes were
discarded, as well as cells with more than 9 UMIs mapping to the hemoglobin
subunit beta (HBB) gene (representing red blood cells), and other low-quality cells
(i.e., clusters of cells with a low number of expressed genes and a relatively high
mitochondrial content, or missed, likely same-individual, doublets)
(Supplementary Data 3).

For annotating the cell types, we first log-normalized the count matrices for
each of the seven timepoint-stimulation conditions and two chemistries separately
using Seurat’s LogNormalize function (scale.factor= 10,000)81. The log-
normalized count matrices of the unstimulated data were then integrated separately
for each of the three pathogen stimulations. For this, we used the first 30
dimensions from a Canonical Correlation Analysis to identify integration anchors
in Seurat’s FindIntegrationAnchors function. These anchors were then used for
integration using Seurat’s IntegrateData function81. We performed principal
component analysis (PCA) and selected the first 30 principal components to
identify the cell clusters using k-nearest neighbor clustering and visualized this in
UMAP space (using the default settings). Cell types were assigned to each cluster
based on marker gene expression, resulting in a set of six major cell types and ten
subcell types (Supplementary Fig. 1B, Supplementary Data 4). A small fraction of
the cells could not be classified at higher resolution, and therefore, where omitted
from the subcell type analyses (Source Data file). For each version chemistry, gene
expression counts were then SCT normalized using Seurat’s SCTransform function,
and cell-type labels obtained from the integrated data were transferred to non-
integrated data (Fig. 1A), to preserve the stimulation response at the gene
expression level.

Differential expression: mapping, pathway enrichment, and module scoring.
For each pathogen‒timepoint combination, major and subcell type and 10x
chemistry, differential expression (DE) analyses were performed between the
pathogen-stimulated and the untreated condition using the MAST implementation
of Seurat30. Testing was limited to genes with a log-fold change (LFC) > 0.1 and
with expression in at least 10% of the cells. We used MetaVolcanoR82 to perform a
meta-analysis for each cell type, taking the results of the v2 and v3 chemistries as
inputs for Fishers Combined Probability Test83. Significance was determined by
taking a Bonferroni-corrected p-value of <0.05 within the meta-analysis. When an
analysis could only be performed in one version chemistry, only that output is
reported.

Per cell type, the resulting DE gene set was split into up- and downregulated
genes after stimulation, which was then used as input for a pathway enrichment
analysis with ToppFun, selecting the REACTOME database84. To calculate
statistical significance, the probability density function was used, selecting those
pathways that had a BH-corrected p-value < 0.05.

For the major cell types, the enriched pathways were visualized by calculating
the LFC in average gene expression in all pathogen‒timepoint conditions compared
to the untreated condition and clustered these results using hierarchical clustering
with the complete linkage method. For the subcell types we made the comparisons
only within the subtypes that fall within the same major cell type (Supplementary
Data 4). We visualized up to 10 enriched pathways that showed the largest
difference between the two subtypes (within the same major cell type), and ordered
these pathways by the difference in log10 transformed significance between the cell
types. The fraction of genes that were found to be differentially expressed versus
the total annotated genes in the gene sets, was determined by dividing the
differentially expressed genes found for each gene set, by the total number of genes
of a gene set.

Calculation of pathway activity was done using the module score function of
Seurat85, by calculating, per cell, the combined activity of a specific gene set
annotated to be part of a pathway in the REACTOME database. This score was
then averaged per donor for each condition and cell type.

eQTL and re-QTLs: mapping and GWAS enrichment. The mapping of eQTLs
was performed in a bulk-like and cell-type-specific manner. We limited the analysis to
the top independent effects identified in the eQTLGen meta-analysis on 31,684
individuals, resulting in the testing of 16,987 possible SNP‒gene pair combinations56.
These SNP‒gene combinations identified by eQTLGen were the result of genome-
wide cis-eQTL mapping of SNPs within a 100 kb distance to the gene midpoint,
MAF > 0.1, call rate >0.95, and Hardy-Weinberg equilibrium p-value > 0.001. These
16,987 SNP‒gene pairs were then further filtered to only include SNPs with a minor
allele frequency (MAF) > 0.1 or genes that were expressed in the least three cells in our
single-cell data. Filtering of SNP‒gene combinations and mapping of eQTLs were
done separately for each cell type and reagent version chemistry using the averaged,
normalized gene expression values per individual, cell type, and stimulation‒time-
point combination. This was followed by a sample-weighted meta-analysis86 over the
v2 and v3 chemistry outputs per cell type and stimulation‒timepoint combination.

When an analysis could only be performed in one version chemistry, only that output
is reported. eQTLs with a gene-level FDR < 0.05 were considered statistically sig-
nificant, and a permutation-based strategy (n= 10) we had described before was used
to control this FDR2. Using the same parameters described above, but without
eQTLGen SNP‒gene pair filtering, we also performed a genome-wide cis-eQTL dis-
covery analysis.

Next, we performed re-QTL mapping, confining ourselves to the total gene set
of FDR < 0.05 significant eQTLs across all cell types and conditions. For this, we
calculated the log ratio of the averaged expression of the unstimulated condition
and the stimulated condition per sample, cell type, and chemistry, and then applied
the same mapping strategy we used to identify regular eQTLs.

To determine whether eQTLs and re-QTLs were genetically inflated, eQTLgen
lead-eSNPs were matched to the top GWAS SNP per locus for each of the
following immune-mediated disease GWAS studies: celiac disease69, type 1
diabetes46, multiple sclerosis70, inflammatory bowel disease68, candidemia
susceptibility72 and rheumatoid arthritis45. For this, the LD between eSNPs and
GWAS SNPs was calculated from genotypes of the 503 European individuals in the
1000 g phase3 reference panel at R2 > 0.8 using Plink 1.9-beta687. Lambda inflation
was calculated using all GWAS p-values matched to the eQTL or re-QTL SNPs. To
determine whether there is a difference in genomic inflation for those SNPs whose
eQTL effect changes upon stimulation (re-QTLs), we compared the genomic
inflation of the re-QTL SNPs with the non-re-QTL overlapping eQTL SNPs that
were tested in both the unstimulated and relevant stimulation condition and
significant in either. Using the different conditions and GWASes, specifically for
the monocytes, the distributions of lambda values for the re-QTL and non-re-QTL
sets were compared using a two-sided Wilcoxon Rank Sum Test. This statistical
testing was solely performed in monocytes, as this was the cell type with a strong
pathogen response and the largest set of identified re-QTL SNPs, expecting the
largest effects on genomic inflation and allowing for the most robust genomic
inflation analysis.

Co-expression QTLs: mapping, pathway enrichment, TFBS, and GWAS
overlap. Co-expression QTL mapping was performed in the monocytes on a subset
of SNPs and genes, selected based on their being: (1) DE and (2) a re-QTL in at
least one of the stimulation-timepoint combinations; (3) expressed in at least 50%
of the individuals (for each 10x chemistry tested). This selection resulted in 49
SNP‒gene combinations for which we calculated the Spearman correlation with
every other gene per individual and per stimulation‒timepoint condition. A
weighted linear model was used in which the genotype predicts the strength of the
correlation between the two genes, using the square root of the number of cells as a
weight. Analysis was performed separately for the different 10x chemistries, after
which betas and standard errors were meta-analyzed. When an analysis could only
be performed in one version chemistry, only that output is reported. The statistical
significance threshold was then determined using a permutation-based (n= 100)
FDR approach. The most significant co-expression QTL p-value per stimulation‒
timepoint condition was then compared with the one coming from re-running the
same permutations after randomly shuffling the genotype identifiers. This allowed
us to calculate an eQTL gene-level FDR2. An FDR < 0.05 was considered statisti-
cally significant. Separate thresholds were determined for each re-QTL SNP‒gene
combination and each stimulation-timepoint condition.

Pathway analysis was performed on the co-expression QTL genes associated
with the selected eQTL gene per stimulation‒timepoint combination using
Toppfun with similar settings to those described in the ‘DE and pathway analysis’
section. Significant pathways (BH-corrected p-value < 0.05) were then ranked by p-
value. The rankings of the pathways for each condition were then clustered using
hierarchical clustering using the complete linkage method.

Transcription factor motif enrichment analysis was performed on the 3 h
stimulation outer join CLEC12A co-expressed gene set split by having either a more
positive or more negative correlation with the minor versus major allele. For this,
we took information from the TRANSFAC database release 2020.2 v254 and used
g:Profiler (version e102_eg49_p15_7a9b4d6)88 with the g:SCS multiple testing
correction method, applying a significance threshold of 0.05. Additionally, the
CLEC12A co-expression QTL SNP rs12230244 and its accompanying (near-)
perfect LD SNPs were overlapped with putative TFBSs, as defined by SNP2TFBS55.

Overlap of co-expression QTL SNPs (or SNPs within a 1 Mb window with
LD > 0.8) with disease-associated GWAS SNPs was determined by searching the
GWAS catalog (https://www.ebi.ac.uk/gwas/) and an additional set of immune-
related GWAS studies (celiac disease69, type 1 diabetes46, multiple sclerosis70,
inflammatory bowel disease68, candidemia susceptibility72 and rheumatoid
arthritis45).

CLEC12A co-expression QTL validation and replication: SLE PRS interaction
analysis, SLE scRNA-seq co-expression QTL analysis. Using the summary
statistics of the SLE GWAS by Bentham et al.67, we calculated the PRS for SLE in
3553 samples from the BIOS consortium using a custom Java program,
GeneticRiskScoreCalculator-v0.1.0c, as described previously56. Briefly, to account
for LD between variants, our approach included a double clumping strategy where
we first clumped variants within a 250 kb window and then within a 10Mb window
using an LD threshold R2= 0.1. We then calculated the PRS for each individual by
summing the products of the number of risk alleles and the GWAS effect size (i.e.,
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beta) for each SLE-associated variant. We constructed the PRS using a p-value
threshold for the SLE GWAS of p < 5 × 10−8. The resulting PRS was scaled between
0 and 2 for compatibility with the eQTL-mapping software. We then determined
whether the co-expression between CLEC12A and an individual’s SLE PRS was
modulated by SNP rs12230244. For this, we fitted a generalized linear model with
and without the SLE PRS as an interaction term and determined how far the
predicted model deviated from the true observation by taking the residuals of the
observation. A one-tailed F-test was then used to determine whether the dis-
tribution of the squared residuals with the SLE PRS as an interaction term was
significantly smaller than without, meaning that the SLE PRS interacts with the
CLEC12A co-eQTL.

We used an independent cohort of SLE patients and healthy controls (GEO
accession number: GSE174188) to replicate our findings of a clear enrichment for
IFN-related genes within the co-expressed gene set of the CLEC12A-SNP
rs12230244 co-expression-QTL61. This cohort contained individuals of EUR and
EAS descent, including healthy individuals (EAS: 18, EUR: 58) and individuals
diagnosed with SLE (EAS: 58, EUR:59) who were not in an active disease state
when samples were collected. For all individuals, PBMCs were collected and
cryopreserved until further use. The SLE samples were collected through the
California Lupus Epidemiological Study (CLUES) cohort. Healthy controls were
collected at the UCSF Rheumatology Clinic and through the Immune Variation
Consortium (ImmVar) in Boston. All UCSF samples were genotyped using the
Affymetrix World LAT Array, while samples collected in Boston were genotyped
using the Illumina OmniExpressExome Array. The Michigan Imputation Server
was used for imputation with the Haplotype Reference Consortium version 1.1
reference. The samples collected at UCSF and Boston were processed using
established protocols11,27. ScRNA-seq was performed using 10x Chromium Single
Cell 3’ V2 chemistry, as described previously11. Libraries were sequenced on the
HiSeq4000 or NovaSeq6000 at a depth of 6306–29,862 reads/cell. Freemuxlet was
used to assign cells to individuals and, together with Scrublet89, for the
identification of doublets. Marker gene expression was used to assign the major cell
types. Only the monocytes were taken for this independent discovery analysis.
Monocytes with less than 1500 UMIs were removed, as were donors with fewer
than 200 cells remaining after applying this cutoff. Co-expression QTL analysis was
performed as described in the co-expression QTL mapping paragraph above, but
only testing the CLEC12A-SNP rs12230244 co-expression-QTL and doing this
analysis separately in each cohort, ancestry, and disease state (SLE versus healthy).
A meta-analysis of the cohorts and ancestries was then performed, and pathway
analysis using the REACTOME database was conducted to determine whether the
IFN pathway was differently enriched in SLE compared to the healthy controls.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The number of individuals and cells included in each analysis can be found in the Source
Data file. Raw gene expression counts, eQTL, and co-expression QTL summary statistics
can be found under “Supplementary Data” at the website accompanying this paper
(https://eqtlgen.org/sc/datasets/1m-scbloodnl.html). Processed (de-anonymized) scRNA-
seq data, including a text file that links each cell barcode to its respective individual, has
been deposited at the European Genome-Phenome Archive (EGA), which is hosted by
the EBI and the CRG, under accession number EGAS00001005376. Gene expression and
genotype data can be obtained and requested by filling in a short web form at https://
eqtlgen.org/sc/datasets/1m-scbloodnl.html. This form is subsequently reviewed by a
single Data Access Committee, who will be able to approve access to both the raw gene
expression and genotype data within 5 working days (during the holiday season there
might be a slight delay). Once the proposed research is approved, access to the relevant
gene expression or genotyped data will be free of charge. Access to the genotype and gene
expression data is facilitated via the HPC cluster of the UMCG and the EGA,
respectively. Access to this data is restricted to comply with the European Union General
Data Protection Regulation for protection of privacy-sensitive data. Sample metadata
(age, gender) is presented in Supplementary Data 1. The REACTOME and TRANSFAC
release 2020.2 v254 database can be accessed through https://reactome.org/ and https://
biit.cs.ut.ee/gprofiler/gost, respectively.

Code availability
The original code for Seurat v3.181 (https://github.com/satijalab/seurat), Eagle v2.322 (https://
github.com/poruloh/Eagle), Demuxlet11 85dca0a4d648d18e6b240a2298672394fe10c6e6
(March 25, 2019) (https://github.com/statgen/demuxlet), Souporcell v1.029 (https://github.
com/wheaton5/souporcell), Freemuxlet v1 as part of the Popscle suite of statistical genetics
tools (https://github.com/statgen/popscle), Scrublet89 v0.2 (https://github.com/swolock/
scrublet), the GeneticRiskScoreCalculator v0.1.0c56 (https://github.com/molgenis/
systemsgenetics/tree/master/GeneticRiskScoreCalculator), and our in-house eQTL pipeline2

v1.4.0 (https://github.com/molgenis/systemsgenetics/tree/master/eqtl-mapping-pipeline) can
be found at GitHub. All custom-written code is made available via GitHub (https://github.
com/molgenis/1M-cells).
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