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Cardiovascular disease encompasses a wide range of conditions, resulting in the highest

number of deaths worldwide. The underlying pathologies surrounding cardiovascular

disease include a vast and complicated network of both cellular and molecular

mechanisms. Unique phenotypic alterations in specific cell types, visualized as varying

RNA expression-levels (both coding and non-coding), have been identified as crucial

factors in the pathology underlying conditions such as heart failure and atherosclerosis.

Recent advances in single-cell RNA sequencing (scRNA-seq) have elucidated a new

realm of cell subpopulations and transcriptional variations that are associated with normal

and pathological physiology in a wide variety of diseases. This breakthrough in the

phenotypical understanding of our cells has brought novel insight into cardiovascular

basic science. scRNA-seq allows for separation of widely distinct cell subpopulations

which were, until recently, simply averaged together with bulk-tissue RNA-seq.

scRNA-seq has been used to identify novel cell types in the heart and vasculature that

could be implicated in a variety of disease pathologies. Furthermore, scRNA-seq has

been able to identify significant heterogeneity of phenotypes within individual cell subtype

populations. The ability to characterize single cells based on transcriptional phenotypes

allows researchers the ability to map development of cells and identify changes in specific

subpopulations due to diseases at a very high throughput. This review looks at recent

scRNA-seq studies of various aspects of the cardiovascular system and discusses their

potential value to our understanding of the cardiovascular system and pathology.
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INTRODUCTION

“Many possibilities for future applications (of precision medicine) spring to mind: today’s blood

counts might be replaced by a census of hundreds of distinct types of immune cells . . . ”

—F. Collins and H. Varmus (2015)

There has been tremendous curiosity to further understand the effect of phenotypic variation
in the cardiovascular system and its relation to disease progression. For example, the increased
expression of certain long non-coding RNAs and the reprogramming of fetal-heart genes are found
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to be crucial pathologic processes in the development of heart
failure (1–4). The transcriptome is the profile of all RNAs in a
sample which essentially communicates gene expression levels
thereby mapping the phenotype of the sample. Resulting gene
expression profiles derived from RNA sequencing (RNA-seq)
allow for the interpretation of molecular differences between
cell types or tissues. This allows for a better understanding of
gene expression regulation, while also identifying changes in gene
expression in differing conditions (e.g., development, response to
stimuli, and disease progression).

With the development of advanced RNA-seq techniques to
better understand the transcriptome of tissues and individual
cells, various groups have been able to produce novel insight
in the native heart and associated pathology (1–5). RNA-seq
has also led to the discoveries of various non-coding RNAs,
including long non-coding RNAs and circular RNAs and their
role in regulating cardiomyocyte genes (6–8). However, recent
advances in single-cell RNA-seq (scRNA-seq) have, for the first
time ever, led to discoveries of phenotypically diverse and
complicated networks of cells (aka, the “cellulome”) within
cardiac tissue at the single-cell level (9, 10). Usage of scRNA-
seq has opened a new field of single-cell level precision to
diagnostics and therapeutics to combat cardiovascular disease.
This revolution was predicted in the leading quote by Collins
and Varmus in their 2015 perspective in the NEJM (11).
Therefore, research into the transcriptomic alterations within
the diverse “cellulome” of the cardiac network has tremendous
translational potential.

scRNA-seq has given us the ability to profile the
phenotypes of single cells leading to discoveries of new
cellular subpopulations that could contribute to cardiovascular
pathogenesis. However, because of the complexity of the
data, scRNA-seq findings may be difficult to interpret by
clinicians or fit into current knowledge bases (12, 13). This

TABLE 1 | Summary of differences between Bulk RNA-seq and scRNA-seq.

Goal Protocol Quality control Normalization Analyses

Bulk

RNA-seq

• Measure the average

gene expression across

the population of cells in

a sample

• To identify differences

between

sample conditions

• RNA is extracted from

all cells in the sample

• Reverse transcription

converts RNA to cDNA,

facilitates ligation of

sequencing adaptors

• Amplification

• GC content, presence

of adaptors,

overrepresented

k-mers, duplicated

reads

• Percentage of reads

that map to reference

• Reproducibility

between replicates

• Batch effect

• Between-sample

variability: sequencing

depth

Quantile

normalization, spike-ins

• Within-sample variability:

feature length, library size

effects

RPKM, FPKM, TPM

• Estimate gene and

transcript expression

• Differential

expression analysis

• Alternative splicing

scRNA-

seq

• Measure the gene

expression of individual

cells in a sample

• To identify differences

between

cell types/states

• RNA is extracted from

isolated cells, labeled

with cell specific

identifier

• UMIs, spike-ins often

included, to account for

higher levels of noise

• Reverse transcription,

amplification similar to

bulk protocol

• Reads, number of

genes per cell

• Percentage of reads

that map to spike-ins (if

used), percentage of

reads that map to

mitochondria

• QC metrics used in bulk

RNA-seq are

also examined

• Batch effect and

within-sample variability

are corrected for similarly

to bulk RNA-seq

• Between-sample

variability methods must

additionally account for

capture efficiency and

dropout sources of noise

• Dimensionality

reduction

• Identify cell

subpopulations

• Differential

expression

• Pseudotime/

trajectory analysis

review serves to help both clinicians and basic scientists by
(1) briefly explaining what scRNA-seq is and how it can
be used in cardiovascular research and (2) highlight recent
scRNA-seq studies and their potential implication for present
and future understanding of the cardiovascular system and
related pathology.

SINGLE-CELL TRANSCRIPTOME DATA
GENERATION

Compared to the traditional technique of bulk-RNA-seq

(Table 1), the main improvement that scRNA-seq achieves is that

while bulk-RNA-seq averages gene expression across all cells in a
sample, scRNA-seq profiles the transcriptome of each individual
cell in the tissue sample. Significantly, this means that scRNA-seq

makes high throughput investigations of tissue samples far more
specific by visualizing the phenotypes at single-cell resolution.

While there are numerous methods for performing scRNA-

seq, all of which follow a general workflow: (1) isolating single
cells, (2) capturing RNA, (3) reverse transcribing RNA to cDNA,

(4) amplifying the cDNA, (5) library preparation, and (6)
sequencing. It is within each of these steps that the variety of
scRNA-seq protocols make use of different available technologies

and methodologies, which are specifically advantageous to

particular experimental designs and goals (13–15). For instance,

at the single cell isolation step, a manual isolation technique,

like micromanipulation, has advantages for samples of few

precious cells, while the more high throughput and cost-

effective microfluidics isolation techniques are advantageous

for experiments with a large number of cells (13). Another
experimental detail to consider when selecting a scRNA-seq

protocol is the desired transcript coverage. Protocols that
sequence full length transcripts, like Smart-seq2, are more
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advantageous if the goal of the experiment is to analyze isoform
usage or allelic expression. Whereas, 3′ sequencing, as used
in protocols like the 10x Genomics Chromium droplet-based
method, allows for higher throughput and cost-effectiveness,
which makes it more advantageous if the experimental goal is
cell subpopulation detection. This is because the plethora of cells
that could be sequenced with this method increases resolution for
improved cell subpopulation detection thereby making detection
of rare cell populationsmore likely. Additional factors to consider
when selecting a scRNA-seq protocol include: the type of RNA
of interest in the experiment (polyA + or -), whether spike-
ins or unique molecular identifiers (UMIs) can be used, and
cost (14, 15).

Despite varying advantages of different scRNA-seq protocols,
there are shared challenges. For instance, accounting for
library preparation costs and confounding batch effects remain
significant barriers for all scRNA-seq protocols. One current
improvement to scRNA-seq protocols which addresses these
limitations is multiplexing (methods that label cells at the
sample-level, allowing for pooling and processing of all the
cells in one run). Recently developed techniques include:
(1) lipid oligonucleotides which contain sample-level barcodes
that incorporate into the plasma membrane of live cells, (2)
combinatorial barcoding, where cells are identified through the
unique combination of barcodes acquired from multiple rounds
of random barcoding, and (3) using naturally variant single
nucleotide polymorphism genotypes to distinguish cells’ sample
of origin, among others (16–22).

Most centrally, these many scRNA-seqmethods all function in
accomplishing the same aim: to profile which genes are expressed
and their level of expression for individual cells, which allows
for novel data analyses important for investigating fundamental
biological questions.

SINGLE-CELL TRANSCRIPTOME DATA
ANALYSIS

Data Processing
Regardless of the exact protocol followed, all scRNA-seq data
present unique interpretational challenges because of the high
levels of technical and biological noise (13, 23, 24). RNA
capture efficiency, batch effects, transcriptional kinetics, cell cycle
stage, and, most significantly, the large amount of amplification
owing to the small amount of starting material are a few
such sources of noise. Therefore, to ensure that the signal
of interest in the data is not masked by unwanted variation,
experimental and computational normalization methods have
been developed that adjust for these sources of noise in the
sequencing data. Typically, multiple methods for removal of
noise are used in conjunction because each method accounts for
a specific source of bias/noise. For instance, the experimental
integration of UMI sequences allows for the detection and
removal of amplification duplicates, thereby adjusting read
counts across samples (Figure 1A) (25). Another important
source of noise is variation in sequencing depth between
cells (Figure 1B). Initially, sequencing depth normalization was

accomplished through bulk-RNA-seq established methods, like
Reads Per Kilobase Million (RPKM), Trimmed Mean of M-
values (TMM), and quantile normalization (26–28). Recently,
scRNA-seq data specific methods have been developed, like
Single-Cell Differential Expression (SCDE) or Model-based
Analysis of Single-cell Transcriptomics (MAST), which take into
account attributes unique to single-cell expression data, like the
high rate of dropout events (genes erroneously reported to have
zero expression because of missed RNA capture) (29, 30). These
normalization methods are an important preprocessing step to
improve the quality of downstream analyses.

The data analysis workflow for scRNA-seq data, as
implemented by software packages like Cell Ranger Seurat,
and Monocle, includes: (1) elucidating cells’ heterogeneity
via clustering cells based on gene expression profiles, (2)
characterizing cell clusters by assigning cell type or functionality
via biomarkers or differential expression analysis, and (3)
organizing defined cell types/states into a trajectory (Figure 1B)
(31–35). The first step to identify underlying patterns among the
transcriptomes of the single cells is to perform dimensionality
reduction. Dimensionality reduction tools, like PCA, tSNE, and
more recently, UMAP, project the high dimensional scRNA-seq
data (the expression levels of thousands of genes per cell,
in thousands of cells) into lower dimensional space, thereby
collapsing the data and effectively identifying and preserving
only the features that contributed to the structure of the original
high-dimensional data (14, 36–40). The cells can then be
separated into populations based on the similarity of their gene
expression profiles through clustering algorithms that employ
one of four main methods: k means, hierarchical clustering,
density-based clustering, or graph-based clustering (39, 41).
The identified clusters can then be visualized via a scatterplot
that translates individual cells into data points, where cluster
membership is indicated by physical proximity of the points on
the plot.

Data Applications
The processed scRNA-seq data is then suitable for use in
analysis applications, such as, characterizing the cell clusters,
and trajectory inference. The most straightforward method
for characterizing cell clusters is to identify cluster specific
expression of cell type biomarker genes. In the case where
cells cannot be identified via biomarkers, differential expression
analysis, of which the different methods are highly abundant
and well-established, presents an alternative method for cell
cluster characterization (42). Differential expression analysis
identifies sets of genes significantly more highly expressed within
clusters compared to all other cells, which can provide clues
as to the identity of the cell type/state or the functionality
of the cells within the cluster (13, 43). Another analysis of
scRNA-seq data is trajectory inference “pseudotime” analysis.
This analysis works by ordering cells along a trajectory based
on the similarity of their gene expression profiles. Numerous
methods have been developed to perform pseudotime analysis,
but the most important factor when selecting a method is
the type of biological trajectory that is expected (for instance,
a linear, bifurcated, or multifurcated cell type differentiation
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FIGURE 1 | scRNA-seq Data Processing and Analysis. (A) UMIs, short DNA sequences tagged to cDNA fragments before amplification, identify unique reads vs.

PCR duplicates thereby normalizing the transcript counts. (B) A common analysis pipeline for scRNA-seq data includes: normalizing data to account for sources of

technical and biological noise (pictured here, sequencing depth), clustering cells to identify novel and known cell types as well as subpopulations, ordering cell types

and states into trajectories, and performing differential expression analysis, which can allow for identification of biomarkers, assigning function to cell cluster.

trajectory) (44, 45). Despite the trajectory topology of the
method, pseudotime analyses face some limitations that are
aimed to be addressed by future method developments, these
include: (1) accounting for other processes (like cell cycle stage)
that may mask the gene expression patterns of the process
of interest and (2) incorporating other types of information
(such as location, chromatin state, and post-translational
modifications) that contribute to a cell’s state in addition to
transcriptome (44, 45).

While scRNA-seq data require careful processing to achieve
interpretability, the end result of elucidating the cell types/states
present in a sample and their relationships to each other
(i.e., which genes are differentially expressed between them,
and in what order they occur in a dynamic process) has
critical implications for deepening our understanding of
disease pathologies.

scRNA-SEQUENCING TO UNRAVEL THE
HIDDEN CARDIAC CELLULOME

Many studies prior to the utilization of scRNA-seq have
demonstrated the importance of non-traditional cells such as
resident fibroblasts, monocytes, and other non-cardiac myocytes
within the cardiac network (46, 47). However, it wasn’t until
scRNA-seq studies of the heart in both murine and human
models that the development of a high-resolution map of the
non-cardiomyocyte cellulome within the heart was possible
(48). scRNA has discovered tremendous heterogeneity within
major cell types contributing to the complex map of the
cardiac cellulome. The identification of different subpopulations
and rare cell subpopulations has a tremendous implication on
cardiovascular disease. For example, Skelly et al. discovered
hybrid macrophage/fibroblast subpopulations of cells natively

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 December 2019 | Volume 6 | Article 173

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chaudhry et al. scRNA-seq of the Cardiovascular System

residing in the murine heart, which could represent a new
class of resident cells that may mediate myocardial fibrosis in
response to stress (48). These cells are commonly known as
fibrocytes, expressing both fibroblast and macrophage genes,
which have been shown to be crucial mediators of chronic
inflammatory states (49, 50). It is widely believed that after
cardiac injury, infiltrating responders such as neutrophils and
macrophages are the mediators of cardiac inflammation and
subsequent repair. For example, post-myocardial ischemia and
reperfusion, cardiomyocytes undergo significant oxidative stress
and neutrophils will be the first responders followed by
macrophages, which is crucial to both the inflammation phase
and the repair phase of the myocardium. However, with the
discovery of new rare resident subpopulations, such as the
hybrid macrophage/fibroblast, we can hypothesize that these
resident cells may help initiate extracellular matrix remodeling
in response to stress prior to inflammatory response.

This subsequent extracellular fibrosis formation following
myocardial injury may be reparative or reactive (51). It has been
hypothesized that IL-11 is implicated with thrombopoiesis and
fibrosis formation (52, 53). The administration of recombinant
IL-11 following myocardial infarction was shown to be
cardioprotective in a mice model and in a small case-series of
patients (54, 55). However, it’s exact mechanism of action was
unknown. To assess IL-11’s role in fibrosis development, Schafer
et al. had found that in bulk-RNA analysis of fibrotic human
hearts, IL-11 RNA expression was positively correlated with
myofibroblast populations. Additional scRNA-seq experiments
of fibrosis-susceptible mice confirmed that IL-11 expression
by fibroblasts was seen in a subpopulation of fibroblasts that
had TGFβ1 activation or had high expression of pro-fibrotic
phenotypes. It was shown that IL-11 played an important
role in myofibroblast differentiation from fibroblasts, and the
activation of these fibroblasts were dependent on IL-11 signaling.
This was subsequently confirmed by knocking-out the IL-
11 receptor in mice which resulted in attenuation of fibrosis
growth in both an angiotensin-II infused model and in trans-
aortic constriction model (56). This discovery of IL-11 role in
a specific fibroblast-subpopulation during differentiation and
activation has supported the notion that targeting IL-11 could
be a multi-faceted approach to cardiovascular disease. Positively
targeting IL-11 immediately following myocardial injury could
promote reparative fibrosis while negatively targeting IL-11,
during significant stress (i.e., hypertrophic cardiac disease), could
attenuate negative fibrosis.

A recent scRNA-seq experiment on human fetal embryos in
vivo demonstrated a similar discovery of transcriptome variation
in the human cardiac cellulome. The human embryo study
identified spatially- and temporally-associated transcriptomic
patterns of cardiomyocytes and fibroblasts during development
(57). Specifically, expressions in extracellular matrix genes
were increased in both cardiomyocytes and fibroblasts,
providing strong evidence to the growing theory that both
cardiomyocytes and resident fibroblasts contribute to the
extracellular formation of the cardiac landscape. scRNA-seq
identified unique transcriptomic phenotypes associated with
normal human fetal heart development and abnormal fetal heart

gene reprogramming seen in heart failure. However, it should be
noted that this study found differences in the chronological order
of expression of phenotypes in the human heart development
as compared to a murine model of development. It was found
that the extracellular matrix genes were expressed at higher
levels relatively earlier in human cardiac development compared
to that seen mice (57). However, the identification of these
differences in development and the identification of other
phenotypic differences in future scRNA-seq studies could help
us identify both strengths and weaknesses of various murine
models of cardiovascular disease and cardiac regeneration.

PHENOTYPIC HETEROGENEITY OF
NORMAL CARDIOMYOCYTES AND
PATHOLOGIC CARDIOMYOCYTES

scRNA studies in the adult heart have elucidated tremendous
variation of genetic expression within cardiomyocytes (48).
Non-pathologic cardiomyocytes exhibit significant gradients
of expression of cardiac markers including actin alpha
cardiac muscle 1 and alpha-myosin heavy chain. Significant
heterogeneity of these cardiomyocytes at a non-pathologic
state is an important finding, considering that in the setting of
certain pathological progression there are further heterogenic
expressions throughout the myocardium. For example, it has
been hypothesized with standard bulk-RNA that there are
significant heterogenic expressions in heart failure with the
classic fetal reprogramming genes, including Myh7, Nppa,
and Nppb (58, 59). However, scRNA-seq has been able to
discover more heterogenic genetic expression, which was
not detected with previous bulk-RNA tissue analyses. This
includes discovering significant heterogeneity cardiomyocyte
subpopulations expressing long intergenic non-coding RNA
(LincRNA), Gas5 and Sghrt, in the setting of cardiac hypertrophy
in a rat model (6). Gas5 and Sghrt are regulatory LincRNAs that
appear to arrest the cell cycle and are found to be key regulators
of the cardiac cycle during myocardial stress.

In a pressure overload murine model, during early
hypertrophic states, cardiomyocytes analyzed with scRNA-
seq expressed mitochondrial biogenesis genes to increase
oxidative phosphorylation to compensate for hypertrophy
(60). This discovery supports the theory that the increased
mitochondrial biogenesis in response to cardiac hypertrophy,
leads to an augmented rate of oxidative phosphorylation which
could exacerbate oxidative-stress damage in the myocardium.
This consequential oxidative stress leads to DNA damage which
was shown to activate p53 in the later phases of hypertrophy.
Interestingly it was shown in mice that p53-knockout specifically
in cardiomyocytes was associated with attenuation of cardiac
fibrosis and retained cardiac function after 4 weeks of pressure
overload. p53 is commonly known as a tumor suppressing gene
that detects DNA damage and prevents cell division in all cells
(61). However, it was shown that varying expression of p53 across
the myocardium leads to significant cell-cell transcriptional
heterogeneity. This transcriptional heterogeneity prevents
uniform adaptive hypertrophic programming and activates heart
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failure-related phenotypes. For example, in response to oxidative
stress, the cardiomyocytes had an increased expression of Nrf2.
Nrf2 is a transcription factor that is activated by oxidative stress
and increases expression of antioxidant genes, such as those
involved in glutathione biosynthesis (62). These findings were
identified in scRNA-seq analyses of cardiomyocytes in humans
with dilated cardiomyopathy, showing a similar association of
distinct transcriptomes with oxidative stress leading to cardiac
dysfunction (60).

The scRNA-seq study by Nomura et al. utilized a cell marker-
based pipeline to visualize the heterogenous expression of Myh7
gene expression after pressure overload due to trans-aortic
constriction (TAC) in rats (60). They used single molecule
fluorescent in situ hybridization (smFISH) with RNAscope to
visualize the genetic expression variation within the myocardial
tissue. smFISHwith RNAscope brings significant clinical value by
providing single molecule assessment of RNA biomarkers with
less technical difficulty, higher sensitivity and higher specificity
when compared to prior in situ RNA hybridization techniques
(63). RNAscope utilizes a unique probe design that allows
for amplified signals while suppressing background noises by
targeting a sequence in tandem (64). smFISH was used to bind
each individual molecule of Myh7 mRNA expressed in the
cardiac tissue; this approach found that Myh7 actually inversely
correlates with cardiomyocyte size. The utilization of a cell-
specific marker in the pipeline helps support a previous study,
which claimed that Myh7 genes were greatly expressed with
smaller cardiomyocytes as opposed to larger cardiomyocytes
(60). Furthermore, Myh7 gene expression was found to be
greatly expressed in the middle layer of the myocardium
after chronic pressure overload. This study helps support the
notion that Myh7 is expressed on a spectrum throughout the
myocardium and that some cardiomyocytes will change their
phenotype to consume less energy by atrophying and expressing
slower contracting MYH7, as opposed to cardiomyocytes which
showed to have increased mitochondrial activity and oxidative
phosphorylation (58, 65). Adding a cell-specific marker such as
a smFISH of RNA molecules to the scRNA-seq pipeline brings
potentially significant clinical value by giving pathologists new
biomarkers for disease analysis and by providing a spatial map
of cells-of-interest.

IMPLEMENTATION OF scRNA-seq IN
REGENERATIVE CARDIOLOGY

It has been well-established that the adult myocardium lacks the
regenerative capacity as seen in the embryonic myocardium.
There has been tremendous effort to study the developing
embryonic cardiovascular system to gain insight into the factors
associated with cardiac regeneration. Single-cell resolution has
allowed us to obtain a far more detailed and more complete
picture of cellular transitions during development (66, 67).
scRNA-seq has been utilized to better understand the complex
genetic regulatory and epigenetic networking of various
stages of multipotent stem cell differentiation during heart
development. Jia et al. recently identified unknown cardiac

subpopulations marked by Nkx2-5 and Isl1 expression leading
to differences in chromatin site accessibility and progenitor cell
differentiation using both scRNA-seq and Single Cell Assay for
Transposase-Accessible Chromatin using sequencing (scATAC-
seq) in a murine model (66). scATAC-seq has been used to
map DNA regulatory variations of accessible genomes within
individual cells. They identified that the posterior Hox gene was
temporarily expressed in Is1+ cells in the early stages of heart
development in addition to the anterior Hox gene. This varying
expression of the posterior Hox gene is believed to contribute
to developmental heart patterns. Furthermore, Nkx2-5+ cells
were found primarily in progenitor cells destined to become
a part of the cardiac endothelium and smooth muscle cells
that are characteristically found in immature cardiomyocytes.
Both the Nkx2-5 and the Isl1 expressing progenitor cells
have tremendous phenotypic heterogeneity within their
respective populations.

Recently, Xiong et al. expanded on the phenotypic
heterogeneity of Nkx2-5 and Isl1 in embryonic heart
development by using a Cre-LoxP system to longitudinally
track their expression in conjunction with scRNA-seq (67).
They were able to provide, for the first time ever, a multi-
dimensional map of first and second heart field trajectory
during development. They showed that the first heart field
progeny commits directly to cardiomyocyte differentiation
while second heart field progeny undergo a distinct stepwise
transition where each subsequent progeny becomes increasingly
more restricted in lineage differentiation. The discovery of
these phenotypically diverse subpopulations, and their unique
path to development could explain why these progenitor
cells are able to make developmental decisions contributing
to heart development. This may provide crucial information
for improving implantation of stem cells for cardiac and
vascular regeneration.

scRNA IMPLICATIONS ON STEM CELL
THERAPY

The myocardial cellulome is an intricate and complex network
of functionally intercalated cardiomyocytes and supporting cells
in the extracellular matrix. Therefore, transplantation of stem
cell-derived therapies to replace damaged cardiac tissue has
been severely limited in clinical implementation (68). The
implanted human pluripotent stem cells often have difficulty
assimilating to the host cardiac network, which can result
in arrhythmias and diminished cardiac function (69, 70). It
is thus important to better characterize how different stem
cell lines differentiate at a single-cell level, as stem cells are
highly plastic and can easily differentiate inappropriately to
their surrounding environment following transplantation. A
recent study utilized scRNA-seq to characterize the multiple
lineages derived from multipotent-cardiac progenitor cells to
validate if their novel protocol could reproducibly differentiate
different stem cell lines (71). They first identified that laminin-
221, a basement membrane structural protein isotype, was
found abundantly in human cardiac muscle. To confirm
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that laminin-221 was the most relevant laminin in cardiac
differentiation, they quantified the gene expression of various
laminin genes at different time points of embryonic development
in a fetal mouse heart model. They found that laminin-
221 gene expression was the highest during development.
They then created a recombinant version of this laminin
isotype and seeded two different human embryonic stem cell
lines (H1 and HS1001) in a culture containing this isotype
for differentiation. It was shown that a laminin-221 coating
could reproducibly differentiate these different cell lines at
different time points. They used scRNA-seq and bulk RNA-
seq to validate the transcriptional phenotypes at the different
time points to validate this reproducibility. The study injected
two different stem cell lines (H1 and HS1001) in the mice
myocardium following myocardial ischemia prior to reperfusion
and showed improved cardiac function and formation of new
human muscle fiber bundles in vivo. The usage of scRNA-seq
could be a new and more specific benchmark to validate the
reproducibility of different stem cell differentiation methods
prior to transplantation.

Induced pluripotent stem cells (iPSC) allows for the
development of in vitro cell lines which can closely mimic
the genetic basis for cardiovascular disease (72). Studies
have utilized iPSCs to better understand structural heart,
arrhythmic, and vascular disorders (73). However, as seen
with embryonic pluripotent stem cell-derived cardiomyocytes,
iPSC-derived cardiomyocytes also do not match the mature
in vivo counterpart (74, 75). Therefore, defining the signaling
pathway of iPSC-to-cardiomyocyte transition is critical to
improve the clinical application of iPSC. Churko et al. utilized
scRNA-seq on a heterogeneous cardiomyocyte population
derived from iPSCs at different time points of differentiation
(76). They identified that after day 30 of differentiation,
there were multiple unique subpopulations enriched with
several transcriptional factors. These transcriptional factors
had a temporal expression pattern during differentiation
that correlated with unique subpopulations. For example, in
conjunction with chromatin immunoprecipitation sequencing
(ChIP-seq) analysis, they provided evidence that NR2F2 vs.
HEY2 have an important transcriptional regulatory role in
promoting atrial functional cell states vs. ventricular cell
states, respectively. They confirmed this finding by ablating
Nr2f2 in mice fetal myocardium which resulted in ventricular
transformation of atrial tissue. Identifying the temporal
transition of iPSCs to cardiac tissue and its associated chromatin
regulatory network provides potentially valuable information
to optimize iPSC-differentiation protocols. Although this
study only characterized this differentiation process in
vitro, which can result in significant differences in genetic
expressions and subcellular trajectory as compared to that
seen in an in vivo environment, targeting this transcriptional
regulatory network could promote homozygosity of iPSC
differentiation (77). For example, it has been shown that
increasing retinoic acid to promote NRF2 expression improves
atrial-specific differentiation from iPSCs as compared to
ventricular differentiation (78).

NEW INSIGHT IN CORONARY
VASCULATURE DEVELOPMENT WITH
scRNA-seq

Single-cell resolution mapping has been applied to coronary
vasculature development as well. It is known that the heart
contains a vastly heterogenous microvascular network, and
knowledge surrounding this network and its implication in
disease remains limited (79). This heterogeneity contributes to a
mosaicism of oxygen delivery to various parts of the myocardium
and larger arteries (80). This heterogeneity could contribute to
the variability of outcomes seen post-myocardial infarction in
our patient population (81, 82). Additionally, areas of myocardial
damage after infarction are known to undergo angiogenesis in
response to chronic hypoxic stress associated with subsequent
fibrosis formation (82, 83). Therefore, the formation of the
coronary vasculature and its associated microvasculature could
be of significant clinical importance. During embryologic
development, it has been suggested that premature veins could
be reprogrammed to become coronary arteries (84). However, the
transcriptional process of vein-to-artery switching had not been
characterized. Su et al. utilized scRNA-seq techniques to identify
the transcriptional phenotypes of premature vein cells within
the developing murine heart that would eventually undergo
a vein-to-artery switch independent of coronary blood flow
(85). Previously, it was believed that the development of the
coronary vasculature was only initiated in connection with aortic
trunk, which would then provide embryonic blood flow (86, 87).
scRNA-seq was able to illustrate that premature vein precursors
would switch gradually from the venous gene phenotype to an
arterial phenotype independent of coronary blood flow (85). New
knowledge obtained from this experiment could help elucidate
cardiac angiogenesis associated not only in embryological heart
development, but also in pathology.

As sudden death from myocardial infarction (MI) has
decreased and more people are surviving MIs, there is a
growing clinical need to attenuate the damage following
MI to improve outcomes and prevent heart failure. Various
strategies have been employed to reduce infarct size and
preserve or even improve cardiac contractility (88–90).
Neovascularization of coronary arteries at the infarct border
following MI has been shown to improve myocardium
outcomes (91, 92). It has been demonstrated that resident
endothelial cells contribute to neovascularization following
MI via clonal expansion (93). However, migration of bone
marrow cells and the endothelial-to-mesenchymal transition
of endothelial cells have also been implicated as promoters
of neovascularization following cardiac injury (94). Li et al.
preformed a multispectral lineage-tracing mouse model on
endothelial cells along the infarct border following MI (95).
They showed with scRNA-seq that there are 10 transcriptionally
distinct states for endothelial cells during clonal expansion
in neovasculogenesis. Furthermore, they identified that bone
marrow-derived and endothelial-mesenchymal transitioning
of endothelial cells were not implicated in neovascularization
at the infarct border. This study provides strong evidence
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for the clonal expansion of endothelial cells and weakens the
possibility that bone marrow cells and endothelial-mesenchymal
transitioning play a significant role in neovasculogenesis.
Their finding is supported by the fact that clinical trials using
autologous bone marrow transplantation to promote recovery
following MI have failed (96). Additionally, Li et al. were
able to give high resolution information on the hierarchical
transcriptional states of endothelial clonal expansion. This
information could lead to therapeutic targets to promote
neovasculogenesis following MI and thus potentially improve
prognosis (95).

PHENOTYPIC HETEROGENEITY
ASSOCIATED WITH ATHEROSCLEROSIS

Atherosclerosis has long been identified as an inflammatory
response within the subendothelial space of arteries. However,
atherosclerotic plaques are extremely heterogenous with different
types of plaque formation, different growth rates, and differences
in susceptibility to rupture (97). Furthermore, this heterogeneity
among plaque formation is compounded by a phenotypically
diverse environment of cell responders within the plaque. The
plaque, in and of itself, involves an extremely complicated
system of cell-cell and cell-particle interactions which leads to
progression and sometimes rupture (98). scRNA-seq has the
potential to better deconvolute the complexity of the cellular
phenotypes seen within atherosclerotic plaques, including
mediating inflammatory cells (99). This approach has great
potential to increase our understanding of atherosclerotic plaque
formation. Recent scRNA-seq studies have better characterized
leukocyte subpopulations in murine models of atherosclerosis
(100, 101). It is known that monocytes differentiate into
different types of macrophages such as M1 or M2 macrophages.
M1 macrophages are considered generally pro-inflammatory,
while M2 macrophages are considered anti-inflammatory (102).
The transition of monocyte to these different macrophages is
associated with plaque formation or regression (103, 104). Recent
scRNA-seq findings in mice illustrate that (1) although M1
and M2 macrophage cells are the predominant immune cell
in atherosclerotic plaques, there are many different immune
cells that overlap expressions, (2) there is a spectrum of
types of activation for macrophages, and (3) there are new
subtypes of macrophages which we can identify in association
with atherosclerotic plaques (100, 101). It was shown that
a new species of macrophage clusters expressing TREM2 is
highly expressed in atherosclerotic plaques (100). These special
macrophages are believed to have specialized lipid metabolism
and catabolism functions. Decreased plaque-expression of
TREM2 has been associated with plaque instability in human
carotid artery samples (104). Interestingly, this may be related
to the fact that these macrophages also had the phenotypic
expression similar to that seen in osteoclasts, implicating
TREM2 macrophages in complicated atherosclerotic plaques
with calcification (105, 106). It has been shown that osteoclast-
like cells in plaques have a reduced capacity to degrade mineral
deposition and prevent calcification compared to that seen from

skeletal osteoclasts (106, 107). Although, large calcifications are
associated with stabilization of plaques, early micro-calcifications
have been implicated in plaque-instability and potential rupture
(108, 109). Therefore, TREM2 expression may be a key factor in
plaque pathology and needs to be further studied in the context
of different stages of calcification.

In addition, phenotypic mapping by scRNA-seq was able
to further elucidate the transcriptional overlap between
macrophages and dendritic cellular phenotypes, which has
been shown to contribute to early atherosclerotic formation
(100, 101, 110). The significance of the monocyte- dendritic cell
phenotype overlap in plaque formation is unknown. However,
it could be hypothesized that overall increase in expression of
dendritic-like phenotypes in macrophage populations helps
promote the long-term adaptive immune inflammation seen in
atherosclerotic plaques (104, 111).

Among the various phenotypic expressions of different
macrophage subtypes, it was shown in one scRNA-seq study that
non-foamy macrophages expressed more of an inflammatory
phenotype when compared to foamy macrophages (110).
Non-foamy macrophages expressed higher levels of cytokines
(e.g., IL-1b), which is the target of interest for canakinumab
in reducing cardiovascular mortality in the ongoing CANTOS
trial (NCT01327846) (112). This discovery introduces new
questions considering that it was conventionally believed that
foamy macrophages were the drivers of lesion inflammation
(113). This scRNA-seq study helps confirm Span et al. which
challenged the notion that foamy macrophages contributed
to inflammation of atherosclerosis by showing that foamy
macrophages had a deactivated inflammatory response instead
of an activated pro-inflammatory response (114). However,
more scRNA studies must look further into dividing foamy
from non-foamy macrophages in human plaque samples since
these previous studies used knock-out mouse model, which
is pathologically different to human atherosclerotic plaque
formation (115).

scRNA-seq has also been used to characterize other non-
inflammatory cells involved in atherosclerosis (116, 117).
Vascular smooth muscle cells (VSMCs) have been shown to
be significantly heterogeneous in blood vessels with direct
implications to atherosclerotic progression (118). Dobnikar et al.
utilized scRNA-seq of adult mouse aortas and identified a
rare subpopulation of Myh11-lineage VSMCs that express the
multipotent progenitor marker Sca1 (116). These rare VSMC
cells were shown to decrease contractile-related gene expression
yet increase gene expression related to response to inflammation
and growth factors. Dobnikar et al. subsequently showed that
Sca1+ VSMCs had a phenotypically similar transcriptional
profile in both healthy vessels and in atherosclerotic vessels.
Sca1 was not found in VSMC-derived plaque cells that displayed
a contractile signature and was also absent in VSMC-derived
plaque cells that already gained other cell-types signatures such
as those from chondrocytes. Therefore, the authors propose that
Sca1 expression could indicate an intermediate step for VSMC
plasticity in plaque development. Although Sca1+ cells have
been identified in bulk-blood vessel tissue before, scRNA-seq
allowed for the identification of Sca1+ in a rare subpopulation
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TABLE 2 | Summary of main studies.

Study Tissue Number of cells analyzed

after quality control filtering

(rounded to nearest whole

number)

Platform scRNA-seq significance

Skelly et al. (48) Mouse heart 10,519 10x genomics

chromium

Characterized the immense heterogeneity of the

non-myocyte cardiac cellulome

Schafer et al. (56) Mouse heart

(fibroblasts)

1,263 10x genomics

chromium

Identification of an upregulation of Il-11 in cardiac

fibrosis-prone PLNR9C/+ mice

Cui et al. (57) Human fetal heart 3,842 STRT-seq Characterized human fetal cardiac development

Nomura et al. (60) Mouse heart and

human heart

396 Smart-seq2 Identifying the heterogeneity of cardiomyocyte gene

expression in response to pressure overload

Jia et al. (66) Mouse fetal heart 421 (Fludigm C1)

663 (WaferGen iCell 8)

Fludigm C1 and

WaferGen iCell8

Reconstruction of developmental trajectories in

cardiogenesis and their association with different

chromatin states

Xiong et al. (67) Mouse fetal heart 616 average for each group Smart-seq2 Creation of a multi-dimensional map of the

intercommunication between first and second heart

fields during development

Yap et al. (71) HS1001 and H1 cell

lines

695 average for each group 10x genomics

chromium

scRNA-seq was used to assess the reproducibility of

a stem-cell differentiation method

Churko et al. (76) Human iPSCs 10,376 10x chromium Identification of the transcriptional regulatory network

in cardiomyocyte subpopulation differentiation from

iPSC

Su et al. (85) Mouse fetal

coronary vessels

334 average for each group Smart-seq2 Identification of novel developmental trajectories for

embryonic coronary arteries

Li et al. (95) Mouse heart 3,575 average for each group 10x genomics

chromium

Identification of a subpopulation of resident

endothelial progenitor cells that mediate

neovasculogenesis following myocardial infarction

Cochain et al.

(100)

Mouse aorta 854 10x genomics

GemCode

Characterized the transcriptional heterogeneity of

aortic macrophages and monocyte-derived dendritic

cells in a mouse atherosclerosis model

Lin et al. (101) Mouse aorta 2,678 average for each group 10x genomics

chromium

Profiling the spectrum of macrophage activation

states

Kim et al. (110) Mouse aorta 10,000 average for each group 10x genomics

chromium

Identified that nonfoamy macrophages had more

inflammatory characteristics than that seen with

foamy macropahges

Dobnikar et al.

(116)

Mouse aorta 143 (Fludigm C1)

150 (Smart-seq2)

About 2800 (10x

Genetics Chromium)

Fludigm C1,

Smart-seq2, and

10x

Genetics Chromium

Detection of a rare population of potentially

atherogenic-prone Sca1+ VSMC cells in healthy

mice aortas

Wirka et al. (117) Mouse aorta and

human coronary

arteries

About 3,500 cells 10x genomics

chromium

Identification of Tcf21 as a pro-phenotypic modulator

which was associated with protection from coronary

artery disease.

of VSMCs, therefore providing higher-resolution insight into
atherogensis (119).

Based on the findings from Dobnikar et al. upregulation
of Sca1 in specific VSMCs could promote a process called
phenotypic modulation (116). Phenotypic modulation in
the setting of vascular disease, is when VSMCs differentiate,
proliferate, and migrate in response to pro-atherogenic
stimulation (120). It has been hypothesized that mediating
phenotypic modulation could attenuate or even prevent
atherogenesis leading to vascular disease (121). It has been
proposed that phenotypic modulation could be crucial in
coronary artery disease by either maintaining plaque stability
or by destabilizing the plaque leading to rupture (120, 122).
However, identifying the exact transcriptional changes involved

in phenotypic modulation have been difficult in vivo because
there is a low expression of canonical VSMC markers and there
are other cell types that express common VSMC markers (123–
125). Recently, scRNA-seq of mice aortas and dissociated human
coronary arteries have identified the trajectory of contractile
VSMCs toward a fibroblast-like cell called a fibromyocyte
(117). This phenotypic trajectory is the opposite of that seen
with myofibroblast trajectory where a fibroblast acquires the
contractile properties of a muscle cell (126). VSMCs which
undergo phenotypic modulation may genetically shift their
expression to fibroblast-like cells under the positive-regulation of
Tcf21. Genome-wide association studies (GWAS) demonstrated
that genetic variants of Tcf21 is causally associated with coronary
artery disease, however, scRNA-seq may have elucidated a
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significant role for Tcf21 in phenotypic modulation (117, 127).
This was the first study showing a GWAS-identified gene
mediating SMC phenotypic modulation in vivo in the setting of
coronary artery disease. The authors concluded that sinceTcf21
was associated with reduced risk of coronary artery disease,
and that Tcf21 expression increased phenotypic modulation,
phenotypic modulation is most likely associated with reduced
coronary artery disease. It can be hypothesized that Tcf21
promotes VSMC to fibromyocyte transition thus augmenting
fibrosis formation within the atherosclerotic lesion and the
fibrous cap. This theoretically would stabilize the plaque from
rupturing leading to an acute cardiovascular event. Although
further studies need to be performed to investigateTcf21’s
atheroprotective potential, promoting Tcf21 activity could be an
interesting approach to reduce the incidence of plaque rupture.

LIMITATIONS AND FUTURE DIRECTIONS

We should note that many researchers have identified potential
limitations to scRNA-seq data. It has been pointed out
that the samples utilized for scRNA-seq do not capture
the longitudinal expression of genes within the cardiac
cellulome and that stochastic changes overtime could cause
significant transcriptional variation (128, 129). The issue
becomes compounded by the fact that scRNA seq of the heart
is only able to pick up 5–20% of the entire transcriptome per
cell (128). Furthermore, extracting single cells from cardiac
tissue is poor due to suboptimal dissociation methods currently
available leading to relatively lower quantities of cells available for
scRNA-seq (128). This greatly reduces the power of scRNA-seq
for cardiac tissue. These variations and relatively low coverage
in heart samples could reduce the accuracy and sensitivity of
determining the underlying transcriptional phenotype associated
with cardiac disease, especially of those with weakly expressed
genes (129, 130). A potential way to avoid this issue is to analyze
scRNA data longitudinally in order to identify stochastic noise
that may produce different results from single-time point studies.
However, since scRNA-seq is highly expensive and technical
difficulty, widespread usage has been limited. It currently
costs thousands of dollars and takes a team of experienced
scientists to run and analyze a single sample from a single
patient; therefore, doing larger-scale single-cell experiments are

unfeasible at the current time (14). Improvements in RNA
capture efficiency, cell dissociation, and sequencing depth will
drive scRNA-seq to mainstream usage (14). Currently, scRNA-
seq with combinatorial-indexing (sci-scRNA-seq) utilizes split-
pool barcoding of cells or nuclei (131). This method has been
used to analyze multiple organs at once from mice embryos
(132). Sci-scRNA-seq allows for researchers to characterize
the phenotypic variation at a multi-organ system level thus
giving potentially novel insight into diseases with pleiotropic
implications. Although sci-scRNA-seq is still in its infancy, it has
major potential for improving coverage depth of tissue analysis
and for reducing cost.

Though, as was seen with the development of next generation
sequencing, the current peak interest in single-cell technologies
will result in rapid advancements in the field leading to more
widespread use. Therefore, current cardiovascular scientists
and cardiologists should become aware of its potential impact
to the future of cardiovascular medicine (Table 2). Through
further application of this technology, the future holds many
exciting opportunities for adding novel insights into the
cardiovascular field. Single-cell transcriptome profiling would
be instrumental in characterizing the transition trajectory of
cells through subtypes and states during disease development
and progression. Future scRNA-seq studies could eventually
lead to identifying disease-promoting phenotypes for more
precise therapeutic targeting and diagnostic markers. This
could be particularly poignant, considering the possibilities:
for monocyte subtypes, which have been shown to both
promote and attenuate atherosclerosis; for fibroblast-like cell
subtypes, which have been implicated in worsening of cardiac
fibrosis and heart failure. scRNA-seq would be invaluable for
investigating subpopulation variation and cell-differentiation in
cardiovascular disease and fetal heart development. scRNA-seq
has and will continue to deepen our understanding of various
cardiovascular diseases which will undoubtedly improve the
precision of our patient care.
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