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Abstract

Recent developments in immuno-oncology demonstrate that not only cancer cells, but also
features of the tumor microenvironment guide precision medicine. Still, the relationship
between tumor and microenvironment remains poorly understood. To overcome this limitation
and identify clinically relevant microenvironmental and cancer features, we applied single-cell
RNA sequencing to lung adenocarcinomas. While the highly heterogeneous carcinoma cell
transcriptomes reflected histological grade and activity of relevant oncogenic pathways, our
analysis revealed two distinct microenvironmental patterns. We identified a prognostically
unfavorable group of tumors with a microenvironment composed of cancer-associated
myofibroblasts, exhausted CD8+ T cells, proinflammatory monocyte-derived macrophages
and plasmacytoid dendritic cells (CEP? pattern) and a prognostically favorable group
characterized by myeloid dendritic cells, anti-inflammatory monocyte-derived macrophages,
normal-like myofibroblasts, NK cells and conventional T cells (MAN2C pattern). Our results
show that single-cell gene expression profiling allows to identify patient subgroups based on

the tumor microenvironment beyond cancer cell-centric profiling.
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Introduction

Lung cancer accounts for the majority of new cases and deaths of cancer worldwide [1]. The
most common subtype of lung cancer is lung adenocarcinoma, which is at the same time the
most prevalent subtype in non-smokers [2]. Although some patients can be cured by surgery
complemented with radiotherapy or chemotherapy, the overall prognosis of lung cancer is still
poor. Molecular profiling identified a variety of driver mutations and guides treatment with novel
targeted therapies, such as inhibitors of epidermal growth factor receptor (EGFR) or anaplastic
lymphoma kinase (ALK) [3, 4]. Moreover, expression of PD-L1 in tumor cells predicts response
to the recently introduced class of immune checkpoint inhibitors [5]. However, clinical data
shows that the predictive accuracy of PD-L1 expression alone is limited pointing to more
complex mechanisms in the relationship between tumor cells and their microenvironment.
These findings suggest that the classical focus on the tumor cells is not capturing the full
picture. A more comprehensive characterization including the tumor microenvironment is likely
required for a better understanding of tumor biology and more precise patient stratifications.

Cancers are multicellular communities comprising malignant epithelial cells and
different types of non-malignant immune and stromal cells which exhibit dynamic and
reciprocal interactions. Modulation of immune responses, remodeling of the extracellular
matrix and neoangionesis essentially determine the aggressiveness of cancer [6]. In vitro and
xenograft studies outline relevant roles for different cell types of the tumor microenvironment.
Current bulk omics analyses do not allow high-resolution in situ characterization of tumors
uncovering the cellular diversity of the tumor microenvironment. However, comprehensive
profiling of tumor microenvironmental cell types and their functional traits in patient tissue is
essential to estimate the clinical relevance of results from preclinical models.

In this study, we analyzed tumor epithelial cells and associated non-malignant cells of
the tumor microenvironment of lung adenocarcinomas. We utilized tissue samples from routine
lung surgery to generate single-cell libraries using a commercial droplet-based approach and
investigated gene expression profiles on the single-cell level. This way, we demonstrate high

interpatient heterogeneity in gene expression of tumor epithelial cells while histological
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subtypes still share common transcriptomic traits. Within the tumor microenvironment, we
identified various immune and stromal cell subtypes, of which many were depleted or enriched
in tumor tissue. Extending previous single-cell studies [7-10], we found that the heterogeneous
cellular composition of the tumor microenvironment across patients follows specific patterns
that were associated with the differentiation grade of carcinoma cells. We evaluated these
signatures in an independent retrospective cohort characterized by bulk gene expression
profiling and found that these patterns might correlate with patient prognosis. We conclude that
a comprehensive profiling of lung adenocarcinomas considering the cellular diversity of tumor-
associated non-malignant cells may help reveal novel tumor subtypes based on carcinoma
cells but also microenvironmental features, and provide clinically relevant information guiding

novel therapies targeting components of the tumor microenvironment.
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Results

Single-cell RNA sequencing uncovers the cellular diversity of lung adenocarcinomas
To study the cellular composition of lung adenocarcinomas with a particular focus on the
microenvironment on the single-cell level, 10 normal lung and 10 lung adenocarcinoma fresh
tissue samples were collected during routine lung surgery. Evaluation of consecutive H&E
stained tissue sections ensured proper sampling of tumor tissue and showed that tumor
morphology ranged from well differentiated lepidic to poorly differentiated sarcomatoid growth
patterns (Supp. Fig. 1). Tissue samples were enzymatically dissociated to a single-cell
suspension to produce single-cell transcriptome libraries using a commercial droplet-based
system (Fig. 1A). Unsorted single-cell RNA sequencing yielded in 133,736 single-cell
transcriptomes of which 114,489 high-quality transcriptomes remained after quality control and
filtering (for quality control parameters see Supp. Fig. 2).

Analysis and visualization by Uniform Manifold Approximation and Projection (UMAP)
[11] showed that single-cell transcriptomes of different tissue types or patients both
intermingled in many clusters, excluding general batch effects, and partly formed tumor- or
patient-specific clusters, indicating underlying biological differences (Fig. 1B-C). To uncover
which cellular compartments account most for interpatient variability, we analyzed single-cell
transcriptomes for the expression of epithelial, immune and stromal marker genes. In total,
20,450 epithelial, 89,766 immune, and 4,273 stromal single-cell transcriptomes were covered,
suggesting an overrepresentation of immune cell transcriptomes as observed in other studies
[9, 12]. The yield of epithelial transcriptomes varied depending on histological subtypes, as we
observed less than 10% in solid/sarcomatoid, but up to >40% in lepidic/acinar carcinomas (Fig.

1D). Epithelial cells showed the highest degrees of interpatient heterogeneity (Fig. 1C-D).
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Figure 1: Single-cell RNA sequencing of lung adenocarcinomas

(A) Schematic representation of the workflow, 10 normal (blue) and 10 tumor (red) tissue samples were
obtained from 12 patients. (B+C) UMAPs based on the top 15 principal components of all single-cell
transcriptomes after filtering, color-coded by (B) tissue type, or (C) patient. (D) Overview of clinical
features, clinically relevant oncogenic mutations and gene fusions; quantification of main cell types per

patient and UMAP of all single-cell transcriptomes color-coded by main cell type.

Intertumoral heterogeneity of tumor epithelial cells reflects differentiation gradients

To further dissect interpatient variability within the epithelial cell compartment, epithelial single-
cell transcriptomes were subset and reclustered (Supp. Fig. 3A). Epithelial clusters
overrepresented in normal or tumor tissue samples were defined as normal or tumor cell
clusters, respectively (Supp. Fig. 3B). Within the normal cell clusters, we found alveolar type 1
and 2, club, ciliated, and even a small cluster of neuroendocrine cells (Fig. 2A), which were
characterized by expression of typical individual marker genes (Fig. 2B) and gene signatures

(Supp. Fig. 4A-B) [13, 14]. The club cell cluster also expressed basal cell marker genes such
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as NGFR and KRT5 indicating an admixture of small amounts of basal cells in this cluster (Fig.
2B). Few single-cell transcriptomes of normal epithelial cell types were also obtained from
tumor tissue samples (Fig. 2A), probably due to normal tissue adjacent to or entrapped within
the tumor. Beyond that, tumor cell clusters distinctly segregated from the normal cell clusters
(Fig. 2A). In contrast to normal cell clusters, the tumor cell clusters were mainly patient-specific,
indicating high intertumoral heterogeneity of tumor epithelial cells (Fig. 2A). This was
underlined by a variety of genes differentially expressed across tumors such as EGFR, TFF3,
CDKNZ2A, and SFTPAZ2 (Fig. 2C, black arrowheads), correlating with protein expression as
shown by immune staining (Fig. 2D). In order to analyze functional intertumoral heterogeneity,
we inferred the activity of potentially oncogenic signaling pathways from single-cell gene
expression profiles [15, 16]. We found highly varying pathway activity scores for EGFR, TGFj,
JAK/STAT, Hypoxia, and PI3K signaling in tumor epithelial cells of different patients (Fig. 2E),
and these patterns were largely unrelated to the mitotic activity of tumor epithelial cells (Supp.
Fig. 3D). The activity of p53 signaling was significantly reduced in tumors harboring TP53
mutations, demonstrating the functional effects of genomic alterations. In contrast, pathway
activity scores for EGFR and MAPK signaling were not significantly higher in KRAS-mutated
compared to KRAS-wildtype tumors, suggesting that other mechanisms can activate MAPK in
cancer (Supp. Fig. 3C). Taken together, tumor epithelial cells exhibited high intertumoral
heterogeneity on the levels of gene expression, protein expression and signaling pathway
activity.

Despite obvious intertumoral heterogeneity of tumor epithelial cells, we also noted
shared features of tumor transcriptomes across patients. Some differentially expressed genes
were strongly expressed in more than one tumor cases such as SCGB3A1 in patients P018,
P031 and P032, and SCGB3AZ2 in P018 and P032 (Fig. 2C, white arrowheads). Additionally,
tumors shared signaling pathway activity patterns. Pathway activity scores for EGFR, TGFf
and JAK/STAT signaling were high in tumors of patients P030, P033 and P034, while the
highest PI3K signaling activity was found in P0O18 and P032 (Fig. 2E). In order to emphasize

similarities between tumors from different patients, we performed UMAP embedding based on
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fewer principal components (4, 6, 8 instead of 20). In low-dimensional UMAPs, tumor cells
clustered less by patient, but rather by histological subtypes (Supp. Fig. 3E). Here, the first
principal component (PC1) displayed a gradient from poorly and moderately (sarcomatoid,
solid, papillary, mucinuous) to moderately (acinar) to well differentiated tumors (lepidic) (Fig.
2F, Supp. Fig. 3E+G). Interestingly, SCGB3A1 and SCGB3A2, two genes that were previously
associated with lung development [17], positively correlated with this dimension (Supp. Fig.
3F, arrowheads). Moreover, gene signature scores of normal lung cell types [13] along PC1
showed a strong positive correlation with gene expression profiles of alveolar type 1 and 2 as
well as club cells (Fig. 2G). Together, this indicates that PC1 reflects the degree of
differentiation of tumor epithelial cells. Hence, the top 30 genes positively and negatively
correlated with PC1 were defined as an “alveolar/club-like” and “undifferentiated” tumor cell
signature, respectively (Fig. 2F-H, Supp. Fig. 3I).

To further characterize functional features of “alveolar/club-like” and “undifferentiated”
tumor epithelial cells, we analyzed mitotic and pathway activity along PC1. While tumor cells
with different degrees of differentiation exhibited no clear differences in mitotic activity (Supp.
Fig. 3H), we found high pathway activity scores for JAK/STAT, Hypoxia, EGFR and TGFf
signaling in “undifferentiated”, and high scores for PI3K signaling in “alveolar/club cell-like”
tumor epithelial cells, respectively (Fig. 2H). We conclude that tumor epithelial cells of different
lung adenocarcinoma patients exhibit transcriptional patterns along a spectrum ranging from
undifferentiated to differentiated alveolar/club cell-like phenotypes that correlate with distinct

oncogenic pathway activity.
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Figure 2: Intertumoral heterogeneity of tumor epithelial cells in lung adenocarcinomas

(A) UMAPs based on the top 20 principal components of all epithelial single-cell transcriptomes color-
coded by tissue type, cell type and patient, and quantification of epithelial cell types per tissue type, AT1
= alveolar type 1 cells, AT2 = alveolar type 2 cells. (B) Average gene expression of selected marker
genes for normal epithelial cell types. (C) Differentially expressed genes in tumor epithelial cells grouped
by patients, maximum top 10 genes showed per patient, for patient color code see (A). (D)
Immunohistochemical staining of proteins encoded by selected differentially expressed genes indicated

by black arrowheads in (C). (E) Mean pathway activity scores of tumor epithelial cells grouped by patient.
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(F) Distribution of histological subtypes, (G) mean module scores of normal epithelial cell type gene
signatures, and (H) mean pathway activity scores of tumor epithelial cells sorted along principal
component 1 (PC1). (F+G+H) Principal component analysis based on gene expression of all tumor
epithelial single-cell transcriptomes; schematic depiction of tumor cell signature module scores along
PC1.

Two subtypes of myofibroblasts constitute the tumor stromal microenvironment
Neovascularization and remodeling of the extracellular matrix impacts on tumor growth and
metastasis. To analyze the cellular composition of the stromal microenvironment, we
separately analyzed stromal cells from both normal and tumor tissue samples. We identified
different clusters of endothelial and lymphatic endothelial cells, different clusters of fibroblasts,
myofibroblasts and smooth muscle cells, as well as mesothelial cells (Fig. 3A, for normal tissue
per patient see Supp. Fig. 5A) which were characterized by expression of typical marker genes
(Fig. 3B) and gene signatures (Supp. Fig. 4A-B) [13, 14]. Among the endothelial cells clusters,
tumor tissues were dominated by clusters 2 and 4 (Fig. 3A). These clusters showed high
expression of genes involved in angiogenesis such as VWAT and HSPG2, as well as high
expression of INSR, encoding a marker protein and possible therapeutic target in tumor-
associated endothelial cells, consistent with a previous report [9] (Supp. Fig. 5B, arrowheads).
While the proportion of smooth muscle and mesothelial cell clusters did not differ significantly
between normal and tumor tissues, we detected a shift from fibroblast to myofibroblast cell
clusters in tumor tissues (Fig. 3A). Here, myofibroblast clusters were characterized by
expression of both fibroblastic marker genes, such as PDGFRA and LUM, and smooth muscle
marker genes, such as MYLK and ACTA2 (Fig. 3B). Hence, besides tumor-associated
endothelial cells, myofibroblasts characterized the stromal microenvironment of lung
adenocarcinomas.

Notably, myofibroblast cluster 2 was almost exclusively found in tumor tissues while
myofibroblast cluster 1 occurred in both normal and tumor tissues. In myofibroblast cluster 2,
differential gene expression analysis revealed high expression of collagens such as COL3A1,
COLb5A1, COL5A2 and COL6A3, other matrix proteins such as VCAN, as well as matrix-

degrading enzymes such as SULF1 and MMP11, suggesting that these cells are involved in

10
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remodeling of the extracellular matrix of the tumor microenvironment (Fig. 3C, arrowheads).
Myofibroblast cluster 2 was also characterized by high activity of TGFB and JAK/STAT
signaling as well as hypoxia-induced pathways (Fig. 3D), which are common features of
cancer-associated myofibroblasts [18, 19]. In contrast, myofibroblast cluster 1 exhibited low
activity scores of all of these pathways. The relative proportion of myofibroblast clusters 1 and
2 within the fibroblastic/muscle cell compartment correlated inversely across patients (Fig. 3E).
We conclude that myofibroblasts cluster 1 and 2 represent “normal-like” and “cancer-
associated” phenotypes of myofibroblasts, respectively. Moreover, our results suggest tumor
subtypes where the tumor stromal microenvironment is predominated by either “normal-like”

or “cancer-associated” myofibroblasts.

Stromal cells Stromal marksr genes Single fibroblasticimuscle cells
Mormal Tumar wrl@@e® - @ - - - - fusrege all puster :
recan SO S9098S - - - - - - - T TiesuzRene
4 Wesathelial FRoHi] - - - 3 5

Enclolflial GoL2t

: 4
[} q = Fiinablzsis 2 'J“‘k jh PDEFRA

4 oy LU
3 * ol g . WYLE
o YA o e y‘ﬁ AcTA2

- Srrosih Pusce v

Myofibroblasts FDGFRE
MYHTI] + o+« s
o | Lymihalic: HERSRe
% i = | andethelial wrif - -o- e A L R
ez o FEEEENENEEEEN
URAF" L=
Stromal cell clusters
Endothelial cells D Sitinie = -
. naling Fathway Activ
Mormal i £ it i) Y ty
| [ P53
Fibroblastic/muzcle cells Thail
MNormal d L. 1 PI38
i \ . | REE
Turmer 2 MaFK
H B 1 EGFR
NFKE
THFr
s Turner Tumoar Andragan
HEE R Wi
P19 [ ] | Hypusia
ﬁggi | JAKISTAT =
i i 1 = m VEGF
5| PoaT | — - om T onom
| PO30 | I . T ®E T T G
o | po31 £ ®H Tl T B
Po32 S mm ISEEEE
P033 [ SiEEg £
P34 . z
 — TR
[ 3 5 1 B & g i
Endathehal ol 1 B Fibroblast cf. 1 E
Endathslal ol. 2 W Fibrobilast ol 2
¥ Endothelial ¢l 2 B Myofinrablast cl. 1 Pationt
B Endothslial . 4 B Myofinroblast cl. 2 w
M Endathelial ol. 5 M Srosth ruscle o, 1 L
M Endothelial cl. & B Srcoth muscle o, 2 Mros WP
B Encothelial ol 7 H Mosothalial colls [ rozs WP
I Lymphatic endathalial M roz4 PO T
Wrozr MPca E eI W Mormal
[ B Turrer

e
BT

Figure 3: Composition of the stromal microenvironment of lung adenocarcinomas

(A) UMAPs based on the top 20 principal components of all stromal single-cell transcriptomes split by
tissue type, color-coded by cell cluster; and relative quantification of endothelial and fibroblastic/muscle
cell clusters per tissue type and, for tumor samples, per patient. (B) Average gene expression of selected
marker genes for stromal cell clusters, for cell cluster color code see (A). (C) Differentially expressed
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genes of fibroblastic/muscle cell clusters, maximum top 10 genes showed per cell cluster, for cell cluster
color code see (A), black arrowheads indicate relevant marker genes of myofibroblast cluster 2
mentioned in the main text. (D) Mean pathway activity scores of different fibroblastic/muscle cell clusters,
mesothelial cells excluded, black arrowheads indicate relevant pathways of myofibroblast clusters 1 and
2 mentioned in the main text. (E) Correlation of the relative quantity of myofibroblast clusters 1 and 2,

color-coded by patient; Spearman’s correlation statistics, linear regression line.

The tumor immune microenvironment exhibits pro- and anti-inflammatory traits
We next analyzed immune cells of the tumor microenvironment, as above, to uncover potential
roles in both promotion and suppression of tumor growth. We identified different clusters of
tissue-resident and monocyte-derived macrophages, monocytes, myeloid and plasmacytoid
dendritic cells, mast cells, different clusters of T, NK, B and plasma cells (Fig. 4A, for normal
tissue per patient see Supp. Fig. 6A) based on typical marker genes (Fig. 4B) and gene
signatures (Supp. Fig. 4A-B) [13, 14]. Although single-cell transcriptomes of most cell clusters
were found in both normal and tumor tissue samples, we noted distinct quantitative shifts in
the cellular composition of the tumor immune microenvironment.

Among the myeloid cells in tumor tissue samples, we observed an increase in myeloid
and plasmacytoid dendritic cells, while monocytes were decreased. Moreover, we found a
decrease in tissue-resident and an increase in monocyte-derived macrophages in the tumor
samples (Fig. 4A). In addition to conventional macrophage markers, monocyte-derived
macrophages were characterized by expression of CD714, CSF1R and LGMN [20, 21] (Fig.
4B). Among monocyte-derived macrophages, we identified five clusters, of which clusters 1
and 2 clearly predominated the myeloid cell compartment. Here, cluster 2 expressed high
levels of proinflammatory chemokines such as CXCL9 and CXCL10 and the proinflammatory
cytokine IL1B (Supp. Fig. 6B, arrowheads). Correspondingly, cluster 2 exhibited high
expression scores of gene signatures related to immune response and M1 polarization [22,
23] (Fig. 4C, black arrowheads). In contrast, cluster 1 showed high expression of SELENOP
(Supp. Fig. 6B, arrowhead), which has been related to M2 polarization of tumor-associated
macrophages [24], and low scores of immune response-related signatures (Fig. 4C, white

arrowheads). This indicates that monocyte-derived macrophage clusters 1 and 2 represent
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more anti- and pro-inflammatory functional states, respectively. Notably, the anti- and
proinflammatory monocyte-derived macrophage clusters differed between tumor cases (Fig.
4A). The tumor immune microenvironment of some tumors was dominated by the
proinflammatory cluster 2 (P023, P027, P030, P034), while in other patients we found
predominantly anti-inflammatory cluster 1, or only few monocyte-derived macrophages at all
(Fig. 4D). In addition, the proportion of proinflammatory monocyte-derived macrophages
cluster 2 correlated with the occurrence of other myeloid cell types such as plasmacytoid
dendritic cells (Fig. 4D), pointing at distinct cellular patterns of the myeloid compartment of the
tumor immune microenvironment.

Within the lymphoid cell compartment, NK and conventional T cells were decreased,
while CD8+ T, B and plasma cells were increased in tumor tissues. In addition, regulatory T
cells were almost exclusively found in tumor tissue samples (Fig. 4A). Regulatory T cells
expressed inhibitory molecules such as CTLA4 and TIGIT (Supp. Fig. 6C, arrowheads)
corresponding to their role in autoimmune tolerance under physiological conditions and
immunosuppression in the tumor microenvironment [25]. We identified in total four clusters of
CD8+ T cells. Here, we observed a shift from cluster 3 in normal tissues to clusters 1 and 2
and proliferating CD8+ T cells in tumor tissues (Fig. 4A). While all CD8+ T cell clusters showed
high expression scores of a gene signature related to cytotoxicity [10], expression scores of
an exhaustion signature [10] were only high in the tumor-enriched CD8+ T cell clusters 1 and
2 and proliferating CD8+ T cells (Fig. 4E, black arrowheads), but not in the normal-enriched
CD8+ T cell cluster 3 (Fig. 4E, white arrowhead). The abundance of exhausted CD8+ T cells
showed a trend towards positive correlation with the proportion of regulatory T cells, while we
found a significant positive correlation with proinflammatory monocyte-derived macrophages
(cluster 2) and plasmacytoid dendritic cells.

Taken together, we found patient-overarching changes of the tumor immune
microenvironment of lung adenocarcinomas such as a shift from tissue-resident to monocyte-

derived macrophages and an enrichment in regulatory T cells and exhausted CD8+ T cells.
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Moreover, our results suggest that interpatient heterogeneity is not restricted to epithelial

cancer cells but also reflected by distinct tumor immune microenvironment patterns.

Immune marker genes
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Figure 4: Composition of the immune microenvironment of lung adenocarcinomas

(A) UMAPs based on the top 20 principal components of all immune single-cell transcriptomes split by
tissue type, color-coded by cell cluster; and relative quantification of myeloid and lymphoid cell clusters
per tissue type and, for tumor samples, per patient. (B) Average gene expression of selected marker
genes for immune cell clusters, for cell cluster color code see (A). (C) Module scores of gene signatures
related to inflammation and M1/M2 polarization of different macrophage clusters, white and black

arrowheads indicate monocyte-derived macrophage clusters 1 and 2, respectively, for cell cluster color

14


https://doi.org/10.1101/2020.12.11.419606
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.4196086; this version posted December 11, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

code see (A). (D) Correlation of the relative quantity of selected myeloid immune cell clusters, color-
coded by patient, for patient color code see (F); Spearman’s correlation statistics, linear regression line.
(E) Module scores of gene signatures related to cytotoxicity and exhaustion of different CD8+ T cell
clusters, white and black arrowheads indicate cell clusters enriched in normal or tumor tissue,
respectively, for cell cluster color code see (A). (F) Correlation of the relative quantity of selected
lymphoid and myeloid immune cell clusters, color-coded by patient; Spearman’s correlation statistics,

linear regression line.

The tumor microenvironment of lung adenocarcinoma features two major patterns
To integrate our analyses of variable cell prevalences in the tumor microenvironment, we
calculated proportions of cells of the myeloid, lymphoid, endothelial and fibroblastic/muscle cell
compartments across patients (for cell counts see Supplementary Tables 1-4). Principal
component analysis showed that tumors formed subgroups based on the cellular composition
of the tumor microenvironment (Fig. 5A). One group of tumors (P018, P019, P024, P031, P032
and P033) was marked by anti-inflammatory monocyte-derived macrophages, NK cells,
conventional T cells, myeloid dendritic cells, and normal-like myofibroblasts (referred to as
MANZ2C pattern, Fig. 5B), while a second group of tumors (P023, P027, PO30 and P034) was
characterized by proinflammatory monocyte-derived macrophages, exhausted CD8+ T cells,
plasmacytoid dendritic cells, and cancer-associated myofibroblasts (referred to as CEP?
pattern, Fig. 5B). In particular for cell types distinctive of the CEP? pattern, we found many
positive correlations of cell type abundances in the tumor microenvironment (Fig. 5C, Supp.
Fig. 7A). Furthermore, the two groups based on composition of the microenvironment also
largely separated histologically well and moderately differentiated tumors from more poorly
differentiated tumors (Fig. 5A). This was also reflected by mean expression scores of the
“alveolar/club-like” or “undifferentiated” tumor cell signatures, respectively (Fig. 5B). These
results illustrate that lung adenocarcinomas harbor two distinct tumor microenvironment
patterns, termed MAN2C and CEP?, correlating with high and low tumor differentiation grade,
respectively.

To test if these tumor microenvironmental expression patterns can be recapitulated in

larger patient cohorts, we analyzed bulk gene expression data of The Cancer Genome Atlas

15


https://doi.org/10.1101/2020.12.11.419606
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.4196086; this version posted December 11, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(TCGA) lung adenocarcinoma cohort. Expression of cell type signatures identified by single-
cell RNA sequencing was quantified in the bulk data by single-sample gene set enrichment
analysis (ssGSEA) [26] (for marker genes see Supplementary Tables 5-8). We found a specific
positive correlation of the alveolar/club-like tumor cell signature with anti-inflammatory
monocyte-derived macrophages and normal-like myofibroblasts, recapitulating the MAN2C
pattern, and, on the other hand, a positive correlation of the undifferentiated tumor cell
signature with proinflammatory monocyte-derived macrophages and cancer-associated
myofibroblasts, recapitulating the CEP? pattern (Fig. 5D, Supp. Fig. 7B). Hence, we were able
to recapitulate in a large cohort the distribution of macrophage and myofibroblast subtypes of
the tumor microenvironment patterns revealed by single-cell RNA sequencing, although
analysis of bulk data may miss scarce cell types and is likely to be influenced by relative sizes
of the immune or stromal compartments in the bulk samples.

To investigate the biological and clinical relevance of these patient subgroups, we
analyzed the overall survival of the TCGA lung adenocarcinoma cohort contigent on the
different gene signatures of tumor epithelial cells, monocyte-derived macrophages and
myofibroblasts. Since our single-cell analyses revealed that alveolar/club-like and
undifferentiated tumor cells, anti- and pro-inflammatory macrophages, and normal-like and
cancer-associated myofibroblasts were inversely correlated, respectively, we used the ratio of
corresponding signatures to stratify patients. Gene signatures representing the MAN2C
pattern, that is alveolar/club-like tumor cells, anti-inflammatory monocyte-derived
macrophages and normal-like myofibroblasts, were associated with a better overall survival
compared to the CEP? pattern, represented by gene signatures of undifferentiated tumor cells,
pro-inflammatory monocyte-derived macrophages and cancer-associated myofibroblasts (Fig.
5E). This association was confirmed in univariate analyses for all signatures (tumor cell
signatures: HR 0.10, 95%CI 0.03-0.26, p < 0.001, myofibroblast signatures: HR 0.08, 95%CI
0.02-0.28, p < 0.001, macrophage signatures: HR 0.14, 95%CI 0.02-0.94, p = 0.043) and in

multivariate analyses for the tumor cell signatures (HR 0.13, 95%CI 0.03-0.56, p < 0.001),
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hinting at a potential clinical relevance of the MAN2C and CEP? patterns in lung
adenocarcinoma.

In summary, our results show that lung adenocarcinomas can be stratified into clinically
relevant subgroups which are not only characterized by the grade of tumor epithelial cells, but
also by the cellular composition of their associated tumor microenvironment (Fig. 5F). We
therefore propose two major microenvironmental patterns in lung adenocarcinoma which we

term MANZ2C and CEP? according to the initial letters of the respective characteristic cell types.
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Figure 5: Tumor microenvironmental patterns in lung adenocarcinomas

(A) Principal component analysis based on the proportion of stromal and immune cell clusters, color-
coded by histological subtype, patients indicated. (B) Normalized proportion of stromal and immune cell
clusters, mean module scores of tumor cell signature, and histological subtypes per patient, patients
sorted along the first principal component from principal component analysis in (A), cell clusters included
in the model in (F) in bold. (C) Correlation of the proportion of stromal and immune cell clusters, most
connected section of correlation network plot shown; Spearman’s correlation statistics, only correlations
with rho > 0.7 and p < 0.05 shown. (A+B+C) Cell clusters occurring in less than 3 patients were excluded
from analyses. (D) Correlation of single-sample gene set enrichment analysis (ssGSEA) enrichment
scores of 533 patients from the TCGA lung adenocarcinoma cohort based on marker genes of selected
immune and stromal cell subtypes and tumor cell signatures; Spearman’s correlation statistics, linear
regression line. (E) Kaplan-Meier overall survival curves of 524 patients from the TCGA lung
adenocarcinoma cohort grouped by ratios of ssGSEA enrichment scores for selected immune and
stromal cell subtypes or tumor cell signatures; log-rank statistics, univariate Cox regression. (F)
Schematic representation of subtypes of lung adenocarcinoma characterized by different grades of
tumor epithelial cell differentiation and different composition of the corresponding tumor

microenvironment.
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Discussion

By applying single-cell RNA sequencing to lung adenocarcinomas, we identified different cell
types enriched in the tumor microenvironment such as myofibroblasts, monocyte-derived
macrophages, dendritic cells, regulatory T cells and exhausted CD8+ T cells, and observed a
high interpatient heterogeneity with respect to their distribution. This led us to identify two major
microenvironmental patterns: i) a rather normal-like tumor microenvironment characterized by
normal-like myofibroblasts, conventional T cells, NK cells, but also anti-inflammatory
monocyte-derived macrophages and myeloid dendritic cells, referred to as MAN?C pattern,
and ii) a more distinctly altered tumor microenvironment characterized by proinflammatory
monocyte-derived macrophages, plasmacytoid dendritic cells, exhausted CD8+ T cells and
cancer-associated myofibroblasts, referred to as CEP? pattern (Fig. 5F). Here, the MAN2C
pattern was associated with an alveolar/club-like gene expression pattern of carcinoma cells,
lower histological grade and better prognosis, while the CEP? pattern was associated with an
undifferentiated gene expression pattern of carcinoma cells, higher histological grade and
worse prognosis.

Currently, besides tumor stage, histological grading based solely on the predominant
tumor growth pattern is used to predict prognosis in lung adenocarcinoma. However, in
particular for intermediate grade tumors, a more precise risk stratification is needed [27].
Different histological features, including nuclear grade, mitotic count, and tumor budding [27],
as well as a combined histological grading taking into account intertumoral heterogeneity [28]
have been proposed. However, these concepts focus on the carcinoma cells and do not
include potentially prognostically relevant features of the complex composition of the tumor
microenvironment. Most available data focus on single cell types such as tumor-associated
macrophages. Although evidence points to a positive prognostic effect of pro-inflammatory
tumor-associated macrophages (M1 macrophages), results from many studies are
inconclusive which might be due to the fact that differentiation between macrophage subtypes
based on a limited number of immunohistochemical markers is not straightforward [29]. Our

results suggest that the microenvironmental CEP? pattern is associated with worse prognosis.
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While this contradicts some previous works with regard to pro-inflammatory tumor-associated
macrophages [29], it is in line with existing evidence for cancer-associated myofibroblasts [30]
and plasmacytoid dendritic cells [31]. The absence of cancer-associated myofibroblasts, and
the presence of NK cells [32] and conventional T cells [33] support the association of the
MAN2C pattern with better prognosis. In contrast to recent evaluations of the tumor
microenvironment by bulk gene expression profiling [34-36], our analysis proposes novel
microenvironmental signatures by comprehensive in-depth characterization of different
immune and stromal cells complementing the carcinoma cell-centric view.

As immune cells have already been shown to have predictive value underlined by the
introduction of immune checkpoint inhibitors and the evaluation of PD-L1 expression in some
cancers (although not yet lung cancer [37]), it is likely that more comprehensive
characterizations of the immune tumor microenvironment will provide even deeper insights in
patient stratification and drug development. Recently, expression of the proinflammatory
cytokines CXCL9 and CXCL10 by tumor-associated macrophages, for instance, has been
shown to be essential for tumor response to anti-PD-L1 therapy [38, 39]. Interestingly, we
observed high expression of these cytokines in pro-inflammatory monocyte-derived
macrophages indicating that the microenvironmental CEP? pattern, which was also marked by
exhausted CD8+ T cells, could be a predictor of response to anti-PD-L1 therapy. In addition,
the CEP? pattern was characterized by cancer-associated myofibroblasts which showed high
expression of potential novel therapeutic targets, such as PSTN and MMP11 [40, 41]. Despite
an overall depletion of NK cells in tumors in agreement with other studies [7, 9], the MAN2C
microenvironmental pattern still contained small populations of NK cells which could be
targeted by immunostimulatory agents [42]. Although not specifically related to the MAN2C or
CEP? pattern, we and others [8, 9] observed an enrichment of B cells in some tumors with
potential importance in development of novel immunotherapies [43].

While the analysis of the tumor microenvironment will likely benefit from single cell
approaches most substantially because of its complex cellular composition, they will also

contribute to a better understanding of the tumor itself because lung cancers are characterized
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by high tumor mutational burden [44] and high genomic intertumoral heterogeneity [45]. On
the transcriptional level, differences have been described between squamous and
adenocarcinomas of the lung [46], while this is less evident for histological subtypes of lung
adenocarcinoma [47]. Interestingly, despite intertumoral heterogeneity, we found that single-
cell transcriptomes of tumor epithelial cells retained similarities across patients corresponding
to the established histological subtypes of lung adenocarcinoma [27]. We defined two inversely
correlated tumor cell signatures, “alveolar/club-like” and “undifferentiated”, reflecting a
transcriptional differentiation gradient reminiscent of transcriptional patterns, recently
described by Kim and colleagues [9]. Furthermore, the “undifferentiated” tumor cell signature
was associated with high EGFR signaling, being already a therapeutic target in KRAS-wildtype
lung adenocarcinomas [4], and JAK/STAT signaling, which is a possible therapeutic target in
preclinical KRAS-mutant tumor models [48]. The “alveolar/club-like” tumor cell signature
correlated with high PI3K pathway activity, which has been under early clinical investigation as
therapeutic target, however, with yet unconvincing results, possibly due to insufficient
molecular characterization and selection of patients [49].

Our findings show that single cell approaches contribute to a better understanding of
the heterogeneity within each tumor tissue compartment, but may also prove invaluable for
analysing the complex interactions between malignant epithelial cells and various non-
malignant stromal and immune cells. In our study, we identified two major tumor
microenvironmental patterns associated with tumor differentiation grade, termed MAN2C and
CEP?, with the potential to predict prognosis, therapy response and provide insight on possible
novel therapeutic targets. Nevertheless, the relevance of our proposed tumor
microenvironmental subtypes will have to be validated in larger clinical cohorts. Moreover, the
question of cause and consequence remains open: To which extent do cancer cells shape
their microenvironment or does the microenvironment affect cancer cells? Given the cellular
diversity of the tumor microenvironment, many possible cellular interactions have been studied
in preclinical models. These preclinical efforts need to be complemented by translational

studies to identify critical mechanisms in this complex network that determine tumor response
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to targeted or immune therapies in the clinical context. While our study demonstrates how
single-cell gene expression profiling of clinical samples can contribute to this task, in the future,
other single-cell approaches comprising spatial information [50], surface protein expression

[51] and epigenetic characterization [52] will help to complete the picture [53].
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Methods

Collection of tissue specimens

Fresh normal lung parenchyma and tumor tissues were obtained from previously untreated
lung adenocarcinoma patients undergoing primary surgery during intraoperative pathologist
consultation. All patients were aware of the planned research and agreed to the use of tissue.
Research was approved by vote EA4/164/19 of the ethics committee of Charité -

Universitatsmedizin Berlin.

Tissue dissociation and single cell isolation

Tissue specimens of approximately 0.1-0.5 cm?® were stored short-term (maximum 3 hours) on
ice in Tissue Storage Solution (Miltenyi, 130-100-008) for transport. Next, tissues were minced
using two scalpels and dissociated using the Tumor Dissociation Kit, human (Miltenyi, 130-
095-929) and a gentleMACS Octo Dissociator with heaters (Miltenyi, 130-096-427), using
program 37C_h_TDK 1 for 30-45 min. Cell suspensions were filtered using 100 pm filters, and
all subsequent steps were performed at 4°C or on ice. Cells were pelleted by centrifugation at
300 g for 5 min in BSA-coated low-binding tubes, and cells were treated with 1 ml ACK
erythrocyte lysis buffer for 60 seconds and washed with DMEM. Cells were pelleted,
resuspended in PBS, cell suspensions were filtered using 20 um filters, debris was removed
using the Debris Removal Solution (Miltenyi, 130-109-398), and cells were counted using a

Neubauer chamber.

Single-cell RNA sequencing

10,000 single cells were used for single-cell library production, using the Chromium Single Cell
3'Reagent Kit v3 and the Chromium Controller (10x Genomics) according to the
manufacturer’s protocol. Libraries were sequenced on a HiSeq 4000 Sequencer (lllumina) at
100-400 mio. reads per library to a mean library saturation of 55% resulting in average 54,000

reads per cell.

H&E and immunostaining
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3-5 pum tissue sections formalin-fixed and paraffin-embedded (FFPE) tissue were used for
immunofluorescence, immunohistochemistry and hematoxylin and eosin (H&E) staining.

For H&E staining, sections were stained for 8 min in acidic haemalum staining solution
(Waldeck) and for 2,5 min in eosin staining solution (Sigma-Aldrich) at room temperature using
a Tissue-Tek Prisma Plus slide stainer (Sakura).

Immunohistochemical and immunofluorescence stainings of FFPE tissue sections were
performed on the BenchMark XT immunostainer (Ventana Medical Systems). For antigen
retrieval, tissue sections were incubated in CC1 or CC2 buffer (both Ventana Medical Systems)
for 30 min at 100°C. Sections were incubated with primary antibodies for 60 min and with
secondary antibodies for 30 minutes at room temperature diluted in Dako Real Antibody
Diluent (Dako, S2022). The following primary antibodies were used: rabbit anti-TFF3 (Abcam,
ab108599, 1:250, CC1 antigen retrieval), rabbit anti-EGFR (Roche, #790-4347, prediluted,
CC1 antigen retrieval), mouse anti-p16 (Roche, #805-4713, prediluted, CC1 antigen retrieval),
mouse anti-SFTPA (Abcam, ab51891, 1:200, CC2 antigen retrieval). Hematoxylin-and-eosin
and immunohistochemical images were taken using a Pannoramic SCAN 150 slide scanner

(3DHISTECH).

Panel sequencing

For panel sequencing of oncogenic mutations and gene fusions, tumor-enriched areas were
macrodissected from formalin-fixed and paraffin-embedded tissue sections.

DNA was isolated using the Maxwell RSC DNA FFPE Kit (Promega) on a Maxwell RSC 48
Instrument (Promega). Isolated DNA was analyzed for oncogenic mutations using the nNGM
panel v1 (ThermoFisher), an lon 530 chip (ThermoFisher) and the lon Chef/lon S5 XL System
(ThermoFisher).

RNA was isolated using the Maxwell RSC RNA FFPE Kit (Promega) on a Maxwell RSC 48
Instrument (Promega). Isolated RNA was analyzed for oncogenic gene fusions using the
Oncomine Focus RNA Assay (ThermoFisher), an lon 530 chip and the lon Chef/lon S5 XL

System (ThermoFisher).
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The Sequence Pilot Software (Version 4.4.0, JSI Medical Systems) and the lon Reporter

Software (Version 5.12, ThermoFisher) were used for variant calling.

Single-cell RNA sequencing data analysis

Preprocessing, filtering and normalization

For each sample, UMIs were quantified using Cellranger 3.0.2 (10x Genomics) with reference
transcriptome GRCh38. Subsequent analyses were performed using the R package “Seurat
v3” [54], if not stated otherwise. Single-cell gene expression data of all patients were merged.
Quality control filters were set to only include cells with 500-10,000 genes detected, 1,000-
100,000 UMls counted, fraction of mitochondrial reads <30%, and fraction of hemoglobin reads
<5%. After filtering, UMI counts were variance-stabilized using scTransform with 3,000 variable
features [55], while regressing out number of UMIs counted and fraction of mitochondrial reads.
Clustering and cell type annotation

The top 15 principal components were used to construct shared nearest neighbor (SNN) graph
and UMAP embedding as implemented in the R package “Seurat v3” with default parameters.
Next, main cell types (epithelial, immune, stromal) were identified by scoring cell type markers
across clusters (resolution = 0.2, otherwise default parameters). PCA, SNN graph construction
and UMAP embedding was rerun on each subset using the top 20 principal components, and
a resolution of 1 for the epithelial and stromal subsets, or 0.5 for the immune subset with
otherwise default parameters. Cell type markers used to score epithelial, immune, and stromal
cell types were adapted from Habermann et al. [56] and Tata et al. [57]. Cell type signatures
from Vieira Braga et al. [13] and Travaglini et al. [14] were used to validate manual cell type
annotation. Epithelial or immune contaminated clusters were identified by expression of
EPCAM or PTPRC, respectively, and removed prior to further analyses. In the epithelial
subset, cell clusters which were relatively overrepresented in the tumor tissue samples were
annotated as tumor cells.

Differential gene expression analysis

For differential gene expression analysis of epithelial cells, tumor cells from tumor samples

were subset and gene expression rescaled. Immune and stromal subsets were split as stated,
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and gene expression rescaled. Marker genes for each cell cluster versus all cells of the subset
were computed using the FindAlIMarkers function of the R package “Seurat v3” with Wilcoxon
rank-sum test and the following parameters: only positive markers, fraction of expressing cells
inside the cluster >0.25, difference between fraction of expressing cells inside and outside the
cluster >0.25, log fold change between cells inside and outside the cluster >0.25.

Functional analysis

Cell cycle phases were scores as implemented in the R package “Seurat v3”. Expression of
gene sets of the Hallmark signature collection of the Broad Institute [22], and M1 vs. M2 up-
and downregulated genes [23] were scored using the AddModuleScore function of the R
package “Seurat v3”. Oncogenic signaling pathway activity scores were computed using the R

package “progeny” [15, 16].

TCGA gene expression analysis

FPKM-normalized gene expression values from RNA sequencing and clinical data of the lung
adenocarcinoma (LUAD) cohort of The Cancer Genome Project was downloaded using the R
package “TCGAbiolinks” [58] and log2 transformed.

Data from single-cell RNA sequencing was subset into myeloid, lymphoid, endothelial and
stromal compartments, rescaled using the ScaleData function and marker genes identified
using the FindAllIMarkers function (only positive genes, fraction of expressing cells = 0.25,
difference of fraction of expressing cells = 0.25).

For epithelial marker genes, tumor-specific clusters in tumor samples were subset, rescaled
using the ScaleData function and dimensionality reduction performed using RunPCA. The top
30 genes positively or negatively correlated with principal component 1 were selected for the
PC1r°s or PC1"9 marker gene list, respectively.

Marker gene lists from myeloid, lymphoid, endothelial, stromal and epithelial cell subsets were
used as gene sets to perform single-sample gene set enrichment analysis (ssGSEA) [26] on
TCGA LUAD gene expression data using the R package “GSVA” [59] assuming Gaussian

distribution.
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Associations between enrichment scores (ES) from ssGSEA were calculated by Pearson

correlation test using the R package “corrplot”.

TCGA survival analysis

For survival analyses, ES from ssGSEA of the TCGA LUAD gene expression data were
dichotomized (ES > median or < median). For dichotomization of combined enrichment scores,
the enrichment score matrix was rotated clockwise by the arctangent of the slope from linear
regression using a rotation matrix and subsequently dichotomized (x value > median or <
median).

For survival analysis, survival curves, log rank statistics and Cox regression were calculated
including the parameters “vital status”, “days to death” and “days to last follow up” from the

TCGA dataset using the R packages “survival” and “survminer”.
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