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The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome

(SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect

antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized

peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA

sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease

2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation

in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded

T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-

reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We

characterize transcriptional signatures of currently and previously activated SARS-CoV-2-

reactive T cells, and show correspondence with phenotypes of T cells from the respiratory

tract of patients with severe disease in the presence or absence of virus in independent

cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular

states of SARS-CoV-2-reactive T cells across tissues and activation states.
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C
OVID-19 is a new form of viral pneumonia1 caused by
SARS-CoV-22 and is affecting 67,073,749 patients, with
1,536,072 deaths, worldwide (source: Johns Hopkins

University, as of December 7, 2020). Adaptive immunity is swiftly
induced upon COVID-19 infection3. T cells play a central role in
this process and are implicated in contributing both to long-
lasting immunity as well as to putative immunopathology4,5. A
thorough understanding of T cell responses to SARS-CoV-2 is
therefore urgently needed.

Immunodominant SARS-CoV-2 antigen specificities have been
identified with unprecedented speed for an emerging pathogen,
and phenotypic characterization of antigen-reactive T cells has
quickly been performed by a plethora of studies6–16. While there
is general agreement that SARS-CoV-2-reactive T cells are acti-
vated and differentiate during the course of the immune response,
the extent of activation and differentiation are controversial4,5.

Vast resources of deeply profiled immune cells from COVID-
19 patients do already exist and are bundled e.g., by the Human
Cell Atlas initiative (www.humancellatlas.org). It is difficult,
however, for any single study to cover different patient disease
states and sample sites, together with detailed clinical metadata
and deep profiling down to single-cell resolution, including
antigen-specific analyses. For example, few studies have investi-
gated T cell states across different tissue sites (e.g., from periph-
eral blood (PB) and the respiratory tract) in identical COVID-19
patients5. Generally, antigen-specific T cells are expected to have
different activation states in different tissues depending on the
course of the disease. When a viral antigen is still present in the
respiratory tract, T cells at the site of infection should show a
more activated phenotype compared to PB T cells which are not
being activated by the antigen at the time of analysis. In this
context, difficulties to clearly define the phenotypic profile of
currently and previously activated SARS-CoV-2-reactive T cells
also hinder the precise contextualization of T cell signatures
across publicly available data sets.

Methodologies for the characterization of antigen-reactive
T cells differ and thereby obscure a clear insight into T cell
phenotypes. Some reports have described phenotypes of activated
T cells during the course of COVID-19 without assessment of
bona fide antigen specificity, whereas other studies restricted
phenotypic characterization to antigen-reactive T cells4. Although
such restriction to antigen-reactive T cells is clearly desired, it
entails methodological challenges on its own: initial detection of
antigen-reactive T cells usually requires in vitro re-stimulation
with SARS-CoV-2 antigens. Upon re-stimulation, antigen-
reactive cells can be defined through upregulation of activation
markers (such as CD154) or release of effector cytokines (such as
IFNγ)17. This, however, automatically also introduces major
phenotypic biases for any downstream profiling since in vitro
activated T cells show different phenotypes compared to unper-
turbed cells (i.e., cells as they are in vivo; technically, any analysis
outside the body is ex vivo; we therefore here refer to unstimu-
lated cells from our experiments as “ex vivo”; in contrast, we use
the term “in vitro”, when cells are additionally re-stimulated since
the stimulation step introduces major differences compared to the
in vivo setting; finally, we use the term “in vivo” when the actual
in vivo setting is referred to)18. In order to address these well-
known challenges, peptide human leukocyte antigen (pHLA)
multimers have been developed19. Through removal of specifi-
cally designed pHLA multimers (“Streptamers”), unperturbed
cellular phenotypes of antigen-reactive T cells can be even com-
pletely preserved20. Yet, pHLA multimer technology requires a
previous definition of specific epitopes and is restricted to indi-
vidual HLA haplotypes. Furthermore, pHLA multimers are often
difficult to generate for HLA class II-restricted CD4 T cells21.
These limitations represent a significant technical obstacle to

investigating unbiased in vivo phenotypic profiles of antigen-
reactive T cells.

Single-cell RNA sequencing (scRNA seq) allows simultaneous
analysis of the global cellular transcriptome as well as identifi-
cation of T cell receptor (TCR) sequences22,23. Recently, it has
been demonstrated that scRNA seq can be used to reveal
activation-induced phenotypic profiles of antigen-reactive
T cells24. Samples can be split up after isolation from the tissue,
stimulated in vitro in an antigen-specific manner (and, for
comparison, left unstimulated), and then sequenced. The natural
TCR can thereby serve as a barcode to link T cells of the activated
and unstimulated condition belonging to the same in vivo
expanded clonotype with a common antigen specificity.

Here, we show that such “reverse phenotyping” (Supplemen-
tary Fig. 1a) can be used to identify and characterize SARS-CoV-
2-reactive T cells from PB of severely diseased COVID-19
patients. Furthermore, an integrated analysis of respiratory
material from our own and independent reference cohorts shows
that transcriptomic states of respiratory T cells from virus-
positive patients are most similar to in vitro stimulated reactive
T cells from PB, consistent with a “hot” phenotype driven by
acute activation at the site of infection. Thus, we present tran-
scriptional shifts from acute disease to resolution after virus
clearance in antigen reactive CD4 and CD8 T cells during the
course of COVID-19.

Results
Patient characteristics and experimental set-up for “reverse
phenotyping”. We acquired respiratory material (TAs) as well as
PB mononuclear cells (PBMCs) from severely diseased patients
with COVID-19 (Fig. 1a; Supplementary Data 1). Consistent with
the risk profile for severe disease, seven of nine patients in this
“Munich cohort” were male and age ranged from 51 to 82 years
(median 79 years). All patients were treated in an intensive care
unit (ICU) and had been on a respirator for 8–38 days (median
29 days) at the time of sampling. After initial detection of SARS-
CoV-2 via polymerase chain reaction (PCR), eight of nine
patients had turned consistently virus-negative or had at least one
prior negative test result at the time of sampling. Ultimately, two
patients deceased and seven patients recovered. ScRNA seq (3′

transcriptomics) was performed on TAs from all nine patients.
For two patients (“GT_3” and “GT_2”), we stimulated PBMCs
with SARS-CoV-2 spike protein–peptide mix or left control
samples unstimulated, and likewise performed scRNA seq (5′

transcriptomics and VDJ) after flow cytometry-assisted cell
sorting of >10.000 CD4 and CD8 T cells for each patient.

Antigen-induced transcriptional shifts in PBMCs. After pre-
processing, uniform manifold approximation and projection
(UMAP)25 of stimulated and unstimulated T cells identified a
group of cells in both patients which were separate from all other
cells (Leiden cluster 29 in patient GT_3; Fig. 1b). The cluster
encompassed both CD4 and CD8 cells and consisted almost
exclusively of cells from the stimulated condition. We hypothe-
sized that this distinct stimulation-induced cluster represented
antigen-reactive T cells. Indeed, only the cells from that cluster
upregulated IFNG (the gene encoding Interferon-γ, IFNγ) after
stimulation (Fig. 1c). Antigen-reactive CD4 Th cell lineages
(particularly those that are not Th1 cells) do not necessarily
express IFNγ in response to antigen21. For this reason, and in
order to not focus on upregulation of a single gene, we explored
more holistic and unbiased antigen-reactive response scores for
CD4 and CD8 T cells, as previously identified by scRNA seq after
aCD3/aCD28 stimulation18. Upon stimulation, CD4 T cells have
been described to show sequentially enriched IFN response (early
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activation) and proliferation (late activation) scores18. Accord-
ingly, in our analysis CD4 T cells showing high proliferation
scores were exclusively present upon stimulation, and only in
cluster 29 (Fig. 1c). Interestingly, particularly CD4 cells outside
the cluster (on the left side of the UMAP) underwent a general

transcriptional shift through stimulation, whereas this did not
occur for CD8 cells. These seemingly unspecifically shifting CD4
T cells were also the ones that showed a high IFN response (early
activation) score (Fig. 1c) or, e.g., expression of the IFNγ receptor
gene IFNGR2 (Supplementary Fig. 1b) upon stimulation. This
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Fig. 1 Single-cell RNA sequencing allows detection of transcriptional shifts induced by antigen-specific stimulation in TCR-barcoded clonotypes. a

Experimental setup; cells from tracheal aspirates and peripheral blood T cells (flow cytometry-sorted for CD4 or CD8 positivity) of intensive care unit

(ICU) patients with COVID-19 were profiled by single-cell RNA sequencing (scRNA seq). Before scRNA seq, peripheral blood T cells were stimulated with

SARS-CoV-2 spike protein–peptide mix or left untreated. b Uniform manifold approximation and projection (UMAP) of Leiden clusters (left panel), CD4

and CD8 T cells (middle panel), and stimulated and unstimulated T cells (right panel) (n= 11,460 cells in total). c IFNG expression, IFN response score,

proliferation score, cytotoxic score, and cytokine score (from top to bottom) in unstimulated (left panels; stimulated cells shown in gray) or stimulated

(right panels; unstimulated cells shown in gray) T cells (n= 11,460 cells in total). d Stimulated CD4 and CD8 T cells with highlighted pseudotime after

defining the endpoint of pseudotime at the tip of cluster 29 (n= 11,460 cells in total). e IFNG expression in unstimulated or stimulated T cells for four

representative clonotypes. For each clonotype, cells belonging to that clonotype are shown in an individual panel pair (cells from the unstimulated condition

in left panels, cells from the stimulated condition in right panels), while cells not belonging to that clonotype are shown in gray (n= 11,460 cells in total, 43

cells for CD4 clonotype 19, 8 for CD4 clonotype 574, 61 for CD8 clonotype 244, 165 for CD8 clonotype 13). Data are shown for patient GT_3.
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confirms previous observations of differential CD4 tran-
scriptomics through sensing of TCR-triggered cytokines such as
IFNγ18. The source of the sensed cytokines could be antigen-
reactive CD4 or CD8 T cells that are neighboring and stimulated
in the culture system.

CD8 T cells have been described to undergo sequential
transcriptional states upon activation that are reflected by high
“cytotoxic” (early activation) or “cytokine secretion” scores (late
activation)18. While in our analysis almost all CD8 T cells showed
a high cytotoxic score, high cytokine scores were exclusively
confined to cells belonging to the antigen-reactive cluster 29 in
the stimulated condition (Fig. 1c). Differential gene expression
analysis confirmed that cluster 29 CD8 T cells showed
upregulation of genes like IFNG, TNF, IL2, CCL3, CCL4, or
GZMB (Supplementary Data 2 and 3), in line with CD8 T cell
activation. We next aimed to elucidate if activation-induced
transcriptomic changes followed consistent gradients. To this
end, we defined the tip of cluster 29 as an “endpoint” in pseudo-
time and ordered all stimulated cells along this trajectory of
transcriptomic similarity (Fig. 1d). This shows that our approach
could resolve a spectrum of activation states across clonotypes,
feeding into cluster 29 from different directions. We validated our
findings in the second severely ill patient (“GT_2”) with COVID-
19 for which we stimulated or did not stimulate PB CD4 and CD8
T cells with SARS-CoV-2 spike protein–peptide mix. Again,
antigen stimulation-induced transcriptional shifts giving rise to a
specific “reactive Leiden cluster” (in this patient cluster 36;
Supplementary Fig. 2a, b). Data integration showed that the
reactive Leiden clusters from both patients showed convergent
phenotypes (Supplementary Fig. 2c). The reactive clusters
constituted 0.39% (cluster 36 in patient GT_2) or 2.88% (cluster
29 in patient GT_3) of all stimulated cells and were specific to the
stimulated condition (Supplementary Fig. 2d).

Identification of antigen-reactive clonotypes. Using the TCR
information from VDJ sequencing, we next investigated whether
differential transcriptional responses to antigen stimulation could
be attributed to specific clonotypes. We detected CDR3αβ
sequences in 92% of analyzed T cells (69.9% fully paired CDR3αβ;
3.4% CDR3α only; 26.7% CDR3β only). In order to ensure the
clonotypic nature of the investigated cells, we first only included
clonotypes based on identical fully paired CDR3αβ sequences in
our analysis. For both CD4 and CD8 T cell clonotypes, we
recovered similar cell numbers in the stimulated and non-
stimulated conditions (Supplementary Fig. 3a, c). This enabled
us to identify clonotypes that underwent transcriptional shifts
upon antigenic stimulation (Fig. 1e). Interestingly, we observed a
heterogeneous response pattern within clonotypes, with some cells
moving into the antigen-reactive cluster 29 (with concomitant
upregulation of IFNG) and other cells staying in a transcriptional
state that is consistent with their ex vivo phenotype without
in vitro re-stimulation (Fig. 1e; Supplementary Fig. 3e). Possibly,
these response patterns are a result of stochastic antigen encoun-
ters in the experimental stimulation system in vitro. The remark-
able degree of transcriptional synchronization specific for each
TCR ex vivo confirms previous observations of TCR-mediated
phenotypic imprinting26,27 and renders high credibility to the
assessment of clonotypes that are as small as a few cells per con-
dition group (such as clonotype 574; Fig. 1e). Overall, the distinct
transcriptional shifts induced by antigenic stimulation in specific
clonotypes suggested the presence of antigen-reactive T cells.

While mean proliferation scores (for CD4 T cells) or mean
cytokine scores (for CD8 T cells) generally correlated with mean
IFNG expression per clonotype after antigen-specific stimulation
(Supplementary Fig. 3b, d), IFNG expression seemed to be the

more sensitive read-out. We, therefore, decided to define antigen-
reactive T cells by significantly enhanced IFNG expression after
antigen-specific stimulation (Fig. 2a, b). Among clonotypes with
at least three cells in each stimulation condition, we detected five
and four antigen-reactive clonotypes for CD8 and CD4 T cells,
respectively. Apart from clonotype 574, reactive clonotypes were
large in size, consistent with previous in vivo activation and clonal
expansion.

This first analysis was strictly restricted to paired αβ TCRs. We
also explored all clonotypes defined by unique double (CDR3αβ)
or single (CDR3α or CDR3β) chain sequences (Supplementary
Fig. 4). This yielded two further CD8 clonotypes (clonotypes 651
and 548). Upon further examination, these single-chain (CDR3β
only) clonotypes shared CDR3β sequences with clonotypes 81
and 244, respectively, and showed similar IFNG upregulation
(Supplementary Fig. 4a) and global transcriptomic states ex vivo
and upon stimulation (Supplementary Fig. 4b) compared to their
paired partner clonotypes. We also identified an additional single-
chain CD4 clonotype (clonotype 136), for which no paired
partner clonotype existed (Supplementary Fig. 4c). These findings
are best explained by the technical variability of CDR3α sequence
detection. Since we conversely did not find any false-positive
pairing of TCRs sharing the same CDR3β, but different CDR3α
sequences, we included these single-chain clonotypes into down-
stream phenotypic analyses.

Having defined reactive clonotypes through statistically
significant upregulation of IFNG after stimulation (based on a
two-way ANOVA followed by Sidak’s multiple comparisons test),
we aimed to ensure we would not miss clonotypes that show
antigen-dependent reactivity through other means than IFNG
upregulation. We therefore again analyzed cytokine/cytotoxicity
scores for CD8 T cells and proliferation/IFN response scores for
CD4 T cells in a clonotype-dependent manner. While for CD8
T cells, no clonotype-dependent enrichment was visible after
stimulation in the cytotoxicity score (early activation), in the
cytokine scores (late activation) we detected broad statistically
significant signals, which did not mirror global transcriptomic
shifts in sanity checks and therefore seemed to reflect rather
unspecific changes (e.g., compare statistically significant results
for clonotype 13 in Supplementary Fig. 4a with missing reactivity
in Fig. 1e). In CD4 T cells, clonotype and stimulation-dependent
IFN responses (early activation) likewise yielded inconsistent
results (Supplementary Fig. 4c), whereas the proliferation score
(late activation) identified the same antigen-reactive clonotypes as
defined through IFNG upregulation except for one clonotype,
which was missed by the proliferation score (Supplementary
Fig. 4c). Finally, targeted exploration of markers alternative to
IFNG, such as MKI67, TNFRSF9 (coding for CD137), IL-2, IL-4,
IL-5, IL-9, IL-10, IL-13, IL-17, or IL-22 did not yield any
statistically significant antigen-induced upregulation in a
clonotype-dependent manner.

To capture the global antigen-specific reactivity landscape of
the TCR repertoire, we calculated correlations between clono-
types in terms of the general transcriptomic shift these clonotypes
underwent upon stimulation. This revealed two groups of
clonotypes that showed high inter-clonotype correlations within
the respective group (Supplementary Fig. 5a). The larger group
consisted mostly of CD8 clonotypes assessed as non-reactive to
antigen based on the lack of statistically significant IFNG
upregulation and recruitment into cluster 29. The few clonotypes
that are antigen-reactive and/or belong to cluster 29 in that larger
group may represent weakly cross-reactive clonotypes. A smaller
group contained almost exclusively CD4 and CD8 clonotypes that
we defined as antigen-reactive based on statistically significant
IFNG upregulation (Supplementary Fig. 4) and/or were present in
the stimulation-induced cluster 29 (Fig. 1b).
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In order to experimentally validate the antigen reactivity of our
selected clonotypes, we generated TCR-transgenic T cells by
CRISPR/Cas9-mediated orthotopic TCR replacement (OTR)28.
Through this technology, transgenic TCRs are knocked into the
endogenous TCR gene locus, thereby simultaneously placing the
transgenic TCR under physiological transcriptional control and
knocking out the endogenous TCR. We equipped healthy donor
T cells by OTR with identified CD4 TCRs (Fig. 2c). From our
screening of clonotypes with at least three cells in each condition
(Fig. 2b), we included the four TCRs defined as reactive (TCRs
138, 19, 256, and 574) and the TCR from the largest CD4
clonotype (TCR 48), which did not show antigen-induced
transcriptomic changes. After TCR knock-in (KI), T cells with
TCRs that were previously defined as reactive (TCRs 138, 19, 256,
and 574) all showed SARS-CoV-2 spike antigen-dependent
reactivity, whereas TCR 48 KI T cells did not (Fig. 2d, e). To
test the sensitivity of our system, we additionally investigated
TCRs from two very small clonotypes (1373 and 1904), which
were not included in the initial definition of reactive clonotypes
(Fig. 2b) since they had less than three cells in each condition.
Remarkably, we could validate reactivity for TCR 1904, which

had a transcriptional shift into cluster 29 with concomitant IFNG
upregulation in one of two cells in the stimulated condition,
whereas reactivity for TCR 1373 was missing, as predicted based
on the lack of IFNG upregulation and no movement into cluster
29 (Fig. 2e, Supplementary Fig. 5b). Overall, these data reinforced
our approach to using stimulation-induced IFNG upregulation as
a surrogate marker to detect antigen-reactive clonotypes and
functionally validated SARS-CoV-2 reactive TCRs.

Reverse phenotyping reveals in vitro antigen re-stimulation-
induced phenotypic biases in PB T cells. The identification of
antigen-reactive clonotypes enabled us to perform “reverse phe-
notyping” by “looking back” at the phenotype without re-
stimulation for clonotypes that undergo defined functional
changes after re-stimulation, using their TCR sequence as natural
barcodes. In other words, this enabled us to define antigen-
reactive clonotypes by a functional read-out, and then investigate
the phenotype of these cells would have had if they had not been
stimulated. Through this, we can on the one hand investigate
systematic phenotypic effects that are introduced by antigenic re-
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Fig. 2 Identification and validation of SARS-CoV-2 antigen-reactive T cell receptors. a Top: IFNG expression of CD8 clonotypes after antigenic or no

stimulation. Only clonotypes with at least three cells in each condition and as defined by a unique αβ CDR3 sequence were included in this analysis. Each

dot represents one cell and lines indicate the median. n= 56/66 (clone 81), 38/30 (clone 304), 25/30 (clone 244), 16/16 (clone 152), and 23/22 (clone

104) cells for stim/unstim condition, respectively. Exact cell numbers per clonotype can be found in Supplementary Data 11. Antigen-reactive clonotypes

(defined through statistically significant upregulation of IFNG) are highlighted. p < 0.0001 for clones 81, 244, and 104; p= 0.0033 for clone 304. Bottom:

Clonotype sizes in numbers of total cells analyzed. Clonotypes defined as “reactive” are highlighted in black. b As in a, but for CD4 clonotypes. n= 28/42

(clone 138), 17/26 (clone 19), 11/18 (clone 256), and 4/4 (clone 574) cells for stim/unstim condition, respectively. p < 0.0001 for clones 138, 19, 256, and

574 c Experimental setup; T cells from healthy donors were equipped with TCRs identified from COVID-19 patients by CRISPR/Cas9-mediated orthotopic

TCR replacement (OTR); transgenic T cells were co-incubated with antigen-loaded patient PBMCs and reactivity was investigated by intracellular cytokine

staining. d Flow-cytometric analysis of antigen-stimulated TCR-engineered T cells, 1 week after OTR; representative data are shown for CD4 TCR138 after

stimulation with SARS-CoV-2 spike protein–peptide mix, no stimulation, and stimulation with irrelevant EBV antigen BZLF1 peptide mix (negative controls);

mTRBC: murine constant region of the TCR beta chain incorporated into transgenic TCRs for detection; shown gates are pre-gated for CD3+ CD8− living

lymphocytes. e Quantification of spike antigen-specific reactivity for selected clonotypes tested in (b) as well as two additional small clonotypes; for

antigen-specific transcriptional shifts detected by initial scRNA seq for the respective clones see Fig. 1e, Supplementary Fig. 5a and Supplementary Fig. 7b.

n= 1 technical replicate (no stim) and n= 2 technical replicates (stim). Statistical analysis by two-way ANOVA (**** each for the treatment effect and

clonotype distribution) followed by Sidak’s multiple comparisons test *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (a, b). Data are shown for

patient GT_3.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24730-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4515 | https://doi.org/10.1038/s41467-021-24730-4 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


stimulation in vitro, and on the other hand, explore the unper-
turbed ex vivo phenotype of antigen-reactive T cells.

Upon re-stimulation in vitro, antigen-reactive CD4 T cells
upregulated TNFRSF9 (encoding CD137) and effector cytokines:
IFNG, TNF, XCL1, XCL2, or CCL3 were absent in unstimulated
reactive CD4 T cells, but strongly induced upon stimulation
(Fig. 3a, Supplementary Fig. 6a). GZMB or CCL4 were expressed
in reactive CD4 T cells (as well as in non-reactive cells) in the
unstimulated condition already, but the expression was boosted
by stimulation for reactive CD4 T cells only (Fig. 3a). Of note, co-
inhibitory molecules, such as PD-1 (PDCD1), LAG3, or TIGIT,
were almost absent on antigen-reactive cells before stimulation,
and only induced thereafter, indicating that detection of these
molecules in in vitro stimulated T cells reflects T cell activation
rather than exhaustion.

Indeed, many induced molecules are known to be differentially
regulated after antigenic stimulation but also serve as important
determinants of more stably committed T cell phenotypes. High
expression of ICOS, PDCD1, and TIGIT has previously been
described as a hallmark of SARS-CoV-2 specific CD4 T cells
during severe disease4, but our findings indicate that the degree of
expression can be significantly overestimated due to confounding
stimulation effects. Conversely, expression of CXCR4 or KLRB1
would have been underestimated if cells had only been assessed
after stimulation. CXCR4 is known to be more expressed in less

differentiated T cells29, but downregulated upon T cell
activation30. We next wondered whether and how in vitro
stimulation with antigen also changed Th lineage-defining
transcription factors, since these are particularly relevant for the
assignment of CD4 T cell identity. Despite their robust IFNG
upregulation upon antigenic stimulation, reactive CD4 T cells
showed overall less Th1-defining TBX21 (T-bet) expression
ex vivo than it would have seemed after stimulation (Fig. 3a).
Vice versa, expression of EOMES and Th2-defining GATA3 was
downregulated in reactive CD4 cells after antigenic stimulation
(Fig. 3a). Antigen stimulation also induced expression of
(circulating) follicular helper T cell ((c)Tfh)-defining BCL6 in a
“false-positive” manner in a few antigen-reactive CD4. Overall,
we revealed that stimulation-induced broad changes in transcrip-
tional profiles, ranging from expected upregulation of activation
markers to more unexpected and complex changes in markers
associated with stable phenotypes.

The mentioned observations account for comparisons of
stimulated vs. unstimulated and reactive vs. non-reactive
clonotypes in bulk (Fig. 3a). However, individual clonotypes
have also different phenotypes a priori, and could therefore show
unique reactivity upon stimulation. To explore this further, we
analyzed stimulation-induced transcriptional changes for indivi-
dual reactive clonotypes. This revealed expected as well as
unexpected, consistent as well as heterogeneous phenotypic
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Fig. 3 Reverse phenotyping reveals systematic biases induced by antigenic stimulation and allows precise definition of ex vivo transcriptional profiles

of SARS-CoV-2 antigen-reactive T cells. a Dot plots of log-normalized expression of selected marker genes by clonotype group (reactive and non-
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changes for reactive clonotypes. For example, while all reactive
clonotypes upregulated PDCD1 or downregulated CXCR4 upon
stimulation in a synchronized manner, stimulation-induced
clonotype-specific changes in CD4 lineage defining TBX21 and
GATA3 (Fig. 3b). Clonotype 138 upregulated and clonotype 256
downregulated TBX21 expression after stimulation. In addition to
this inter-clonal heterogeneity, intra-clonal variability adds an
additional layer of complexity (Fig. 3b) since individual
clonotypes can show mixed phenotypes31. Indeed, all reactive
CD4 clonotypes contain cells that express TBX21 and/or GATA3.
We could however not detect a statistical dependency between
TBX21 and GATA3 expression (see “Methods” section), suggest-
ing that their expression is independent or that correlation could
not be resolved.

Reactive CD8 T cells were overall less affected by antigenic
stimulation than reactive CD4 T cells. After stimulation, CD8
T cells upregulated IFNG or CCL4, and also appeared more LAG3
or PDCD1 expressing than they were ex vivo (Supplementary
Fig. 6b). In previous studies, these latter molecules have been
described to be strongly increased in SARS-CoV-2 specific CD8
T cells during severe disease4, providing further evidence that
phenotypes of T cells after in vitro re-stimulation with antigen
should be interpreted with caution.

To further characterize the stimulation-induced changes of
antigen-reactive CD4 and CD8 clonotypes, we performed
differential expression analysis (Supplementary Fig. 6c, d;
Supplementary Data 4 and 5). In CD4 T cells, this confirmed
stimulation-induced upregulation of genes associated with
induction of T cell activation32–35, or downregulation of genes
known to be associated with repression of T cell activation35–37,
but also revealed more unexpected differential gene expression of
the Treg marker FTH138,39, or of TMSB4X which is associated
with effector-like Th1 cells40,41. In CD8 T cells, stimula-
tion induced GZMB or PRF1 most strongly, but was also
associated with a prominent signature of actin (-binding) genes,
which has previously described effector rather than exhausted
T cells32. Of note, no distinct group of cells with a high tissue
residency score was apparent in PB (Supplementary Fig. 6e).

In summary, reverse phenotyping unraveled expected and
unexpected phenotypic effects introduced by antigenic re-
stimulation in vitro. The results thereby also highlight transcrip-
tional differences between currently and previously activated
T cells. Beneath the surface of global transcriptomic shifts on the
population level, single-cell resolution together with TCR
barcoding demonstrates additional inter- and intra-clonal
heterogeneity.

Unperturbed ex vivo phenotypes of SARS-CoV-2-reactive
T cells in PB. After comparing the differences between stimu-
lated and unstimulated reactive clonotypes, we next focused on
the unperturbed ex vivo phenotypes of SARS-CoV-2-reactive
T cells in further detail by comparing them with unreactive clo-
notypes in the unstimulated condition only. Reactive CD4 T cells
selectively stemmed from a T cell effector memory (TEM) Th1-
like group of cells, which was transcriptionally similar to CD8
T cells (Fig. 3c, Supplementary Fig. 7a–d). Two CD4 clusters
(CD4 clusters 2 and 7) entailed Th1 cells. Both clusters were the
only ones harboring expanded clonotypes (Supplementary
Fig. 7e), were high in IL7R and CXCR4, but low in CCR7 and
CD27, and were the only clusters that expressed CX3CR1,
speaking for a TEM-like phenotype. (Supplementary Fig. 7f–h).
Remarkably, reactive CD4 clonotypes were exclusively found in
CD4 cluster 2, but not in cluster 7. Cluster 7 consisted of cells
belonging to a single clonotype (number 48, the largest clonotype
found for CD4 T cells; Fig. 2b). The similar phenotype, but

lacking reactivity of this clonotype could indicate that clonotype
48 recognizes an entirely different target or a different part of
SARS-CoV-2 (non-spike).

Reactive CD8 T cells were more evenly distributed across
different CD8 TEM-like Leiden clusters (Fig. 3c, Supplementary
Fig. 7). Of note, most CD8 T cells and the CD4 Th1 clusters
showed clonal expansion, whereas few CD8 T cells and all non-
Th1 CD4 clusters were clonotypically highly diverse (Fig. 3c),
consistent with their overall little differentiated IL7R+ CCR7+
phenotype (Supplementary Fig. 7f).

To precisely define the ex vivo phenotypes of SARS-CoV-2-
reactive T cells in an unbiased manner, we performed differential
gene expression analysis comparing reactive and non-reactive
clonotypes in the unstimulated condition (Supplementary Data 6
and 7). This identified KLRB1 to be most significantly
upregulated in reactive CD4 T cells (Fig. 3d). KLRB1 encodes
CD161 and is part of cytotoxic/Th 1 anti-viral T cells42. It has
also already been described to be upregulated in SARS-CoV-2
reactive T cells after antigenic re-stimulation in vitro43. Together
with IL7R expression, KLRB1 also marks MAIT cells, but the
TRAV/TRAJ expression of our antigen-reactive TCRs did not
reflect invariant chains expressed by MAIT cells27.

Antigen-reactive CD8 T cells were characterized by high
expression of granzymes, CCL5 or the cytotoxic marker NKG718,
as well as CD52, the target of Alemtuzumab, for which a
paracrine suppressive function is described in activated CD4
T cells44 (Fig. 3d). Antigen-reactive CD8 T cells also were
markedly lower in TYROBP, KIR2DL3, and KLRC3. TYROBP
encodes DAP12 and has known activating as well as inhibitory
immune cell signaling roles when pairing with receptors
belonging to the killer inhibitory receptors (KIR) or killer
lectin-like receptor (KLR) family45. In CD8 T cells, TYROBP
and KLR transcripts have previously been shown to be down-
regulated after activation46.

Using these differentially expressed genes of reactive and non-
reactive cells in the unstimulated condition, we defined
transcriptional signature scores characteristic for antigen-
reactive CD4 or CD8 T cells ex vivo. These “ex vivo signature
scores” overlapped to some extent with “stimulation-biased
signature scores” that we defined by using differentially expressed
genes of reactive and non-reactive cells in the stimulated
condition (Supplementary Data 8 and 9), but also showed
differences (Supplementary Fig. 8a–f). For example, for CD8 cells,
GZMB upregulation is only part of the “stimulation-biased
signature score”, GZMH upregulation is part of both scores, and
GZMA and GZMM upregulation is only part of the “ex vivo
signature score”. We cross-validated the “ex vivo signature” and
“stimulation-biased signature” scores generated based on data
from patient GT_3 in patient GT_2 and achieved high linear
separability for both scores (Supplementary Fig. 8g, h).

Overall, we could precisely identify the phenotypes of currently
and previously activated antigen-reactive PB T cells.

Matching phenotypes of PB antigen-reactive T cells and the
respiratory tract of COVID-19 patients. We next wondered
whether we could identify T cells with our antigen-reactive
transcriptional signatures in the respiratory tract. Tracheal aspi-
rate (TA) T cells from identical as well as eight additional patients
clustered in-between stimulated and unstimulated reactive clo-
notypes from PB (Supplementary Fig. 9a). TA CD8 T cells
showed IFNG expression and high cytokine scores, whereas for
CD4 T cells neither IFNG nor high proliferation scores were
detectable (Supplementary Fig. 9b). These results were further
corroborated by gene expression analyses of TA T cell clusters
(Supplementary Fig. 10). Notably, TA CD4 T cells did not express
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ZNF683, encoding the Tissue-resident memory (TRM) T cell-
associated transcription factor Hobit, and expressed little ITGA1,
encoding the TRM marker CD49a. TA CD8 T cells, in contrast,
expressed ZNF683 and ITGA1 throughout. While these TRM
markers differentiated them from antigen-reactive PB CD8
T cells, TA CD8 T cells were overall very similar to reactive PB
T cells—especially from the stimulated condition—with high
expression of IFNG, PDCD1, or CD38 (Supplementary Fig. 10).
These data indicated that particularly CD8 T cells from the
respiratory tract of COVID-19 patients showed a phenotype that
is similar to in vitro activated antigen-reactive CD8 T cells
from PB.

To further test this hypothesis and investigate whether this was
a feature that is specific for severe disease states, we integrated
previously published and publicly available scRNA seq data sets
from the respiratory tract of COVID-19 patients with severe
disease, mild disease, and healthy controls, from Berlin47,
Shenzhen48, and Chicago49 in addition to our own Munich
cohort (see “Methods” for further information on data set
integration). In total, we analyzed 279,663 cells from 50 patients
(including 30,033T cells from 28 patients; Supplementary
Fig. 11a). Interestingly, stimulated antigen-reactive T cells from
PB were most similar to T cells from nasopharyngeal swabs (NS),
which were only present in the Berlin cohort47 (Supplementary
Fig. 11b). However, in order to compare cell state similarities in a
consistent manner and across as many patients and cohorts as
possible, we excluded NS samples from further analyses, and only
included samples derived from the lower airways (TA and
bronchoalveolar lavage fluid, BALF). For some of the severely
diseased patients, SARS-CoV-2 transcript was still detectable also
in the scRNA seq data (Supplementary Fig. 12a), enabling further
categorizations into “severe, virus-positive” and “severe, virus-
negative” patients.

Stimulated CD4 or CD8 T cells from PB clustered in distinct
niches that also contained respiratory T cells from severely
diseased patients (Fig. 4a). To map this integrated data set in an
unbiased and systematic manner, we applied Louvain clustering
and then investigated cell type-dependent enrichments by
calculating the share of each cell type within CD8 or CD4
T cells from PB or the respiratory tract across all Louvain clusters
(Supplementary Fig. 12b–f). Louvain cluster 11 was enriched for
CD8 and CD4 respiratory T cells from severely diseased patients
and was at the same time the cluster that encompassed the most
reactive PB clonotypes from the stimulation condition (Supple-
mentary Fig. 12b–f). Leiden cluster 29 T cells (Fig. 1b) were also
enriched in this area (Fig. 4a). We next analyzed the relative
distribution of each cell type across Louvain clusters (Fig. 4b).
Hierarchical clustering confirmed the high proximity of respira-
tory CD8 T cell states to reactive PB CD4 and CD8 T cells from
the stimulated condition, which were highly enriched in Louvain
cluster 11. Intriguingly, PB CD8 reactive T cells clustered together
with respiratory CD8 T cells from severely diseased patients
particularly from Chicago and Shenzhen, which in contrast to the
Berlin cohort encompassed a substantial number of virus-positive
patients very early after entering the ICU. We, therefore,
hypothesized that the phenotypic signatures of our stimulated
or unperturbed reactive clonotypes could reflect, respectively,
“hot” (active virus replication) or “cold” (virus cleared)
respiratory tract environments of severely diseased patients, in
which, respectively, virus was still detectable or not detectable
anymore.

Based on the dominance of stimulated or unperturbed CD4 or
CD8 clonotypes, we predicted Louvain clusters to be hot or cold
CD4 or CD8 clusters, with cluster 11 being a generally “hot T”
cluster and for example, the areas around clusters 5 and 13
reflecting “cold” CD4 and CD8 environments, respectively

(Fig. 4a, b). We then analyzed how many respiratory CD4 or
CD8 T cells were present in those clusters. Unperturbed T cell
signatures of reactive clonotypes were associated with “cold”
respiratory environments from severely diseased, but virus-
negative patients. In contrast, stimulation-induced T cell
signatures of reactive clonotypes were associated with “hot”
respiratory environments from severely diseased, virus-positive
patients, as most prominently visible for Louvain cluster 11
(Fig. 4c). As an individual gene, CCL4 was markedly upregulated
in respiratory T cells from patients with severe disease, and even
more so in virus-positive patients. This is reflected by higher
expression in reactive T cells from PB, with particularly
pronounced expression in the stimulated condition (see also
Supplementary Fig. 8).

Overall, these data indicate that ex vivo stimulation induced a
transcriptional state in antigen-reactive T cells from PB which is
highly similar to T cells found in the respiratory tract from
severely diseased patients with high viral loads (“hot” environ-
ments). In contrast, respiratory T cells from severely diseased
patients in which no virus is detectable anymore (“cold”
environments) showed a phenotype that is similar to PB
antigen-reactive T cells when they are not additionally re-
stimulated ex vivo. We could thereby interrogate connections
between disease stages of individual patients and phenotypic
signatures of respiratory T cells, for which currently and
previously activated PB T cell subsets provided a framework.

Modeling intercellular communication between respiratory
T cells with antigen-reactive signatures and SARS-CoV-2-
positive macrophages. We finally aimed to test how the defini-
tion of transcriptional signatures from antigen-reactive T cells
after different antigen stimulation conditions can be leveraged
across publicly available scRNA seq data sets. To this end, we
investigated the intercellular communication between macro-
phages and respiratory T cells that bear our antigen-reactive
signatures. We used scRNA seq data from the “Chicago
cohort”49, for which a macrophage-T cell circuit has been
described. The samples in this cohort of severely diseased patients
were acquired 48 h after intubation when the virus was still
detectable via scRNA seq. Macrophages in which SARS-CoV-2
transcript was detectable (either after direct infection or after
phagocytosis of infected cells) seemed to sense IFNy produced by
T cells and in turn, released T cell-targeting cytokines49. These
macrophages included tissue-resident alveolar macrophages
(TRAM) as well as monocyte-derived alveolar macrophages
(MoAM). To study the cross-talk between these macrophages and
T cells with our antigen-reactive signatures systematically, we
applied NicheNet (see “Methods”). The NicheNet algorithm
ranks ligands expressed by “sender” cells according to their ability
to induce a set of target genes in “receiver” cells. Thereby, the
algorithm exploits the transcriptomic signatures of receiver cells,
building on prior knowledge on gene regulatory networks from
public databases beyond the mere expression of matching ligands
and receptors by sender and receiver cells, respectively50.

We first investigated which T cell ligands are predicted to
induce the differentially expressed genes between SARS-CoV-2
transcript positive and negative macrophages. Compared to
SARS-CoV-2-negative TRAM1, SARS-CoV-2-positive TRAM2
highly expressed cytokines such as CCL2, CCL3, CCL4, CXCL9,
CXCL10, and CXCL11, as well as molecules that have previously
been described to play a role in chemotaxis (e.g., ICAM1) and
responsiveness to IFNy (e.g., STAT1) in the interplay between
monocytes and T cells during COVID-1947 (Supplementary
Fig. 13). IFNG and TNF were predicted to be the most important
ligands expressed by T cells that could induce the transcriptomic

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24730-4

8 NATURE COMMUNICATIONS |         (2021) 12:4515 | https://doi.org/10.1038/s41467-021-24730-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


changes observed between SARS-CoV-2 transcript positive and
negative TRAM. In T cells, the ligands IFNG and TNF were most
dominantly expressed in Louvain cluster 11, which also highly
expressed the predicted ligands CCL3 and CCL4 (Supplementary
Fig. 13). The prediction pattern of the additional top-predicted
ligands also coincided with the other hot or cold Louvain cluster
regions (Fig. 4b). For example, hot CD8 Louvain clusters 2 and 7
(Fig. 4b) stood out through their high expression of the predicted
ligand CCL5 (Supplementary Fig. 13). Further, NicheNet
predicted similar T cell ligands inducing the transcriptomic
changes between SARS-CoV-2-positive and -negative MoAM
(immature MoAM1 vs. mature MoAM2/3, respectively; Supple-
mentary Fig. 14). In summary, unbiased prediction of T cell

ligands inducing gene expression changes in SARS-CoV-2
transcript-positive macrophages identified Louvain clusters as
the most dominant source of these ligands, which were initially
grouped based on the presence of hot or cold T cell signatures
and disease stages.

We next wondered whether SARS-CoV-2 transcript carrying
macrophages would also signal back to T cells with our antigen-
reactive signature in a specific manner. To reflect the “hot”
environment of the investigated patients in which the virus was
still present, we utilized NicheNet to predict which ligands
expressed by Macrophages could induce the genes distinguishing
reactive from unreactive T cells from the stimulated condition in
CD4 and CD8 T cells. The definition of these target gene sets,
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Fig. 4 Phenotypic convergence of in vitro stimulated reactive T cells from peripheral blood and ex vivo T cells from the respiratory tract of severely

diseased patients. a Top panels: UMAPs of previously analyzed peripheral blood (PB) T cells and T cells from tracheal aspirates (TA) of the same (patient

GT_3) and additional patients with severe disease (Munich cohort) as well as from bronchoalveolar lavage fluid (BALF) from patients with mild disease,

severe disease and healthy donors (Chua et al.47—Berlin cohort; Grant et al.49—Chicago cohort; Liao et al.48—Shenzhen cohort); bottom panels (from left

to right): CD4 or CD8 (proliferating or not) cell types, reactive PB T cells from stimulated or unstimulated conditions (see previous figures), IFNG-positive

antigen-“reactive” Leiden cluster 29 cells (see Fig. 1b), Louvain clusters (n= 30,033 T cells from 28 patients). b Hierarchical clustering of cell types and

Louvain clusters based on “one minus Pearson” correlations of deviations from baseline compositions for each cell type across Louvain clusters. PB,

peripheral blood T cells. Cohort names (Munich, Chicago, Berlin, Shenzhen) refer to respiratory tract T cells. Fractions of CD4 or CD8 T cells in PBMCs or

respiratory materials (Supplementary Fig. 12) served as input compositions. c Fractions of Louvain cluster 11 or CCL4 expressing cells among (from left to

right and top to bottom) PB CD4 T cells, respiratory CD4 T cells, PB CD8 T cells, or respiratory CD8 T cells. For respiratory T cells, data for individual

patients with indicated disease stages are shown (represented by dots; n= 2 healthy, n= 3 mild, n= 11 severe-cold, n= 10 severe-hot; patients with <20

cells in Louvain cluster 11 were excluded from analysis).
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including GZMB, IFNG, TNF, CCL3, and CCL4 in stimulated
reactive CD4 T cells, led to the prediction of macrophage-derived
co-stimulatory ligands such as IL-15, IL-18, CCL4, CCL8, or
CXCL9, which have been described to be upregulated in
macrophages from the respiratory tract during COVID-19 also
in the original studies on the Berlin and Shenzhen cohorts47,48

(Supplementary Fig. 15). For CD8 T cells as receivers, NicheNet
predicted macrophage-derived co-stimulatory ligands CCL2 and
SPP1 (which encodes Osteopontin51,52) to drive CCL3 and CCL4
expression, as well as IL-15, IL-18, ICAM1, ADAM17, CD80,
and CD86 to drive IFNG, TNF, and GZMB expression (Supple-
mentary Fig. 16). Intriguingly, most of the ligands that were
predicted on the basis of target genes from our antigen-reactive
CD4 and CD8 T cell signatures were preferentially expressed by
the very macrophage subtypes in which SARS-CoV-2 transcript
was detectable (TRAM2 and MoAM1). Overall, these data
indicate a specific ligand-receptor cross-talk between respiratory
T cells with antigen-reactive signatures and SARS-CoV-2-positive
macrophages.

Discussion
We here show how barcoding through natural TCR sequences
can be used to identify SARS-CoV-2 antigen-reactive T cells after
differential stimulation with and without antigen, followed by
scRNA seq. Antigen-reactive clonotypes showed consistent
transcriptomic shifts upon stimulation, as visible by induction of
a distinct cluster in a UMAP projection, expression of generic T
cell activation scores along continuous pseudotemporal gradients,
and high degrees of inter-correlative gene expression changes. As
a single marker, IFNG upregulation proved to reliably identify
SARS-CoV-2 antigen-reactive CD4 and CD8 T cells. We vali-
dated reactive TCRs by transgenic re-expression using CRISPR/
Cas9-mediated OTR. Such SARS-CoV-2 reactive TCR-transgenic
T cells serve as a potential resource for future immunotherapy of
COVID-19 infection. Furthermore, the presented approach
represents a generic platform for the identification of antigen-
reactive TCRs for a plethora of a priori phenotypically hetero-
geneous clonotypes at once.

In addition to the identification of antigen-reactive clonotypes
per se, “reverse phenotyping” allowed us to investigate the phe-
notypic profile of antigen-reactive T cells with or without anti-
genic re-stimulation. This revealed systematic biases induced
through re-stimulation and allowed exploration of unperturbed T
cell states. By profiling antigen-stimulated CD4 T cells from PB
via scRNA seq, it has recently been shown that SARS-CoV-2
antigen-reactive CD4 T cells—particularly in patients with severe
disease—show a particularly pronounced cytotoxic profile10,14,16

compared to CD4 T cells specific for other viruses15. We confirm
these findings by demonstrating that CD4 T cells which show
major transcriptional shifts upon antigenic stimulation robustly
upregulate IFNG. However, our “reverse phenotyping” approach
also reveals that the classical Th1-ness (as defined by TBX21
expression) of those cells is overestimated after stimulation, and
that—ex vivo—antigen-reactive PB T cells instead show sig-
natures that are far more dominated by EOMES and GATA3 than
it appears after stimulation. The role of EOMES in CD4 T cells is
less clear compared to other Th lineage defining core transcrip-
tion factors, but recent evidence suggests that EOMES drives a
cytotoxic signature and represses Th17 features53,54. Apart from
Th1-polarized CD4 cells, antigen-reactive cTfh cells have been
reported by several studies4. In our patient subset with a severe
disease course, we observed BCL6 and ICOS expression in
antigen-reactive CD4 clonotypes upon stimulation only. While
this does not exclude the possibility that cTfh plays a dominant
role in the adaptive immune response to SARS-CoV-2, these

findings provide examples of the phenotypic biases introduced by
antigen stimulation prior to phenotyping.

Both CD4 and CD8 antigen-reactive T cells showed TEM/T cell
effector phenotypes with less expression of co-inhibitory molecules
and markers of terminal differentiation than would be expected
based on the phenotypes after stimulation. However, at the same
time, antigen-reactive CD4 and CD8 T cells were characterized by
a more cytotoxic and differentiated profile in comparison to
antigen-unreactive T cells when stimulation biases are accounted
for. Thereby, reverse phenotyping allowed us to define more
accurately the actual ex vivo phenotypic profiles of SARS-CoV-2
antigen-reactive T cells. We performed reverse phenotyping on
T cells only from PB, in a limited number of patients with severe
disease, and focused on T cell reactivity to virus spike antigens.
More comprehensive experimental analyses of SARS-CoV-2
antigen-reactive T cells are needed—including different time
points and disease severities—to more comprehensively map the
ex vivo phenotypic profile of SARS-CoV-2 specific T cells. Also,
investigation of additional antigen groups (including the whole
SARS-CoV-2 proteome) and specific epitopes (to also account for
potential underrepresentation in the 15mer peptide mix that was
used for this study) will be of importance for future studies,
explicitly including antigenic changes as present in SARS-CoV-2
variants of concern. Here, we provide proof of concept that
“reverse phenotyping” can be used for that purpose.

Publicly available data sets—particularly those that are bundled
in a coherent manner as within the Human Cell Atlas initiative—
represent a vast resource of deeply profiled immune cells from
many different patients and disease contexts. However, in these
data sets often no dedicated antigen-specific T cell analyses have
been performed. In T cells from the respiratory system of iden-
tical as well as further patients—including patients from inde-
pendent reference cohorts—we detected transcriptional
signatures that overlapped with those we defined based on
antigen-reactive T cells from PB. In vitro stimulated reactive
T cells thereby mirrored “hot” cell states from virus-positive
patients with severe disease, whereas unperturbed T cell states
reflected “cold” cell states from virus-negative patients with severe
and mild disease. Interaction of T cells with viral antigens at the
site of infection could explain these findings. In the future, it will
be exciting to further investigate the role of SARS-CoV-2 antigen-
reactive T cells at the site of infection as well as in PB, e.g., by
using TCR sequences to precisely define ontogenic relationships.

As a tool for T cell immunology, scRNA seq after differential
antigen stimulation opens up avenues for the identification and
characterization of antigen-reactive T cells by exposing gradients
of antigen reactivity and reverse phenotyping. It thereby con-
tributes to a deep understanding of the adaptive immunity
induced by a viral infection, which will be pivotal to guide the
enhanced and accelerated development of therapies and vaccines
for emerging pathogens such as SARS-CoV-2.

Methods
Munich cohort patients
Clinical information and material. All Munich cohort patients were PCR-
confirmed SARS-CoV-2 positive, admitted to the ICU in the University Hospital
of the Ludwig-Maximillian’s University, Munich (n= 5), or the Asklepios Lung
Clinic Munich-Gauting, Gauting (n= 4), for treatment of severe COVID-19
requiring invasive, mechanical ventilation. For further clinical information see
Supplementary Data 1. PBMCs and TA samples were taken at the end of
April 2020.

Consent. Written informed consent was obtained from the donors or their care-
givers, usage of the blood samples was approved according to national law by the
local Institutional Review Board (Ethikkommission der Medizinischen Fakulta ̈t der
Ludwigs-Maximilian-Universita ̈t München; vote IDs 19-629, 19-630, and 20-259)
and/or samples were used according to legal provisions defined by the German
Infection Protection Act (IfSG).
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T cells from PBMCs

Cell culture. PBMC were isolated from EDTA whole blood by gradient density
centrifugation according to the manufacturer’s instructions (Biocoll, Biochrom)
and frozen in FCS+ 10% DMSO (Merck) for liquid nitrogen storage. After
freezing–thawing procedure, T cells were cultured in RPMI 1640 (Gibco) supple-
mented with 5% human serum, 0.025% l-glutamine, 0.1% HEPES, 0.001% genta-
mycin, and 0.002% streptomycin (hereafter RPMI-HS).

Antigen-specific stimulation and flow cytometry-assisted cell sorting prior to scRNA
seq. PBMCs were stimulated with 0.6 nmol of SARS-CoV-2 spike protein–peptide
mix (PepTivator®SARS-CoV-2 Prot_S, Miltenyi). For the unstimulated condition,
PBMCs were only cultured in RPMI-HS. After stimulation for 4 h at 37 °C, surface
staining was conducted for 20min with the following fluorochrome-conjugated
antibodies: CD3-APC (1:200), CD4-PE (1:100), CD56-FITC (1:100), CD8-eFluor450
(1:200) (Life Technologies, 17-0038-42, MHCD0404, 11-0566-42, 48-0086-42,) and
CD19-ECD (1:100) (Beckman Coulter, A07770). Propidium iodide (Invitrogen) was
used for live/dead discrimination. Flow sorting of CD4+ and CD8+ cells from the
stimulated and unstimulated condition was conducted on a MoFlo Astrios EQ
(Beckman Coulter) under biosafety level 3. For a representative gating strategy, see
Supplementary Fig. 17a.

TCR DNA template design and CRISPR–Cas9 mediated TCR KI. DNA constructs
for CRISPR–Cas-9-mediated HDR at TRAC locus were designed in silico with the
following structure: 5′ homology arm (300–400 base pairs (bp)), P2A, TCR-β
(including mTRBC with additional cysteine bridge55), T2A, TCR-α (including
mTRAC with additional cysteine bridge), bGHpA tail, 3′ homology arm (300–400
bp). All HDR DNA template sequences were synthesized by Twist Bioscience.
CRISPR-Cas9-mediated TCR KO and KI were performed as previously described28

on isolated PBMCs from donor whole blood. In short, bulk PBMCs were activated
for two days in RPMI with CD3/CD28 Expamer (provided by Juno Therapeutics),
300 IU/ml recombinant human IL-2, 5 ng/ml recombinant human IL 7 (Peprotech,
reference #200-07), and 5 ng/ml IL-15. Expamer stimulus was removed by incu-
bation with 1 mM D-biotin (Sigma, reference #D1411-1G). Totally, 1 × 106 cells
were electroporated (pulse code EH100) with Cas9 ribonucleoprotein and DNA
templates in 20 µl Nucleofector Solution P3 (Lonza, reference #V4SP 3096) with a
4D Nucleofector X unit (Lonza). After electroporation, cells were cultured in RPMI
supplemented with 180 IU/ml IL-2 until a first fluorescence-activated cell sorting
(FACS) analysis on day five after editing. Sequences of experimentally tested TCRs
can be found in Supplementary Data 10. Sequences of primers to amplify targeting
constructs can be found in Supplementary Data 13.

Antigen-specific activation of TCR-engineered T cells and intracellular cytokine
staining. PBMCs for autologous peptide pulsing were isolated and cultured in
RPMI-HS with 50 IU/ml human IL-2 (Peprotech). On the day of antigen-specific
activation of CRISPR–Cas9-engineered T cells, autologous PBMCs were pulsed
with 10 µg/ml SARS-CoV-2 spike protein–peptide mix (PepTivator®SARS-CoV-2
Prot_S, Miltenyi) for 2 h at RT and gentle agitation. After peptide pulsing, the
excess peptide was removed by washing, and PBMCs were cocultured with
CRISPR–Cas9-engineered T cells in 1:1 and 1:3 effector:target ratio and Golgi-Plug
(BD Biosciences) for 4 h at 37 °C. Surface marker antibody staining for CD3-BV421
(1:100) (BD Biosciences, 563797), CD8-PE (1:200) (Life Technologies, 12-0086-42)
and murine TCR β-chain-APC/Fire750 (1:50) (Biolegend, 109246) were followed
by permeabilization using Cytofix/Cytoperm (BD Biosciences) and intracellular
staining of IL-2-APC (1:25) (BD Pharmingen, 341116). Live/dead discrimination
was performed by using ethidium-monoazide-bromide (Invitrogen). FACS samples
were acquired on a Cytoflex (S) flow cytometer (Beckman Coulter). For a repre-
sentative gating strategy, see Supplementary Fig. 17b.

Single-cell RNA sequencing

PB T cell processing. CD3+ CD4+ and CD8+ T cells were sorted by flow cyto-
metry, centrifuged and the supernatant was carefully removed. Cells were resus-
pended in the Mastermix+ 37.8 µl of water before 70 µl of the cell suspension were
transferred to the chip (step 1.1 and 1.2 of the original protocol). After each step,
the integrity of the pellet was checked under the microscope to ensure that all cells
are loaded onto the chip. From here on, 10x experiments have been performed
according to the manufacturer’s protocol (Chromium next GEM Single Cell VDJ
V1.1, Rev D). Quality control has been performed with a high sensitivity DNA Kit
(Agilent #5067-4626) on a Bioanalyzer 2100 as recommended in the protocol and
libraries were quantified with the Qubit dsDNA hs assay kit (life technologies
#Q32851). All steps have been performed using RPT filter tips (Starlab #S1181-
3710) and DNA LoBind tubes (Sigma #EP0030108051, #EP0030108078, and
#EP0030124359).

TA processing. TAs were digested with 4 ml dispase (50 units/ml) (Corning,
#354235) and 25 µl DNase (30 μg/ml) (Qiagen, #79254) at 37 °C for 10 min with
occasional shaking. The digestion was then stopped with 10 ml of ice-cold 10%
FCS/PBS. To obtain single-cell suspensions, the digestion mix was passed through a
70 µm cell strainer. Red blood cell lysis was performed only when necessary by
incubating the cells with 3 ml RBL buffer at RT for 1 min. The cells were counted,

diluted to 1000 cells/µl, and loaded on the 10× Chromium Next GEM Chip G with
a targeted cell recovery of 10,000. The following steps were completed according to
the manufacturer’s protocol (Chromium Next GEM Single Cell 3ʹ Reagent
Kits v3.1).

Next-generation sequencing. Libraries have been pooled according to their minimal
required read counts (35,000 or 50,000 reads/cell for 3′ gene expression libraries,
20,000 reads/cell for 5′ gene expression libraries, and 5000 reads/cell for TCR
libraries). Illumina paired-end sequencing was performed with 150 or 200 (3′ gene
expression) and 100 cycles (5′ gene expression and TCR libraries) on a
NovaSeq 6000.

Single-cell RNA sequencing data analysis

Data processing. After sequencing, the processing of next-generation sequencing
reads of the scRNA-seq data was performed using CellRanger version 3.1.0 (10×
Genomics) with a customized reference genome. To account for transcripts ori-
ginating from the virus, the genes of the SARS-CoV-2 genome (NCBI Reference
Sequence: NC_045512.2) were manually added to the hg38 (GRCh38.99) human
reference genome’s GTF files. Negative strands of the viral genes were additionally
added. The genome was indexed via CellRanger’s “mkref” command.

Initial unsupervised analysis of PB T cells. We performed unsupervised analysis for
multiple subsets of the data with scanpy56 (v1.6.0): Both patients, patient GT_3
only, patient GT_2 only, stimulated or unstimulated condition only for both patient
GT_3 and GT_2, separately. In all cases, we first filtered genes that were expressed
in at least 10 cells, scaled cell-wise expression vectors to a total count of 10,000, and
logp1-transformed the data and selected highly variable genes (flavor= ”seurat). We
then performed a principal component analysis, computing 50 components, based
on which we computed a k-nearest neighbor graph (k= 50). We then computed
UMAPs57 and Leiden or Louvain clusterings58. The complete code for this analysis
is reported in the Source Data file.

Cell type assignment of PB T cells. CD4 and CD8 expressing cells did not clearly
separate in Leiden groups. Therefore, we chose a two-staged cell type assignment
process: First, we assigned Leiden groups to either CD4+ or CD8+ T cells based on
their relative mean expression in the group. Secondly, we re-assigned cells from
clonotypes (see also: Clonotype analysis), which contained both putative CD4+
and CD8+ T cells, to the major cell type found in this clonotype.

Cell state assignment of PB T cells. We re-clustered CD4 and CD8 cells in the
unstimulated condition separately using the Leiden algorithm to identify cellular
states at a higher resolution than cell types. For this purpose, we repeated the
unsupervised analysis as described above on this subset of cells. Throughout the
manuscript, these clusters are ordered by similarity in heatmaps and dot plots. This
ordering is derived from a hierarchical clustering based on all genes with mean
expression larger than 0.5 in the selected subset.

Clonotype assignment of PB T cells. We performed TCR sequence analysis with
scirpy59 (v0.4). We defined clonotypes based as groups of cells with identical
nucleotide CDR3 sequences of the primary TRA and TRB chains. We performed
clonotype assignment for both patients separately, but across both conditions,
stimulated and unstimulated, together. Clonotype sequences can be found in
Supplementary Data 11 and 12. The complete code for this analysis is reported in
the Source Data file.

Pseudotime analysis of PB T cells. We computed pseudotime-based scores by
computing diffusion pseudotime60 with respect to a cell in the reactive T cell
cluster in patient GT_3. This root T cell was selected based on its extremal position
in the UMAP, at the tip of the reactive cluster. The nearest-neighbor graph
underlying the pseudotime computation was derived as described in section initial
unsupervised analysis. The complete code for this analysis is reported in the Source
Data file.

GATA3 and TBX21 correlation. We investigated GATA3 and TBX21 correlation in
the CD4 cells with two techniques: Firstly, we computed their log-normalized
expression covariance. Secondly, we computed expected rates of GATA3− TBX21−,
GATA3+ TBX21−, GATA3− TBX21+ and GATA3+ TBX21+ cells based on the
marginal frequency of GATA3+ and TBX21+ cells and compared these to the
observed frequencies of single- and double-positives. Here, positive cells were
defined as cells with any detected UMIs of the selected gene. The complete code for
this analysis is reported in the Source Data file.

Differential expression analysis of PB T cells. We performed differential expression
analysis with diffxpy (v.0.7.4): We used Welch’s t test on log-normalized UMIs to
compare expression differences between two groups of cells. We labeled genes as
differentially expressed if they had a Benjamini–Hochberg corrected p value of less
than 0.01 and a mean expression of at least 0.5.
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Tissue residency score of PB T cells. We computed expression z-scores for the
following genes associated with tissue residency61: CA10, CRTAM, CX3CR1,
CXCL13, CXCR6, DUSP6, FAM65B, IL2, IL10, IL23R, ITGA1, ITGAE, KCNK5,
KLF2, KLF3, KRT72, KRT73, NPDC1, PDCD1, PTGDS, RAP1GAP2, RGS1, S1PR1,
SBK1, SELL, SOX13, STK38, TSPAN18, TTC16, and TTYH2. We aggregated these
cell- and gene-wise z-scores to a cell-wise tissue residency score by taking the mean
across all gene-wise z-scores.

Unsupervised analysis of TA data. The count matrices output by CellRanger were
again analyzed using Scanpy56 (v.1.6.0). For barcode filtering, we excluded bar-
codes with less than 200 detected genes. A high proportion (>10%) of transcript
counts derived from mitochondria-encoded genes may indicate low cell quality,
and we removed these unqualified cells from downstream analysis. The number of
unique molecular identifiers (UMIs) was explored via patient-wise violin plots, and
individual upper cut-offs were applied ranging from 5000 to 80,000 UMI counts.
Genes were only considered if they were expressed in at least three cells in the data
set. As we observed a certain degree of ambient RNA bias, we applied SoupX
version 1.3.662 to lessen this effect with mostly default parameters, setting the
contamination fraction manually to 0.3.

The expression matrix was normalized using scran’s normalization approach63,
in which size factors are calculated and used to scale the counts in each cell. The
data were then log1p-transformed and the top 4000 variable genes were selected for
each patient individually (flavor= ”seurat). Genes that were listed as a variable in
at least 3 patients (5984 genes after removing cell cycle genes) were used as basis for
the principal component analysis. BBKNN64 was employed to construct a batch-
corrected neighborhood graph using the first 20 components and individual patient
labels as batch keys. Unsupervised clustering was performed with Louvain at
resolution three and cells coarsely annotated based on the manual exploration of
known marker genes. As T cell subtypes were of particular interest, we subdivided
the data set to CD3E high cluster and refined the annotation after re-clustering and
assessing of mean expression of CD8A, CD8B, and CD4 in the respective cluster.

Computational data integration
Computational data integration—Munich TA and PBMC. In order to compare the
results from the PBMC data set with ex vivo patient samples, the normalized,
log1p-transformed matrices of both objects after initial filtering were concatenated.
The variable gene selection was executed anew with more stringent parameters on
this combined object. The top 800 genes (flavor= “cell_ranger”) were selected for
both data sets separately, resulting in 183 variable genes labeled as such in both
calculations. Principal component analysis (PCA) and the neighborhood graph
were re-calculated using 50 components and 15 neighbors. The cell type annotation
established on the separate objects was retained.

Computational data integration—includes recent Covid-19 related BALF data sets.
To test the generalizability of our results on independent cohorts and in order to
include varying levels of severity and healthy controls in our analysis, we combined
our single-cell data (Munich cohort) with recently published Covid-19 related data
sets. The raw count matrices and metadata from the Shenzhen48, Chicago49, and
Berlin47 cohorts were downloaded and pre-processed separately with Scanpy
(v1.6.0). Briefly, for each of the data sets cells that were present in the final provided
object were retained. Additionally, we re-calculated the number of counts and
genes per cell and applied the following thresholds: only cells with more than 200
genes and less than 15% mitochondrial transcripts were kept. We assessed the
number of UMIs with sample-wise violin plots like the number of detected tran-
scripts varied across the cohorts. Following upper thresholds were chosen: 6000 for
the Shenzhen cohort, 30,000 for the Chicago cohort, and 200,000 for the Berlin
cohort.

The expression matrices of each data set were normalized and log1p-transformed
separately as described above for the Munich TAs. For a first lighter batch correction
we defined the list of variable genes in a way that decreased cohort-specific effect as
follows. First, highly variable genes were selected (flavor= ”cell_ranger”) for each
sample separately, returning the top 4,000 variable genes per individual. For the
Munich, Shenzhen, and Chicago cohorts, we considered a gene as highly variable if it
is labeled as such in at least three patients of the respective cohort. As the Berlin
cohort contained far more patients, we increased the threshold to six patients.

After quality control the ambient RNA contamination was assessed and
removed using SoupX62 with mostly default parameters, setting the contamination
fraction manually to 0.3.

Next, the preprocessed count matrices from the individual data sets were
merged and the highly variable genes were set to the intersection of the four
cohort-wise lists. After excluding genes associated with the cell cycle, 1370 variable
genes remained, which were used as input to PCA (n= 50).

The published cell type assignments from each cohort were used further, the
labels were harmonized as some annotations for the same cell type showed slight
changes in spelling. Cells with unclear annotation were removed from the analysis
(“Doublets”, “hybrid”, “unknown_epithelial”, “IRC”).

For visualization of the concatenated data sets, a UMAP and a batch-corrected
neighborhood graph was constructed via BBKNN64 using ten neighbors within
each batch with cohort used as a batch key.

Computational data integration—T cell subtypes. The cells with the following
annotations were used to subset to a T cell only data set: “CD8 T, CCR7+ T,
Proliferating T, Treg” (Shenzhen cohort48), “CD4 T cells, CD8 T cells, Proliferating
CD4 T cells, Proliferating CD8 T cells, Tregs” (Chicago cohort49) and “CTL, Treg”
(Berlin cohort47). For the Berlin cohort, only T cells from BALF samples were used
further, cells originating from nasal swabs are only shown in the data set encom-
passing all cell types. The cell type annotation for the Shenzhen and Berlin cohort did
not distinguish between CD4 and CD8 T cells and was therefore refined in an
additional step. After re-calculating of the principal components and Louvain clus-
tering, manual examination of CD8A, CD8B, CD4A, CD3E expression enabled a
more fine-grained annotation of the subtypes comparable with the Munich cohort
annotation. Using the variable gene list established on the full integrated data set, the
PCA was re-calculated and the batch corrected neighborhood graph re-constructed
(n_pcs = 50, neighbors_within_batch = 20, batch_key= “data_set”).

Hierarchical clustering of cell-type frequencies across Louvain clusters. Hierarchical
clustering of cell-type frequencies across Louvain clusters was performed with
Morpheus (https://software.broadinstitute.org/morpheus). Both Louvain clusters
and cell types were clustered based on ‘one minus Pearson’ correlations.

NicheNet analysis. We performed NicheNet analysis on the scRNA seq reference
cohort from Chicago using the R (version 3.6.3) packages nichenetr50 (version
1.0) and Seurat65 (version 3.2): To analyze cell-cell communication between
Macrophages and CD4 or CD8 T cells respectively, we adopted the cell type
annotations from the Chicago dataset and defined the five distinct Macrophage
subpopulations contained therein (MoAM1, MoAM2, MoAM3, TRAM1, and
TRAM2) as sender cell types and all CD4 or CD8 T cells as receiver cell types,
respectively. We then defined the genes comprising the different “ex vivo sig-
nature scores” for CD4 and CD8 T cells as gene sets of interest for CD4 and CD8
T cells, respectively.

To analyze cell–cell communication between individual T cell subsets and
TRAM or MoAM, respectively, we used the resulting 17 Louvain clusters from the
integrated analysis as sender cell types and all TRAMs or MoAMs (see original
annotation from the Chicago reference cohort) as receiver cell types. To define a
gene set of interest, we performed differential expression testing at the gene level
between TRAM1 vs. TRAM2 and immature MoAMs (MoAM1) vs. mature
MoAMs (MoAM2 and MoAM3) using a Wilcoxon Rank Sum test with Seurat’s
FindMarkers() function. We only included genes with a log-fold change of >0.25, if
they were expressed in >10% of all cells, and if their Holm-Bonferroni adjusted p
value was <0.05.

For all NicheNet analyses, we identified a list of potentially active ligands
expressed by sender cell types and ranked them according to their ability (Pearson’s
correlation coefficient) to predict the gene set of interest. We then selected the 12
top-ranked ones for subsequent analysis. The complete code for this analysis is
reported in the Source Data file.

Software. Flow-cytometric data were analyzed with FlowJo v10.4.2. For visuali-
zation and some statistical analysis, GraphPadPrism (v8.4.3) was used. We per-
formed analysis of scRNA seq data with CellRanger version 3.1.0 (10× Genomics),
scanpy (v1.6.0), scirpy (v0.4), diffxpy (v.0.7.4), and SoupX (v1.3.6). Some hier-
archical clustering analyes were performed with Morpheus (https://software.
broadinstitute.org/morpheus; no version number indicated; version used as of
September 2020). NicheNet analyses were performed with R (version 3.6.3)
packages nichenetr (version 1.0) and Seurat (version 3.2). For code, see the Source
Data file.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this article, its

supplementary information files (Source Data file) and are available at NCBI GEO under

the accession number GSE171037. Additional raw data are available from the corresponding

authors upon reasonable request. The three independent reference cohorts were accessed as

follows: “Shenzhen”: Single-cell landscape of bronchoalveolar immune cells in patients with

COVID-19 [Liao et al.48]: All data used in this study, including scRNA-seq and scTCR-seq

raw data, filtered expression matrix, and scTCR-seq contig annotation that support the

findings of this study can be accessed in GEO under the accession number GSE145926.

“Chicago”: Alveolitis in severe SARS-CoV-2 pneumonia is driven by self-sustaining circuits

between infected alveolar macrophages and T cells [Grant et al.49] Single-cell RNA-seq:

Counts tables and integrated objects are available through GEO with accession number

GSE155249. “Berlin”: COVID-19 severity correlates with airway epithelium-immune cell

interactions identified by single-cell analysis [Chua et al.47] In addition, count and metadata

tables containing patient identification, sex, age, cell type, and quality control metrics for

each cell are available at FigShare: https://doi.org/10.6084/m9.figshare.12436517. https://

figshare.com/articles/COVID-19_severity_correlates_with_airway_epithelium-immune_

cell_interactions_identified_by_single-cell_analysis/12436517 Source data are provided with

this paper.
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Code availability
For scRNA seq data analysis algorithms see the “Methods” section and jupyter notebooks

in the Source Data file. Additional information is available from the corresponding

authors upon reasonable request.
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