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Single-cell RNA sequencing reveals the
tumor microenvironment and facilitates
strategic choices to circumvent treatment
failure in a chemorefractory bladder cancer
patient
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Abstract

Background: Tumor cell-intrinsic mechanisms and complex interactions with the tumor microenvironment

contribute to therapeutic failure via tumor evolution. It may be possible to overcome treatment resistance by

developing a personalized approach against relapsing cancers based on a comprehensive analysis of cell type-

specific transcriptomic changes over the clinical course of the disease using single-cell RNA sequencing

(scRNA-seq).

Methods: Here, we used scRNA-seq to depict the tumor landscape of a single case of chemo-resistant

metastatic, muscle-invasive urothelial bladder cancer (MIUBC) addicted to an activating Harvey rat sarcoma

viral oncogene homolog (HRAS) mutation. In order to analyze tumor evolution and microenvironmental

changes upon treatment, we also applied scRNA-seq to the corresponding patient-derived xenograft (PDX)

before and after treatment with tipifarnib, a HRAS-targeting agent under clinical evaluation.
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Results: In the parallel analysis of the human MIUBC and the PDX, diverse stromal and immune cell

populations recapitulated the cellular composition in the human and mouse tumor microenvironment.

Treatment with tipifarnib showed dramatic anticancer effects but was unable to achieve a complete response.

Importantly, the comparative scRNA-seq analysis between pre- and post-tipifarnib-treated PDX revealed the

nature of tipifarnib-refractory tumor cells and the tumor-supporting microenvironment. Based on the

upregulation of programmed death-ligand 1 (PD-L1) in surviving tumor cells, and the accumulation of

multiple immune-suppressive subsets from post-tipifarnib-treated PDX, a PD-L1 inhibitor, atezolizumab, was

clinically applied; this resulted in a favorable response from the patient with acquired resistance to tipifarnib.

Conclusion: We presented a single case report demonstrating the power of scRNA-seq for visualizing the

tumor microenvironment and identifying molecular and cellular therapeutic targets in a treatment-refractory

cancer patient.

Keywords: Treatment resistance, Tumoral heterogeneity, Tumor microenvironment, Single-cell RNA

sequencing, Muscle-invasive urothelial bladder cancer

Background
The precise identification of truncal driver mutations is

essential for minimizing drug resistance or tumor relapse

with targeted therapeutics for refractory, rapidly progres-

sive cancers [1–3]. However, specific targeted therapies

constitute an often stringent, directional selection pressure

on distinct subclones with either intrinsic or acquired re-

sistance due to the presence of multiple genotypically

and/or phenotypically distinct populations affecting di-

verse signal transduction pathways within a single tumor

[2, 4]. Additionally, various types of tumor-associated stro-

mal cells and the extracellular milieu within the tumor

microenvironment (TME) play key roles in governing the

plasticity of the phenotypic traits of cancer cells, as well as

in mediating the response to selection pressure [2, 5–8].

Significantly more work is required in order to achieve an

understanding of an altered and extremely plastic inter-

active feedback loop between cancer cells and the TME

for the design of effective therapeutic interventions, as

well as how this might alter the current combination

treatment strategies.

Unfortunately, conventional bulk next-generation se-

quencing techniques have limitations in their ability to

resolve tumor subpopulations and the TME [9]; this is

in addition to the technical difficulties in preparing can-

cer cells and TME cells obtained during serial and multi-

site sampling over the clinical course of treatment.

Recently developed single-cell RNA sequencing (scRNA-

seq) technologies allow high-resolution characterization

of distinct gene modules using a relatively small number

of cells [6, 10–16]. This technology allows dissection of

the critical drug target pathways activated in heteroge-

neous tumor cells that remain after treatment and from

diverse tumor-associated non-malignant cells within the

surrounding activated stroma in order to design tailored

combination therapy targeting both tumor cells and the

associated TME [6, 10–16].

Muscle-invasive urothelial bladder cancers (MIUBCs)

are clinically aggressive and fatal, with a 5-year relative

survival rate of 5%, owing to a high probability of sys-

temic dissemination and a lack of improved therapeutic

guidelines [17, 18]. In particular, intratumoral and inter-

tumoral heterogeneity (genetic, molecular, and microen-

vironmental) of MIUBCs [19–23] necessitates the design

of personalized interventions against tumor cell-intrinsic

mechanisms and complex interactions, with the TME

contributing to the therapeutic failure and tumor evolu-

tion of MIUBCs. Therefore, there is a need to monitor

the evolutionary trajectories of tumor cells and the sur-

rounding TME using pre- and post-treatment samples

in order [2, 4–8]. Previously, we successfully resolved

critical molecular pathways in individual tumor cells and

associated these pathways with therapeutic outcomes

using patient-derived tumor xenografts (PDXs) [10, 11].

Stromal and innate immune cell components in PDXs

may recapitulate the TME in human tumor tissues [24,

25], and species-specific analysis based on PDX models

is one of the easiest ways to distinguish the TME (mouse

transcriptome) from tumor cells (human transcriptome)

[26]. In this study, we applied scRNA-seq to resected

primary tumor and PDX from a single patient with

chemotherapy-resistant metastatic MIUBC for the in-

depth analysis of multiple mechanisms underlying

treatment-refractory cancers. Comparative scRNA-seq of

tumor cells and the TME between the primary tumor

and corresponding PDX provided important clues to de-

velop a sequential option to circumvent tumor progres-

sion after targeting oncogene addiction, with successful

translation in the patient.

Methods
Patient and tumor samples

This study was approved by the Institutional Review

Board (IRB) of the Samsung Medical Center, Seoul,
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Korea (IRB No. 201004004), and a single patient pro-

vided signed informed consent for the collection of spec-

imens and detailed analyses of the derived genetic

material, as well as for the participation in a phase 2 tipi-

farnib trial (ClinicalTrials.gov, NCT02535650). Each bi-

opsied parental tumor mass was either chopped into

fragments and frozen (BC159-T#3) or placed in formalin

and embedded in paraffin for later analyses (BC159-T#1,

BC159-T#2, and BC159-T#3). A blood pellet was used

for the extraction of germline DNA. Fresh BC159-T#3

tumor tissue was stored on ice in Hank’s balanced salt

solution (Gibco, Grand Island, NY, USA) supplemented

with penicillin/streptomycin (Gibco) for transportation.

In vivo validation of the targeted drug using established

BC159-T#3 PDX

All mouse procedures were carried out according to the

National Institute of Health Guidelines for the Care and

Use of Laboratory Animals, and the protocol was ap-

proved by the IRB at the Samsung Medical Center (No.

20170720002). For the establishment of BC159-T#3 PDX,

BC159-T#3 tumor tissue was minced into approximately

1-mm3 fragments in a high-concentration Matrigel™ base-

ment membrane matrix (BD Biosciences, Franklin Lakes,

NJ, USA) and directly implanted into the subcutaneous

space of female 6- to 8-week-old BALB/c nude mice pur-

chased from Orient Bio (Seoul, Korea). PDX tumors were

harvested and divided into three samples for the gener-

ation of second-passage in vivo xenograft tumors, DNA/

RNA extraction, and histopathological examination. The

origin of each xenograft was validated by short tandem re-

peat DNA fingerprinting.

For an in vivo efficacy test of tipifarnib, 1 × 105 dissoci-

ated BC159-T#3 PDX tumor cells were mixed 1:1 with

Matrigel and inoculated subcutaneously into the right

flank of each mouse. The tumor diameter was measured

with calipers twice a week, and the tumor volume was

calculated using the following formula: tumor volume

(mm3) = (l ×w2)/2, where l is the longest diameter of the

tumor and w is the shortest diameter of the tumor. Mice

bearing established tumors (100–150 mm3) were ran-

domly allocated to a tipifarnib (50 mg/kg, oral gavage,

twice a day) group and a vehicle control group and

treated for 20 days. Throughout the study, the mice were

weighed, and the tumor burden was monitored every 3

days. The mean tumor volumes were calculated for each

group, and tumor growth curves were generated as a

function of time. Tumors from each group were col-

lected at the end of the experiment for further analysis.

Immunohistochemistry (IHC) and measurement of

proliferation and apoptosis in PDX

Tumors from the patient and PDX were embedded in par-

affin, sectioned at 4 μm, and stained with hematoxylin and

eosin. For immunochemical staining, formalin-fixed,

paraffin-embedded sections were deparaffinized and rehy-

drated [10, 11]. Heat-induced epitope retrieval was per-

formed using a target retrieval solution (Dako, Glostrup,

Denmark) for 20min in a microwave oven. Slides were

treated with 3% hydrogen peroxide for 12min to inacti-

vate endogenous peroxidase and then blocked for 1 h at

room temperature (RT) in a blocking solution (Dako).

After blocking, the slides were incubated with primary

antibodies, including mouse monoclonal antibodies

against the HRASQ61R mutant (reactive to NRAS and

HRAS, Spring Bioscience, Pleasanton, CA, USA), cytoker-

atin (CK) 5/6 (Dako), CK13 (Abcam, Paris, France), CK14

(Abcam), phosphorylated (p)-extracellular signal-regulated

kinase (ERK) (Cell Signaling Technology, MA, USA), p-

protein kinase B (AKT) (Abcam), α-smooth muscle actin

(Dako), CD4 (Abcam), CD8 (Abcam), CD68 (Abcam), and

programmed death-ligand 1 (PD-L1) (Abcam). After

washing, the slides were incubated with secondary anti-

bodies for 1 h at RT and counterstained with hematoxylin

(Vector). Markers for proliferation and apoptosis were

assessed by IHC. Proliferation was assessed using Ki-67

(BD Pharmingen), and apoptosis was determined by ter-

minal deoxynucleotidyl transferase-mediated dUTP nick-

end labeling (TUNEL) staining of the tumor sections

using the DeadEnd™ colorimetric TUNEL system (Pro-

mega, Madison, WI, USA) [10, 11]. The proliferative and

apoptotic indexes were calculated as a ratio of Ki-67-

positive or TUNEL-positive cells to the total cell number,

respectively, in high-power (× 400) fields.

Whole exome sequencing (WES) and data processing

WES and data processing were performed as previously

described [16]. Briefly, genomic DNA was extracted

from the bulk tumor and whole blood using the

QIAamp® DNA mini kit (Qiagen, Germantown, MD,

USA) and QIAamp DNA blood maxi kit (Qiagen), re-

spectively. Exome sequences were enriched using the

SureSelect XT Human All Exon V5 kit (Agilent, Santa

Clara, CA, USA) and sequenced in the 100-bp paired-

end mode on the HiSeq 2500 system (Illumina, San

Diego, CA, USA). The tumor and matched blood DNA

were sequenced to 100× and 50× coverages, respectively.

The sequencing reads were mapped to the human gen-

ome build hg19/GRCh37 with BWA-0.7.10 [27]. Aligned

reads were realigned for known insertions or deletions,

and their base-quality scores were recalibrated using

GATK-3.2 modules with known variant sites identified

from phase I of the 1000 Genomes Project (http://

www.1000genomes.org/) and dbSNP-137 (http://www.

ncbi.nlm.nih.gov/SNP/). MuTect-1.1.5 was used with de-

fault parameters to detect somatic SNVs, and mutations

were annotated using Oncotator [28]. Additionally, the

Control-FREEC package [29] was used to detect copy-

Lee et al. Genome Medicine           (2020) 12:47 Page 3 of 21

http://www.1000genomes.org/
http://www.1000genomes.org/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/


number variations (CNVs), and CNVs with a P < 0.05

(Wilcoxon rank-sum test) were obtained. Druggable tar-

geting genetic alterations were annotated from the

OncoKB database (http://oncokb.org).

Inferred CNVs

Low-expression genes (average expression level < 0.2)

were discarded from the final gene expression matrix to

reduce the noise, and the refined data were mean cen-

tered based on the average expression values of each

gene. After all genes were sorted by their chromosomal

position following Z-score normalization of each gene,

inferred CNVs were calculated from the moving aver-

ages of 100 genes as the slide window size and adjusted

as centered values across genes, as previously described

[16]. Because of the possibility of distorting the moving

average of particular genes, we restricted the centered

gene expression to an absolute value │3│. To distin-

guish tumor cells from non-tumor cells, CNV scores for

each cell were defined as the mean of squares of inferred

CNV values across genes, and CNV correlations were

defined as the correlation between each cell with average

inferred CNV values of top 5% CNV scores. With two

cutoffs of 0.02 of the CNV score and 0.2 of the CNV

correlation, we assigned cells to tumor cells if the two

measured values were above the two cutoffs and to non-

tumor cells if the two measured values were below the

two cutoffs. The remaining cells were assigned as un-

determined cells. Finally, recalibration of inferred CNVs

was performed in order to apply non-tumor cells as ref-

erences [30].

Whole transcriptome sequencing (WTS) and data

processing

WTS and data processing were performed as previously

described [16]. Briefly, WTS libraries were generated

using the TruSeq RNA sample preparation v2 kit (Illu-

mina) and sequenced on the HiSeq 2500 system (Illu-

mina) on the 100-bp paired-end mode. The RNA reads

were aligned to the human reference genome (hg19)

using the STAR aligner with default parameters, and

relative gene expression levels were quantified as tran-

scripts per million (TPM) values using RSEM v1.2.17

with default parameters [31]. TPM values were summed

up to adjust the isoform expression levels for each gene.

For downstream analysis, TPM values < 1 were

substituted with zero and log2-transformed after adding

a value of one.

MIUBC can be segregated into at least five molecular

subtypes distinguishable by combinatorial molecular sig-

natures and divergent clinical outcomes [32–34]. In the

present study, the molecular subtypes were assigned

using the five subtypes from The Cancer Genome Atlas

(TCGA) 2017 mRNA dataset [32]. After genes of the

total matrix were restricted to the subtype signature

gene list, we computed the average expression of signa-

ture genes for each subtype. Thereafter, a correlation

was calculated between the bulk samples and each sub-

type. Finally, the highest value of Pearson’s correlation

coefficient with a significant P value was defined as the

molecular subtype of the bulk sample.

Acquisition of TCGA-urothelial bladder carcinoma (TCGA-

BLCA) data

A processed public WTS dataset with clinical informa-

tion for TCGA-BLCA [32] was downloaded from the

Firehose website (http://gdac.broadinstitute.org/). A total

of 408 tumor samples with adequate clinical information

were used for downstream analysis after merging with

our bulk data in TPM values.

Single-cell western analysis

In total, 1 mL of cell suspension (1 × 105 cells) was loaded

onto a standard scWest chip for 5 min. Optical

visualization was performed in order to confirm and mark

single-cell capture sites, followed by gentle washing in 1×

suspension buffer (ProteinSimple, San Jose, CA, USA).

The scWest chip was then submitted to the Milo system

(ProteinSimple) for lysis (10 s), electrophoretic separation

(60 s, 240 V), and protein immobilization (240 s). Protein

targets were probed on-chip for 2 h at RT with primary

antibodies, including goat anti-neuroblastoma RAS viral

(v-ras) oncogene homolog (NRAS) (Abcam), mouse anti-

p-ERK (Cell Signaling Technology, Beverly, MA, USA),

rabbit anti-p-AKT (R&D Systems, Minneapolis, MN,

USA), rabbit anti-histone H3 (Cell Signaling Technology),

rabbit anti-NRASQ61R (Spring Bioscience), and mouse

anti-vimentin (Dako), and then for 1 h at RT with second-

ary antibodies (Thermo Fisher Scientific, Waltham, MA,

USA), including donkey anti-goat IgG, Alexa Fluor 488;

donkey anti-mouse IgG, Alexa Fluor 555; and donkey

anti-rabbit IgG, Alexa Fluor 647. The probed chip was

washed, air-dried, and analyzed using GenePix 4400A

Scanners (Molecular Devices, San Jose, CA, USA).

Droplet-based scRNA-seq

In order to perform scRNA-seq, the primary sample

(BC159-T#3) was directly obtained from the operating

room, and PDX was generated from this primary sample.

Specimens were dissociated into single cells according to

previously published protocols [11, 35]. After resuspen-

sion in 1× phosphate-buffered saline, all single-cell sus-

pensions were loaded into a 10x Chromium Controller

(10x Genomics, Pleasanton, CA, USA), aiming for 7000

cells, with the Single Cell 3′ v2 reagent kit (10x Genom-

ics), according to the manufacturer’s instructions. Fol-

lowing Gem capturing and lysis, cDNA was synthesized

and amplified to construct sequencing libraries. The
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libraries were sequenced on the Illumina HiSeq 2500

platform, and sequenced reads were processed using the

CellRanger toolkit (version 2.1.0). The human and

mouse genomes were mapped to the GRCh38 human

genome reference and mm10 mouse genome reference,

respectively, using STAR [36].

scRNA-seq data processing and identification of cell types

Gene expression matrices were generated using the Seu-

rat R package (version 2.1) [37]. Cells with more than

150,000 or fewer than 1000 unique molecular identifiers

(UMIs), more than 10,000 or fewer than 500 expressed

genes, an UMI proportion over 10% for the mitochon-

drial genome, or an average expression level of two

housekeeping genes (beta-actin and glyceraldehyde 3-

phosphate dehydrogenase) below 3 were excluded.

Additional cutoff criteria were applied to PDX samples

to remove human–mouse mixed Gems. The human

(mouse) cells containing at least 1% of mouse (human)

reads were considered multiplets and removed. Because

tumor cells had more expressed genes than non-tumor

cells, strict criteria (over 2000 expressed genes) were ap-

plied to tumor cell clusters (as described as follows).

Thereafter, outliers of each subtype were excluded from

non-tumor cell clusters. Finally, undetermined cells from

inferred CNV results were also discarded in order to

identify the characteristics of pure cell types. After re-

moving all unreliable cells, 2075 primary cells, 82 PDX

human cells, and 958 PDX mouse TME cells were taken

forward for further analyses.

In order to remove low-expression genes and detect

rare cell types, genes expressed in 1% or more of the

cells were used for downstream analyses. The data were

transformed to TPM-like values by normalizing for dif-

ferences in coverages and sequencing depth, and the

TPM-like values were log2-transformed after adding a

value of one. Variable genes were selected based on the

average expression and dispersion (variance/mean) ratio

for each gene, and principal component (PC) analysis

was performed. In total, 20 significant PCs were selected

based on the jackStraw function and elbow plot in R and

used for graph-based clustering and t-distributed sto-

chastic neighbor embedding visualization. Subsequently,

each cluster was annotated with the average expression

levels of known marker genes of a specific cell type. The

relationship between the CNV score and CNV correl-

ation was used to identify tumor cells. Differentially

expressed genes of each cluster or subgroup were ex-

tracted using Student’s t test (Seurat package with de-

fault parameters).

Pathway analysis

Gene set variation analysis (GSVA R package with RNA-

seq mode) was used to estimate the activation levels of

biological pathways and signatures using the “Canonical

pathway” and the “Hallmark gene sets” obtained from

the MsigDB website (http://software.broadinstitute.org/

gsea/msigdb) and the cell cycle-related gene set [38].

Cell cycle analysis

GSVA enrichment scores for the G1/S and G2/M phases

were used to determine the cell cycle status of each cell.

Cells were classified into cycling (both scores > 0), non-

cycling (both scores < 0), and intermediate (one of scores

> 0) using an empirical criterion.

Analysis of receptor–ligand interaction

For putative receptor–ligand pairing analysis, we used

immune checkpoint inhibitor (ICI) candidate interac-

tions and curated human ligand–receptor pairs [39]. We

used all expressed genes and considered receptor–ligand

pairs by linking one cell expressing a receptor gene to

another expressing a ligand gene. Thereafter, we

summed the number of pairs by cell type or cell subtype

and built an interaction network plot using igraph [40]

and circlize [41] R packages. The size of the nodes and

lines were scaled to 1/20 and 1/4,000,000 levels,

respectively.

Statistical analysis

For experimental data, all values are expressed as the

mean ± standard deviation or standard error of the

mean. Comparisons between two groups were per-

formed using Student’s t test. One-way analysis of vari-

ance was applied for comparisons between more than

two groups and to determine statistical significance for

the fitting model of linear regression of two components.

All P values are two sided, and P < 0.05 was considered

statistically significant. All data analyses were performed

using the SPSS statistical software, version 19.0 (SPSS,

Inc., Chicago, IL, USA). For computational data, the chi-

squared test was used to identify the cellular compos-

ition changes between the two groups.

Results
Elucidation of targetable oncogenic drivers in a case of

chemo-refractory metastatic MIUBC

An analytical scheme following the clinical course of a

49-year-old male patient is summarized in Fig. 1a and b.

The patient was initially diagnosed with non-MIUBC

(pT1, high grade) at the first transurethral resection of

the bladder tumor (TUR-BT) (BC159-T#1), which pro-

gressed into MIUBC (pT2, high grade) at the second

TUR-BT (BC159-T#2), despite intravesical Bacillus

Calmette–Guerin (BCG) instillation. After undergoing

multiple neoadjuvant chemotherapy regimens (gemcita-

bine/paclitaxel and sequential paclitaxel), the patient de-

veloped local recurrence and multiple lung metastases
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Fig. 1 (See legend on next page.)
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indicative of platinum-refractory metastatic MIUBC and

for which effective systemic therapeutic options were

limited [42, 43]. To reduce the tumor burden and relieve

urological symptoms, the left ureterovesical junction of

the recurred tumor (BC159-T#3) was removed following

palliative partial cystectomy (ypT3aN1) (Fig. 1b). The

molecular subtypes of these serial three tumors (BC159-

T#1~#3) were determined by WTS (Fig. 1c) and IHC

(Fig. 1d). BC159-T#1 was enriched in the luminal–papil-

lary subtype-like gene signature, with CK13 expression,

whereas BC159-T#2 and BC159-T#3 were classified as

basal/squamous subtypes (CK5/6+ and CK14+) [32–34].

This observation was consistent with a well-known evo-

lutionary path for MIUBC progression, from the luminal

subtype to the basal squamous subtype, which demon-

strates enhanced clinical aggressiveness through in-

creased stemness and an epithelial-to-mesenchymal

transition (EMT) [32–34].

To identify an oncogene addiction and ubiquitous

truncal mutations on the tumor evolutionary tree, com-

prehensive WES of BC159-T#1~#3 was performed and a

variety of single-nucleotide variations (SNVs; Add-

itional file 1: Table S1) and CNVs (Additional file 1:

Table S2) were attained. In addition, drugs targeting

these genetic variations were annotated using the

OncoKB (https://oncokb.org) [44] (Additional file 1:

Table S1 and S2). Remarkably, an activating missense

mutation in HRAS (c.182A>G; HRASQ61R) [45, 46] was

found at the highest variant allele frequency (VAF) in all

three tumors (Fig. 1e; Additional file 1: Table S1). The

mutation was accompanied by tumor cell-specific over-

expression of the mutant HRASQ61R protein (Fig. 1e,

insets) and the RAS pathway activation compared with

other cases of TCGA-BLCA (the top 7.5%) (Fig. 1f).

scRNA-seq of BC159-T#3 (Additional file 2: Figure S1

and S2) further confirmed the specific transcriptional

upregulation of HRAS in tumor cells with basal squa-

mous subtype marker expression, compared with low

expression in non-malignant stromal and immune cells

(Fig. 1g), indicating a strong dependence on HRASQ61R

as a major truncal alteration driving tumor evolution in

this advanced refractory case.

Preclinical validation of the therapeutic potency of

blocking HRASQ61R activation and its clinical application

To test our hypothesis that therapeutic targeting of

oncogenic HRAS could be a clinically relevant choice for

the patient, we used subcutaneous BC159-T#3 PDX,

which recapitulated the patient tumor with respect to

tumor cell morphology, the expression of HRASQ61R

protein, and basal squamous subtype (Fig. 2a). Tipifarnib

is a highly potent and selective farnesyltransferase inhibi-

tor (FTI) that can be particularly effective against ad-

vanced MIUBCs harboring mutated HRAS by

dramatically attenuating farnesylation-mediated HRAS

signaling [47–49]. When HRAS activation was pharma-

cologically inhibited by tipifarnib (50 mg/kg, oral, twice a

day), tumor growth was significantly suppressed (Fig. 2b,

left panel; Additional file 2: Figure S3) and HRAS-

mediated ERK and AKT activation was reduced (Fig. 2b,

right panel). Moreover, a decrease in cell proliferation

and an increase in apoptosis supported its therapeutic

efficacy (Fig. 2c). On the basis of the promising preclin-

ical anti-tumor efficacy of tipifarnib, the patient was en-

rolled in a tipifarnib phase II trial for pre-treated, heavily

treated, metastatic urothelial carcinomas harboring mu-

tated HRAS (ClinicalTrials.gov, NCT02535650, pallia-

tive, 900 mg, bid) following a partial cystectomy, and the

patient showed an obvious decrease in tumor burden in

the bladder and left renal calyx, as well as in lung metas-

tases (partial response) (Fig. 2d, middle panels). Unfortu-

nately, consistent with our findings that tipifarnib

administration failed to achieve complete remission of

BC159-T#3 PDX, the dissipating tumor started to re-

grow in the patient after 9 months (Fig. 2d, right panels).

(See figure on previous page.)

Fig. 1 Genomic characteristics and the identification of a druggable target of a chemo-refractory metastatic muscle-invasive urothelial bladder

cancer (MIUBC). a Overall workflow. Abbreviations: BCG, Bacillus Calmette–Guerin; WES, whole exome sequencing; WTS, whole transcriptome

sequencing. b Clinical course of the patient investigated in the present study. c The mRNA expression-based molecular subtype of MIUBC

identified by Pearson’s correlation coefficients between the bulk RNA sequencing samples and pre-defined Cancer Genome Atlas Urothelial

Bladder Carcinoma (TCGA-BLCA) samples. *P < 0.05. d Immunohistochemistry staining of cytokeratin (CK)13, CD5/6, and CK14 performed on

tumor sections to validate the molecular subtype of each sample. Abbreviation: H&E, hematoxylin and eosin. Scale bar, 100 μm. e Scatter plots

showing mRNA expression levels versus variant allele frequencies (VAFs) for nonsynonymous mutation genes. Gray lines indicate cutoff of

potential treatment target (VAF > 0.2 and gene expression > 6). Potential treatment target genes are marked as colored dots.

Immunohistochemistry staining of HRASQ61R (insets) demonstrates protein expression. Scale bar, 100 μm. f The activation scores of core cancer-

related pathways are plotted for BC159-T#1, #2, #3, and TCGA-BLCA samples. The RAS pathway was activated in all BC159-T samples compared

with TCGA-BLCA samples. Each box shows the median and IQR (interquartile range, 25th to 75th percentiles), and whiskers indicate the highest

and lowest value within 1.5 times the IQR. g The in-depth validation at single-cell level. T-distributed stochastic neighbor embedding (tSNE) plot

of 2075 cells in BC159-T#3 sample, color-coded by their graphic-based clusters; basal tumor cell cluster is marked as a circle (left panel). HRAS

gene is overexpressed in basal tumor cells (middle panel). Epithelial cells were identified by the average expression of epithelial-related genes

(right panel)

Lee et al. Genome Medicine           (2020) 12:47 Page 7 of 21

https://oncokb.org


Elucidation of tumor cell-intrinsic factors for resistance to

HRAS-targeted monotherapy by scRNA-seq

In the current study, the PDX tumors that endured tipi-

farnib treatment (residual tumors in tipifarnib-treated

BC159-T#3 PDX) would enable us to analyze tumor

cells as well as the TME that allowed survival and the

emergence of treatment resistance. In previous studies,

scRNA-seq could identify distinct gene modules

expressed across residual tumor cells and a variety of

tumor-associated non-malignant cells within a sur-

rounding activated stroma upon treatment, which have

accelerated the refractoriness of tumors [6, 7, 11, 13].

Subsequently, we used scRNA-seq to perform pairwise

comparisons of tipifarnib-treated and untreated PDX tu-

mors (Figs. 3a~f and 4; Additional file 2: Figure S4) to

delineate the mechanisms of resistance originating from

tumor-intrinsic and/or TME-mediated activation of sal-

vage pathways other than HRAS.

Cancer cells display significant plasticity, which in-

fluences how they respond to treatments [2, 3].

Tumor cells in the PDX that survived tipifarnib

treatment showed a significant downregulation of

HRAS as well as RAS and MAPK signaling-related

genes (Fig. 3a, b). Suppressed HRAS-mediated signal-

ing by tipifarnib in each tumor cell was also con-

firmed at the protein level by single-cell Western

blotting (Fig. 3c). Most interestingly, the tipifarnib-

resistant tumor cells were in a state of cell dormancy

[50], which was characterized by an increased propor-

tion of non-cycling cells (Fig. 3d), contributing to re-

sistance to agents targeting cell proliferation.

Furthermore, the relative increase in the transcrip-

tional and translational expression level of insulin-like

growth factor-binding protein 7 (IGFBP7), midkine

(MDK), and beta-2-microglobulin (B2M) genes was

observed in remnant tumor cells after tipifarnib treat-

ment (Fig. 3e, f).

Furthermore, unsupervised clustering analysis of all

PDX tumor cells from two groups identified two distinct

clusters (A and B; Fig. 3a; Additional file 2: Figure S5).

The signaling pathways where gene expression was sig-

nificantly different between clusters A and B are

Fig. 2 In vivo and clinical efficacy of the HRAS-targeting treatment. a Immunohistochemistry staining of protein markers of basal squamous

subtype (CD5/6, CD14) and mutant HRASQ61R protein performed on tumor sections from patient-derived xenograft (PDX) of BC159-T#3.

Abbreviation: H&E, hematoxylin and eosin. Scale bar, 100 μm. b Tumor sizes were measured in BC159-T#3 PDX administered tipifarnib (50 mg/kg)

or vehicle as control. ***P < 0.001, **P < 0.01, *P < 0.05, Error bars indicate standard deviation (SD) (left panel). Immunohistochemistry staining of

phosphorylated-AKT (P-AKT) and ERK (P-ERK) using PDX to evaluate the inhibitory effects of tipifarnib on HRAS downstream pathways (right

panel). c Comparison of tumor cell proliferation and apoptosis between the tipifarnib and vehicle groups. ***P < 0.001, **P < 0.01, *P < 0.05. Error

bars indicate SD (left panel). Immunohistochemistry staining of protein markers of proliferation (Ki-67) and apoptosis (TUNEL) performed on PDX

tumor sections to validate the therapeutic efficacy (right panel). d Clinical responses to tipifarnib of the patient evaluated by serial chest–

abdomen–pelvis computed tomography (CT). Left panel, before initiation of tipifarnib; middle panel, partial response to tipifarnib; right, the

progression of primary tumor and lung metastases due to the resistance to tipifarnib
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summarized in Additional file 2: Figure S5B~D. The

tumor cells in cluster B showed similar characteristics to

those of tipifarnib-resistant tumor cells, including down-

regulation of the RAS and MAPK signaling pathways

(Additional file 2: Figure S5C) and upregulation of

IGFBP7, MDK, and B2M mRNA (Additional file 2: Fig-

ure S5D, E). Notably, a few cells in cluster B belonged to

the control group (Fig. 3a, left panel), indicating the ex-

istence of putative tipifarnib-resistant tumor cells before

treatment initiation.

To confirm the existence of a matched subpopulation

with intrinsic resistance to tipifarnib in the patient sam-

ple, we explored the scRNA-seq data for the resected

BC159-T#3 before tipifarnib treatment (Fig. 3g–j). In the

patient sample, three distinct subgroups (basal tumor

clusters #1, #2, and #3; Fig. 3g, left panel) were identified

by unsupervised clustering of tumor cells. The basal

tumor cluster #3 demonstrated transcriptional downreg-

ulation of HRAS (Fig. 3g, right panel); cell dormancy

(Fig. 3h); and a higher expression of IGFBP7, MDK, and

B2M (Fig. 3i), recapitulating those of the tipifarnib-

resistant (or cluster B) BC159-T#3 PDX tumor cells. In

conjunction with these data, IHC analysis of the patient

tumor revealed that Ki-67-negative, non-cycling cells

showed a higher immunoreactivity against IGFBP7,

MDK, and B2M (Fig. 3j). To summarize, downregulation

of the drug target, cell dormancy, and upregulation of

the IGFBP7, MDK, and B2M that were common charac-

teristics of tumor cells in patient basal tumor cluster #3

and PDX cluster B could contribute to therapeutic re-

sistance to tipifarnib, indicating a selection for intrinsic-

ally resistant basal tumor cluster #3 subpopulations in

BC159-T#3. For example, B2M could induce resistance

to tipifarnib by inducing tumor cell survival, aggressive-

ness, and EMT via the induction of RAS-independent

activation of the phosphoinositide 3-kinase (PI3K)/AKT/

mammalian target of rapamycin (mTOR) and ERK sig-

naling pathways [51, 52].

TME contribution to acquired resistance to tipifarnib

Treatment-induced alterations in the TME also generate

a protective niche, or a shielding reservoir, for cancer

cells, which in turn facilitates tumor relapse and pro-

gression [6, 7]. In order to elucidate the TME factors

that induce resistance against tipifarnib, we analyzed

scRNA-seq data of mouse TME cells in the tipifarnib-

treated and control PDX groups (Additional file 2:

Figure S4). Unsupervised clustering revealed the pres-

ence of murine TME components in the PDX, including

fibroblasts, monocytes/macrophages, T and B cells, and

natural killer (NK) cells (Fig. 4a; Additional file 2: Figure

S6). Although tipifarnib induced minor changes in the

global cell composition (Fig. 4b), detailed analysis of

each cell component unveiled alterations in specific cell

subtypes after tipifarnib treatment.

First, collagen alpha-1(XIV) chain (COL14A1)-ex-

pressing matrix cancer-associated fibroblasts (CAFs)

(COL14A1 MatrixCAFs) [53] and actin alpha 2, smooth

muscle (ACTA2)-expressing cancer-associated myofi-

broblasts (MyoCAFs) [54, 55] were identified within the

fibroblast cluster in vehicle- and tipifarnib-treated PDX

(Fig. 4c; Additional file 2: Figure S7). Notably, tipifarnib

treatment increased the number of MyoCAFs, which are

often associated with tumor aggressiveness and a dismal

prognosis [54, 55], whereas the control group contained

more COL14A1 MatrixCAFs (Fig. 4c). The tipifarnib-

induced dynamics of the fibroblast cluster were reflected

by differential gene expression between control and

tipifarnib-treated fibroblasts (Fig. 4d; Additional file 1:

Table S3; Additional file 2: Figure S7). Interestingly,

(See figure on previous page.)

Fig. 3 Tumor cell-intrinsic factors underlying treatment resistance to tipifarnib. a tSNE plot of total human tumor cells (dots) from the PDX model

of BC159-T#3, color-coded by sample origin, circled by cluster (left panel). Comparison of HRAS mRNA expression level in tumor cells treated with

tipifarnib or vehicle as control. Dots indicate individual cells, P = 0.0091 (right panel). b Comparison of RAS and MAPK pathway activity in tumor

cells treated by tipifarnib and vehicle as control. P = 0.00011, P = 0.0066, respectively. Each box shows the median and IQR (interquartile range,

25th to 75th percentiles), whiskers indicate the highest and lowest value within 1.5 times the IQR, and outliers are marked as dots. c Single-cell

western blots of HRAS protein and its downstream protein markers (p-AKT and p-ERK) in tumor cells treated with tipifarnib or vehicle. Dots

indicate individual cells, and diamond and star shapes indicate means and median of peak area, respectively. d Prediction of cell cycle state in

tumor cells from PDX at a single-cell level (dots) using G1/S and G2/M module score (left panel). Cells are colored by their assigned cell cycle

state (cycling; orange, intermediate; yellow, non-cycling; gray, middle panel). The relative cellular composition for tumor cells treated with

tipifarnib or vehicle. Chi-squared test, P = 0.021, *P < 0.05 (right panel). e Violin plots of significantly upregulated genes, IGFBP7, MDK, and B2M, in

tumor cells treated by tipifarnib or vehicle (dots). P = 1.3e−07, P = 1.2e−05, P = 6.4e−06, respectively. f Validation of comparative upregulation of

IGFBP7, MDK, and B2M in tumor cells treated with tipifarnib compared to those with vehicle by immunohistochemistry staining performed on

PDX. Scale bar, 100 μm. g tSNE plot of total tumor cells from BC159-T#3 patient tumor, color-coded by cluster (left panel). Violin plot of HRAS

mRNA expression level against distinct tumor cell clusters of BC159-T#3. Student’s t test, ****P < 0.0001, *P < 0.05. Abbreviation: BT, basal tumor

(right panel). h Prediction of cell cycle state in tumor cells from BC159-T#3 at a single-cell level (dots) using G1/S and G2/M module score (left

panel). Cells are colored by cell cycle as in d (middle panel). The relative cellular composition among basal tumor clusters. Chi-squared test, P <

2.2e−16, ****P < 0.0001 (right panel). i Violin plots of mRNA expression levels of IGFBP7, MDK, and B2M against distinct tumor cell clusters of

BC159-T#3 (dots). ****P < 0.0001, *P < 0.05. j Comparison of IGFBP7, MDK, and B2M protein expression between fast (upregulated Ki-67) and slow

(downregulated Ki-67) growing regions in BC159-T#3 by immunohistochemistry staining. Scale bar, 100 μm
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Mdk and Igfbp7, the tumor-intrinsic factors associated

with resistance to tipifarnib (Fig. 3e, f), were also upreg-

ulated in MyoCAFs in the tipifarnib-treated group

(Fig. 4d, e), implying key roles for these two targets in

dormant tumor cells. Thus, the MyoCAF subset cross-

talk may contribute to resistance to tipifarnib, whereas

the pre-existing tipifarnib-resistant subpopulation may

survive tipifarnib treatment.

Second, tipifarnib treatment resulted in a marked in-

crease in the total number and proportion of macro-

phages (Fig. 4b, f), accompanied by a decrease in M1-

like macrophages but an increase in M2-like macro-

phages [56, 57] within the macrophage pool (Fig. 4f, g).

Consequently, macrophages in the treated group showed

higher expression of arginase 1 (Arg1), C-C motif che-

mokine ligand 2/7/12 (Ccl2, Ccl7, and Ccl12), chemo-

kine (C-X-C motif) ligand 1 (Cxcl1), and apolipoprotein

E (Apoe) associated with metabolic and chemotactic me-

diators in M2 macrophages [56–58] than those in the

control group (Fig. 4g, h; Additional file 1: Table S4;

Additional file 2: Figure S8). Despite the compromised

adaptive immune system in nude mice, recent work has

shown the presence of functional T cells in the BALB/c

nude mouse spleen [59]. Interestingly, we recovered a

significant number of exhausted CD8+ cytotoxic T lym-

phocytes (CTLs) [60, 61] (Additional file 1: Table S5)

and adaptive NK cells [62, 63] in the treated group and a

small number of B cells, expressing IgM, in the control

mice (Fig. 4i; Additional file 2: Figure S6 and S9). Over-

all, the tipifarnib-induced dynamics of TME cells were

characterized by an increased infiltration of tumor-

promoting MyoCAFs and suppressive immune cells,

such as M2 macrophages and exhausted CTLs.

A parallel analysis of the patient TME for BC159-T#3

(Fig. 5a; Additional file 2: Figure S1) identified diverse

cellular components comparable with those of the

murine TME, including fibroblasts, monocytes/macro-

phages, and T cells. Within the fibroblast cell types, we

found COL13A1- (COL13A1 MatrixCAFs) and

COL14A1-type matrix CAFs (COL14A1 MatrixCAFs),

as well as MyoCAFs (Fig. 5b; compared with the murine

TME in Additional file 2: Figure S7). Similar to those

from the murine TME, BC159-T#3-infiltrating Myo-

CAFs specifically expressed higher levels of MDK and

IGFBP7 than other matrix fibroblasts (Fig. 5c, d). Among

the monocytes and macrophages, we found M0-type,

M2-type, and Langerhans cell-like subpopulations

(Fig. 5e), which are tissue-specific macrophage subsets

that share typical features with dendritic cells in terms

of their migratory potential and ability to stimulate T

cells; this was reflective of the history of intravesical

BCG therapy in this patient [64, 65] (Fig. 5e). Most im-

portantly, we also demonstrated the infiltration of het-

erogeneous CD4+ and CD8+ T cells in dynamic states,

ranging from naïve to activated CTLs as well as

CD4+CD25+forkhead box P3 (FOXP3)+ regulatory T

cells (Tregs) in BC159-T#3 (Fig. 5f, top panel). Both acti-

vated CTLs and Tregs expressed varying levels of im-

mune checkpoint genes, such as cytotoxic T

lymphocyte-associated protein 4 (CTLA4), lymphocyte

activation gene-3 (LAG3), programmed cell death pro-

tein 1 (PDCD1), and T cell immunoreceptor with Ig and

ITIM domains (TIGIT) [66–68] (Fig. 5f, bottom panel).

Taken together, PDX could recapitulate the diverse

cell types present in the human TME, thus providing a

unique opportunity to monitor alterations inflicted by

tumor cell-targeted tipifarnib treatment. These TME cell

components and characteristics, together with the post-

tipifarnib PDX data, suggest that the inhibition of myofi-

broblasts and anti-inflammatory macrophages, or the re-

invigoration of T cell immunity, could be considered as

therapeutic tactics for the tipifarnib-resistant MIUBC.

(See figure on previous page.)

Fig. 4 Tumor cell extrinsic factors underlying treatment resistance to tipifarnib. a tSNE plot of non-tumor mouse cells (dots) from PDX of BC159-

T#3, color-coded by cluster, circled by global cell type. b tSNE plot, color-coded by sample origin and circled by cell type (top panel). Relative

cellular composition of non-tumor mouse cells treated with tipifarnib or vehicle (bottom panel). c tSNE plot (top panel) and relative cellular

composition (bottom panel) of fibroblasts from PDX mouse cells treated with tipifarnib or vehicle, color-coded by cluster (top left panel) or

sample origin (top middle and right panel). d Volcano plot of differentially expressed genes in mouse fibroblasts from PDX treated with tipifarnib

or vehicle. Genes with fold change > 0.8 with P < 0.001 are colored in red. e Validation of relative overexpression of Igfbp7 and Mdk in mouse

cancer-associated myofibroblasts (MyoCAFs, ACTA2 positive) from the tipifarnib group compared to those from the vehicle group by

immunohistochemistry staining. Scale bar, 100 μm. f Increased infiltration of mouse macrophages (CD68 positive) in PDXs treated with tipifarnib

confirmed by immunohistochemistry staining. Scale bar, 100 μm. g tSNE plot (top panel) and relative cellular composition (bottom panel) of

mouse macrophages from PDX treated with tipifarnib or vehicle, color-coded by cluster (top left panel) and sample origin (top middle and right

panel). h Volcano plot of differentially expressed genes between vehicle and tipifarnib-treated mouse macrophages from PDX. Genes with fold

change > 0.8 with P < 0.001 are colored in red. i tSNE plot (top panel) and relative cellular composition (bottom panel) of mouse lymphocytes

from PDX treated with tipifarnib or vehicle, color-coded by cluster (top left panel) and sample origin (top middle and right panel). j Volcano plot

of differentially expressed genes between vehicle and tipifarnib-treated mouse T cells from PDX. Genes with fold change > 0.8 with P < 0.001 are

colored in red. k Increased infiltration of mouse T cells (CD8 positive) in PDX treated with tipifarnib confirmed by immunohistochemistry staining.

Scale bar, 100 μm
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Personalized salvage regimen against tumor relapse after

tipifarnib treatment

Currently, co-targeting of dormant tumor cells and

MyoCAFs by therapeutic inhibition of MDK and

IGFBP7 is not available. However, programmed cell

death-1 (PD-1)/PD-L1 inhibitors approved for second-

line treatment of advanced chemo-refractory MIUBC

[69–71] could be effective based on the immunosuppres-

sive TME characterized by the infiltration of exhausted

CTLs and Tregs overexpressing immune checkpoint

genes such as PD-1/PD-L1 in BC159-T#3. Interestingly,

we found a cell communication network, through an in-

ference of immune checkpoint ligand–receptor interac-

tions, between tumor cells and a variety of stromal/

immune cells in BC159-T#3 (Fig. 6a, b; Additional file 2:

Figure S10A). Specifically, tumor cells expressed PD-L1

(encoded by CD274) and PVR transcripts, which could

transmit inhibitory signals to PD-1 (encoded by PDCD1

gene) and TIGIT on T cells, respectively [66–68] (Fig. 6b,

c; Additional file 2: Figure S10A). Macrophages and

endothelial cells were the main sources of major histo-

compatibility complex (MHC) class II, interacting with

LAG3, whereas macrophages predominantly expressed

CD80 and CD86 transcripts, interacting with CTLA4

(Additional file 2: Figure S10A). Most importantly, PD-

L1 expression in tumor cells of BC159-T#3 was at the

top 3.16% of the cases recorded in TCGA-BLCA dataset

(Fig. 6d). These results were corroborated by higher PD-

L1 expression in the basal subtype compared with that

in other subtypes, particularly those harboring HRAS

mutations (Fig. 6e). By comparison, the CD8/CD4 ratio

(associated with a high fraction of CTLs relative to

Tregs) and cytolytic scores quantified by transcript levels

of granzyme A and perforin 1 [69, 70, 72] were indistinct

for BC159-T#3 or HRAS mutant UBCs (Additional file

2: Figure S10B). Since the high expression levels of PD-

L1 were predictive of favorable clinical response to PD-

1/PD-L1 inhibitors, the patient who failed tipifarnib

treatment was started on a humanized monoclonal PD-

L1 antibody, atezolizumab, that is effective in patients

with platinum-resistant MIUBC [73, 74] as optimized

next-line therapeutic options for the relapsed tumor

after tipifarnib treatment. Subsequent imaging demon-

strated a partial response to atezolizumab in our subject

as expected (Fig. 6f).

Discussion
Tumor cells can alter the drug target itself, or rewire cel-

lular signaling so as to negate the effect of the targeted

agent, posing a significant challenge to monotherapy by

accelerating the growth of other clones [2, 3]. Further-

more, because of its heterogeneity and complexity, the

TME should not be neglected when investigating the in-

teractions between a growing tumor and its surrounding

stroma or its role in facilitating the emergence of drug

resistance [5–7, 12, 14, 15]. Here, we demonstrate the

power of single-cell transcriptomics depicting tumor

landscape for the identification of personalized treat-

ment options for one refractory advanced cancer patient.

scRNA-seq analysis of a parental tumor addicted to a

specific oncogenic pathway before treatment with a spe-

cific oncogene-targeting agent, as well as non-treated

PDX and one treated with the same drug, suggested an

advanced personalized sequential treatment option

against a chemo-refractory and rapidly evolving case of

metastatic MIUBC.

There are a number of reasons for using the indicated

case in this study. First, advanced chemo-resistant

MIUBC remains a challenging disease with poor out-

comes and a paradigm shift to targeting selected patients

with tumor-specific genetic targets has not yet been

established in MIUBC [17, 19]. Second, HRAS mutations

are one of the major driver alterations in MIUBCs (5.1–

20%) [75, 76], and there is a consistency in the type of

HRAS mutations among different tumor samples ob-

tained from the same patients with MIUBC [45], sug-

gesting that the majority of recurrences in MIUBC are

clonally related [46]. Although we could not obtain

tumor samples from lung metastasis because of multiple

patterns and the difficulty of biopsy from a metastasis

site, 100% consistency with HRAS alterations during the

clinical course, specifically overexpressed HRASQ61R,

and activation of downstream effectors confirmed at the

single tumor cell level strongly indicated a RASophathy,

(See figure on previous page.)

Fig. 5 Parallel analysis of the tumor microenvironment in BC159-T#3. a tSNE plot of non-tumor cells (dots) from BC159-T#3 sample, color-coded

by cluster; fibroblasts are circled. b tSNE plot of human fibroblasts (dots), color-coded by cluster (top panel). Heatmaps of single cells (bottom left

panel) and averaged single cells (bottom right panel) represent the mRNA expression levels of well-known markers for fibroblasts. c Violin plots of

MDK and IGFBP7 mRNA expression levels in three fibroblast clusters. Abbreviations: MyoCAFs, cancer-associated myofibroblasts; COL13A1

MatrixCAFs, COL13A1 expressing cancer-associated matrix fibroblasts; COL14A1 MatrixCAFs, COL14A1 expressing cancer-associated matrix

fibroblasts. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05. d Validation of protein expression of IGFBP7 and MDK in fibroblasts (ACTA2 positive)

from BC159-T#3 by immunohistochemistry staining. Scale bar, 100 μm. e tSNE plot of human macrophages (dots), color-coded by cluster (top

panel). Heatmaps of single cells (bottom left panel) and averaged single cells (bottom right panel) represent the mRNA expression levels of well-

known markers for macrophage subtypes. Abbreviation: LC-like cells, Langerhans cell-like cells. f tSNE plot of human T cells (dots), color-coded by

cluster (top panel). Heatmaps of single cells (bottom left panel) and averaged single cells (bottom right panel) represent the mRNA expression

levels of well-known markers of T cell subtypes
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and we hypothesized that HRAS-targeting strategies

could be a potential palliative adjuvant therapy for this

patient. Finally, FTIs such as tipifarnib have been devel-

oped as anti-RAS therapeutic agents [47–49], and more-

over, wild-type TP53 tumors containing mutated HRAS

similar to our case are the most sensitive to FTIs be-

cause HRAS is activated by only farnesylation, in con-

trast to KRAS and NRAS which can be

geranylgeranylated as well [77]. However, as a single

agent, tipifarnib appears to have modest clinical effects

in tumors that are driven through oncogenic HRAS

function; these are insufficient to induce long-term

tumor inhibition because of the complexities of HRAS

[47–49, 78, 79]. The rapidly accelerated fibrosarcoma/

mitogen-activated protein kinase kinase (MEK)/ERK,

PI3K/mTOR/AKT, Ral guanine nucleotide exchange fac-

tor/Ral, and T cell lymphoma invasion and metastasis 1/

Rac initiated by HRAS-mediated signaling pathways have

divergent and critical roles in tumor progression and

evolution through crosstalk and feedback interactions

between tumor cell–tumor cell or tumor cell–TME [78,

79]. Therefore, rationale-driven combination strategies

in synergy with tipifarnib are required to reduce the

need for protracted therapy.

Invigorated by acquired resistance to tipifarnib, we

postulated that the regrowth could originate from

tumor-intrinsic and TME-mediated activation of salvage

pathways other than HRAS, and performed in-depth

analysis of tumor cells and non-neoplastic stromal cells

in TME, from BC159-T#3 and the PDX tumors used in

the tipifarnib in vivo efficacy study, with the aid of

scRNA-Seq. In particular, application of scRNA-seq to

the remaining tumors persisting in tipifarnib-treated

BC159-T#3 PDX provided details from the tumor cells

that survived tipifarnib treatment and from the tumor

promoting stroma. Profiling of the PDX transcriptome

at the single-cell resolution level enabled us to dissect

changes in inherently complex and heterogeneous cell

populations in response to the HRAS-targeting tipifarnib

treatment. Extensive scRNA-seq-based analysis of the

PDX and parental BC159-T#3 strongly indicated overall

changes in the transcriptome landscape of the putative

tipifarnib-resistant human tumor cells and mouse TME

cells suggestive of broad tumor evolution in stromal and

immune cell components by the HRAS-targeting treat-

ment. The results suggest that tumor cells with molecu-

lar characteristics similar to those that have survived

after tipifarnib treatment (tipifarnib-resistant subpopula-

tion) probably exist in the tumor before treatment as

distinct subpopulation with intrinsic resistance to tipifar-

nib. Most importantly, tumor cells that survived through

tipifarnib therapy were in a relatively dormant stage.

Dormancy, a slow-cycling, persistent quiescent state, al-

lows cells to survive in a hostile tumor microenviron-

ment under treatment pressure such as RAS/RAF/MEK

inhibitors, which serves as a likely reservoir for the

emergence of fully resistant proliferative cells [80–82].

On the other hand, benign cells in TME niches ac-

tively modulate cancer cell response to a broad range of

standard chemotherapies and targeted agents, and there-

fore, cancer-oriented therapeutics combined with TME-

targeting treatments are likely to yield optimal clinical

outcomes by overcoming treatment failure; however,

most studies addressing this disregard the heterogeneity

in TME cues and niches that will differentially influence

tumor evolution. scRNA-seq analysis, which enables dis-

section of heterogeneous drug target pathways at cellular

resolution, may have a significant clinical utility for the

design of tailored combination therapy targeting both

tumor cells and associated TME [12–16]. The transcrip-

tome landscape of the putative tipifarnib-resistant hu-

man BC159-T#3 and PDX at the single-cell resolution

level enabled us to dissect changes in inherently complex

and heterogeneous cell populations in response to tipi-

farnib HRAS-targeting treatment.

We demonstrated high rates of infiltration of M2

tumor-associated macrophages (TAMs) and MyoCAFs

in the original tumor (BC159-T#3) and tipifarnib-treated

(See figure on previous page.)

Fig. 6 Programmed death receptor 1/programmed death-ligand 1 inhibitor as a potential treatment strategy against tipifarnib-resistant tumors

developed from BC159-T#3. a Receptor–ligand interaction between the programmed death receptor 1 (PD-1) and its ligands (PD-L1/PD-L2) of

total cells from BC159-T#3. Arrows indicate the direction of interaction (from ligand to receptor) that expresses more than 10% of the ligand

genes (left top panel). Pie charts demonstrating the cell composition that express PDCD1/PD-1, CD274/PD-L1, and PDCD1LG2/PD-L2 genes (left top

panel). Heatmap of single cells showing the mRNA expression levels of PDCD1/PD-1, CD274/PD-L1, and PDCD1LG2/PD-L2 genes (left bottom

panel). 2D-violin plots represent each interaction of PD-1-PDL1 or PD-L2 (right panel). b Representative images for immunohistochemical staining

of PD-L1 in BC159-T#3. Expression is specific in tumor cells in the core and stromal border. Scale bar, 100 μm. c Scatter plot representing the

average expression of target ligands (x-axis) and the proportion of target receptors in T cells (y-axis). Circle size is proportional to the number of

pairing between target ligands and receptors in log2 scale. d CD274/PD-L1 mRNA expression levels are plotted for BC159-T#1, #2, #3, and TCGA-

BLCA samples. All samples are colored by molecular subtype. The samples with HRASQ61R mutation are marked in the bottom row of vertical

ticks. e CD274/PD-L1 mRNA expression levels according to HRASQ61R mutation. Patients with HRASQ61R mutation in basal squamous subtype

show upregulated expression of CD274/PD-L1. Each box shows the median and IQR (interquartile range, 25th to 75th percentiles), whiskers

indicate the highest and lowest value within 1.5 times the IQR, and outliers are marked as dots. f Clinical partial response to atezolizumab (a fully

humanized, engineered monoclonal antibody of IgG1 isotype against PD-L1) evaluated by CT scan
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PDX, suggesting that CAF and TAM inhibition or re-

invigoration of anti-tumor T cell immunity could be

therapeutic strategies to combat tipifarnib-resistant

MIUBC. CAFs play important roles in shaping an im-

munosuppressive, tumor-permissive TME by preferen-

tially inducing the tumor-promoting function of TAMs,

and the combined activities of heterogeneous CAFs and

TAMs via reciprocal interaction significantly induce re-

cruitment and pro-tumoral activation of both cell types,

which in turn accelerates tumor progression [83, 84], in-

dicating that therapy targeting both TAMs and CAFs, or

targeting the cell–cell interaction between TAMs and

CAFs, should improve anti-tumor therapeutic efficacy.

Interestingly, the existence of a tumor cell subpopulation

and MyoCAFs that express high levels of IGFBP7 and

MDK contributing to tipifarnib failure was unveiled by

scRNA-seq in this study. IGFBP7 and MDK expressed

by tumor cells and CAFs promote tumor progression

and relapse by enhancing cancer stemness, EMT, extra-

cellular matrix remodeling, and angiogenic activity [85–

87]. Despite inhibition of IGFBP7 and MDK may be a

useful adjunct to co-targeting tumor cells and CAFs in

patients with MyoCAF-rich tumors, few targeting agents

are currently available for these molecules, which led us

to focus on TME that showed immunosuppressive fea-

tures. MAPK pathway inhibitors such as tipifarnib

stimulate recruitment of immunosuppressive M2 TAMs,

PD-L1 upregulation, induction of Treg, and suppression

of anti-tumor responses of CTLs [88–90]. Our scRNA-

seq data for PDX after HRAS-targeting treatment

strongly indicate the involvement of an immunosuppres-

sive TME, such as the enrichment of M2-type TAMs

and exhausted CTLs. The scRNA-seq analysis of BC159-

T#3 also showed the presence of M2-like macrophage

subsets and infiltration of CTLs and Tregs. Furthermore,

immune checkpoint-associated genes in these immune

cells were significantly induced by tipifarnib treatment.

Fortunately, the non-cycling dormant human tumor cells

in BC159-T#3, also observed in tipifarnib-treated PDX,

showed upregulation of antigen presenting molecules,

such as class I MHC and B2M, which play a critical role

in the presentation of tumor antigens for the recognition

of tumor cells by CTLs [91]. Analysis of ligand–receptor

interactions for the immune checkpoint genes demon-

strate that the major PD-L1 signal was provided by

tumor cells of the basal/squamous subtype, suggesting

alterations in tumor cells and TME by tipifarnib could

be reversed by PD-1/PD-L1 ICIs.

A serial personalized strategy based on the

HRASQ61R addictive mutation and immunosuppressive

TME, which are associated with tumor relapse and pro-

gression, resulted in favorable clinical responses to tipi-

farnib and atezolizumab. However, atezolizumab

monotherapy did not induce complete remission in the

patient, suggesting the requirement of combinatorial im-

munotherapeutic strategy. Targeted drugs can induce

rapid tumor death and lysis with the expression of anti-

gens and neoantingens, which, in turn, could enhance

the efficacy of ICIs [92], and the immune TME can act

as a source of resistance to MAPK pathway–targeted

therapy [89, 90]. Importantly, multiple inhibitory ligand–

receptor interactions on T cells (PD-L1 and PD-1, polio-

virus receptor and TIGIT, MHC class II and LAG3, and

CD80/CD86 and CTLA4) were predicted by analysis of

signaling networks of BC159-T#3. The additional inhibi-

tory immune checkpoints that are often expressed in

TME include LAG3, TIGIT, and V-domain Ig suppres-

sor of T cell activation, and ongoing clinical trials are

starting to investigate the safety and efficacy of combina-

tions of ICIs in advanced solid tumors, including ad-

vanced MIUBC [60, 66–68].

The limitations of the present study are the use of

PDX platform for a single case, requiring future valid-

ation of our strategy using a wide range of refractory

tumors in more optimized translational models. In

addition, modeling the immune response and rational

immune approaches in vivo that rely on data from

immunodeficient mice models bear great challenges

for the interpretation of our results. The obstacles of

translating discoveries from murine experimental data

to clinical applications originate from the differences

in the organization of the immune system of both

species attributed to variations in the protein expres-

sion and signaling in the immune systems between

mice and humans [93, 94]. Further research on clinic-

ally relevant resources and platforms including human

primary tumor infiltrating stromal/immune cells de-

rived from MIUBCs, humanized mice, and cancer

organoid models [95, 96] are essential to consolidate

our hypothesis and to develop novel combination

therapeutics for co-targeting human tumor cells and

human TME. Ongoing and future clinical trials to de-

termine whether combination therapies targeting

other inhibitory pathways, as either doublets or trip-

lets in concurrent or sequential treatment strategies,

will provide additional clinical benefits, thus support-

ing the utility and validity of our scRNA-seq

approach.

Conclusions
Due to the complex and expensive process, generation

of PDXs and single-cell RNA sequencing could not

be applied in the real-world clinic. Even in the rare

case we succeed in the application, we may not be

able to investigate the clinical response to the poten-

tial combination strategy due to rapid deterioration of

the patient’s health. These limitations make the

current study more valuable, as we confirmed the
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efficacy of the treatment choices based on the PDX

and single-cell RNA sequencing data. More import-

antly, the findings here may have a general applicabil-

ity to cancer patients with activating HRAS

mutations. Our findings show the potential of

scRNA-seq in discovering precise treatment regimens

for overcoming treatment failure to conventional

monotherapies and also provide novel insights into

unmet clinical needs for effective personalized treat-

ments in a wide range of refractory advanced cancers.
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