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Introduction
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease variously affecting the skin, kid-

neys, joints, serosal linings, CNS, and hematopoietic cells. Characteristic of  this disease is the production of  

autoantibodies to nuclear antigens such as ribonucleoproteins, dsDNA, and histones. Autoantibody produc-

tion by self-reactive B cells is further amplified by the activation of  the innate immune system and secretion 

of  type I IFN encoded by the IFNA and IFNB gene families (1–3). Renal involvement in SLE occurs in about 

half  of  the patients and is one of  the leading causes of  morbidity and a significant contributor to mortality 

(1). While the pathogenesis is not yet fully characterized, antibody and complement protein deposition in 

the kidney accompanying and/or triggering inflammation are hallmarks of  lupus nephritis (LN) (2).

Renal injury in LN does not manifest as one uniform entity. Based on histologic analysis of  renal 

core biopsies, the International Society of  Nephrology/Renal Pathology Society (ISN/RPS) classifica-

tion system categorizes a spectrum of  glomerular pathology ranging from classes I to V (4). Since the 

extent of  glomerular involvement can frequently vary even within the same biopsy, averages are used to 

arrive at a specific diagnosis (4), which may in part be the reason not all patients with the same ISN/RPS 

class respond similarly to treatment. Other histological indices including the NIH activity index (AI) and 

chronicity index (CI) (5) have been developed in an attempt to rectify this, but they also may have poor 

prognostic associations. While a higher NIH CI (6) is associated with a greater risk for the progression to 

end-stage renal disease, it is unclear why patients with low chronicity can still have a poor response to con-

ventional therapy (7). The NIH AI is likewise not uniformly predictive of  renal progression (6), justifying 

the continued search for candidate biomarkers. While much effort has been made to predict outcomes of  

therapies and general prognosis based on histological classification, these prognostic features based on his-

tology often suffer from modest reproducibility and low sensitivity (6, 8). Despite these shortcomings, renal 

Lupus nephritis is a leading cause of mortality among systemic lupus erythematosus (SLE) 

patients, and its heterogeneous nature poses a significant challenge to the development of 

e�ective diagnostics and treatments. Single cell RNA sequencing (scRNA-seq) o�ers a potential 

solution to dissect the heterogeneity of the disease and enables the study of similar cell types 

distant from the site of renal injury to identify novel biomarkers. We applied scRNA-seq to 

human renal and skin biopsy tissues and demonstrated that scRNA-seq can be performed on 

samples obtained during routine care. Chronicity index, IgG deposition, and quantity of proteinuria 

correlated with a transcriptomic-based score composed of IFN-inducible genes in renal tubular cells. 

Furthermore, analysis of cumulative expression profiles of single cell keratinocytes dissociated 

from nonlesional, non–sun-exposed skin of patients with lupus nephritis also revealed upregulation 

of IFN-inducible genes compared with keratinocytes isolated from healthy controls. This indicates 

the possible use of scRNA-seq analysis of skin biopsies as a biomarker of renal disease. These data 

support the potential utility of scRNA-seq to provide new insights into the pathogenesis of lupus 

nephritis and pave the way for exploiting a readily accessible tissue to reflect injury in the kidney.
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biopsy remains the “gold standard” upon which many therapeutic decisions are made. Although there 

have been intense efforts to identify biomarkers in serum and urine from LN patients, these have not yet 

yielded sufficiently robust markers to replace the renal biopsy. Previous studies have shown that endothelial 

changes such as increased protein levels of  membrane protein C receptor (encoded by PROCR) in patients 

with LN predicts poor responses to therapy (9). Furthermore, increased levels were noted in biopsies of  

nonlesional, non–sun-exposed skin of  LN patients, suggesting that alterations in the microvasculature are 

widespread and extend to the dermal vasculature (9). Thus, analysis of  this more readily accessible tissue, 

even distant from the primary affected organ, may provide an opportunity to explore surrogates for renal 

tissue analyses (10).

RNA sequencing (RNA-seq) is an important method defining the transcriptomes from total RNA 

extracted from whole tissues, cell populations, and more recently even single cells, providing detailed gene 

expression and sequence variation information (11). Recent advances in rapid yet gentle tissue dissocia-

tion and microfluidics have improved standardization and commercialization of  the single cell RNA-seq 

(scRNA-seq) technology (12). This new methodology has been applied in many fields, including in cancer 

where the analysis of  the heterogeneity of  tumor cells suggested potentially more effective therapeutic 

targeting approaches specifically directed at pathogenic tumor lineages (13, 14). Recently, scRNA-seq has 

been applied to renal carcinoma cells to differentiate between primary and metastatic tumor cells (15). 

Similarly, we applied this technology to LN tissue in order to characterize gene expression at the single cell 

level and resolve differential responses by cell type, in order to understand how activated and quiescent, res-

ident (i.e., tissue-constituting), and/or infiltrating cellular subpopulations contribute to disease initiation, 

maintenance, and progression. We demonstrate for the first time to our knowledge that scRNA-seq can be 

applied to human renal biopsy tissue obtained for clinical purposes; provide insights into how to dissect the 

heterogeneity of  the disease; and identify biomarkers and pathways driving disease pathogenesis.

Results
Single cell dissociation of  human tissue biopsies of  skin and kidney. A total of  5 and 12 skin samples from 

healthy controls and patients with LN, respectively, and 16 kidney samples from LN patients (Table 1) 

were processed. Four of  the kidney samples were from the same patients as four of  the skin samples. 

Tissue samples were collected at 2 clinical sites and were transported in Tyrode’s solution or HypoTher-

mosol on ice to a central technical site within 2 hours. Samples were then enzymatically and mechan-

ically disaggregated, yielding approximately 5,000 viable cells/mg tissue from skin and 15,000 viable 

cells/mg from kidney. A small subset of  tissue samples was first cryopreserved and then processed, but 

no differences were seen in the number of  viable cells obtained per biopsy. Additionally, a sample of  

viable CD4+/CD14+ peripheral blood mononuclear cells (PBMCs) from a healthy control individual 

was collected by flow cytometry.

Table 1. Demographics of SLE patients and healthy controls

SLE skin biopsy (n = 12) SLE kidney biopsy (n = 16) Healthy skin biopsy (n = 5)

Age, years 30 29.3 39.3

Ethnicity, %

Hispanic 25 31.3 0

Nonhispanic 75 68.7 100

Race, %

Caucasian 25 18.8 40

Asian 16.7 25 0

African American 58.3 56.2 60

Sex, %

Female 83.3 93.8 80

Male 16.7 6.2 20

Disease duration, years 6.4 4.7

SELENA-SLEDAI score 13.1 12.7
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scRNA-seq analysis and single cell data simulation. Cell suspensions dissociated from skin and kidney, 

or presorted from PBMCs, were each loaded into a Fluidigm C1 Autoprep system for capture of  up to 

96 single cells followed by cell lysis and conversion into single cell cDNA libraries by oligoT reverse 

transcription. On average, we captured 50 single cell transcriptomes per skin and kidney biopsy, and 

sequenced to a depth of  approximately 0.5 million sequence reads/cell. We sequenced a total of  1584 

single cell libraries, of  which 899 passed our quality criteria after read alignments and quantification, as 

described below in Methods.

In the 899 single cell transcriptomes that passed our quality filter, we were able to call approximately 

700 genes per cell as expressed after a read count threshold was imposed. To determine how the number of  

detected genes was related to the transcript capture rate, we simulated scRNA-seq from a dataset of  con-

ventionally bulk-sequenced HEK293 cells. The simulated expression profiles showed that the experimental 

values fell within the range where the number of  detected genes was independent of  the size of  estimated 

single cell transcriptomes and the relation of  captured transcripts to number of  detected genes was linear. 

An average number of  700 detected genes corresponded to about 850 captured transcripts (Figure 1, A and 

B). When all single cell expressed transcripts were summed up across all cells, overall expression of  15,322 

genes was evident. Averaging of  all single cell renal biopsy expression data and comparing with a bulk-tissue 

conventionally sequenced renal biopsy yielded a Pearson’s correlation coefficient of  0.72 (P < 0.00001), indi-

cating that the capture frequencies of  single cells mirrored the overall tissue composition (Figure 2).

In order to determine the number of  expected kidney-specific expressed genes, we computed the Shan-

non’s entropy of  genes using expression profiles from publically available Genotype-Tissue Expression 

(GTEx) project bulk tissue RNA-seq data (16). We found 238 kidney-specific genes with an entropy score 

greater than 0.3 and an average expression value greater than 20 transcripts per million (TPM). Of  the kid-

ney-specific genes, 12 were never identified in our scRNA-seq libraries (Supplemental Table 1; supplemen-

tal material available online with this article; https://doi.org/10.1172/jci.insight.93009DS1). Several of  

Figure 1. Simulated average number of detect-

ed genes by the number of mRNA transcripts 

sampled from simulated single cell transcrip-

tomes. Three sizes of a single cell transcrip-

tome were simulated: 50,000 (blue); 250,000 

(green); and 500,000 (red) mRNA transcripts. 

The simulation was based on gene frequencies 

from bulk HEK293 polyA RNA-seq data with 

18,101 distinctive genes with 100 iterations for 

each point. (A) Complete graph for sampled 

simulated single cell transcriptome sizes from 

1–500,000. Because simulated single cell tran-

scriptomes almost never have all 18,101 genes 

detected in bulk RNA-seq, the average number 

of detected genes is asymptotically approaching 

the maximal number of genes with an increase 

of the size of simulated single cell transcrip-

tome. (B) Enlarged fragment of near-linear 

part of A corresponding to the approximate 

number of genes detected in individual cells 

(700 genes). The gray dotted diagonal (y = x) 

represents a hypothetical linear relationship 

between number of transcripts sampled and 

number of genes detected.
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these genes are known to have expression restricted to rare and difficult-to-dissociate glomerular cell types, 

such as juxtaglomerular cells, podocytes, and mesangial cells, while the remainder contained unusually 

GC-rich 3′ UTRs potentially difficult to reverse transcribe. The percentage of  Gs and Cs in the 3′ UTRs of  

these genes are listed in Supplemental Table 1, along with the length of  the 3′ UTR.

Single cell lineage determination. In order to classify the single cell transcriptomes based on their stochas-

tically composed scRNA-seq expression profiles, we performed principal component analysis (PCA). The 

mean and a dispersion measure (variance/mean) for genes expressed in at least 3 cells were calculated 

across all cells. Highly variable genes were loaded into the PCA, resulting in 9 significant principal com-

ponents (PCs), which were collapsed into 2 dimensions using t-distributed stochastic neighbor embedding 

(t-SNE) (17) followed by a density clustering approach, which resulted in 6 clusters of  cells (Figure 3, A 

and B). Only 2 of  the 6 cell clusters were composed of  skin- or kidney-specific cell types, while 3 clusters 

represented cell types common to both the kidney and skin, with the final cluster also including the sub-

sorted PBMCs. Cell clusters were assessed to determine if  clustering is driven by patient-specifc or sample 

batch–sepcifc effects; however, clusters comprised cells from each patient, and therefore, no clear batch 

effects were noted. Differential gene expression analysis of  the resulting clusters revealed specific gene sets 

defining each cluster (Figure 3C).

Next, cell lineages were inferred based on mutually exclusive expression of  multiple established 

cell lineage markers; for example, the presence of  skin keratins KRT1 and KRT10 in cluster 5 identifies  

this cell type as keratinocytes, while the presence of  various solute carriers such as SLC12A1 is char-

acteristic of  kidney tubular cells. Fibroblasts were identified by expression of  the type I collagen 

gene COL1A2, as well as other extracellular matrix proteins such as FBN and DCN. Endothelial cells 

expressed the cell adhesion molecule PECAM1 and growth factor receptor FLT1. T cells and myeloid 

cells were assigned by expression of  the T cell receptor protein CD3G and the antibacterial enzyme LYZ, 

respectively (Figure 3D). While the expression of  only a single gene is shown, each cluster was defined 

by the expression of  many genes, which are listed with their average abundance in Supplemental Table 

2. Alternative to the PCA approach, conventional gene expression analysis using unsupervised cluster-

ing, by selecting the union of  the top 10 most abundant nuclear encoded genes of  each cell, was also 

able to differentiate cell types and group them according to clusters of  cell-type–specifically expressed 

genes (Supplemental Figure 1).

Figure 2. Pearson’s correlation between the 

average kidney single cell expression and a 

bulk sequenced renal biopsy. Kidney single 

cells (n = 361) were averaged into a single 

“reconstructed” biopsy and correlated with 

a conventionally sequenced biopsy. Each dot 

represents a gene. Cell lineage markers for 

endothelial cells (light green: SELE, PECAM1, 

FLT1, LYVE1, VWF, MCAM, FLK1, CDH5, ARH-

GDIB, A2M, PTPRB ), fibroblasts (dark green: 

MFAP4, MFAP5, COL3A1, COL1A2, PRG4, 

COL1A1, PLA2G2A, APOD), tubular cells (yellow: 

UMOD, SLC12A1, SPP1, CA12, ALDOB, CALB1, 

PDZK1IP1, NAT8, SLC22A6, SLC22A8, AQP1, 

SLC34A1, SLC12A3, SCNN1B, CLCN5, CLDN16, 

GPX3, DEFB1, KCNJ1, KNG, SCNN1A, SLC22A2, 

PAX8, SLC23A3, KCNJ15, MT1G, SLC12A6, BHMT, 

ALDOB, SLC13A1), and leukocytes (pink: CD14, 

LYZ, FCER1G, CD4, MS4A6A, PTPRC, ITGAX, 

MRC1, CD247, FCGR2A, LTB, MARCO, EMR1, 

IL10RA ) are highlighted.
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Tubular cell subpopulations determined. The expres-

sion of  some specific tubular cell markers has previ-

ously been shown to depend on their specific location 

along the nephron (18). We therefore performed addi-

tional analysis of  only tubular cells using PCA and 

t-SNE (19), which further subclustered them into 4 

subtypes. These clusters were characterized by the 

expression of  genes previously localized to the proxi-

mal convoluted tubule, loop of  Henle, distal convolut-

ed tubule, and collecting ducts (Figure 4). The full list 

of  differentially expressed genes defining each tubular 

cell compartment is listed in Supplemental Table 2. 

Proximal convoluted tubular cells expressed ALDOB 

and MIOX (18), loop of  Henle cells expressed UMOD 

and SLC12A1 known to be restricted to the thick 

ascending limb (20, 21), distal convoluted tubular cells 

expressed CDH16 (22), and collecting duct cells selec-

tively expressed the transcription factor KLF5 (23), as 

well as cell junction proteins TJP1 and CLDN4 (24).

Nonlesional non–sun exposed keratinocytes from 

patients with LN demonstrate an IFN response signature. 

To determine whether biopsies from nonlesional, 

non–sun-exposed skin from SLE patients have value 

as potential biomarkers for lupus in general or as sur-

rogates for LN in particular, differential expression 

analysis was performed on keratinocytes from skin 

biopsies of  LN patients and healthy controls. In this 

analysis, each keratinocyte was considered a biolog-

ical replicate. Twenty-eight genes were significantly upregulated, and 2 genes were significantly downreg-

ulated in the LN keratinocytes compared with keratinocytes from healthy controls (Figure 5A). The full 

list of  gene fold-changes is provided in Supplemental Table 3. Interestingly, the 4 most significantly overex-

pressed genes are all known to be IFN inducible (Figure 5, A and B), indicating an upregulation of  an IFN 

response pathway. To evaluate the IFN response, we first averaged the expression of  LN and healthy control 

keratinocytes into a single LN or healthy keratinocyte profile. Then, using a list of  experimentally identified 

IFN-inducible genes (25), we determined through a cumulative distribution function that LN keratinocytes 

significantly upregulated IFN-inducible genes as compared with healthy control keratinocytes (Figure 5C). 

When LN patients and healthy controls were blinded and randomly redistributed, IFN-inducible genes 

and ubiquitously expressed genes were expressed at similar levels. The limited number of  nonkeratinocytes 

precluded determination of  the IFN signature in other cell types present in the skin.

One major advantage of scRNA-seq technology, which we confirmed here, is its unique ability to resolve 

gene expression in a cell-type–dependent matter. Nevertheless, it would valuable to understand whether the 

single cell method is more informative than bulk RNA sequencing in quantitating IFN-related gene expression. 

Figure 3. Lineage determination of single cells from skin, 

kidney, and peripheral blood mononuclear cells (PBMCs). 

(A) Clustering of cells (n = 899) by t-distributed stochastic 

neighbor embedding (t-SNE). Cells are colored based on 

tissue of origin from skin (blue), kidney cells (red), and 

PBMCs (yellow). (B) Six distinct clusters generated by 

t-SNE plotting. (C) Di�erentially expressed genes across 6 

cell clusters. In this heat map, rows correspond to individ-

ual genes found to be selectively upregulated in individual 

clusters (P < 0.01). (D) Violin plots demonstrating expres-

sion of lineage markers that indicate the identity of the 

clusters generated by t-SNE plotting.
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We were able to study 2 patients with lupus in whom there was sufficient 

tissue (within the same patient) to compare bulk and single cell sequencing. 

Interestingly, the IFN signature was also evident at the bulk level, but it was 

less intense than that seen in the single cells (data not shown). If  confirmed 

in future studies, this finding would support a conclusion that only certain 

cell types in the skin of LN patients display an IFN signature.

IFN scores from tubular epithelial cells from LN patients correlate with renal 

clinical scores. To investigate if  measuring the IFN response signatures 

in the tubular cells of  LN patients is a useful metric in measuring LN 

disease activity, an IFN response score was created for each LN patient. 

First, tubular cells were combined into a single averaged tubular cell pro-

file per patient for the subset of  IFN-inducible genes (25) with a mean 

expression of  over 100 TPMs (Supplemental Table 4). IFN response 

scores were then created for each patient tubular cell profile by averaging 

the expression of  this subset of  IFN-inducible genes. IFN scores varied 

from patient to patient. Restricting the analysis to only patients with at 

least 10 tubular cells, IFN response scores were significantly correlated 

with several clinical readouts of  disease, including histologic evidence 

of  chronicity, proteinuria, and glomerular IgG deposition (Figure 6A 

and Supplemental Table 5).

Indicators of  activity or chronicity in the histopathologic analysis of  LN do not always correlate with 

long-term clinical outcomes (26). Although the follow-up of  our patients was not sufficiently extended to 

analyze the correlation of  scRNA-seq data with important endpoints such as doubling of  serum creatinine 

or the development of  end-stage renal disease, we studied the correlation of  tubular IFN scores with com-

plete and partial responses in the 9 patients for which this data was available at the 12 month time point. It 

is intriguing that tubular IFN scores at baseline were significantly lower in patients that entered a complete 

response within 1 year (Figure 6B). However, this observation should be taken with caution, given the lim-

ited sample size, and confirmation will be needed in a larger cohort of  patients.

Although there was insufficient material from clinically indicated kidney biopsies to perform both bulk 

and single cell RNA-seq in the same patient, we did compare the single cell tubular IFN signature to a 

“pseudo-bulk” signature. The latter was compiled considering the multiple single cell types that could be 

stratified from a single biopsy. Importantly, pseudo-bulk IFN scores no longer showed a statistically signifi-

cant correlation with IgG deposition (r = 0.07, P = 0.89) or proteinuria (r = 0.56, P = 0.1).

Discussion
We have demonstrated that scRNA-seq of  renal and skin biopsies from LN patients is a feasible and infor-

mative technique. Furthermore, this methodology can be applied to very small tissue samples; with regard 

to the kidney, all biopsies were done for clinical purposes with the immediate availability of  extra tissue 

considered in excess of  that needed for full clinical evaluation or obtained through an additional research 

core. While this study demonstrated feasibility in skin and kidney biopsies, the methodology is applicable 

to many other biopsy types where tissue is limited and often necessary for diagnostic purposes.

We have shown in this study the presence of  active IFN signatures in the major tissue-constituting 

cell populations of  kidney and skin. One possibility that needs to be further considered is that bulk 

biopsy RNA sequencing may yield similar classifiers, as long as the average cell type composition is 

comparable across biopsies. Nevertheless, our approach sets the stage for discovery of  IFN signatures, 

or any other gene expression pathways, in a cell-type–dependent manner. Importantly, such signals may 

not be detectable, or would be less obvious, in bulk analysis if  the particular pattern of  gene expression 

is limited to a minor cell type (e.g., fibroblasts or endothelial cells).

Figure 4. Principal component analysis (PCA) and t-distributed stochastic neigh-

bor embedding (t-SNE) plot of tubular cell clusters from renal biopsies. Expres-

sion of markers of the di�erent tubular compartments are overlaid, indicating the 

lineage of the cluster. ALDOB (purple), UMOD (cyan), CDH16 (red), and KLF5 (blue) for 

proximal tubules, loop of Henle, distal tubules, and collecting duct cells, respectively.
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Although we acknowledge that a relatively small number of  

patients were studied, the current work is innovative and highly nov-

el in being the first, to our knowledge, to demonstrate the feasibility 

of  scRNA-seq technology to study clinically obtained renal biopsy 

tissue. Based on these and other interesting results being obtained 

by other network investigators, plans are already in place to signifi-

cantly scale up collection of  patient data and the number of  cells 

captured during the next phase of  this research effort.

Since cells were sequenced agnostically and not preselected by 

cell sorting, it was important to demonstrate the ability to differen-

tiate cell types on transcriptomic data alone. While we were able 

to detect many of  the expected cell types, a limitation of  the study 

was the inability to identify podocytes and mesangial cells residing 

in glomeruli from the kidney single cells since genes known to be 

expressed at the protein level by these cells were absent from our 

datasets. Similarly, B cells were not captured in our analysis, and 

only a modest number of  T cells were identified. This is likely due to 

the relatively low presence of  the latter cell types as compared with 

kidney tissue–resident cells in the clinically obtained samples and 

should be addressed by the higher throughput of  the next genera-

tion of  single cell sequencing techniques. Histopathologically, in the 

renal milieu of  LN, kidney tissue–resident cells far outnumber the 

immune-infiltrating cells. Other network investigators are studying 

the application of  flow cytometry–based presorting methodologies 

for targeted characterization of  specific cell types, including infiltrat-

ing immune cells, by scRNA-seq. When different digestion protocols were initially evaluated and established 

based on cell viability, there was no evidence that the methods used to dissociate the cells specifically affected 

the viability of  the lymphocytes. We were, however, able to identify the different tubular segments of  the 

nephron. Interestingly, many of  the genes we report as enriched based on transcriptomic analysis have not 

yet been reported as characteristic for particular tubular subtypes. Further investigation will be necessary to 

confirm the specificity of  these markers.

Another limitation of our study is that renal biopsy samples from patients without LN were not available 

for comparison. Nevertheless, comparing the spectrum of clinical parameters (histology and proteinuria) in 

relationship to the expression of IFN response genes (Figure 6) does, however, begin to address this important 

consideration. Future inclusion of patients with class II LN may also be revealing. Since renal tissue from lupus 

patients without nephritis is not likely to become available, efforts are being made to obtain normal kidney 

tissue (e.g., from kidney donors before transplant) as an additional control group for future studies. Finally, 

including patients with other indications for a kidney biopsy (e.g., vasculitis) was beyond the scope of this 

present study. Ultimately, our goal is to evaluate the renal transcriptome to gain insight into (i) the response to 

therapy and (ii) the pathogenesis of LN and the relationship to biopsy class, activity, and chronicity.

Type I IFNs, represented by evolutionarily similar IFN-α and IFN-β proteins, are important cytokines driv-

ing immune dysregulation in SLE (27). IFN-α has long been implicated in the pathobiology of SLE and was first 

Figure 5. Keratinocytes in lupus nephritis (LN) patients demonstrate 

an increased IFN response signature as compared with healthy con-

trols. (A) MA-plot comparing di�erential expression of genes between 

keratinocytes from LN patient skin biopsies (n = 240) and healthy con-

trols (n = 89). Genes above the red line indicate increased expression in 

LN patients. Significantly di�erentially expressed genes as determined 

by the Wald test are colored red (P < 0.0001), and the 4 most highly 

significant genes are outlined and labeled in blue. (B) Violin plots of 

the 4 most significantly di�erentially expressed genes. (C) Cumulative 

distribution function (CDF) of the ratio of averaged patient to healthy 

control keratinocytes for IFN-inducible genes (n = 212) and ubiquitous 

genes (n = 262) compared using the Mann-Whitney U test.
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documented as elevated in the serum of SLE patients in 1982 (28). More direct evidence for the role of IFN-α 

in the pathogenesis of SLE came from studies where IFN-α used to treat cancer caused induction of SLE-like 

symptoms, including elevated titers of antinuclear antibodies (29). Additional support for the importance of  

IFN-α in SLE was provided by microarray studies, which clearly demonstrated an IFN signature in the PBMC 

of many patients with SLE. Furthermore, the presence of an IFN signature was associated with increased sever-

ity of renal disease (30, 31). Mechanistic studies have since shown that plasmacytoid DCs are a major source of  

IFN-α in SLE in response to uptake of nucleic acids and stimulation of intracellular TLR7 and TLR9, and that 

IFN-α activates other immune cells that can also produce IFN-α (32). Finally, genetic studies have shown that 

several transcription factors such as IRF5 and IRF7 are lupus susceptibility loci and that healthy family members 

of SLE patients have increased circulating IFN-α as compared with healthy nonfamily members (33).

Independent of specific biopsy class, an IFN response signature was detectable in the tubular cells of every 

patient. However, tubular IFN response scores differed between patients and were found to correlate with chro-

nicity scores, IgG deposition, degree of proteinuria, and perhaps the response to therapy. This suggests that, 

although IFN may be contributory in all cases of LN, quantitation of IFN response signatures at the mRNA 

level may be useful as biomarkers, especially since circulating IFN-α is not always measureable in all patients. 

Given the challenges in reproducibility of directly measuring circulating IFN-α at the protein level, monitoring 

the expression of a subset of genes known to be IFN inducible has been a standard approach in lupus research 

and can now also be based on RNA-seq data. The extent of IFN responsiveness may be dependent on cell 

types and access to the vasculature. As IFN-α has been a focus of attention in SLE for over a decade with new 

therapies directed at its inhibition, creating a reliable method of measuring IFN activity and its resulting gene 

expression profile in reactive cells could be used as a potential biomarker informing treatment.

An IFN response signature was also observed in the keratinocytes of  LN patients. This is significant, 

especially because the skin biopsies were collected from nonlesional, non–sun-exposed skin that did not 

exhibit any clinical signs of  inflammation. These findings may reflect exposure to systemic circulating lev-

els of  IFN-α or in situ production by resident or infiltrating cells. In support of  our findings, IFN-α–produc-

ing cells as detected by IHC and in situ hybridization have been reported in nonlesional skin biopsies from 

lupus patients (34). The absence of  cutaneous lesions, despite expression of  IFN response signature, awaits 

explanation but could point to targetable protective candidates not present in injured organs, such as the 

kidneys, which are similarly exposed to IFN-α or other systemic circulating cytokines and suffer injurious 

conseuences. Specificity related to LN , however, remains to be established since we have not yet examined 

nonlesional, non–sun-exposed skin from lupus patients without renal involvement.

We believe that it is likely that scRNA-seq analysis of  kidney tissue from patients with LN will pro-

vide new biological insights beyond the IFN signature, as well. However, because the IFN signature was 

dominating, we were not confident at this time proposing additional pathways with lesser significance. 

Figure 6. IFN scores of lupus nephritis (LN) tubular cells correlate with clinical scores and with the response to treatment. (A) Spearman’s correlation between 

patient (n = 8–9) clinical scores of chronicity, proteinuria, and glomerular IgG deposition and tubular IFN scores. (B) Patients with complete response to treat-

ment at 12 months after biopsy (urinary protein creatinine ratio of < 0.5; normal serum creatinine, or if abnormal, ≤ 125% of baseline) (n = 4) had significantly 

lower IFN scores (2-tailed Student’s t test P < 0.05) at the time of biopsy than patients who did not completely respond to treatment (the latter group included 

4 partial responders [i.e., with decreased proteinuria but not to < 0.5] and 1 nonresponder). Only patients with at least 10 tubular cells were included. 
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Moreover, studies of  the IFN signature and its significance in other cell types beyond tubular cells and 

keratinocytes were limited by cell numbers but will remain a priority to be addressed when this maturing 

technology enables the study of  larger cell counts.

In summary, scRNA-seq of  biopsy specimens requires only a small amount of  tissue from a single 

needle core or punch biopsy. Accordingly, the application of  transcriptomics could be a powerful adjunct to 

histology, facilitating more informative treatment decisions for individualized patients. The technical opti-

mization of  single cell capture approaches enabling increased cell capture rates and numbers, and increased 

efficiency of  reverse transcription, will contribute to this development.

Methods
Supplemental Methods are available online with this article.

Procurement of  clinical samples. Skin punch biopsies (1 × 2 mm) from nonlesional, non–sun-exposed skin, 

and segments of a 18 gauge renal needle core biopsies that were dispensable for clinical diagnosis (0.8 × 3 mm) 

were obtained from patients with SLE undergoing clinically indicated renal biopsies. The mean tissue amount 

of skin biopsies was 8 mg (5–9 mg) and the mean amount of renal biopsies 3 mg (1–5 mg). Only renal biopsies 

with a pathology report indicating classes III–V, or a mixed class of III/V or IV/V, were included in the study. 

Comparable skin biopsies and blood were collected from healthy control donors. Renal biopsies were scored by 

a renal pathologist according to the International Society of Nephrology/Renal Pathology Society (ISN/RPS) 

guidelines and NIH activity and chronicity scales. IgG deposition was scored on a scale of 1 to 3+.

Tissue dissociation and single cell isolation. Renal and skin tissue biopsies were incubated for 15 minutes in a 

37°C water bath in a freshly prepared solution composed of 50 μl of  2 mg/ml Liberase TL (Roche Diagnostics) 

stock diluted in Tyrode’s solution and 350 μl of  Tyrode’s solution. Subsequently, suspended cells and tissue 

fragments were removed from the residual biopsy core and strained through a 70-μm cell strainer (Falcon) and 

washed through with 300 μl of  Tyrode’s solution into 5 ml of FBS on ice. The residual biopsy was incubated 

once again with 500 μl fresh tissue dissociation solution, passed through the same mesh, and collected with the 

first batch of cells in FBS (Gibco). Finally, any remaining tissue was incubated for 10 minutes at 37°C in 400 

μl of  a solution composed of 50 μl of  0.25% trypsin (Gibco) and 350 μl of  Tyrode’s solution, and it was again 

strained through the mesh into the same FBS. Finally, cells were collected by centrifugation in a 50-ml conical 

tube (BD Biosciences) using an Eppendorf centrifuge 5804 with a A-4-44 rotor at 200 g for 5 min. Cells were 

then resuspended in 100 μl of  Tyrode’s solution in a fresh 1.5-ml microfuge tube. 10 μl of  the cell suspension 

were removed, and the number of cells was determined using a Bio-Rad T10 automated cell counter. The 

concentration of cells in suspension ranged from 20,000–1,000,000 cells/ml but were typically approximately 

300,000 cells/ml. Cell suspensions were either diluted or concentrated by centrifugation to arrive at a final con-

centration of 200,000 cells/ml in Tyrode’s solution. Viability was assessed by trypan blue staining.

CD14+/CD4+ cell sorting. The isolation protocol achieved an enriched population of  CD4+DAPI– and 

CD14+DAPI–, which were obtained following sorting by FACSAria II (BD Biosciences) after using CD14 

mouse anti–human PE conjugate (Invitrogen) and anti–CD4 APC-H7 (BD Pharmingen), respectively.

Single cell capture, cDNA library preparation, barcoding, and sequencing. Single cell suspensions at a concen-

tration of  200,000 cells/ml and no less than 2,000 cells were loaded into a medium 10–17 μm diameter C1 

96-well microfluidic chip (Fluidigm) and processed according to the Fluidigm C1 protocol revision A using 

the recommended standard mRNA-seq reagents and program. The occupation of  single cell capture sites 

was verified using a Zeiss Axiovert 200 inverted microscope averaging 50 single cell captures per experi-

ment. The captured cells were lysed, polyA mRNA was reverse transcribed, and cDNA was preamplified 

using SMARTer Ultra Low RNA kit (Clontech) in the Fluidigm C1 Single cell Auto Prep system. To mon-

itor cDNA library conversion, a cocktail of  synthetic RNA spikes #1, #4, and #7 of  the Ambion Array-

Control RNA Spikes (Thermo Fisher Scientific) was prepared as described in the Fluidigm C1 protocol and 

added to the lysis reaction (Mix A) for each experiment.

The cDNA concentration was determined using the Picogreen assay on a plate reader. Samples were 

typically measured in the 0.2–2 ng/μl range. cDNA from a subset of  cells from each run was checked on 

an Agilent Bioanalyzer 2100 High Sensitivity DNA chip. Only wells with a visually confirmed single cell 

capture were selected for downstream library preparation and sequencing.

Preamplified cDNA libraries were tagmented and barcoded using the Nextera XT Library Preparation 

Kit (Illumina) with dual indexing. Up to 96 cells from up to 3 distinct chips were pooled using these bar-

codes and sequenced single-end, 100-bp on Illumina HiSeq 2500 sequencers in Rapid Run mode.
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Bioinformatic analysis. Single FASTQ files corresponding to up to 96 cells were demultiplexed into single 

cell FASTQ files by separating reads based on the Illumina Nextera index primers. The adaptors were then 

trimmed form the single cell FASTQ files and aligned to the human reference genome GRCh38 downloaded 

from Ensembl using the STAR aligner (version 2.5.0a) (35), allowing up to 2 mismatches to the reference 

sequence. The reference genome only contained the canonical chromosomes and nonchromosomal contigs; 

haplotypes were not included. The STAR run was done providing transcript annotation defined in a gen-

eral transfer format (GTF) file from Ensembl release 83. Unaligned reads were further mapped against the 

sequences of  the RNA spikes using the BWA aligner (versions 0.7.5-r404 and 0.7.12-r1039) (36), allowing up 

to 2 mismatches. Uniquely mapped reads to the reference genome or spike-ins were counted using feature-

Counts (version 1.5.0), and the reads mapping to the human genome were collapsed on the gene level (37). 

Transcripts from the Havana database (http://www.ensembl.org/info/data/ftp/index.html) were removed 

from the Ensembl 83 GTF, as they were frequently overlapping with older gene annotation, leading to multi-

mapping. Transcripts from the ensembl_havana merge were kept, however. Demultiplexing and sequencing 

of  barcoded single cell libraries is accompanied by a low frequency of  misassigned reads across single cell 

transcriptomes, which causes an inflation of  the number of  cellular transcripts in scRNA-seq, if  left uncor-

rected (38). To minimize false-positive expression reporting, we used an expression threshold to filter out 

low-frequency reads. First, the number of  total reads was multiplied by the ratio of  nonredundant reads to 

transcript length per gene in each cell. Expression of  a gene was reset to 0 if  the calculated value was less than 

1. Nonredundant reads were extracted using Picard tools (version 2.7.1). Finally, single cell libraries with read 

evidence for less than 25 nuclear-encoded genes or less than 20,000 mapped reads were excluded from further 

analysis. The pipeline was run on RedHat Linux or MacOS 10.10.3.

Simulation of  scRNA-seq. The relationship between mRNA capture rate and detectable number of  

expressed genes in scRNA-seq was estimated by a simulation technique. Simulated single cell transcrip-

tomes were created using relative mRNA transcript frequencies obtained from stranded, polyA-selected 

bulk RNA-seq experiments of  HEK293 Flp-In T-Rex cells. Simulations were run for 3 sizes of  transcrip-

tomes: 50,000; 250,000; and 500,000 mRNA transcripts.

At each step of  the simulation, we created a single cell transcriptome of  indicated size and performed 

random sampling without replacement of  mRNA copies for each capture rate from 1 to the size of  tran-

scriptome. For each set of  captured mRNA, we counted the number of  genes they represented.

The number of  transcripts N for each gene g, in a simulated single cell transcriptome was defined by:

N(g) = [T*F(g)] + R({T*F(g)}),

where T is the size of  the simulated transcriptome, F(g) is the frequency of  transcripts originating from 

gene g, [T*F(g)] is the integer part of  T*F(g) and {T*F(g)} is the fractional part of  T*F(g), and function R(x) 

is the function for random choice with domain of  [0,1] and defined by:

R(x) = 1, r ≤ x and R(x) = 0, r > x,

where r is a randomly generated number.

Simulated single cell transcriptomes of  fixed size T had the same set of  genes with T*F(g) ≥ 1 and var-

ied in the set of  low expressed genes where T*F(g) < 1.

The simulation steps described above were performed 100 times, and median, mode, and variance were 

calculated using numbers of  detected genes for each capture rate. Simulation scripts were written in Perl 5.0 

and the R statistical language.

PCA and t-SNE analysis. PCA and t-SNE were performed using the Seurat package (version 1.2) for 

R as previously described (19). Briefly, the count matrix were depth normalized to 1 million reads and 

used to identify the set of  genes that was most variable across datasets. To achieve this, we calculated 

the mean and the dispersion (variance/mean) for each gene across single cells, followed by z-normaliza-

tion, to identify outlier genes whose expression values were highly variable even when compared with 

genes with similar average expression. We used a z-score cutoff  of.75 to identify 2,304 highly variable 

genes. In this analysis, all genes were evaluated for variability. These highly variable genes were loaded 

into a PCA that yielded 9 significant PCs and then were used as the input for t-SNE with the perplexity 

parameter set to 15 (17).

Data and materials availability. RNA-seq data are available on the NCBI Short-Read Archive (SRA) 

under the accession number PRJNA379992.

Statistics. The differential expression analysis was performed using DESeq2 (version 1.10.1) (39) and 

R (version 3.3.1). Briefly, count matrices were fit for a generalized linear model per gene following a 
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negative binomial distribution. Dispersion estimates for each gene within groups were shrunk using an 

empirical Bayes approach. Log fold-changes were compared between disease groups using the Wald test.

Correlation values either represent Spearman’s ρ rank coefficients or Pearson’s r as indicated. Cumu-

lative distribution functions were compared with a Mann-Whitney U test. The differences in IFN scores 

and response to treatment were compared using a 2-tailed Student’s t test, with a P value less than 0.05 

considered significant.

Study approval. All patients and controls gave written informed consent prior to inclusion in the study. 

The IRBs and ethics committees of  the Albert Einstein College of  Medicine and New York University 

approved the sample collection.
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