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Single-cell sequencing reveals homogeneity and heterogeneity
of the cytopathological mechanisms in different etiology-
induced AKI
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Homogeneity and heterogeneity of the cytopathological mechanisms in different etiology-induced acute kidney injury (AKI) are
poorly understood. Here, we performed single-cell sequencing (scRNA) on mouse kidneys with five common AKI etiologies (CP-
Cisplatin, IRI-Ischemia-reperfusion injury, UUO-Unilateral ureteral obstruction, FA-Folic acid, and SO-Sodium oxalate). We
constructed a potent multi-model AKI scRNA atlas containing 20 celltypes with 80,689 high-quality cells. The data suggest that
compared to IRI and CP-AKI, FA- and SO-AKI exhibit injury characteristics more similar to UUO-AKI, which may due to tiny crystal-
induced intrarenal obstruction. Through scRNA atlas, 7 different functional proximal tubular cell (PTC) subtypes were identified, we
found that Maladaptive PTCs and classical Havcr1 PTCs but not novel Krt20 PTCs affect the pro-inflammatory and pro-fibrotic levels
in different AKI models. And cell death and cytoskeletal remodeling events are widespread patterns of injury in PTCs. Moreover, we
found that programmed cell death predominated in PTCs, whereas apoptosis and autophagy prevailed in the remaining renal
tubules. We also identified S100a6 as a novel AKI-endothelial injury biomarker. Furthermore, we revealed that the dynamic and
active immune (especially Arg1 Macro_2 cells) -parenchymal cell interactions are important features of AKI. Taken together, our
study provides a potent resource for understanding the pathogenesis of AKI and early intervention in AKI progression at single-cell
resolution.
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INTRODUCTION
Acute kidney injury (AKI) is a complex systemic disease and a
common complication in critically ill patients [1, 2]. Current studies
suggest that AKI increases the risk of chronic kidney disease (CKD) by
nearly 8–10-fold, making it a primary risk factor for CKD pathogenesis
[3, 4]. Serum creatinine (Scr) is the most commonly used index for
assessing renal function, but the observed changes in Scr are lagging
[5, 6]. Moreover, Scr levels are not useful as a functional index to
distinguish parenchymal versus functional impairment and they are
susceptible to factors such as weight, circulating volume, and
medications [7, 8]. Therefore, as well as elucidating the injury
mechanisms at critical sites of AKI kidney, there is also an urgent
need to identify biomarkers of early injury at different segments to
help prevent kidney injury, and halt progression to CKD [9].
In recent years, rapid advances in single-cell sequencing

technologies have provided unprecedented resolution for study-
ing disease homo- and heterogeneity [10–12]. For example, Kirita
et al. [13] identified distinct pro-inflammatory and pro-fibrotic
proximal tubular cells (FR-PTCs) using single nuclear RNA

sequencing (snRNA-seq) kidneys of ischemia reperfusion injury
(IRI) -AKI mice. Rudman-Melnick et al. [14] found that AKI
dramatically altered ligand-receptor crosstalk in kidney cells by
using snRNA-seq of kidneys at different time points in unilateral
IRI-AKI mice. Balzer et al. [15] found that renal proximal tubule cells
are critically vulnerable cells in IRI models, and they identified a
specific cluster of maladaptive/fibrotic proximal tubules after
prolonged ischemia that expresses pro-inflammatory and pro-
fibrotic cytokines and myeloid chemokines. However, due to the
renal pathological features and mechanisms of AKI induced by
various etiologies (such as drugs and crystals) are different [16, 17],
a comprehensive understanding of the molecular mechanisms
behind different etiologies induced AKI is imperatively needed,
which will provide precise treatment strategies and novel
biomarkers for predicting AKI progression. Furthermore, compared
to single-cell RNA sequencing (scRNA-seq), snRNA-seq did not
provide comprehensive and well resolve data regarding the
impact of immune cell infiltration on renal parenchymal cells
during AKI [18–20].
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In this study, we established five common mouse models of
kidney injury and made the different etiologies comparable by
controlling the modeling time and performing single-cell sequen-
cing at the early stages of kidney injury within the AKI time frame.
The five models successfully replicated the four common AKI
etiologies: cisplatin (for drug)-induced kidney injury (CP), IRI for
pre-renal AKI, unilateral ureteral obstruction (UUO) for obstructive
AKI, and folic acid (FA), sodium oxalate (SO) for crystalloid AKI
[21–26]. By using the high-resolution perspective of single-cell
transcriptomics, we constructed a richly detailed single-cell atlas
of AKI containing 9 renal parenchymal cell types and 11 immune
cell subtypes. We aimed to comprehensively compare the
similarities and differences in immune cell composition, parench-
ymal cell proportions, and Intercellular ligand-receptor patterns
induced by different etiologies of AKI during similar stages of
kidney injury. Additionally, we aimed to explore the characteristics
of endothelial cells and different segmental renal tubular cells in
injury, as well as the dominant regulatory cell death patterns in
the critical PTCs of AKI injury, and identify new biological markers
of PTC injury. Through these aspects to reveal the potential model
heterogeneity and injury homogeneity among different etiologi-
cally induced AKI.

RESULTS
Multi-model AKI-scRNA atlas with 20 cell types reveals
differences in immune, parenchymal cell proportions between
different models
We performed scRNA-seq of kidneys from five AKI models and
Control samples (Fig. 1A). The AKI status of the mice was
confirmed by analyzing the levels of Scr, blood urea nitrogen
(BUN), and pathological changes in the kidneys (Supplemental
Fig. S1). After the initial cellranger quality control, SoupX package
were used to correct the ambient RNA contamination. Low-quality
cells were excluded according to set criteria. Double cells were
removed and potential batch effects were corrected by the
harmony algorithm (Supplemental Fig. S2, S3). A total of 20
celltypes were annotated, with 80,689 high-quality cells, including
11 Ptptc (CD45) immune cells: T_1 cells (Cd3Cd4), T_2 cells
(Cd3Cd8a), Proliferative T cells (Cd3Mki67), NK cells (GzmaGzmb),
Neutrophil (S100a8S100a9), Macro_1 cells (M1 type macrophage,
Adgre1Cd86), Macro_2 cells (M2 type macrophage, Adgre1Arg1),
Proliferative Macrophages (Adgre1Mki67), Dendritic cells (Cd209aIt-
gax), B_1 cells (Mature B cells, Cd79aMs4a1), and B_2 cells
(Plasama cells, Cd79aPrdm1) and 9 renal parenchymal cells: PTCs
(Slc34a1Lrp2), Podocyte (Nphs1Nphs2), Myofibroblast (Acta2), loop
of henle (LOH, UmodSlc12a1), distal tuble cells (DCTs,Slc12a3Pvalb),
collecting duct-intercalated cells (CDIC, Atp6v0d2Atp6v1g3), col-
lecting duct-principal cells (CDPC, Aqp2Hsd11b), endothelial cells 1
(ECs_1, Flt1Ehd3), and endothelial cells 2 (ECs_2, Flt1Eln) (Fig. 1B, C;
Supplemental Table S1, S2). After the onset of AKI, immune cells
are heavily infiltrated and different AKI models show hetero-
geneity in cell ratios. More PTCs were retained in CP- and IRI-
induced AKI, with the proportion of immune cells in UUO-, FA-,
and SO-induced AKI being more than 50% (Fig. 1D). By flow
cytometry, we confirmed the Ptprc (CD45) immune cell ratio to
validate the reliability of single-cell sequencing results (Supple-
mental Fig. S4).

Maladaptive PTCs and classical Havcr1 injured PTCs but not
novel Krt20 PTCs affect the pro-inflammatory and pro-fibrotic
levels in different AKI models
The impairment of PTCs is one of the major pathological changes
in AKI [5, 27]. We re-clustered the PTCs and mapped the scores of
the top three PCs to the PTC re-cluster graph. The aggregation of
the AKI-specific group of PTCs is driven by variability between
models within AKI (Supplemental Fig. S5A, B). Further, using a
series of well-known renal segmental markers and PTCs injury

biomarkers [13, 15, 28, 29], we identified 7 different states of PTCs:
Healthy S1 segment PTCs (Slc34a1Slc5a2), Healthy S2 segment
PTCs (Slc34a1Slc22a6), InjuredS1 segment PTCs (Slc34a1Slc5a2-
Havcr1), Maladaptive S1 segment PTCs (Slc34a1Slc5a2Fxyd5),
NewInjured PTCs (Slc34a1Krt20), Proliferative-PTCs (Slc34a1Mki67)
and InjuredS3-segment PTCs (Slc34a1Slc5a10Havcr1). (Fig. 2A, B;
Supplemental Fig. S5C, D and Supplemental Table S3). It is worth
mentioned that Maladaptive PTCs is a group of injury-state PTCs
identified in recent years and profoundly characterized in several
recent studies [13, 15]. NewInjured PTCs (Krt20) are also an injury-
state PTCs [30] and we verified the expression in different AKI
models by immunohistochemistry (Supplemental Fig. S6). We
ranked the pro-inflammatory and pro-fibrotic scores of different
PTCs subtypes from highest to lowest and compared them with
Healthy-S1-PTCs, respectively. We found that Maladaptive-PTCs
had the highest pro-inflammatory and pro-fibrotic scores
(P < 0.05), its high pro-inflammatory and pro-fibrotic levels
suggesting that this group of cells may be the earliest group of
PTCs that switch to CKD in the early stage of renal injury. Followed
by InjuredS1 PTCs (Havcr1), while NewInjuredPT(Krt20) exhibited
weak inflammatory and weak fibrotic properties with pro-fibrosis
scores even lower than Healthy-S1 PTCs (P < 0.05) (Fig. 2C, D).
Most of the genes upregulated in the expression profiles of
Maladaptive PTCs overlap with those of macrophages, neutrophils,
implying that these cells share the killing profile with immune cells
(Supplemental Table S2 and S3).
We believe that the proportion of PTCs subtypes with different

pro-inflammatory and pro-fibrotic capacities would affect the
overall pro-inflammatory and pro-fibrotic levels of PTCs. There-
fore, we compared the pro-inflammatory and pro-fibrotic scores
of each model PTCs with the control group separately and
arranged them from left to right according to the level of the
score (Fig. 2E, F). By combining cell proportion heatmaps
(Fig. 2G) of PTCs subtypes in different models, we found that
AKI models with higher proportions of InjuredS1 (Havcr1) PTCs
exhibited higher pro-inflammatory and pro-fibrotic scores, which
was particularly significant in UUO, FA and SO models, as
InjuredS1 PTCs were the major injured cell subpopulation in
these models. In contrast, high proportions of NewInjuredPT
(Krt20) seemed to have not directly contributed to the pro-
inflammatory and pro-fibrotic levels of AKI-PTCs. Despite the
high proportion of InjuredS1 (Havcr1), the high proportion of
NewInjuredPT (Krt20) in the CP model may have weakened its
pro-inflammatory and pro-fibrotic levels, resulting in levels
similar to those of the IRI model. On the other hand, the IRI
model had a lower proportion of both InjuredS1 and New-
InjuredPT than the CP model, but its higher proportion of
Maladaptive PTCs strongly enhanced the pro-inflammatory and
pro-fibrotic scores (Fig. 2E–G). Lastly, by correlating the propor-
tion of injured state PTCs cells in different models with the pro-
inflammatory and pro-fibrotic scores of the models (Supple-
mental Fig. S7A, B), we concluded that Maladaptive PTCs and
classical Havcr1 injured PTCs but not novel Krt20 PTCs affect the
pro- inflammatory and pro-fibrotic levels in different AKI models.

The dominant regulatory cell death mode (pyroptosis,
necroptosis, and ferroptosis) differs in PTCs among different
AKI models
We carefully characterized the functions and pathways of different
states of PTCs by gene enrichment analysiS (Fig. 2H, Supplemental
Fig. S7C). The injured PTCs lose most of the physiological functions
of the renal tubules, including the reabsorption of water and
various ion substances, and instead activate a variety of different
inflammatory pathways. We noted that Ferroptosis was activated
in three clusters of injured PTCs. Given the interspersed presence
of molecular expression patterns in multiple different cell death
events [31–35], the activation of Ferroptosis implies that similar
modes of death may be widely activated. We extracted key genes
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of Pyroptosis from the Gene ontology (GO) database and key
genes of Necroptosis and Ferroptosis from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database and scored the pathway
activity by AUCell. The cell death pathway activity of the different
cell types was assessed by scoring all cell types of the overall
model. The results showed that Necroptosis had high pathway
activity in most parenchymal and immune cells, more significantly
in neutrophils, endothelial cells, T cells, dendritic cells, and

macrophages (Fig. 3A, Supplemental Fig. S8A). Pyroptosis had
high pathway activity in specific immune cells, especially in
macrophages, NK cells, and neutrophils, which is consistent with
the existing knowledge [36], while PTCs had the lowest pathway
activity of all cell types (Fig. 3B, Supplemental Fig. S8B). Ferroptosis
showed high pathway activity in different segments of renal
tubular cells, macrophages and neutrophils (Fig. 3C, Supplemental
Fig. S8C).

Fig. 1 The construction of the scRNA atlas initially explored the potential homogeneity and heterogeneity among different etiology-
induced AKI. A Study overview. Renal single-cell transcriptome sequencing was performed on control and five common mouse models of AKI:
cisplatin kidney (CP), folic acid (FA), sodium oxalate (SO), ischemia reperfusion injury (IRI), and unilateral ureteral obstruction (UUO).
Additionally, proteome and phosphorylated proteome was performed on UUO mouse kidneys to collectively reveal the potential homo- and
heterogeneity of injury patterns in different etiology-induced AKI. B, C Data from 6 groups were integrated as a single dataset after data
quality control and removal of batch effects. A total of 33 clusters were identified by unsupervised clustering, combined with top differentially
expressed genes for each cluster and known cell markers for renal cell types, we identified a total of 20 cell subtypes, including 11 Ptptc (CD45)
immune cells and 9 renal parenchymal cells. n= 2 each group. D Heatmap of model-celltype ratios. Compared with the IRI and CP models, the
cell proportions of the FA, SO model are closer to those of the UUO model. n= 2 each group. Abbreviations: proximal tubular cells (PTCs), loop
of Henle (LOH), distal convoluted tubules (DCTs), endothelial cells (ECs), collecting duct-principal cells (CDPC), collecting duct-intercalated cells
(CDIC), dendritic cells (DCs), natural killer cells (NK), myofibroblasts (Myofibro), macrophage (Macro).
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Fig. 2 The proportion of PTCs with different injury states affects the pro-inflammatory and pro-fibrotic levels in different AKI models.
A, B PTCs were isolated from the AKI dataset for re-clustering, and the Seurat standard process was repeated with batch effects removed. A
total of 11 clusters were identified by known biomarkers of PTC injury and S1-, S2-, S3-segment biomarkers. A total of 7 different states of renal
tubular cells were identified. n= 2 each group. C, D The pro-inflammation (C) and pro-fibrosis (D) levels in different status PTCs were scored
using Seurat’s AddModuleScore function and sorted from left to right according to the level of the score. Wilcoxon test, *P < 0.05, **P < 0.01,
***P < 0.001 vs. Healthy-S1 group. E, F The pro-inflammation (E) and pro-fibrosis (F) levels in different etiology-induced AKI models were
scored using Seurat’s AddModuleScore function and sorted from left to right according to the level of the score. Wilcoxon test, *P < 0.05,
**P < 0.01, ***P < 0.001 vs. Control group. G The proportion of cells with 7 different states of PTCs in each model. over 95% of PTCs in Control
were healthy, a large number of injured NewPTs with Krt20 were present in CP model. While the injured PTCs in the FA, UUO and SO models
were predominantly S1-Injured. Notably, the IRI model contains a large number of S1-Maladaptive PTCs. H Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis of the molecular pathways involved in 7 different states of PTCs. Inflammation, cellular senescence, cell death, and
cytoskeletal remodeling are common features of injured PTCs.
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Fig. 3 The dominant regulatory cell death mode (pyroptosis, necroptosis, and ferroptosis) differs in PTCs among different AKI models.
A–C The AUCell algorithm evaluates the distribution of necroptosis (A), pyroptosis (B), and ferroptosis (C) pathway activity across different cell
types in the overall AKI dataset, presented by a UMAP plot, with higher scoring cells being brighter in color. Quantitative analysis results are
presented in Supplemental Fig S8. D–F Isolating PTCs from the overall AKI dataset for intergroup comparisons. Wilcoxon test, *P < 0.05,
**P < 0.01, ***P < 0.001 vs. Control group, ns: not significant. G, H Co-staining of sections from Control, cisplatin (CP), folic acid (FA), sodium
oxalate (SO), ischemia reperfusion injury (IRI), and unilateral ureteral obstruction (UUO) kidneys for Rip3 (G), 4HNE (H) (red) and Megalin or
Slc34a1 (green). Scale bars= 100 μM. Quantitative analysis of protein immunofluorescence intensity in Supplemental Fig. S9A.B. Rip3 is a key
molecule in necroptosis and 4HNE is one of the markers of ferroptosis. The results showed that both necroptosis and ferroptosis were
involved in the injury process of PTCs.
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PTCs are one of the critical cells in AKI kidney injury, and
numerous studies have focused on them in recent years. We
isolated PTCs from the overall model to compare the pathway
activity of Necroptosis, Pyroptosis and Ferroptosis among PTCs in
different models. The results showed that the pathway activity of

Necroptosis was significantly upregulated in PTCs of CP, UUO,IRI
and SO models compared to the Control group (P < 0.05), while
there was no significant difference in the FA model (Fig. 3D). For
the Pyroptosis pathway, the activity of pathway was upregulated
in PTCs of the UUO and IRI models compared with the Control
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group (P < 0.05), while the pathway activity was downregulated in
the CP and SO models (P < 0.05) and not significantly different in
the FA model (Fig. 3E), indicating that Pyroptosis may be activated
only in PTCs of the UUO and IRI models, which we speculate may
be caused by Maladaptive-PTCs sharing the killing spectrum with
immune cells [37]. The results of Ferroptosis pathway activity
suggested that Ferroptosis pathway activity was significantly
upregulated in PTCs of different AKI models (P < 0.05) (Fig. 3F).
Subsequently, by the key markers of Necroptosis, Ferroptosis and
Pyroptosis, we verified the heterogeneity of cell death events in
different model (Fig. 3G, H and Supplemental Fig. S9, S10). In the
discussion section, we thoroughly discuss the relationship
between different models of PTCs and different forms of regulated
death modalities. Specifically intervening in one or more cell
death pathways in different models might be effective in stopping
AKI progression.

Transcriptional trajectories from healthy to injured PTCs and
proteomics analysis revealed extensive cytoskeletal
remodeling events in AKI-PTCs
To uncover the details of the differentiation of inflammatory state
PTCs, we performed pseudotime extrapolation to the differentia-
tion trajectory of PTCs. monocle analysis revealed that the injured
and maladaptive PTCs were at the end of the differentiation
trajectory and that maladaptive differentiated separately from one
another (cellfate2). InjuredNewPT (Krt20) is scattered in the
terminal branches of cellfate1 and cellfate2. Interestingly, Injur-
edS1 PTCs were at the intersection node of cellfate1 and cellfate2
differentiation branch (Fig. 4A, B). We performed a BEAM analysis
of the nodes at the differentiation bifurcation (Fig. 4C, Supple-
mental Table S4). The three clusters of the BEAM heatmap
represent cellfate1, 2 and intermediate nodes respectively. We
analyzed the pathways and functions associated with the
differentiation of PTCs (Fig. 4C), and combined with gene
enrichment analysis of PTCs in different functional states
(Fig. 2H, Supplemental Fig. S7C), we observed the prevalence of
positive and negative regulatory events of cytoskeletal remodel-
ing during the process of injury and differentiation of AKI-PTCs.
We further visualized the Top expressed genes of the three
clusters of the BEAM heatmap. The Top genes of Cluster contained
several important genes related to kidney injury, such as Akr1a1
[38], Cxcl2, Lcn2, C3, et al. Interestingly, we observed that the
protein Tmsb4x, which is known to be involved in cytoskeletal
remodeling [39, 40], was closely associated with the differentiation
of Cellfate1 (Fig. 4D). By immunofluorescence and ELISA, we
verified the expression of Tmsb4x in PTCs and mouse urine
(Supplemental Fig. S11).
In addition, In the phosphorylated proteomic data of UUO-AKI,

regulation of actin cytoskeleton was enriched as the top entry for

GSEA analysis, again suggesting the prevalence of cytoskeletal
remodeling events in AKI (Fig. 4G). Furthermore, by co-analysis of
single-cell sequencing data of AKI-PTCs with UUO mouse
proteome and phosphorylated proteomics data, we identified a
cytoskeleton remodeling-associated protein Arpc1b that was
significantly upregulated at both transcriptional, translational,
and post-translational modification levels (Fig. 4H, I and Supple-
mental Fig. S12A–D). Immunofluorescence and ELISA also
confirmed the expression of Arpc1b in AKI (Fig. 4J and
Supplemental Fig. S12 E, F). In addition, both Tmsb4x and Arpc1b
showed good diagnostic performance in two independent AKI
datasets (Supplemental Fig. S13). These results indicate the
prevalence of cytoskeletal remodeling events in AKI, especially
in PTCs. Considering its specific biological function, intervention in
this pathway might improve the poor prognosis caused by
morphological dysregulation of AKI-PTCs. However, as only
kidneys from UUO mice were used for proteomic and phosphory-
lated proteomic analyses, conclusions on cytoskeletal remodeling
events may be limited and additional data from more models are
required for further studies.

Unsupervised screening strategies identified 18 biomarkers
specifically expressed in AKI-PTCs
Identification of injury-state PTCs in AKI at an early stage is
significant to intervene the progression of AKI, currently the
relevant biomarkers are still scarce and often species-limited.
Through a series of unsupervised screening strategies (Fig. 5A, B;
Supplemental Fig. S14A), we obtained 18 genes that are uniquely
highly expressed in AKI-PTCs (Fig. 5C–E). Both Havcr1 [41] and
Krt20 [30], known to be classical markers of PTCs injury, were
screened by this unsupervised screening strategy. We validated
the expression of these genes in two independent bulk datasets
(IRI and CP) and two single-cell validation datasets (IRI and UUO)
(Supplemental Fig. S14B, C, S15). Clinical data from the
Nephroseq database indicate that most of these genes were
correlated with poor prognosis of kidney disease (Supplemental
Fig. S14D). Notably, some of the genes are of murine origin
(Acat3, Cyp4a31, Cyp4a10, Cyp4a14, Ugt2b34, Nectin1), highly
expressed only in mice, and have the potential to become
biomarkers in mice kidney injury studies. We isolated PTCs from
each AKI model and verified the expression of these six genes
using Real-time PCR, and the results were consistent with scRNA
data (Supplemental Fig. S16).

Identification S100a6 as a novel biomarker for inflamed
endothelial cells in a multi-model AKI
In scRNA-seq, ECs are more difficult to identified as they are more
embedded in the extracellular matrix [42]. We separated ECs for
re-clustering. The results showed that for ECs, the secondary

Fig. 4 Transcriptional trajectories from healthy to injured PTCs and proteomics analysis revealed extensive cytoskeletal remodeling
events in AKI-PTCs. A Pseudotime analysis of the differentiation trajectory of PTCs. PTCs gradually progressed to two cell fate as AKI
progressed. B Cell number distribution of 7 PTC celltypes on the pseudotime trajectory. Maladaptive-PTCs, Proliferative PTCs and part of the
Krt20 NewPT were mainly distributed on the trajectory of cellfate1, and the remaining NewPT and InjuredS3 were mainly distributed on the
trajectory of cellfate2. InjuredS1 PTCs were mainly distributed on the bifurcation of cellfate1 and cellfate2, indicating that these cells may be
the earliest corrupted PTC cell subpopulation. C BEAM heatmap analysis identified genes associated with cellfate1 and cellfate2
differentiation. A total of three clusters are identified. The genes in Cluster1 are related to cellfate2 and Ferroptosis pathway were activated in
this cluster. The genes in Cluster2 are related to cellfate1 and Necroptosis pathway were activated in this cluster. The Cluster3 lies at the
bifurcation of the Pseudotime trajectory, and the heatmap reveals that a large number of genes are progressively highly expressed toward the
Cellfate1 trajectory. Notably, the regulation of the cytoskeleton is a widespread feature of the PTC injury process. D–F Expression of Top genes
of Cluster1 (D), Cluster2 (E), and Cluster3 (F) in the BEAM heatmap. G GSEA analysis of differentially expressed proteins in the
phosphoproteomics, and the most significantly enriched pathway in the KEGG was the regulation of actin cytoskeleton pathway, in which
Arpc1b is also involved. H, I In a combined analysis of the UUO mouse kidney proteomics and single-cell sequencing data of AKI-PTCs, a
protein was identified that was simultaneously highly expressed in transcriptional data, quantitative protein data, and phosphorylated protein
data: Arpc1b, and its phosphorylation site was determined. J Co-staining of sections from Control, cisplatin (CP), folic acid (FA), sodium oxalate
(SO), ischemia reperfusion injury (IRI), and unilateral ureteral obstruction (UUO) kidneys for Arpc1b (red) and Megalin (green). Scale
bars= 100 μM. Quantitative analysis of protein immunofluorescence intensity in Supplemental Fig. S2E.
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clustering improved the accuracy of cell type identification. We
identified three different types of endothelial cells [43]: cRECs
(cortical renal endothelial cells, Npr3Itgfbp3), mRECs (medullary
renal endothelial cells, Aqp1Itgfbp7), and gRECs (glomeruli renal
endothelial cells, Tspan7Pi16) (Fig. 6A; Supplemental Fig. S17A, B
and Supplemental Table S5). Notably, we observed a much higher
number of ECs in AKI models compared to Controls, and the UUO,
FA and SO models were much closer in terms of subcluster cell
proportions (Fig. 6B). Since there were almost no batch effects for
ECs in this dataset, the clustering of different subclusters of ECs
relied on the biological differences between them. We inferred the
specific status of each ECs subcluster by the top pathways

enriched in that subcluster (Fig. 6C). The results showed that ECs
of sublusters 0 and 2 were barely involved in immune and
inflammatory pathways. In contrast, ECs of subclusters 1, 3, 4, 5,
and 6 were involved in some classical inflammatory and immune
signaling pathways, which included the TNF signaling pathway
and MAPK signaling pathway. Heatmap analysis comfirmed key
genes of this pathway were largely activated in different AKI-ECs
(Fig. 6D). Furthermore, by combining proteomic data, we found
that a gene in this pathway, S100a6, and its encoded protein were
consistently highly expressed at the transcriptional and transla-
tional levels (Fig. 6E). Although a previous study by cheng et al.
[44]. had developed S100a6 as a marker of tubular injury and

Fig. 5 Identification of specific biomarkers for PTCs in single or multiple AKI models through unsupervised screening strategies.
A Identification of differentially expressed genes (DEGs) specifically expressed in AKI-PTCs by the strategy of Supplemental Fig. S14A. The aim
was to screen for DEGs specifically expressed in different etiologically induced AKI, which required limiting the expression of Control. B After
excluding genes intersected with Control, the number of intersections of PTCs-DEGs for each model. C A total of 18 genes that were
specifically highly expressed in PTCs of the AKI dataset were screened. Genes including Havcr1, C3, and Krt20 were identified in the
unsupervised setting, which confirmed the reliability of the screening strategy. Kruskal–Wallis test, ****P < 0.0001 vs. PTCs group. D Expression
of 18 DEGs in different models of PTCs. E Expression of 18 DEGs in seven different states of PTCs.
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Fig. 6 Identification of S100a6 in the MAPK signaling pathway as a novel biomarker for inflamed AKI-ECs. A In combination with known
renal EC biomarkers (Supplemental Fig. S17A) for cell type identification of separated ECs, a total of 6 subclusters with 3 distinct EC
subpopulations were identified. B Compared to the Control model, the AKI model identified more ECs, and the UUO, FA and SO models were
closer in subpopulation proportions compared to the IRI and CP models. C The top KEGG pathways enriched to each ECs subpopulation
showed that immune and inflammation-related pathways were mainly occurring in Clsuter1, 3, 4, 5, and 6, involving all three endothelial cell
subtypes, and the classical TNF and MAPK signaling pathways were activated. D The MAPK signaling pathway in AKI-ECs, with S100a6 being
one of the activating genes of this pathway. E The DEGs of ECs1-6 were correlated with the proteome of UUO, and S100a6 was upregulated at
both transcriptional and translational levels. F S100a6 was more significantly expressed in ECs compared to PTCs. Kruskal-Wallis test,
***P < 0.001 vs. Ctrl group. G In the IRI multi-time-point snRNA-seq dataset (GSE139107), S100a6 was upregulated at the second day after
kidney injury and declined subsequently. H High expression of S100a6 was correlated with high levels of creatinine. I Through ROC diagnostic
curve, the diagnostic efficacy of S100a6 in differentiating diseases was tested in the AKI public datasets GSE98622 (AUC:0.824, CI:0.707-0.942)
and GSE139061 (AUC:0.590, CI:0.338-0.841). J Immunofluorescence staining validates S100a6 (red) in AKI-ECs, Scale bars= 100 μM.
Quantitative analysis of protein immunofluorescence intensity in Supplemental Fig. S7C.
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recovery during AKI, we found that S100a6 was more significantly
expressed in ECs compared to PTCs (Fig. 6F), and its distinctive
upregulation during AKI endows its potentiality as a unique AKI-EC
marker (Fig. 6G). Correlation analysis with clinical data

demonstrated that high expression of S100a6 was associated
with high creatinine levels (Fig. 6H), and in addition, S100a6
showed good diagnostic efficacy as a marker of impairment in two
AKI public datasets (Fig. 6I). Subsequently, we verified S100a6
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protein expression in different AKI models by immunofluores-
cence and ELISA (Fig. 6J and Supplemental Fig. S17 C, D).

WGCNA revealed DCTs, LOH, CDIC, and CDPC were engaged in
milder inflammatory processes like apoptosis and autophagy
The injury pattern of renal tubular segments following PTCs in
AKI is poorly understood. We identified the key modules and
the key genes of DCTs, LOH, CDIC, and CDPC in Control and
each AKI model by Weighted gene co-expression network
(WGCNA) (Fig. 7A; Supplemental Fig. S18A and Supplemental
Table S6). Through gene ontology, we identify the biological
processes in which these four cell types are mainly involved in
each model. Interestingly, after the onset of AKI, these four
segments of renal tubules are not involved in drastic forms of
inflammation and injury-related biological processes. The
fundamental renal tubular functions including water home-
ostasis, metal ion transport and, PH regulation are largely
preserved in all AKI models (Fig. 7B). In contrast to PTCs,
relatively mild autophagy and apoptosis pathways are widely
activated. To identify transcription factors that regulate these
essential functions and the autophagic, apoptotic pathway, we
performed a SCENCI analysis. Nine key TFs (Atf3, Esrra, Jund,
Foxp1, Xbp1, Foxi1, Zmiz1, Jun and Fos) regulated the essential
fundamental functions, five of which (Atf3, Jund, Xbp1, Zmiz1,
and Fos) simultaneously regulate most genes of the apoptosis
and autophagy pathways (Fig. 7C, and Supplemental Fig. S18B).

Dynamically active immune-parenchymal intercellular
communication patterns are important features of AKI with
different etiologies
In pathological conditions, the cellular status is simultaneously
impacted by its own internal and peripheral immune cells.
Compared to Control, intercellular communication is noticeably
active after AKI onset (Fig. 8B, and Supplemental Fig. S19A).
Among all immune cell subtypes, Arg1 Macro_2 cells (Fig. 1B) are
the immune cells that interact most closely with different renal
tubule segments, which possesses the highest interaction weight
in all AKI models (Fig. 8A). Next, we thoroughly analyzed the
information flow patterns of 27 secretory intercellular interaction
signaling pathways in different models. In contrast to Control,
some intercellular communication signals are specifically
expressed in AKI of different etiologies, for example, TWEAK
signaling is highly active in cisplatin-induced AKI and BAFF
signaling pathway is highly active in SO-induced AKI (Fig. 8C).
Notably, the overall signal heatmap similarly suggests that
macrophages and its subtypes are the most active immune cell
subtypes (Fig. 8D). In particular, specific ligand-receptor signals in
TNF, SPP1, MIF, VISFATIN, and TGFb signaling pathways were
significantly enriched between Arg1 Macro_2 cells and renal
tubule cells in multiple models (Fig. 8E). Additional schematic
heatmaps reveal that macrophages act as major senders,
receivers, regulators and influencers of ligand-receptor signals
that affect parenchymal cells (Supplemental Fig. S19B, C). Based
on these specific ligand-receptor signaling patterns, intervening in
the ligand-receptor linkage between Macro_2 cells and parench-
ymal cells in different AKI models might ameliorate immune
inflammation-induced kidney damage.

DISCUSSION
We hypothesize that an in-depth comparison of mechanistic
causes of AKI progression induced by different etiologies will aid
in the development of more accurate diagnostics, treatments, and
preventative strategies against AKI. scRNA-seq provides an
unprecedented high-resolution view of the similarities and
differences in different etiologies-induced AKI. By scRNA-seq, we
found that FA- and SO-induced AKI and UUO-induced obstructive
AKI were closer in immune and injured parenchymal cell ratios
(Figs. 1D, 2G, and 6B). Previous findings indicated that FA-, UUO-,
and SO-induced kidney injury exhibits more typical features of
chronicized renal injury as time progresses, including pathological
changes of collagen deposition and interstitial renal fibrosis [9].
Our results showed that homogenized injury features among
different models may have emerged at the early stages of kidney
injury. From a pathologic point of view, both the FA and the SO
lead to the formation of crystals in the PTCs resulting in renal
tubule blockage and subsequent pathological changes similar to
those of obstructive nephropathy. In contrast, the CP and IRI
models exhibited unique injury characteristics including different
injury outcomes in PTCs. These data suggested careful considera-
tion of the impact factors of different AKI would influence the
development of novel therapies for AKI.
Our analysis highlights the characteristics of different renal

tubular segments during AKI. The results indicated that proximal
tubules do represent the most vulnerable tubular cells compared
to DCTs, LOH, CDIC, and CDPC [45]. And our studies on PTCs
subtypes have strengthened the understanding of Krt20 PTCs cells
and subpopulations of pro-inflammatory and pro-fibrotic mala-
daptive-PTCs in different AKI models. Krt20, a member of the
keratin family, is an intermediate filament protein responsible for
the structural integrity of epithelial cells, and we hypothesized
that the presence of high expression of Krt20 cells in the kidney
represents the disruption of epithelial cell integrity, which may be
a transitional state in the injury process of PTCs [30].
We explored the pathway activity of Necroptosis, Pyroptosis

and Ferroptosis in different cell types by single-cell sequencing.
We noticed that immune cells, especially macrophages and
neutrophils, had stronger cell death pathway activity compared
to parenchymal cells, which reminds us of the need to focus on
the role of programmed necrosis of immune cells in the renal
injury process despite the fact that PTCs are one of the core cells
in the renal injury process [37]. In addition, our results of isolating
PTCs for re-scoring were broadly consistent with previous studies
[46]. For example, Linkermann et al. validated both Necroptosis
and Ferroptosis exist in IRI-AKI [47, 48], our previous work
validated necroptosis in CP-AKI [21], Mulay et al. validated
necroptosis in SO-AKI [49]. In UUO-AKI, some comprehensive
studies demonstrated that all three forms of cell death co-exist
[28, 50, 51]. In FA-AKI, more in-depth studies have also
demonstrated that it is Ferroptosis rather than Necroptosis was
the predominant form of cell death [22]. Furthermore, Balzer et al.
expanded Gsdmd as a biomarker of injury in IRI-PTCs [15], and our
previous study showed that upregulation of Gsdme in UUO-PTCs
would results in the development of Pyroptosis [25]. However,
compared to other cell types, Pyroptosis pathway activity in PTCs
is at an extremely low level, and the expression of GSDMD and

Fig. 7 WGCNA revealed the mild trans-model injury characteristics of DCT, LOH, CDIC and CDPC. A In Control and 5 AKI models, randomly
selected cells from DCTs, LOH, CDIC, and CDPC were selected for Weighted gene correlation network analysis (WGCNA) analysis using the
method of Pseudocell. Key modules (black boxes) and key genes associated with cell types were screened based on correlation coefficients
and p values. B The expression of 9 transcription factors in 4 cell types. Each of these 9 transcription factors regulates more than 10 key genes
involved in basic cellular functional homeostasis (ion transport, water homeostasis, PH regulation) of DCTs, LOH, CDIC, and CDPC (panel C).
Among them, Atf3, Jun, Fos, Jund and Zmiz1 are also involved in the regulation of most key genes related to apoptosis and autophagy.
C Enrichment analysis of integrated biological processes revealed that DCT, LOH, CDIC, and CDPC in early AKI are not involved in drastic forms
of inflammatory processes. In contrast, apoptosis, autophagy, and other pathways are activated. Cells in these four segments retained regular
tubular functions in different models (green boxes), including reabsorption of various metal ions and regulation of water homeostasis.
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Fig. 8 Arg1 Macro_2 cells have dynamically active intercellular ligand-receptor interactions with AKI parenchyma cells. A In the immune-
parenchymal cell communication network of the integrated AKI dataset, Arg1 Macro_2 cells (Fig. 1B) were the immune cell subtype with the
highest interaction weight with consecutive renal tubular segments. B The number and weight of the connections for intercellular
communication are increased in AKI with different etiology compared to Control. The active pattern of intercellular interaction within AKI is
one of the characteristics of AKI. C Differences in the overall information flow of the 27 selected secretory intercellular ligand-receptor
signaling pathways in different AKI models. The information flow was calculated from the sum of the communication probabilities between all
pairs of cell populations in the inferred network (i.e., the total weight in the network). D Overall signaling heatmap of 27 selected outgoing
and incoming signals for all immune cell subtypes, PTCs subtypes, DCTs, LOH, CDIC, and CDPC in Control and each AKI model. Compared to
Control, partial intercellular signaling interaction events were only enriched in several AKI models (The red dashed box in Control). Signaling
events of macrophage subtypes were specifically prominent in immune cells across different models (Gray dashed box). E Ligand-receptors
with p values <0.05 in Arg1 Macro_2 cells with each segment of renal tubular parenchyma cells in Control and each AKI model.
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GSDME does not appear to be significant in most PTCs in AKI
models. A study has confirmed the non-cell autonomous role of
GSDMD in protecting renal tubules from necroptosis-mediated
injury in IRI [52], and these results suggest that further studies on
scorch death need to focus on the crosstalk between different
modes of death and pyroptosis occurring in immune cells.
Another non-negligible observation is that two or even multiple
cell death pathways may be activated simultaneously in PTCs.
Jointly blocking Necroptosis and Pyroptosis, and even Ferroptosis
may provide a better strategy to halt the progression of AKI, as
partially confirmed in our previous study [53, 54]. Interestingly, we
discovered that cytoskeletal remodeling co-exists with PTCs injury,
and high expression of genes and proteins related to skeletal
remodeling is associated with a poor prognosis of AKI, which may
become important biological markers to predict the prognosis of
renal injury.
There are enriched and stable ligand-receptor communica-

tions between different immune cell subpopulations and
parenchymal cells in AKI kidneys, and this pattern of cellular
communication is not greatly biased by differences in cell ratios
between models. Macrophage, especially Arg1 Macro_2 cells
(Figs. 1B and 7A) are always the very important immune cells
that interact with other cells. According to the expression
profile and cell proportions, Macro_2 cells correspond to M2
macrophages. Previous studies have demonstrated that M1
macrophages trigger kidney injury by releasing pro-
inflammatory cytokines such as IL-6, TNFα and IL-1β, while M2
macrophages play an anti-inflammatory role in the inflamma-
tory process [55, 56]. Different types of macrophages coexist in
different disease stages of renal inflammation, repair and
fibrosis, but the M1/M2 ratio changes over time. In scRNA-seq,
macrophages drive the renal injury process by interacting with
parenchymal cells through multiple well-known pro-inflamma-
tory and pro-fibrotic pathways as bridges. Although Macro_2
was the most prominent immune cell in our data, it should not
be ignored that Macro_1 cells had equally robust signaling
intensity in CP, FA and UUO models, with active intercellular
TGFb, MIF and CCL signaling being common features of both
Macro_2 and Macro_1 cells [57]. Our results suggest that the
switching of different subtypes of macrophages is initiated at
the early stage of kidney injury, and although the specific
details of the transition are not yet clear, a deeper exploration
of the signaling bridges may be a novel entry point to study the
switching of M1/M2 macrophage states and the pathogenic
role of M2 cells during kidney injury. Since AKI corresponds to
the early stages of the disease, where the overall immune cell
status is in a delicate balance of pro- and anti-inflammatory.
Activated M2 macrophages would imply that renal tissues are
exerting an active compensatory role for injury. However, in the
absence of blockade of the etiology or further intervention, the
anti-inflammatory and pro-repair M2 macrophages often lead
to abnormal tissue repair and promote the development of
chronic fibrosis [37, 58]. Inflammation and fibrosis are known
compensatory repair mechanisms, AKI will progress to chroni-
city when the balance between them is disturbed. An early
intervention targeting Arg1 macrophages may be one of the
key components in arresting the chronicity of AKI.
Overall, our study provides a very comprehensive single-cell

atlas of multi-model AKI to date, which will provide a valuable and
important resource for future studies of the intrinsic mechanisms
and therapeutic targets of AKI and facilitate future insights into
the underlying regulatory mechanisms of each cell type.

METHODS
Mice
C57BL/6 mice (8–10 weeks, 23–26 g, male) were obtained from the
pathogen-free (SPF) facility of Fujian Medical University. All animal

experiments were approved by the Laboratory Animal Management and
Ethics Committee of Fujian Medical University and were performed in
accordance with the “China Guide for the Protection and Use of Laboratory
Animals”. All mice were housed in a specific pathogen-free facility with a
12-hour light/dark cycle.

Induction of acute kidney injury model
Male mice were used in all these models, and four kidneys from two mice
were used for single-cell sequencing in each model. For IRI and UUO-
induced AKI, the procedures were performed by a skillful surgeon in a
temperature-controlled room (25 °C). For IRI model, retroperitoneal
clipping surgery was used. After mice were anesthetized with ketamine
(80–100mg/kg/i.p., Cayman Chemical) and xylazine (10mg/kg/i.p., Selleck
Chemicals), approximate 10-mm incisions were performed at a distance of
about 8 mm on each side of the spine. After both of kidneys were carefully
exposed, bilateral renal pedicles were clamped for 43min by a vascular clip
(Fine Science Tools). The kidney was observed visually with a loss of blood
supply and turning pale. During this period, the surgical region on the back
of the mice was covered with saline gauze and the kidney was kept in wet
condition with normal saline. After the vascular clamps were removed to
restore the blood supply with visually reperfusion, the surgical incisions
were closed in two layers with 5-0 sutures. The mice were then injected
with pre-warmed physiological saline solution (37 °C; 1 ml per 20 g body
weight) subcutaneously (s.c.). Throughout the surgical procedure, the body
temperature was maintained between 36 °C and 37 °C by continuous
monitoring using a Homeothermic System (Harvard Apparatus) until they
recovered from anesthesia. At the end of these procedures, mice were put
back in cages in a temperature-controlled room (25 °C) where free access
to water and food was available. Mice were monitored closely. Pre- and
postoperative analgesia (Ibuprofen, 200 μg/ml in drinking water) were
given to the mice from 24 h before and until 48 h after surgery.
For CP-induced AKI, C57BL/6 male mice were given a single

intraperitoneal injection of cisplatin (Hansoh Pharma, China) at a dose of
20mg/kg. For acute crystal nephropathies, we used FA or SO-induced AKI.
For FA-induced AKI, male mice received a single intraperitoneal injection of
250mg/kg folic acid (Sigma-Aldrich) in 0.3 mol/L sodium bicarbonate. For
oxalate-induced AKI, male mice were given with a single intraperitoneal
injection of 100mg/kg sodium oxalate (Sigma) and 3% sodium oxalate in
drinking water.
For UUO-induced acute obstructive AKI, as previously described [25],

C57BL/6 male mice were anesthetized as mentioned above. The unilateral
ureter ligation was also performed from retroperitoneal pathway. Briefly,
an about 10-mm of incision was made on the left side of the spine, the
kidney was carefully exposed and then followed by blunt separation of the
ureter and peritoneum. Ureteral obstruction was performed by the ligation
of the left ureter with 4-0 silk suture. Fluid resuscitation and care
procedures for the mice are the same with IRI model.
All samples were harvested from the mice after 48 hours of treatment in

CP, FA, SO and IRI-induced AKI model. The obstructive kidney in the UUO
model were collected after 2 days. The pathological injury score of the
injury kidneys in these models without no statistical difference were
selected for single-cell sequencing analysis.

Preparation of kidney single-cell suspensions
Kidneys were placed on ice-cold Dulbecco’s phosphate buffered saline
(DPBS), debrided, cut longitudinally, and coronally sectioned. The renal
pelvis portion of the kidney was then excised with a sterile razor, and the
remaining tissue was washed in a 6 cm Petri dish with 1× DPBS to remove
residues such as blood stains. Subsequently, the tissue was sheared to a
size of 5 × 5mm3. The cleaned samples were then transferred to 5 mL
centrifuge tubes with 1× DPBS and placed on ice to rapidly shear the
tissues to 1–3mm3. Next, 10 times the volume of 1× DPBS was added to
the sheared tissues which were cleaned by gentle blowing with a Pap sieve
five times, and collected by filtering through a 70 μm cell sieve. The
collected tissues were transferred into the prepared digestive enzyme
solution (collagen II 2 mg/mL, collagen IV 2mg/mL) and incubated for
30min at 37 °C, 100 rpm; the dissociated solution mixed with tissues and
cells was transferred into 2–3 times the volume of 1× DPBS, washed by
blowing with a Bass pipette and passed through a 40 μm cell sieve before
the filtrate was collected. The filtered cell suspension was centrifuged at
300 × g for 5 min at 12 °C. The supernatant was discarded and the
remaining cells were collected. Any erythrocytes remaining in the cell
fractions were removed by lysis in erythrocyte lysate for 3–10min.
Subsequently, the precipitate was resuspended in 1× DPBS using 10 times
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the volume of cell suspension used in the previous step, washed 1–2 times,
centrifuged again as previously described (300 × g at 12 °C for 5 min). Cell
densities were adjusted to 700–1200 cells/μL with 1640 (+5% (v/v) fetal
bovine serum (FBS) before analysis.

Single-cell library generation and sequencing
Harvested cells at the required densities were combined with gel beads
containing the barcoded information along with a mixture of cells and
enzymes. Oil surfactant droplets in a microfluidic “double-cross” system
were used for encapsulation to generate Gel Beads-In-Emulsions (GEMs).
GEMs were passed through a reservoir and collected while the gel beads
were lysed to release the barcode sequence. The cDNA fragment was
then reverse transcribed before the sample was labeled. The gel beads
and the oil droplets are ruptured and PCR amplification was performed
using the generated cDNA as a template. The products of all GEMs were
mixed and a standard sequencing library is constructed. The cDNA was
first enzymatically digested into fragments of about 200–300 base pairs
(bp), together with the library building process of traditional second-
generation sequencing such as sequencing junction and primers. Finally,
the DNA library was generated by PCR amplification. Cell capture was
performed using the official library kit (10X Genomics Chromium Single-
Cell 3’ kit, V3) according to manufacturer’s instructions. Following the
capture of 10,000 target cells, sequencing was performed using the
NovaSeq6000 sequencing platform (paired-end multiplexing run, 150 bp)
by LC-Bio Technology Co. Ltd. (Hangzhou, China). A sequencing depth of
50,000 reads per cell was required.

Quality control of single-cell sequencing data
Sequencing data were parsed using Illumina bcl2fastq software (Version
2.20) and converted to FASTQ format files. The cleaned FASTQ files were
processed using cellranger (Version 6.0). SoupX [59] (Version 1.6.1)
package was used to correct ambient RNA contamination and the
Seurat [60, 61] (Version 4.2.0) package was used for downstream
analyses. The following parameters were used to remove low-quality
cells: (1) exclude cells expressing ≤500 or ≥4000 genes/cell; (2) exclude
cells expressing ≤500 or ≥15000 unique molecular identifier per cell
(UMIs/cell); (3) exclude cells with high cell complexity (log10GenesPer-
UMI) ≤0.8; (4) due to the fact that renal tubular epithelial cells in the
kidney are very energetically involved in active transport, which
requires a large number of mitochondria to provide energy [62, 63].
We exclude cells with >30% mitochondrial ratio; (5) exclude doublets
using the DoubletFinder [64] (Version 2.0.3) package; (6) retain genes
expressed in at least 10 cells. Since we were not interested in genes
found in the ribosome or in erythrocytes, these genes were excluded
from subsequent analyses. The LogNormalize method of the “Normal-
ization” function was used for expression homogenization. The
“FindVariableGenesfunction” function selected 2000 highly variable
genes based on the average expression and dispersion of each gene.
Since cell cycle arrest is a normal manifestation of AKI pathology, we did
not regress the effect of cell cycle genes on the results.

Unsupervised dimensionality reduction, removal of batch
effects, and cell type identification
Following quality control analysis, we obtained high-quality single-cell
data, which were subsequently analyzed by principal component analysis
(PCA) using the RunPCA function for highly variable genes. The number of
principal components (PCs) was selected based on three criteria: (1) the
cumulative contribution of the PCs was >90%; (2) the PCs themselves
contributed <5% to each other’s variance; and (3) the difference between
two consecutive PCs was less than 0.1%. Biases caused by different batches
were then removed using the harmony [65] package (version 0.1.0) and
cells were clustered using the FindClusters function with resolution
adjusted to 0.5–1.5, to exclude abnormal clusters that were independently
present in duplicate samples of the AKI model and had <50 cells. Wilcoxon
rank sum tests were performed using the FindMarkers function and
min.pct was set to 0.25 (i.e., genes expressed in at least 25% of cells within
or outside the cluster). Marker genes for each cluster were screened by
differential expression analysis between cells inside and outside the
cluster. Cell type annotation of the cell clusters was performed following
comparison with classical cell type markers. The Subset function was used
to isolate the specified cell types, and the above steps were subsequently
repeated to remove batch effects and identify clusters driven by biological
differences.

Cell trajectory analysis
Cell developmental trajectory inference was performed using monocle [66]
(Version 2.18.0) package. Raw read counts were used as input, specifying
the expressionFamily parameter of the newCellDataSet function as a
negative binomial distribution. The size factor and dispersions were
estimated using the estimateSizeFactors and estimateDispersions. Con-
struct cell trajectories were selected by monocle using highly variable
genes. We considered the state with the most control cells as the root state
and used the orderCells function to sort cells according to their actual
state. The BEAM function was used to calculate key genes associated with
the direction of cellular outcomes, and cells expressed in at least 100 cells
were screened for analysis. The plot_genes_branched_heatmap function
was used to select the top 2000 genes associated with development for
data visualization. In contrast, the plot_genes_branched_pseudotime
function was used to graphically visualize changes in individual genes
over time. In the PTCs trajectory derivation, the above steps were repeated
individually using the original PTCs counts for each model.

Analysis of transcription factor regulatory networks
The SCENIC [67] (Version 1.2.4) and GENIE3 [68] (1.12.0) packages were
used to infer potential transcriptional regulatory networks in DCTs, LOH,
CDIC, and CDPC. The log-normalized expression matrix generated by
Seurat was used as input data and all cells were randomly selected for
analysis. After running GENIE3, the motif dataset (mm10_refseq-
r80_500bp_up_and_100bp_down_tss.mc9nr.feather, mm10_refseq-
r80_10kb_up_and_down_tss.mc9nr. feather) was used to construct
each transcription factor. Co-expression modules between transcription
factors and candidate target genes were inferred using GENIE3 (random
forest), with each module containing a transcription factor and its target
gene. Genes in each co-expression module were analyzed using
RcisTarget to identify enriched motifs. Only TF motif-enriched modules
and targets were retained and each TF and its potential direct target
gene was referred to as a regulon. The activity of each regulon in each
cell was assessed using AUCell [69] (version 1.16.0) to generate a score
which was used to generate a regulon activity matrix that can be
binarized (0|1, on|off) by setting an area under the curve (AUC)
threshold for each regulon, which determines in which cells the regulon
is in the “on” state.

Analysis of intercellular ligand-receptor communication
Cell-to-cell communication analysis was performed using the CellChat [70]
(version 1.5.0) package for all immune cell subtypes, PTCs subtypes, DCTs,
LOH, CDIC and CDPC. A weighted directed network consisting of
significant ligands between interacting cell groups is constructed by
calculating the number of ligands and weight values of intercellular
interactions. Subsequently, cellchat provided 2021 validated ligand-
receptor signals for intermolecular interactions. Of these, the autocrine/
paracrine related signal groups (which accounted for 61.8% of all ligand
receptors) were selected to identify conserved and condition-specific
signal information flow in Control and each AKI model. The signal strength
was subsequently calculated in each cell type for the identified conserved
and condition-specific signals. Outward and inward degrees were
calculated in a weighted network as the sum of outgoing and incoming
communication probabilities from the cell groups to identify the primary
senders, receivers, mediators, and influencers of intercellular communica-
tion. And finally identification of ligand-receptors in specific high
probability signals of specific cells.

Cell-specific gene identification, gene enrichment analysis,
specific pathway analysis, and clinical feature association
analysis
Cell-specific genes in the Seurat run were calculated by FindAllMarkers
according to metadata grouping. Genes with adj. p values less than 0.05
were screened, and each gene was ranked by the degree of difference
using log2foldchange. Genes associated with the proposed temporal
differentiation during the monocle run were calculated by the pData
function. Gene enrichment analysis is a combination of GO and KEGG,
using the clusterProfiler package and the Omicshare platform (https://
www.omicshare.com/) for Gene Set Enrichment Analysis (GSEA) analysis.
Extraction of key genes of specific pathways from GeneCards database
(https://www.genecards.org/), counts values in single-cell sequencing of
extracted genes for heatmap analysis. The kidney-related clinical
characteristics data from the Nephroseq database (https://
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www.nephroseq.org/) were used for association analysis with specific
differentially expressed genes (DEGs).

Scoring of pathway activity for cell subpopulations
The Seurat’s AddModuleScore scoring method was used for pro-
inflammatory and pro-fibrosis scoring of PTCs. The genes for the pro-
inflammatory score incorporated 212 interleukin, TNF superfamily and
chemokine genes. Genes for the pro-fibrosis score incorporated 73 TGFb
pathway genes. The activity of three cell death pathways (Necroptosis,
Pyroptosis, Ferroptosis) was scored by AUCell. Pathway genes for
Necroptosis and Ferroptosis were collected from the GSEA database in
the KEGG gene set. Pyroptosis-related genes were collected from the GO
gene set of GSEA. Pathway genes were screened in combination with the
reported relevant literature. The Score values of each cell were normalized
or log(Score+1) processed and visualized using the ggplot2 package for
analysis, and comparisons between groups were made using the
Wilcoxon test.

Public AKI dataset analysis
AKI-related datasets were identified in the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) using “acute kidney injury”
as the search keyword. GSE98622 [30] contained 18 kidney samples from
sham mice and 31 from IRI-AKI mice while and GSE139061 [71] contained 9
kidney biopsy samples from healthy people and 39 from AKI patients.
GSE165100 [72] contains 4 Control samples and 4 acute cisplatin-induced
kidney injury sequencing data. The raw expression data of both datasets
and their GPL platform files were downloaded, and the expression matrix
was annotated using genesymbol. The expression of specific genes in the
expression matrix was extracted, grouped according to the original
research, and receiver operating characteristic (ROC) analysis was
performed using the pROC (Version 1.18.0) package to calculate the
AUC, with larger AUC values indicating greater sensitivity and specificity of
the gene to as a predictor of disease. GSE139107 [13] contains renal single-
cell sequencing data from 6 IRI time points and GSE140023 [73] contains
renal single-cell sequencing data from UUO2 days and 7 days, both of
these data were used to validate the expression of genes specific in PTCs.

Weighted gene correlation network analysis (WGCNA)
The integrated scRNA dataset of all samples was sorted into DCTs, LOH,
CDIC, and CDPC cell subpopulations by subset function. The normalized
data values were extracted as the original matrix of WGCNA. The metadata
file was extracted as the phenotype file of WGCNA. Using the Pseudocell
method, set pseudocell=10, and randomly select a portion of cells from
each cluster as the input matrix of WGCNA. Standardized WGCNA process
analysis was performed via the sangerbox online platform. The standar-
dized process included the construction of gene co-expression network,
identification of gene modules, phenotype and modules for association
analysis, and identification of key modules and key genes. The module
merging threshold in the dynamic shear tree was 0.25, and the parameters
for screening key genes were gene significance (GS) > 0.1 and module
membership value (MM) > 0.7.

Mass spectrometry-based proteomics and phosphorylated
proteomics analyses
Wild-type (n= 3) and UUO-induced AKI mouse kidneys (n= 3) were
stored at −80 °C and protein concentrations were determined using the
bicinchoninic acid (BCA, Beyotime,China) kit. Equal amounts of each
sample protein were taken for enzymatic digestion, and trypsin was
added at a ratio of 1:50 (protease: protein, m/m) and incubated
overnight. Dithiothreitol (DTT) was added to a final concentration of
5 mM and reduced at 56 °C for 30 min. Iodoacetamide (IAA) was added
to a final concentration of 11 mM and incubated for 15 min at room
temperature and protected from light. Peptides were dissolved in
enrichment buffer solution (50% (v/v) acetonitrile/6% (v/v) trifluoroa-
cetic acid). The supernatant was transferred to pre-washed immobilized
metal affinity chromatography (IMAC) resin and incubated on a rotary
shaker with gentle shaking. After incubation, the resin was washed
three times with 50% (v/v) acetonitrile/6% (v/v) trifluoroacetic acid and
30% (v/v) acetonitrile/0.1% (v/v) trifluoroacetic acid buffer solutions.
Finally, the modified peptides were eluted with 10% (v/v) ammonia
before the eluate was collected, vacuum frozen, and dried. Peptides
were desalted using C18 ZipTips according to the manufacturer’s
instructions, before being vacuum freeze dried for liquid

chromatography–mass spectrometry (LC-MS) analysis. Next, peptides
were solubilized with liquid chromatography mobile phase A (0.1% (v/v)
formic acid and 2% (v/v) acetonitrile) and separated using a NanoElute
ultra high-performance liquid chromatography (UHPLC) system. Mobile
phase B contained 0.1% (v/v) formic acid in 100% (v/v) acetonitrile. We
used the following gradient method: 0–78 min, 2%–22% B; 78–84 min,
22%–35% B; 84–87 min, 35%–80% B; 87–90 min, 80% B. Peptides were
separated by UHPLC and then injected into the capillary ion source for
ionization and analyzed by timsTOF Pro mass spectrometry. The ion
source voltage was set at 1.75 kV. Peptide parent ions and their
secondary fragments were detected and analyzed using a high-
resolution time of flight (TOF). The secondary mass spectrometry scan
range was set to 400 – 1500 m/z. The parallel accumulated serial
fragmentation (PASEF) mode was used for data acquisition. A primary
mass spectrum acquisition was followed by 10 PASEF mode acquisitions
of secondary spectra with parent ion charge numbers in the range of
0–5.

Kidney histologic analysis in mice
Kidneys were embedded in paraffin or optimal cutting temperature
compound (OCT, 4538, Leica). Paraffin sections (4 μm) were stained with
periodic acid–Schiff (PAS) for the assessment of renal tubular injury. As
previous studies [48], morphological damage of sections was evaluated by
following parameters: brush border loss, tubular dilation, tubular necrosis
and cast formation. The percentage of these parameters were counted on
a scale of 0–10: 0, not present (normal); 1–4, 10~40% (mild); 5-6, 50~60%
(moderate); 7–8, 70~80% (severe); 9–10, 90~100% (very severe).
Cryosections (4 μm) were used for immunofluorescence staining.

Sections were washed with PBS after fixation with ice-cold acetone for
15 min, then incubated with the following different primary antibodies:
Anti-TMSB4X (ab14334, 1:250; abcam), anti-ARPC1B (ab115217, 1:200;
abcam), anti-S100A6 (ab181975, 1:200; abcam), anti-GSDMD (207701-1-
AP, 1:250; Proteintech, China), anti-GSDME (13075-1-AP, 1:200, Protein-
tech, China), anti-RIP3 (sc-374639, 1:200; Santa Cruz), anti-4HNE
(ab48506, 1:200; abcam), anti-NINJ1 (GTX31596, 1:50; GeneTex), anti-
ZBP1 (sc-271483, 1:100; Santa Cruz), anti- KRT20 (ab97511, 1:200;
abcam) and anti-Megalin (ab184676, 1:200; abcam) or anti-
SLC34A1(ab151129, 1:200; abcam) antibody for 2–4 h. Both anti-
Megalin antibody and anti-SLC34A1 antibody are PTC markers. As a
detection antibody, AlexaFluor® 488 and Alexa Fluor® 594 labeled
secondary antibodies (abcam) were used. Nucleus was labeled with
DAPI (Invitrogen). All histologic sections were analyzed in a blinded
manner. For morphologic quantifications, 3 random visual fields were
analyzed per kidney section. The number of protein-positive cells were
determined with Image J software. The normalized data were used as
input files for Graphpad prism (Version 9.0) and statistically analyzed
using One-way ANOVA.

Enzyme linked immunosorbent assay (ELISA) for mouse urine
Mouse TMSB4X (EIAM-TMSB4X-1, RayBiotech), ARPC1B (ABX502254,
BIOZOL), and S100A6 (ELM-S100A6-1, RayBiotech) ELISA Kit were used
for detection of their urine levels by ELISA, respectively, in accordance with
manufacturers’ instructions. And their concentrations were normalized per
unit urinary volume.

Flow cytometry analysis
Flow cytometry was used to quantify the immune cell subtypes in different
AKI injured kidney. In brief, kidneys were harvested, minced, and incubated
with 1mg/ml type IV collagenase (sigma, 11088858001) and DnaseI
(90083, ThermoFisher Scientific,) in DMEM (11965092, Gibco™) for
30minutes at 37 °C in a shaker. The RPMI (31800-089, Gibco™) was added
with FBS (085-150, WISENT) to terminate the digestion. The digested
kidney tissue suspensions were passed through a mesh with 40 μm pore
size to remove the undigested tissues and then washed in PBS. 40% and
70% percoll (17-0891-02, GE Healthcare, Sweden) were used for the
gradient centrifugation. The final pellets were resuspended in PBS and
then loaded to the flow cytometry for analysis.
After blocking nonspecific Fc binding with anti-mouse CD16/32 (14-

0161-85, eBioscience™), fresh renal immune cell suspensions were
incubated with anti-mouse CD45 antibody (30-F11, 47-0451-82, APC-
eFluor™ 780, eBioscience™) to determine total immune cell numbers. Anti-
CD45 antibody-labeled samples were also labeled with the other following
antibodies, anti-mouse, F4/80-PE (BM8, 48-4801-82, eBioscience™), CD11c
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(N418, 17-0114-81, eBioscience™), CD3e (145-2C11, 12-0031-81,
eBioscience™), Ly6G/Ly6C (RB6-8C5, 11-5931-82, eBioscience™) and CD19
(eBio1D3 (1D3), 25-0193-81, eBioscience™) antibody to identify neutrophils
(CD45Ly6G), macrophages (CD45F4/80), T cells (CD45Cd3e), dendritic cells
(CD45CD11c) and B cells (CD45CD19) respectively. Using CD206-FITC
(MR5D3, MA5-16870, TheroFisher Scientific) and CD11b (M1/70, 15-0112-
82, eBioscience™) antibody, we identified M1 (CD11bCD206) and M2
(CD11bCD206) subtypes in macrophages. Subsequent data acquisition was
performed by flow cytometer (CytoFLEXB53015, Beckman).

RNA analysis
Total RNA was obtained from freshly isolated renal proximal tubules by RNA-
iso reagent (TakaRa). Total RNA was reverse-transcribed to cDNA using
Reverse Transcription Kit (BGI, Shenzheng, China). The levels of Acat3,
Cyp4a31, Cyp4a10, Cyp4a14, Ugt2b34 and Nectin1 were determined by
SYBRGreen I Real-time quantitative PCR in a CFX96 real-time RT-PCR detection
system (Bio-Rad). PCR amplification was carried out for 42 cycles. The
following primer sequences were used: Acat3 (forward: 5’-CTGGAGGCATG-
GAGAATATGAG-3’, reverse: 5’-CTGTCAGACCATCACAGAGTATG-3’); Cyp4a31
(forward: 5’-CTACCCTGCATAGTCTCTCTCT-3’, reverse: 5’-GCATGACACTTG-
GACCTTTATTG-3’); Cyp4a10 (forward: 5’-TTCCCTGATGGACGCTCTTTA-3’,
reverse: 5’-GCAAACCTGGAAGGGTCAAAC-3’); Cyp4a14 (forward: 5’-
TCTGGGTTCTTCCAATGGGC-3’, reverse: 5’-GGACTCGTATATTGCTCCCCG-3’);
Ugt2b34 (forward: 5’-TGAAGTGATGGTTCTGAGACCT -3’, reverse: 5’-
ACTGCTTTGGCAGCTCATAAAT-3’); Nectin1 (forward: 5’-GACTCCATG-
TATGGCTTCATCG-3’, reverse: 5’-CACTCGTTTCTCGTAGGGAGG-3’).

DATA AVAILABILITY
The sequencing data have been deposited in the National Center for Biotechnology
Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/ (accession no.
GSE197266). Any additional information required to reanalyze the data reported in
this paper is available from the lead contact upon reasonable request.
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