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Single-cell sortChIC identifies hierarchical 
chromatin dynamics during hematopoiesis

Peter Zeller1,2,4, Jake Yeung    1,2,3,4, Helena Viñas Gaza    1,2, 
Buys Anton de Barbanson1,2, Vivek Bhardwaj    1,2, Maria Florescu1,2, 
Reinier van der Linden    1,2 & Alexander van Oudenaarden    1,2 

Post-translational histone modifications modulate chromatin activity 
to affect gene expression. How chromatin states underlie lineage 
choice in single cells is relatively unexplored. We develop sort-assisted 
single-cell chromatin immunocleavage (sortChIC) and map active 
(H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) 
histone modifications in the mouse bone marrow. During differentiation, 
hematopoietic stem and progenitor cells (HSPCs) acquire active 
chromatin states mediated by cell-type-specifying transcription factors, 
which are unique for each lineage. By contrast, most alterations in 
repressive marks during differentiation occur independent of the final 
cell type. Chromatin trajectory analysis shows that lineage choice at the 
chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 
and H3K9me3 demonstrates that cell types within the myeloid lineage 
have distinct active chromatin but share similar m ye lo id -s pe cific h et er oc-
hr omatin states. This implies a hierarchical regulation of chromatin d ur ing 
hematopoiesis: heterochromatin dynamics distinguish differentiation 
trajectories and lineages, while euchromatin dynamics reflect cell types 
within lineages.

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) and 
replenish diverse blood cell types1,2. During differentiation, hemat-
opoietic stem and progenitor cells (HSPCs) restrict their potential to 
fewer lineages to yield mature blood cells3. These cell fate decisions 
have recently been dissected through single-cell mRNA sequencing 
(scRNA-seq) technologies4–6.

The regulation of gene expression partially relies on post- 
translational modifications of histones that modulate chromatin activ-
ity7,8. Chromatin dynamics during hematopoiesis have been analyzed 
for accessible regions in single cells9,10 and active chromatin marks in 
sorted blood cell types11. Although the role of repressive chromatin 
has been characterized in embryonic stem cells12–15 and early devel-
opment16–18, repressive chromatin states during hematopoiesis have 
been unexplored.

The following two repressive chromatin states have a major role 
in gene regulation: a polycomb-repressed state, marked by H3K27me3 
at gene-rich regions19,20, and a heterochromatin state mainly found in 
gene-poor regions, marked by H3K9me316. Conventional techniques to 
detect histone modifications involve chromatin immunoprecipitation 
(ChIP), which relies on affinity-purification of histone–DNA complexes. 
As immunoprecipitations are not feasible for single cells individually, 
protocols were developed that fragment and barcode single cells 
before pooling them for immunoprecipitation21–23. Alternatives to 
ChIP24 circumvent this affinity-purification by using antibody tethering 
of either protein A-micrococcal nuclease (pA-MN)24–28 or protein A-Tn5 
transposase29–34 that produce recoverable fragments only at the site of 
interest. Although these strategies allow profiling of histone modifi-
cations in single cells31,32,34, they do not enrich for specific cell types, 

Received: 22 May 2021

Accepted: 1 November 2022

Published online: 20 December 2022

 Check for updates

1Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Oncode Institute, Utrecht, The Netherlands. 2University Medical Center 
Utrecht, Utrecht, The Netherlands. 3Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria. 4These authors contributed equally:  
Peter Zeller, Jake Yeung.  e-mail: a.vanoudenaarden@hubrecht.eu

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-022-01260-3
http://orcid.org/0000-0003-1732-1559
http://orcid.org/0000-0002-4898-2862
http://orcid.org/0000-0002-5570-9338
http://orcid.org/0000-0001-7437-8901
http://orcid.org/0000-0002-9442-3551
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-022-01260-3&domain=pdf
mailto:a.vanoudenaarden@hubrecht.eu


Nature Genetics | Volume 55 | February 2023 | 333–345 334

Technical Report https://doi.org/10.1038/s41588-022-01260-3

are digested and genomic DNA fragments are ligated to adapters con-
taining a unique molecular identifier (UMI) and cell-specific barcode. 
The genomic fragments are amplified by in vitro transcription and 
PCR and sequenced.

To test sortChIC performance, we apply it to the well-characterized 
cell line K562, where we map four histone modifications that represent 
major chromatin states regulating gene expression (Fig. 1b–e). For 
modifications associated with gene activation, we profile H3K4me1 
(Fig. 1b) and H3K4me3 (Fig. 1c), found at active enhancers and promot-
ers and promoters of active genes, respectively36. For modifications 
associated with repression, we profile H3K9me3 found in gene-poor 
regions (Fig. 1d) and H3K27me3 found in gene-rich regions (Fig. 1e)20.

For each histone modification, we process 1,128 G1 phase K562 
cells. Using the MN cut site position and UMIs, we map unique MN 
cut sites. Following filtering, we retain 3,113 cells (Extended Data  
Fig. 1b) with the large majority of reads falling in peaks identified 

making it challenging to profile rare cell types, such as HSCs, that con-
tribute about 0.01% of the cells35. Therefore, we develop sort-assisted 
single-cell chromatin immunocleavage (sortChIC), which combines 
single-cell histone modification profiling with cell enrichment.

Results
SortChIC maps histone modifications in single cells
To detect histone modifications in single cells, we stain surface antigens 
for cell type recognition, fix cells in ethanol and incubate them with 
an antibody against a histone modification. We then add pA-MN that 
binds to the histone-bound antibody at specific regions of the genome 
where the modification is present (Fig. 1a). Subsequently, single cells in 
G1 phase of the cell cycle are sorted based on their Hoechst staining into 
384 well plates (Extended Data Fig. 1a). Next, MN is activated by adding 
calcium, allowing MN to digest antibody-proximal internucleosomal 
DNA regions. Removing the need for purification steps, nucleosomes 

b

n = 1,10
0

n = 4
6

5
n = 6

4
0

n = 86
6

H
3K

27
m

e3
si

ng
le

 c
el

ls
 

H
3K

9
m

e3
si

ng
le

 c
el

ls
 

H
3K

4
m

e3
si

ng
le

 c
el

ls
 

H
3K

4
m

e1
si

ng
le

 c
el

ls
 

Pseudobulk sortChIC
(z score)

Human chr3 (MB)
135 136 137 138

Fixation/
permeabilization

Histone
modification 

Histone modification
antibody

Surface antibody

pA-MN

DNA

Ca2+

pT7 UMI Barcode T

Histone modification
antibody incubation

(optional) 
surface marker staining

pA-MNase
incubation

Single-cell
sorting 

MNase
activation 

Cell lysis

Fragment
processing 

Pool single cells
and amplification

1

2

4

5

6

7

8

a

3 c

d

e

ENCODE bulk ChIP
(log2 fold change)

Ca2+

Ca2+

2

–1

2

–2

2
–1

2

–2

1
02

–1

2

–1

2

–2

Fig. 1 | sortChIC maps histone modifications in single cell. a, Schematic of the 
sortChIC method. Fixed and permeabilized cells are stained with an antibody 
targeting a histone modification. Inactive pA-MN is added, tethering MN to the 
histone modification antibody. Single cells are FACS sorted. MN is activated to 
induce specific cuts in the genome. UMIs and cell-specific barcodes are ligated 

to the cut fragments. Barcoded fragments are pooled, amplified and sequenced. 
b–e, Location of cuts in H3K4me1 (b), H3K4me3 (c), H3K9me3 (d) and H3K27me3 
(e) in individual K562 cells along a 4 MB region of chromosome three. Black 
traces represent the sortChIC signal averaged over all individual cells, blue traces 
represent ENCODE ChIP-seq profiles.
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Fig. 2 | Active and repressive chromatin states in single cells from the mouse 
BM. a, UMAPs of H3K4me3 (n = 6,262), H3K4me1 (n = 6,242) and H3K27me3 
(n = 3,452) single-cell epigenomes from whole BM (unenriched), Lin− and LSK 
sorted populations. b, UMAPs colored by cell type. Eryths, erythroblasts; baso/
eosino, basophils/eosinophils; pDCs; monocytes; HSPCs, hematopoietic stem 
cells and early progenitor cells. c, UMAP summary colored by sortChIC signal 
in a region ±5 kb centered at the transcription start site of Ebf1, a B-cell-specific 
gene. d, Same as c but for a region around S100a8, a neutrophil-specific gene. 
e, Heatmap of sortChIC signals for regions around cell-type-specific genes 

showing high levels of active marks (H3K4me1, H3K4me3) in their respective 
cell type, and correspondingly low levels in the repressive mark (H3K27me3). f, 
Example of active and repressive chromatin states near the transcription start 
site of a B-cell-specific TF Ebf1. H3K4me3 and H3K4me1 show large number of 
cuts specifically in B cells; H3K27me3 shows B-cell-specific depletion of cuts. 
Colored line plots (same color code as in b) represent the average sortChIC 
signal for cells of the same cell type. Individual cells are ordered by cell type and 
color-coded on the left.
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from pseudobulks (Extended Data Fig. 1c). We compare pseudobulk 
sortChIC profiles with bulk ChIP-seq results37, which are highly corre-
lated (Pearson correlation > 0.8; Extended Data Fig. 1d–e). Single-cell 
tracks underneath each average track (Fig. 1b–e) illustrate the high 
reproducibility of the signal between cells. Of note, the H3K9me3 
histone modification profiles obtained from sortChIC represent the 
heterochromatin state without the need for input normalization 
(Extended Data Fig. 1f), which is required for ChIP experiments38. 
Lastly, we compare the sensitivity and specificity of sortChIC with exist-
ing methods. To compare sortChIC with pA-MN22,27,28 and Tn5-based 
methods30–32 (Extended Data Fig. 2a–c), we quantify sensitivity and 
signal specificity (Gini coefficient and signal enrichment). In terms of 
sensitivity, we find sortChIC to perform better than scChIP-seq and 
Tn5-based methods. While single-cell chromatin immunocleavage 
sequencing (scChIC-seq) and indexing single-cell immunocleavage 
sequencing (iscChIC-seq) have comparable or slightly higher sensitivity 
(Extended Data Fig. 2b,c, top left panel), both achieve this high signal at 
the expense of specificity (Extended Data Fig. 2b,c, bottom panels). A 
caveat for these comparisons is the use of different cell lines, antibodies 
and primary tissue samples.

Active marks prime HSPCs, H3K27me3 marks mature 
alternatives
Next, we map active and repressive chromatin changes during blood 
formation. To equally include rare and common cell types from the 
mouse BM, we use cell surface markers Sca1, cKit and a set of lineage 
markers (Lin) to sort whole BM, lineage marker negative (Lin−) and LSK 
(Lin−Sca1+ckit+) cells that contain HSCs and multipotent progenitors 
(MPPs) and profile the same set of histone modifications (Extended 
Data Fig. 3a). Applying Latent Dirichlet Allocation (LDA)39 and visual-
izing the output with Uniform Manifold Approximation and Projec-
tion (UMAP) reveals distinct clusters that contain LSKs, unenriched 
cell types or mixtures of lineage negative and unenriched cell types 
(Fig. 2a and Extended Data Fig. 3b). We use the H3K4me3 signal in pro-
moter regions (transcription start site (TSS) ±5 kb) to determine marker 
genes for eight blood cell types (Fig. 2b). These regions contain known 
cell-type-specific genes such as the B-cell-specific transcription fac-
tor (TF), Ebf1 (Fig. 2c), and the neutrophil-specific gene, S100a8 (Fig. 
2d). Specific regions are marked in a cell-type-dependent manner for 
H3K4me1 and H3K4me3. Conversely, these regions are depleted for 
H3K27me3 (Fig. 2e). This is exemplified by the TSS of the B-cell-specific 
TF, Ebf1 (Fig. 2f). Next, we analyze published scRNA-seq data to deter-
mine mRNA abundances4 associated with our cell-type-specific pro-
moter regions and confirm that these sets of genes are cell-type-specific 
(Extended Data Fig. 3c). Interestingly, we find that HSPCs already have 
H3K4me3 and H3K4me1 signal at the Ebf1 promoter and gene body 
suggesting HSPCs may already have active marks at genes before their 
expression in different lineages.

We extend the Ebf1 observation to all TSSs in our eight 
cell-type-specific gene sets defined using H3K4me3, by compar-
ing fold changes between differentiated cell type relative to HSPCs 
(Extended Data Fig. 3d–f). We find both up- and down-regulation of 
active chromatin. for example, at B-cell-specific genes, active chroma-
tin levels increase from HSPCs to B cells and plasmacytoid dendritic 
cells (pDCs) but decrease in basophils/eosinophils, neutrophils and 
erythroblasts (Extended Data Fig. 3d,e). This divergence occurs in all 
eight cell-type-specific gene sets, suggesting that cell-type-specific 

regions in HSPCs already have an intermediate level of active chromatin 
marks, which are modulated depending on the final cell type.

Repressive H3K27me3 at B-cell-specific genes, by contrast, is 
upregulated in nonB cells compared to HSPCs, while only few of them 
lose H3K27me3 signal upon B-cell differentiation (Extended Data  
Fig. 3f). Across other cell types, we observe a similar trend where 
mature cells upregulate H3K27me3 at genes specific for alternative 
cell fates, likely silencing cell type inappropriate genes.

In sum, our analysis of hematopoietic cell-type specific genes 
shows that in HSPCs active chromatin premarks genes of different 
blood cell fates, while H3K27me3 repressive chromatin during hemat-
opoiesis silences genes of alternative fates.

Dynamic H3K9me3 regions reveal HSPCs and three lineages
To understand chromatin regulation in heterochromatic regions, 
we explore H3K9me3. H3K9me3 analysis reveals the following four 
clusters: one cluster containing mostly LSKs, one containing mostly 
unenriched cells and two clusters containing a mixture of unenriched 
and lineage-negative cells (Fig. 3a,b). Large megabase-scale domains 
marked by H3K9me3 are constant across cell types; however, smaller 
regions display cluster-specific signals (Fig. 3c). Analysis of 50 kb 
regions across the genome identified 6,085 cluster-specific H3K9me3 
regions (q < 10−9, deviance goodness of fit). These regions have a 62.8 kb 
median distance to the nearest TSS, while noncluster-specific H3K9me3 
regions have a 138 kb median distance to a TSS (Extended Data Fig. 4a). 
This suggests that cluster-specific H3K9me3 regions may be associated 
with gene regulation.

We hypothesize that H3K4me1 may also show differential enrich-
ment in these cluster-specific H3K9me3 regions. Therefore, we select 
150 regions with the largest depletion of the H3K9me3 compared to 
HSPC, resulting in four sets of cluster-specific regions (Extended Data 
Fig. 4b). The H3K4me1 signal in each of these four sets of regions shows 
cell-type-specific enrichment (Extended Data Fig. 4c), which anticor-
relates with H3K9me3 (Fig. 3d). We use this anti-correlation to annotate 
H3K9me3-defined cell clusters as erythroid, lymphoid and myeloid line-
ages (Fig. 3e). We find that regions depleted of H3K9me3 in HSPCs show 
upregulation of H3K4me1 in HSPCs (Fig. 3f). For H3K9me3-depleted 
regions in myeloid cells, we find that H3K4me1 is upregulated not only 
in neutrophils but also in other cell types that share the myeloid line-
age, such as monocytes (Fig. 3g). This anti-correlation is exemplified 
at the Gbe1 locus. In this region, HSPCs, lymphoid and myeloid cell 
types show enrichment of H3K4me1 accompanied by a marked deple-
tion in H3K9me3 (Fig. 3h). At these H3K9me3 regions, we also detect 
cell-type-specific signal in H3K4me3 and in H3K27me3, although the 
pattern is weaker than in H3K4me1 (Extended Data Fig. 4d). Overall, 
we find fewer cell clusters with distinguishable H3K9me3 distribution 
compared to active chromatin marks. We show that this reduction is 
the consequence of cell types of the same lineage sharing the same 
H3K9me3 signal.

Repressive chromatin changes are mostly cell fate-independent
We next ask whether global patterns in chromatin dynamics during 
hematopoiesis differ between repressive and active marks. We apply 
differential analysis on 50 kb regions for all four marks, resulting 
in 10,518 dynamic bins for H3K4me1, 2,225 for H3K4me3, 5,494 for 
H3K27me3 and 6,085 for H3K9me3 (Supplementary Table 1). For each 
histone modification, we count the cell type pseudobulk signal across 

Fig. 3 | Heterochromatin state dynamics during hematopoiesis. a, UMAP of 
H3K9me3 (n = 3,631) representing single cells from whole BM (unenriched), Lin− 
and LSK sorted cells. b, Fraction of unenriched, Lin− and LSK cells in each of the 
four H3K9me3 clusters. c, Region showing the H3K9me3 pseudobulk sortChIC 
signal of the four clusters. d, Heatmap of 50 kb bins displaying the relative 
H3K9me3 (left) and H3K4me1 (right) sortChiC signal in erythroblasts, lymphoid, 
myeloid and HSPCs. e, UMAP of H3K9me3 and H3K4me1 sortChIC data, colored 

by cell type. f, Single-cell signal of cluster1-depleted bins (averaged across the 150 
bins) showing low H3K9me3 and high H3K4me1 signal in lymphoid cells. Same 
bin set was used for both histone modifications. g, Single-cell signal of cluster3-
specific bins showing low H3K9me3 and high H3K4me1 signal in myeloid cells. h, 
Zoom-in of the same genomic region in c for H3K9me3 and H3K4me1 pseudobulk 
sortChIC signal.
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the bins and perform hierarchical clustering. In active marks, we find 
that the largest differences come from erythroblast versus noneryth-
roblasts (Extended Data Fig. 5a). This observation is consistent with 
the TSS analysis, where the erythroblasts show the largest changes in 

active chromatin (Extended Data Fig. 3d–e). In accordance with the 
same TSS-centric analysis, we find intermediate levels of H3K4me1 
and H3K4me3 in HSPCs (Extended Data Fig. 5a), suggesting a more 
accessible chromatin state in HSPCs.
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We used generalized principal component analysis (GLMPCA) 
to project the active mark data onto the two most significant axes 
of chromatin variation40, which reveals a central position for HSPCs 
relative to other cell types, suggesting that active chromatin during 
hematopoiesis diverges depending on the cell type (Fig. 4a, left two 
panels). By contrast, clustering repressive chromatin dynamics mainly 
distinguishes HSPCs and differentiated cell types, (Extended Data Fig. 
5a). Projecting the repressive mark data reveals a peripheral position 
of HSPCs compared to other cell types (Fig. 4a, right two panels). By 
comparing bins that gain or lose chromatin marks in mature cell types 
relative to HSPCs, we find more than half of the bins that gain or lose 
repressive marks co-occur in all other cell fates (Fig. 4b), suggesting 

that changes in repressive chromatin during hematopoiesis are inde-
pendent of cell fate. By contrast, only 8% of bins in active chromatin 
show cell-type-independent changes. Differences between HSPCs and 
non-HSPCs at affected bins show distinct separation between HSPCs 
and non-HSPCs in repressive marks. We do not observe this for active 
marks (Extended Data Fig. 5b), corroborating that a large fraction of 
changes in repressive chromatin is independent of cell fate. These 
cell fate-independent changes are exemplified for H3K27me3 at the 
Hoxa region, which shows low levels of H3K27me3 in HSPCs, which are 
upregulated in differentiated cell types (Fig. 4c). In addition, HSPCs 
at the immunoglobulin heavy chain (Igh) region carry high levels of 
H3K9me3, which is lost in myeloid and lymphoid cells, suggesting 
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that this region, encoding the heavy chains of immunoglobulins, is 
derepressed during differentiation (Fig. 4d).

Next, we ask whether H3K27me3 and H3K9me3 regulate distinct 
processes. We confirm that H3K27me3 dynamics occur at TSS-proximal 
GC-rich regions while H3K9me3 is dynamic at TSS-distal AT-rich 
regions (Extended Data Fig. 5c–d)20. Gene ontology (GO) analysis of 
H3K9me3 regions unique to HSPCs shows enrichment of phagocytosis, 

complement activation and B-cell-receptor signaling (Extended Data 
Fig. 5e), suggesting that HSPCs use H3K9me3 to repress genes that 
are required in differentiated blood cells. In contrast, GO analysis 
of HSPC-specific H3K27me3 regions does not show enrichment for 
biological processes related to blood development.

Taken together, we find that during differentiation, intermediate 
levels of active chromatin marks in HSPCs are up- or down-regulated 
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depending on the specific cell fate. In contrast, most dynamic 
repressive chromatin regions are gained or lost independent of the  
specific cell fate.

TF motifs underlie chromatin dynamics
Next, we ask whether regulatory DNA sequences underlying the 
sortChIC data can explain the chromatin changes. We hypothesize that 
regions with correlated sortChIC signal across cells can be explained 
by TF binding motifs shared across these regions41,42 (Extended Data 
Fig. 6a). We adapted MARA, a ridge regression framework, to infer TF 
motif activities in single cells. SortChIC signals are the observed vari-
ables, TF binding motifs are covariates and TF motif activities are latent 
variables to be inferred. We find statistically significant TF motifs that 
explain correlations in single-cell chromatin dynamics across different 
genomic regions. We use TF motif activity42–46 as a term to connect our 
method to earlier contributions to this problem. Overlaying the pre-
dicted single-cell TF motif activities onto the UMAP shows the expected 

cell-type-specific TF motif activities. We find high ERG motif activity in 
HSPCs47 (Fig. 5a, left), high CEBP motif activity in neutrophils48,49 (Fig. 
5a, mid-left), high EBF motif activity in B cells50 (Fig. 5a, mid-right) and 
high TAL1 motif activity in erythroblasts51 (Fig. 5a, right), in agreement 
with the reported role of each TF.

We summarize the inferred single-cell TF activities underlying 
the cell-type-specific distribution of active H3K4me1 in Fig. 5b. We 
predict motifs active in pDCs belonging to the IRF and RUNX family 
(Fig. 5b and Extended Data Fig. 6b–d), consistent with their role in type 
1 interferon secretion52,53, dendritic cell progenitor development54 and 
pDC migration55, respectively. We find natural killer (NK) cells to have 
high E26 transformation-specific (ETS) family motif activity (Fig. 5b and 
Extended Data Fig. 6b,e), consistent with the role of Ets1 in the develop-
ment of natural killer and innate lymphocyte cells56,57. Finally, we predict 
TFs that have the lowest activity in HSPCs and pDCs, such as the NR4A 
family (Fig. 5b and Extended Data Fig. 6b,f). Considering that NR4A 
family members are highest expressed in HPSCs (data not shown), we 
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conclude that NR4A mainly prevents enhancer activation, consistent 
with a repressive function of Nr4a1 in HSPCs58,59. The low activity of 
several TFs suggests that pDCs could be in a more progenitor-like 
state, consistent with our pseudobulk clustering results in H3K4me1, 
H3K4me3 and H3K27me3 (Extended Data Fig. 5a).

We apply our TF motif analysis to the two repressive chromatin 
landscapes to predict motifs that explain HSPC-specific distributions. 
In H3K27me3, we predict a CCAT motif belonging to the Yin Yang fam-
ily60, specifically active in HSPCs (Fig. 5c). The Yy1 gene encodes a 
polycomb group protein, shown to regulate HSC self-renewal61. In 
H3K9me3, we predict an AT-rich motif belonging to the transcriptional 
repressor PLZF, specifically active in HSPCs (Fig. 5d), that has been 
implicated in regulating the cell cycle of HSCs62.

Taken together, our framework predicts TFs underlying 
cell-type-specific chromatin dynamics. We suggest that differentiating 
cells decide which active regions to up- or down-regulate depending 
on the cell-type-specific TFs that associate with these regions.

Distinct cell types can share similar heterochromatin states
To understand the relationship between the eight cell types identi-
fied by histone marks of gene-rich regions (H3K4me1, H3K4me3 and 
H3K27me3) to the four clusters identified by H3K9me3, we stain cells 
with both H3K4me1 and H3K9me3 antibodies63. This double-incubation 
strategy generates cuts that come from both H3K4me1 and H3K9me3, 
and uses our single mark sortChIC data to infer the relationships 
between the two marks in single cells (Fig. 6a). We sort Lin− and 
unenriched cells to profile abundant and rare cell types. Joint UMAP 
landscapes reveal clusters that are depleted or enriched for mature 
lineage markers (Fig. 6b). We use clusters from H3K4me1 and H3K9me3 
single-incubated data to develop a model of how the double-incubated 
data could be generated (Fig. 6c).

For this, we select 811 regions associated with cell-type-specific 
genes found in our H3K4me1 analysis (Fig. 2e) and 6,085 cluster-specific 
regions (50 kb bins) found in our H3K9me3 analysis (Extended Data  
Fig. 5a, right panel) as features in our model, making a total of 6,896 
regions. We verify that these features show cluster-specific differences, 
by clustering the single-incubated H3K4me1 and H3K9me3 signal 
across cell types (Extended Data Fig. 7a,b).

Because we do not know which cluster from H3K4me1 pairs with 
which cluster from H3K9me3, we generate an in-silico model of all pos-
sible pairings (Fig. 6c, left). For each double-incubated cell, we perform 
model selection to select the cell pair with the highest probability  
(Fig. 6c, right, and Extended Data Fig. 7c–e). This selection reveals that 
cell types share a common heterochromatin landscape, reflecting their 
myeloid64 or lymphoid lineage65 (Fig. 6d). Erythroblasts do not share a 
heterochromatin landscape with any other cell type. Surprisingly, we 
find pDCs associated with the HSPC-enriched H3K9me3 landscape, 
suggesting that these cells may have already committed toward a pDC 
fate through active chromatin, while their heterochromatin remains 
undifferentiated.

This confirms that distinct cell types in related lineages can share 
their heterochromatin state (Fig. 6e,f), suggesting a hierarchical model 
where changes in heterochromatin might restrict lineages and changes 
in active chromatin define cell types within lineages.

Distinct repressive chromatin trajectories in hematopoiesis
To systematically analyze a continuous trajectory from 
fluorescence-activated cell sorting (FACS)-validated HSCs to differ-
entiated cell types across histone modifications, we expand our data-
set to include different HSPC subpopulations and cKit+ progenitor 
cells. Specifically, we sort HSCs, including both long-term (LT) and 
short-term (ST) HSCs, MPPs, common myeloid progenitors (CMPs), 
and megakaryocyte/erythrocyte progenitors (MEPs). Furthermore, 
we validate our differentiated cell types by sorting B cells, NK cells, 
erythroblasts, neutrophils, monocytes, pDCs and cDCs (Extended 
Data Fig. 8a). In total, we increase our BM dataset by 17,270 new cells 
across H3K4me1, H3K4me3, H3K27me3 and H3K9me3 (Extended Data 
Fig. 8b), giving a total of 39,857 cells in our dataset.

A subset of the new sortChIC cells has combinations of Sca1, 
cKit and Lin marker levels from FACS that allow the definition of a 
FACS-based differentiation stage (Fig. 7a). We plot these Sca1, cKit, 
Lin-stained cells onto a ternary plot to project cells along a FACS-defined 
differentiation trajectory. Cells arrange along a continuum of differen-
tiation potential as follows: from uncommitted progenitors (Sca1+, cKit+ 
and Lin−) and committed progenitors (Sca1−, cKit+ and Lin−) to mature 
cells (Sca1−, cKit− and Lin+). Plotting relative levels of Sca1, cKit and Lin 
onto the UMAP reveals HSCs, progenitors and mature cells (Fig. 7b).

Next, we use the labeled cells from FACS (Extended Data Fig. 8a) 
to assign each cell to a cell type in a supervised and probabilistic man-
ner (Extended Data Fig. 9a–e), creating a high-confidence dataset 
of 14 subtypes (Fig. 7c). Of note, we find that monocytes are epige-
netically distinct from neutrophils and DCs in H3K4me1, H3K4me3 
and H3K27me3, but in H3K9me3 all mature myeloid cell types appear 
to cluster together (Fig. 7c and Extended Data Fig. 9a–c). We validate 
the presence of pDCs in our dataset, which forms distinct islands in 
H3K4me1, H3K4me3 and H3K27me3 but are spread across the HSPC 
cluster in H3K9me3 (Extended Data Fig. 9b).

We analyze neutrophil, B cell, erythroblast and HSPC-specific 
marker gene sets (±5 kb around TSS) for H3K4me1, H3K4me3 and 
H3K27me3 alterations from HSCs to different mature cell types. For 
mature cell-type-specific genes, we find that active marks start with 
intermediate levels in HSCs, which diverge during differentiation 
into mature cell types (Fig. 7d and Extended Data Fig. 10a–c). In con-
trast, marker genes of mature cell types show low H3K27me3 in HSCs 
that increase during differentiation in cell types that do not express 
them (Fig. 7d and Extended Data Fig. 10b–c, right). Genes specifically 
expressed in HSPCs lose active marks and accumulate H3K27me3 in all 
differentiation trajectories (Extended Data Fig. 10d).

To summarize these trajectory dynamics, we take dynamic bins 
(Supplementary Table 1) and apply principal component analysis 
(PCA) (Fig. 7e). To estimate chromatin velocities for each mark, we 
fit a trajectory-specific cubic spline across pseudotime for each bin, 
then calculate the derivatives with respect to pseudotime. Bin-level 
velocities are then projected onto the PCA for each histone mark  
(Fig. 7e). In active marks, we find trajectories that diverge according to 
erythroid, myeloid and lymphoid lineages. Repressive chromatin, by 
contrast, shows cell-type-independent changes before lineage speci-
fication. At the bin level, we use regions that are upregulated for each 
histone mark independently for neutrophils, B cells or erythroblasts 

Fig. 7 | Trajectory analysis across stem, progenitor and mature cell types 
reveal histone mark-specific chromatin velocities. a, sortChIC design to 
capture stem, progenitor and mature cell types during hematopoiesis. Ternary 
plot of cells for Sca1, cKit and Lin marker levels measured by FACS. b, Sca1, cKit 
and Lin-stained cells plotted in UMAP space. Cells with staining are colored 
according to their relative levels of Sca1, cKit and Lin, as coded in a. Cells 
unstained for these surface molecules are colored gray. c, UMAP integrating all 
BM sortChIC data for each of the four histone modifications. Cell type identity is 
based on the sorted cell types explained in Extended Fig. 8a (number of cells for 
H3K4me3, n = 10,952; H3K4me1, n = 12,085; H3K27me3, n = 7,934 and H3K9me3, 

n = 8,886). d, Mean sortChIC signal of neutrophil marker genes (defined from 
heatmap Fig. 2e). The same 150 regions are used for each histone modification. e, 
First two principal components for the sortChIC data. Chromatin velocities are 
calculated for each bin and then projected onto the PCA for each modification 
separately (Methods). f, Mean sortChIC signal for bins that are upregulated 
in neutrophils relative to HSPCs across cell types for the four histone marks 
independently. Regions are defined for each histone modification separately 
(H3K4me3, 1,009 bins; H3K4me1, 4,473 bins; H3K27me3, 2,549 bins and 
H3K9me3, 2,838 bins). Density plots below show the distribution of cell types 
along the neutrophil trajectory (HSCs, LTs, STs, MPPs, CMPs and neutrophils).
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relative to HSPCs and plot the mean histone mark levels per cell along 
pseudotime (Fig. 7f, Supplementary Fig. 1a–b, regions defined previ-
ously, and Supplementary Table 1). For all three bin sets, we find that 

active marks diverge across cell types, while repressive marks show 
dynamics that are shared across cell types consistent with our earlier 
findings (Fig. 4b).
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Chromatin commitment coincides with lineage restriction
To compare the global dynamics of the four different histone marks 
along a common trajectory, we use the marker levels of Sca1, cKit and 
Lin and asked when global chromatin states are specified along the 
Sca1-cKit-Lin trajectory. Overlaying the relative levels of Sca1, cKit 
and Lin onto the PCA shows that Sca1 levels are already low when chro-
matin has specified the myeloid (CMPs) or erythroid lineage (MEPs; 
Supplementary Fig. 2a). Plotting principal component 1 along the 
Sca1-cKit-Lin trajectory shows that first differences on chromatin level 
can be observed at the exit of multipotency, when MEPs and CMPs 
emerge after the loss of Sca1 (Supplementary Fig. 2b,c), suggesting 
that chromatin changes co-occur with lineage commitment. These 
results are in line with previous studies identifying a switch from mul-
tilineage priming to lineage restriction on marker genes during pro-
genitor cell commitment66. Overall, we apply sortChIC to interrogate 
FACS-validated rare subpopulations and differentiated cell types in the 
BM, enabling systematic analysis of active and repressive chromatin 
dynamics during hematopoiesis.

Discussion
Here we provide a comprehensive map of chromatin regulation at both 
euchromatic and heterochromatic regions during blood formation. 
We find that repressive chromatin shows distinct dynamics compared 
with active chromatin, demonstrating that profiling repressive chro-
matin regulation in single cells reveals new dynamics. Active chromatin 
premarks in HSPCs genes of all lineages and is up- or down-regulated 
depending on the specific cell fate, mediated by cell-type-specific 
TFs. Consequently, active chromatin shows divergent changes for 
different blood cell fates (Fig. 8, left panel). In contrast, changes in 
repressive chromatin often occur in the same direction regardless of 
the specific cell fate, resulting in large differences between HSPCs and 
mature cell types (Fig. 8, middle and right panel). In accordance with 
the premarked active chromatin state in HSCs, the majority of mature 
cell-type-specific genes show low levels of H3K27me3 in HSCs and 
consolidate their differentiation choice by silencing genes specific to 
HSCs and of the unchosen trajectory. This progressive transition to 
a restricted chromatin state agrees with previous studies showing a 
genome-wide transition during ES cell differentiation67. Although our 
results are correlative, previous work characterizing the consequences 
of HSC-specific deletion of EED68, a core component of both PRC1 and 

PRC2, showed a loss of differentiation capacity, while preserving HSCs 
self-renewal. This suggests an integral role of H3K27me3 after the onset 
of lineage commitment in hematopoiesis.

Our findings further expand the role of H3K9me316. We find that 
H3K9me3 changes underlie the lineage restriction in hematopoiesis 
and are rewired as HSPCs differentiate. Although in vivo dynamics in 
H3K9me3 have been reported during early development16–18, our results 
extend the knowledge of H3K9me3 dynamics to homeostatic renewal 
in adult physiology. Joint analysis of active and repressive marks cor-
roborates the hierarchical chromatin changes and shows a similarity 
between pDCs and HSPCs69,70 in their heterochromatin state.

Our FACS sorting strategy profiled the epigenomes of rare and 
abundant cell types in the BM. Although our analysis did not find clear 
subpopulations within rare progenitor cells previously observed in 
scRNA-seq studies4,71, the cell type resolution obtained with sortChIC 
is comparable to scRNA-seq studies. Rather than a way to further sub-
categorize existing cell types, sortChIC profiles layers of regulation 
that guide differentiation. If the sensitivity can be further improved, 
additional chromatin states might become visible that are indistin-
guishable from scRNA-seq. Future multi-omics studies integrating the 
detection of chromatin modifications with transcription72–74 should 
further facilitate the integrated analysis of diverse histone modifica-
tions and allow us to more clearly understand how these multiple layers 
of gene regulation are related.
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Methods
Our research complies with all relevant ethical guidelines. Experimen-
tal procedures were approved by the Dier Experimenten Commissie of 
the Royal Netherlands Academy of Arts and Sciences and performed 
according to the guidelines.

Animal experiments
Primary BM cells were collected from 3-month-old male C57BL/6 mice. 
Femur and tibia were extracted, and the bones ends were cut away to 
access the BM, which was flushed out using a 22 G syringe with HBSS 
(-Ca, -Mg, -phenol red; Gibco, 14175053) supplemented with Pen-Strep 
and 1% FCS. The BM was dissociated and debris was removed by passing 
it through a 70 μm cell strainer (Corning, 431,751). Cells were washed 
with 25 ml supplemented HBSS before lineage marker staining was per-
formed following the instructions of the EasySep Mice Hematopoietic 
Progenitor Cell Isolation Kit (Stemcell), using half of the recommended 
concentration of the biotinylated antibodies. This was followed by 
30 min incubation at 4 °C with a staining layout-dependent antibody 
cocktail detailed below. Where indicated lineage depletion was per-
formed by incubating cells with magnetic streptavidin beads follow-
ing instructions of the EasySep Mice Hematopoietic Progenitor Cell 
Isolation Kit. After two additional washes with HBBS (+PS, +FCS), cells 
were prepared following the sortChIC protocol for the four different 
histone modifications.

Cell culture
K562 cells (ATCC CCL-243) were grown in RPMI 1640 Medium Glu-
taMAX, supplemented with 10% FCS, Pen-Strep and nonessential amino 
acids. After collecting, cells were washed three times with room tem-
perature PBS before continuing with the sortChIC protocol.

sortChIC-seq: Cell preparation: fixation. Three buffers are used for 
the majority of cell preparation. A basic ChIC buffer (47.5 ml H2O RNAse 
free, 1 ml 1 M HEPES pH 7.5 (Invitrogen), 1.5 ml 5 M NaCl, 3.6 μl pure 
spermidine solution (Sigma Aldrich), 0.05% Tween20), a Wash buffer 
(Basic ChIC buffer with 1 Ethylenediaminetetraacetic acid (EDTA)-free 
protease inhibitor cocktail tablet per 50 ml (Sigma Aldrich)) as well as 
a Antibody incubation buffer (Wash buffer with 4 ml ml−1 0.5 M EDTA). 
All steps performed on ice were as follows: in step 1, cells were resus-
pended in 300 μl PBS per 1 million cells in a 15 ml protein low binding 
falcon tube and 700 μl ethanol (−20 oC precooled) per 1 million cells 
are added while vertexing cells at middle speed. In step 2, cells were 
fixed for 1 h at −20 oC. In step 3, after fixation, cells were washed twice 
in 1 ml antibody incubation buffer. In case cells had to be stored before 
sorting, DMSO was added to a final concentration of 10% and cells were 
frozen at –80 °C. After thawing, cells are washed once in 0.5 ml antibody 
incubation buffer before continuing with pA-MN targeting.

sortChIC-seq: Cell preparation: nuclei. Cells were washed once in 1 ml 
antibody incubation buffer (0.05% Tween replaced by 0.05% Saponin 
for this and following steps with nuclei). Nuclei were isolated by further 
Saponin incubation overnight in parallel to the antibody staining. For 
BM, we sorted nine plates each for H3K4me1, H3K4me3 and H3K9me3.

sortChIC-seq: pA-MN targeting. In step 4, cells were pelleted at 500 g 
for 4 min and resuspended in 200 μl antibody incubation buffer per 1 
million cells and were aliquoted into 0.5 ml protein low binding tubes 
containing the primary histone mark antibody (details can be found in 
the Supplementary Note section Materials section) diluted in 200 μl 
antibody incubation buffer; in step 5, cells were incubated overnight at 
4 oC on a roller, (step 6) before they were washed once with 500 μl Wash 
Buffer. In the case of double-labeling experiments, cells were incubated 
with antibodies against H3K4me1 and H3K9me3 together at the same 
concentrations as for the single-mark experiments. Afterwards (step 
7), cells were resuspended in 500 μl wash buffer containing pA-MN 

(3 ng ml−1) and Hoechst 34580 (5 μg ml−1) and (step 8) incubated for 1 h 
at 4 °C on a roller. In step 9, finally, cells were washed an additional two 
times with 500 μl Wash Buffer before passing them through a 70 μm 
cell strainer (Corning, 431751).

sortChIC-seq: FACS sorting. In step 10, for all experiments, cells were 
gated additionally to cell surface markers for G1 cell cycle stage based 
on the Hoechst staining on an Influx FACS machine into 384 well plates, 
containing 5 μl sterile filtered mineral oil (Sigma Aldrich) per well, 
using forward scatter and trigger pulse width to further remove cell 
doublets. Cells were sorted using index sorting, which records FACS 
information for every sorted well. To further exclude missorting of 
more than the intended cell, we used custom sort settings—objective: 
single, number of drops=1, extra coincidence=complete empty (no 
signal in the previous and next drop) and phase mask=center 10/16 
(cell is in the middle of the sorted drop).

Sort layouts for separate experiments can be found in Extended 
Data Figs. 1a, 3a and 8a, with total number of plates sorted per condi-
tion found in Supplementary Table 4. Antibody details can be found in 
the Supplementary Note section Materials section. Data was collected 
using BD FACS software (version 1.2.0.124).

sortChIC-seq: pA-MN activation. The following small volumes were 
distributed using a Nanodrop II system (Innovadyme) and plates were 
spun for 2 min at 4 °C and 2,000g after each reagent addition.

In step 11, 100 nl of basic ChIC buffer, containing 2 mM CaCl2, 
was added per well to induce pA-MN mediated chromatin digestion. 
In step 12, for digestion, plates were incubated for 30 min in a PCR 
machine set at 4 °C. Afterwards (step 13), the reaction was stopped 
by adding 100 nl of a stop solution containing 40 mM EGTA (chelates 
Ca2+ and stops MN, Thermo, 15425795), 1.5% NP40 and 10 nl 2 mg ml−1 
proteinase K (Invitrogen, AM2548). In step 14, plates were incubated in 
a PCR machine for further 20 min at 4 °C, before chromatin is released 
and pA-MN was permanently destroyed by proteinase K digestion at 
65 °C for 6 h followed by 80 °C for 20 min to heat inactivate proteinase 
K. Afterwards, plates can be stored at −80 °C until further processing.

sortChIC-seq: Library preparation. In step 15, DNA fragments are 
blunt-ended by adding 150 nl end repair mix (Supplementary Table 5) 
per well and incubating for 30 min at 37 °C followed by 20 min at 75 °C 
for enzyme inactivation. In step 16, blunt fragments are subsequently 
A-tailed by adding 150 nl per well of A-tailing mix (Supplementary 
Table 6) and incubating for 15 min at 72 °C. Through AmpliTaq 360ʼs 
strong preference to incorporate dATP as a single base overhang 
even in the presence of other nucleotides, a general dNTP removal 
is not necessary.

Next fragments are ligated to T-tail containing forked adapters 
(see Supplementary Note section Materials for sequences).

In step 17, for ligation, 50 nl of 5 μM adapter in 50 mM Tris pH 7 is 
added to each well with a mosquito HTS (ttp labtech). After centrifuga-
tion (step 18), 150 nl of adapter ligation mix (Supplementary Table 7) 
are added before (step 19) plates are incubated for 20 min at 4 °C, fol-
lowed by 16 h at 16 °C for ligation and 10 min at 65 °C to inactivate ligase.

In step 20, before pooling 1 μl of Nuclease-free water was added to 
each well to minimize material loss. In step 21, ligation products were 
pooled by centrifugation into oil-coated VBLOK200 Reservoir (Click-
Bio) at 500g for 2 min and (step 22) the liquid face was transferred into 
1.5 ml Eppendorf tubes and (step 23) was purified by centrifugation 
at 13,000g for 1 min and transfer into a fresh tube twice. In step 24, 
DNA fragments were purified using Ampure XP beads (Beckman Coul-
ter—prediluted 1 in 8 in bead binding buffer—1 M NaCl, 20% PEG8000, 
20 mM Tris, pH = 8, 1 mM EDTA) at a bead-to-sample ratio of 0.8. In 
step 25, after 15 min incubation at room temperature, beads were 
washed twice with 1 ml 80% ethanol resuspending the beads during 
the first wash and (step 26) resuspended in 8 μl nuclease-free water. 
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After 2 min elution, the supernatant was (step 27) transferred into a 
fresh 0.5 ml tube. In step 28, the cleaned DNA is then linearly amplified 
by in vitro transcription adding 12 μl of MEGAscript T7 Transcription 
Kit (Thermo Fisher Scientific, AMB13345) for 12 h at 37 °C. In step 29, 
template DNA is removed by the addition of 2 μl TurboDNAse (IVT 
kit) and incubation for 15 min at 37 °C. In step 30, the produced RNA 
is further purified using RNA Clean XP beads (Beckman Coulter) at 
0.8 beads to sample ratio and samples are resuspended in 22 μl of 
Nuclease-free water. In step 31, RNA is fragmented by mixing in 4,4 μl 
fragmentation buffer (200 mM Tris-acetate pH 8.1, 500 mM KOAc, 
150 mM MgOAc) and incubation for 2 min at 94 °C. In step 32, frag-
mentation is stopped by transferring samples to ice, adding 2.64 μl 
0.5 M EDTA and another bead cleanup and samples are resuspended 
in 12 μl nuclease-free water.

In step 33, 5 μl of the RNA is primed for reverse transcription 
by adding 0.5 μl dNTPs (10 mM) and 1 μl random hexamer reverse 
transcription primer 20 μM (for sequence see Supplementary Note 
section Materials) and (step 34) hybridizing it by incubation at 65 °C 
for 5 min followed by direct cool down on ice. In step 35, reverse tran-
scription is performed by further addition of 2 μl first strand buffer 
(part of Invitrogen, 18064014), 1 μl DTT 0.1 M (Invitrogen, 15846582), 
0.5 μl RNAseOUT (Invitrogen, LS10777019) and 0.5 μl SuperscriptII 
(Invitrogen, 18064014) and (step 36) incubating the mixture at 25 °C 
for 10 min followed by 1 h at 42 °C. In step 37, single-stranded DNA is 
purified through incubation with 0.5 μl RNAse A (Thermo Fisher Sci-
entific, EN0531) and (step 38) incubation for 30 min at 37 °C. In step 
39, a final PCR amplification to add the Illumina small RNA barcodes 
and handles is performed by adding 25 μl of NEBNext Ultra II Q5 Master 
Mix (NEB, M0492L), 11 μl nuclease-free water and 2 μl of RP1 and RPIx 
primers (10 μM).

In step 40, PCR is performed with following protocol, activation for 
30 s at 98 C, 8–12 cycles (depending on starting material) 10 s at 98 C, 
30 s at 60 C, 30 s at 72 °C, final amplification 10 min at 72 °C (step 41) 
PCR products are cleaned by two consecutive DNA bead clean-ups with 
a 0.8X bead-to-sample ratio. In step 42, the final product was eluted 
in 7 μl nuclease-free water, and the abundance and quality of the final 
library are assessed by QUBIT and bioanalyzer.

pA-MN production
The pA-MN fusion protein was produced following the methods section 
in ref. 24 (details can be found in Supplementary Note section Materials).

Statistics and reproducibility
No statistical method was used to predetermine the sample size. 
Low-quality cells (for example, number of cuts below threshold, cuts 
not containing expected MN cut motif, and cells with unspecific cuts) 
were removed from further analysis. The experiments were not rand-
omized. The investigators were not blinded to allocate during experi-
ments and outcome assessment.

Data preprocessing
We developed a preprocessing pipeline called SingleCellMultiOm-
ics (version v.0.1.25) to process sortChIC data (https://github.com/
BuysDB/SingleCellMultiOmics/wiki). The pipeline for sortChIC pro-
cesses raw fastq files through the following software:

Demultiplexing is performed with demux.py (from SCMO v0.1.25) 
and adaptors are trimmed using cutadapt (version 3.5). Reads are 
mapped with bwa (version: 0.7.17-r1188) and are assigned to molecules 
with bamtagmultiome.py (SCMO v0.1.25). Finally, count tables are 
generated using bamToCountTable.py (SCMO v0.1.25). The code was 
run using python version 3.7.6 and R version 4.1.2. Details can be found 
in the Supplementary Note section Methods.

An example of this full pipeline is available in the sortchicAnalysis 
git repository: https://github.com/jakeyeung/sortchicAnalysis/tree/
main/example_processing_pipeline.

Calculating reads falling in peaks in sortChIC for K562 cells
For each histone modification, we merged K562 single-cell sortChIC 
data, and used the resulting pseudobulk as input for hiddenDomains75, 
with minimum peak length of 1,000 bp. We determined 40,574, 58,257, 
28,499 and 28,380 peaks for H3K4me1, H3K4me3, H3K27me3 and 
H3K9me3, respectively. For each histone modification, we counted 
the fraction of total reads that fall within each set of peaks.

Comparison of sortChIC data with other single-cell chromatin 
profiling assays
To perform a fair comparison of sortChIC data with other similar assays, 
we downloaded the raw data from Bartosovic et al. (GSE163532)32, Gros-
selin et al. (GSE117309)22, Ku et al. (GSE105012)27, Wu et al. (GSE139857)31, 
Kaya-Okur et al. (GSE124557)30 and Ku et al. (GSE139857)28, from GEO, 
and mapped and quantified them using the pipelines described by the 
authors in the original study. For details of study-specific processing, 
see Supplementary Note section Materials.

Dimensionality reduction based on multinomial models
We counted the number of cuts mapped to peaks across cells and 
applied the LDA model39 (from topicmodels version 0.2–12), which 
is a matrix factorization method that models discrete counts across 
predefined regions as a hierarchical multinomial model. LDA can be 
thought of as a discrete version of probabilistic PCA, replacing the 
Gaussian likelihood with a multinomial one76,77. Details can be found 
in Supplementary Note section Materials.

Defining eight sets of blood cell-type-specific genes for  
cell typing
We used the LDA outputs to define topics associated with each cell 
type. Details can be found in Supplementary Note section Materials.

Defining genomic regions for dimensionality reduction
We initially defined regions based on 50 kb nonoverlapping win-
dows genome-wide, applying LDA and using the Louvain method 
to define clusters to merge single-cell bam files. These merged 
bam files were then used to call substantially marked regions using 
hiddenDomains75 with minimum bin size of 1 kb. We merged the 
regions across clusters and generated a new count matrix using the 
hiddenDomains peaks as features. This new count matrix was used 
as input for dimensionality reduction.

Batch correction in dimensionality reduction
Initial LDA of the count matrix revealed batch effects in H3K4me1 and 
H3K9me3 between cell types of plates that contained only one sorted 
type. We fit a linear model in the latent space learned from LDA with a 
cell-type-specific batch effect to correct batch effects. Details can be 
found in Supplementary Note section Methods.

Differential histone mark levels analysis
To calculate the fold change in histone mark levels at a genomic region 
between a cell type versus HSPCs, we modeled the discrete counts Y 
across cells as a Poisson regression. We fitted a null model, which is inde-
pendent of cell type, and a full model, which depends on the cell type and 
compared their deviances to predict whether a region was ‘un-changing‘ 
or ‘dynamic‘ across cell types. We implemented the model in R using 
glm(), details can be found in Supplementary Note section Materials.

Defining bins above background levels for each mark
For each mark, we counted fragments falling in 50 kb bins summed across 
all cells. We then plotted this vector of summed counts as a histogram 
in log scale, which shows a bimodal distribution. We manually defined 
a cut-off for each mark as a background level and took bins that were 
above this cut-off. This cut-off resulted in 22,067, 12,661, 18,512 and 19,881 
bins for H3K4me1, H3K4me3, H3K27me3 and H3K9me3, respectively.
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Calculating bins that change independent of cell type
We used a cut-off of q < 10−50 for H3K4me1, H3K4me3 and H3K27me3, 
and q < 10−9 for H3K9me3 from the deviance test statistic (details of 
‘differential histone mark analysisʼ can be found in Supplementary 
Note section Materials) to define bins that are changing between cell 
types. Details can be found in Supplementary Note section Materials.

Predicting activities of TFs in single cells
We adapted motif activity response analysis (MARA) described in ref. 42 
to accommodate the sortChIC data. Briefly, we model the log-imputed 
sortChIC-seq signal learned from LDA as a linear combination of TF 
binding sites and activities of TF motifs using a ridge regression 
framework:

Ỹg,c =
M
∑
m=1

Ng,mAm,c + ϵ

where Ỹg,c is the batch-corrected sortChIC-seq signal in genomic region 
g in cell c; Ng,m is the number of TF binding sites in region g for TF motif 
m; Am,c is the activity of TF motif m in cell c; ϵ is Gaussian noise. The L2 
penalty for ridge regression was determined automatically using an 
80/20 cross-validation scheme. Z scores of motifs greater than 0.7 were 
kept as statistically significant motifs. Details can be found in Supple-
mentary Note section Materials.

Joint H3K4me1 and H3K9me3 analysis by double incubation
We  a ssu m e  t h a t  co u n t s  f ro m  d o u b l e - i n c u ba te d  ce l l s 
(H3K4me1 + H3K9me3) were generated by drawing N reads from a 
mixture of two multinomials, one from a cell type c from H3K4me1 
(parametrized by relative frequencies p⃗c) and one from a lineage l from 
H3K9me3 (parametrized by relative frequencies q⃗l):

y⃗|c, l,w ∼ Multinomial (N,wp⃗c + (1 −w) q⃗l) ,

where w is the fraction of H3K4me1 that was mixed with H3K9me3. We 
used this model to calculate the likelihood that a double-incubated cell 
was generated by a specific pair of cell type and lineage combination. 
Details can be found in Supplementary Note section Materials.

Imputing Sca1-cKit-Lin marker levels
Some cells had only two of the three marker levels (Sca1, cKit or Lin), and 
we imputed the missing third marker by averaging the top ten nearest 
neighbors in the cell that contains the missing marker levels. Details 
can be found in Supplementary Note section Materials.

Reference-based cell typing using multinomials
We generated a ground truth reference dataset using FACS-defined 
labels, then used this reference to calculate the probability of each 
cell to be assigned to a cell type by assuming the counts from a cell 
were generated from a multinomial distribution parametrized by a 
cell type-specific vector of genomic locus probabilities. Details can 
be found in Supplementary Note section Materials.

Inferring pseudotime across different differentiation 
trajectories
We manually selected two PCs for each cell type trajectory, selecting 
components that show large variation from progenitors (HSCs, LT, ST 
and MPPs), committed progenitors (for example, CMPs and MEPs), to 
mature cell types (for example, neutrophils, DCs, basophils, mono-
cytes, pDCs, NK cells and B cells) of interest. Details can be found in 
Supplementary Note section Materials.

Chromatin velocity in each histone modification
After defining a pseudotime for each differentiation trajectory, we 
fit a trajectory-specific cubic spline of the sortChIC signal along 

pseudotime for each genomic region. We then calculate the deriva-
tive using the spline fits to predict the sortChIC signal of each cell at 
pseudotime t to a future pseudotime t + 0.01. Details can be found in 
Supplementary Note section Materials78.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw and processed data of this study are submitted to Gene 
Expression Omnibus (GEO) and available under accession num-
ber GSE164779. Public data used in this study can be found under 
K562 bulk ChIP data (H3K4me1, ENCSR000EWC; H3K4me3, ENCS-
R000EWA; H3K9me3, ENCSR000APE; H3K27me3, ENCSR000EWB), 
similar assays (GSE163532, GSE117309, GSE105012, GSE139857, 
GSE124557, GSE139857), scRNA-seq of mouse bone marrow 
(GSE113495) and TF motif database (http://swissregulon.unibas.
ch/sr/downloads).

Code availability
All processed and downstream scripts are available at https://
github.com/jakeyeung/sortchicAllScripts (https://doi.org/10.5281/
zenodo.7244251). Example vignettes to load and visualize the data are 
available at https://github.com/jakeyeung/sortChICAnalysis (https://
doi.org/10.5281/zenodo.7108780). Downstream functions and stan-
dalone scripts to run latent Dirichlet allocation and infer TF activi-
ties are available at https://github.com/jakeyeung/scchic-functions 
(https://doi.org/10.5281/zenodo.7244208). The multinomial-based cell 
typing method AnnotateCelltypes is available as an R package at https://
github.com/jakeyeung/AnnotateCelltypes (https://doi.org/10.5281/
zenodo.7108451).
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Extended Data Fig. 1 | sortChIC generates high-resolution maps of histone 
modifications in single cells. (a) FACS plots for sorting individual K562 cells in 
G1 phase. (b) Fraction of cuts starting with TA (reflecting the preference of MNase 
to cut in an AT context) versus number of cuts mapped to the K562 genome. Cells 
below horizontal dotted lines and left of vertical lines are excluded from the 
analysis. (c) Distribution of fraction of cuts mapped to locations within peaks 
across cells. (d) Correlation between pseudobulk sortChIC and bulk ChIP signal 

using 50 kilobase (kb) bins for H3K4me1, H3K4me3, H3K27me3, and H3K9me3. 
(e) Pearson correlation between pseudobulk sortChIC and bulk ChIP signal using 
50 kb bins across the four histone marks. (f) Three tracks of H3K9me3 ChIP-seq 
bulk data, one for H3K9me3 without normalization (H3K9me3), one for the input 
(Input), and one where H3K9me3 is normalized to the input (H3K9me3/input). 
Fourth track is H3K9me3 sortChIC pseudobulk, showing that H3K9me3 ChIP-seq 
requires normalizing by input to resemble sortChIC.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Comparison with existing single cell chromatin 
profiling methods. (a) genomic tracks of pseudobulk data of either cell lines 
(top) or primary cells (bottom). Tracks labeled on the right with h show 8 mb 
of the human chromosome 6 (Chr6:11–19 mb). Tracks labeled with m show 
8 mb of the mouse chromosome 2 (Chr2: 31–39 mb). Lines underneath each 
track indicate peak calling results. (b, c) Comparison across studies of unique 
fragments per cell, fraction of unique reads vs mapped reads, Gini coefficient, 

and cumulative distribution of signal over the genome. The spread of data points 
per genomic fraction reflects agreement between single cells, the elbow-point 
indicates the fraction of the genome covered by the histone mark. (b) cell lines. 
(c) primary cells. Boxplots show 25th percentile, median and 75th percentile, with 
the whiskers spanning 97% of the data. Red line in Gini plots indicates coefficient 
determined from public bulk chip sample (ENCSR000EWB).

http://www.nature.com/naturegenetics
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Extended Data Fig. 3 | H3K4me1 and H3K4me3 in HSPCs prime for different 
blood cell fates, while H3K27me3 in differentiated cell types silences genes 
of alternative cell fates. (a) FACS plot for sorting G1 cells of whole bone marrow 
(unenriched), lineage negative (Lin−), and Lin−,Sca1+, cKit+ (LSK) populations. 
(b) Fraction of cells in each cell type labeled by the sorted population: whole 
bone marrow (unenriched), lineage negative (Lin−), and Lin-Sca1+cKit+ (LSK). 
(c) Cell type-specific mRNA abundances for genes associated with regions in 
Fig. 2E using pseudobulk analysis of the Giladi et al. 2018 dataset (Methods). (d) 
H3K4me3 fold changes of different cell types relative to HSPCs at cell type-

specific regions. Each panel corresponds to a set of cell type-specific regions 
defined by the rows of one color in the heatmap of Fig. 2e. Regions are defined by 
+/− 5 kilobase windows centered at transcription start sites of cell type-specific 
genes. (e) Same as (d) but for H3K4me1. (f) Same as (d) but for H3K27me3. 
Boxplots show 25th percentile, median and 75th percentile, with the whiskers 
spanning 97% of the data. For DCs and Baso/Eosino sets, each boxplot contains 
n = 91 and n = 25 regions, respectively. For all other sets, each boxplot contains 
n = 150 regions.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Lineage-specific loss of H3K9me3 correlates with cell 
type-specific increase in H3K4me1. (a) Statistically significant 50 kb regions 
(adjusted p-value < 109, deviance goodness-of-fit test) identified for H3K9me3, 
showing distribution of distances from center of 50 kb region to nearest TSS 
of a gene. All bins are identified as 50 kb regions that have pseudobulk (counts 
summed across all cells) signal above background levels (Methods). Dotted line 
represents 25 kb, meaning the bin would overlap with a TSS. (b) Fold change 
in H3K9me3 relative to HSPCs for four sets of 150 regions: regions depleted in 

erythroblasts, lymphoid, myeloid, or HSPCs. Each region is 50 kb wide. Each 
boxplot contains n = 150 regions. (c) The same four sets of regions but showing 
fold change in H3K4me1, showing upregulation of H3K4me1 specifically in cell 
types that are depleted in H3K9me3. Each boxplot contains n = 150 regions. 
Boxplots show 25th percentile, median and 75th percentile, with the whiskers 
spanning 97% of the data. (d) Heatmap of the four regions in single cells across 
the four marks. Rows are regions, color coded as in top of (b). Columns are cells, 
color coded as shown below.

http://www.nature.com/naturegenetics
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Extended Data Fig. 5 | Features of active and repressive chromatin dynamics 
during hematopoiesis. (a) Heatmap of log2 counts per million (CPM) of 50 
kilobase bins across pseudobulks. Changing bins that are statistically significant 
are shown (deviance goodness-of-fit test from Poisson regression, Methods). 
The rows and columns are ordered by complete-linkage clustering. Above each 
heatmap is a dendrogram from clustering the columns, showing the relationship 
between cell types. (b) Distribution of log2 fold changes (FC) at statistically 
significant changing bins (null model: a bin has constant signal across all 
cell types, full model: a bin has signal that depends on cell type, deviance 
goodness-of-fit test) between pseudobulk of non-HSPCs versus HSPCs. Bimodal 

distribution highlights differences originate mainly between HSPCs and non-
HSPCs. (c) GC content of dynamic 50 kb bins for the four histone marks. Number 
of dynamic bins depends on the mark. H3K4me1: n = 10518 bins; H3K4me3: 
n = 2225 bins; H3K27me3: n = 5494 bins; H3K9me3: n = 6085 bins. (d) Distance 
to nearest TSS measured from the center of each dynamic 50 kb bin. Dotted 
horizontal line represents 25 kb, meaning the bin would overlap with a TSS. 
Boxplots show 25th percentile, median and 75th percentile, with the whiskers 
spanning 97% of the data. (e) Gene ontology (GO) terms of HSPC-specific 
H3K9me3 (top) and H3K27me3 (bottom) regions. P-value and enrichment from 
Fisher’s exact test.

http://www.nature.com/naturegenetics
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Extended Data Fig. 6 | Penalized regression model reveals transcription 
factor motifs underlying cell type-specific chromatin dynamics. (a) 
Schematic of the transcription factor (TF) activity model. The penalized 
regression model takes the imputed sortChIC signal in a peak as the response 
variable and the TF binding motifs predicted under each peak as the explanatory 

variable (Method). The penalized multivariate regression infers the TF motif 
activity driving cell type-specific sortChIC signal. (b) UMAP of H3K4me1 
chromatin states in single cells, colored by cell type. (c–f) UMAP where each cell 
is colored by the TF activity inferred from the model. Four cell type-specific TF 
motifs are shown.

http://www.nature.com/naturegenetics
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Extended Data Fig. 7 | Single-incubated data from H3K4me1 and H3K9me3 
builds a model for inferring cluster-pairs in double-incubated data. (a) 
Heatmap of H3K4me1 signal across clusters for 811 cell type-specific regions 
(Methods). These regions come from cell type-specific genes used in Fig. 2e. (b) 
Heatmap of H3K9me3 signal across clusters for 6085 cluster-specific regions 
(50 kb genomic window). These regions come from the statistically significant 
dynamic regions of H3K9me3 defined in Extended Data Fig. 4a. (c) Schematic 
of how a cluster-pair is inferred from each double-incubated cell. Each double-
incubated cell has a vector of counts across 6896 regions (811 regions come from 

H3K4me1, while 6085 come from H3K9me3). We calculate the log-likelihood 
(Methods) of the observed double-incubated cell counts for each cluster-pair 
(32 cluster-pairs from 8 clusters in H3K4me1 and 4 clusters in H3K9me3). From 
the 32 log-likelihood estimates, we assign the cell to the cluster-pair with the 
highest probability. (d) Examples of the 32 log-likelihood estimates from eight 
representative cells, shown as a 4-by-8 heatmap. Each of the four rows is a 
cluster from H3K9me3; each of the eight columns is a cluster from H3K4me1. (e) 
Histogram of the highest assignment probability per cell.

http://www.nature.com/naturegenetics
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Extended Data Fig. 8 | FACS gating and quality control for sortChIC design 
spanning HSCs, progenitors, and mature cell types. (a) FACS gating plots 
for the five sorting strategies in the expanded sortChIC experiment. (b) Scatter 
plots of number of unique cuts against fraction of reads starting with MN specific 

TA per cell (top) and density plot of fraction of cuts in peaks (bottom) of the 
sortChIC data across the four marks, split by included or excluded by quality 
control cutoffs.

http://www.nature.com/naturegenetics
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Extended Data Fig. 9 | FACS gating based UMAP annotation. (a–c) UMAP of 
the combined sortChIC data with the position of a selection of FACS sorted cells 
highlighted. neutrophils, monocytes, and DCs are labeled in (a) pDCs in (b) and 
B and NK cells in (c). (d) Schematic illustrating how reference cell types are used 

to systematically assign the rest of the cells without FACS-defined cell type label. 
(e) Final UMAP of the bone marrow data across four histone marks after assigning 
cell types to one of the 14 cell types in the reference.

http://www.nature.com/naturegenetics
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Extended Data Fig. 10 | Pseudotime analysis from HSCs to mature cell types 
at TSS of cell-type specific genes. (a) UMAP for H3K4me3 (n = 12085), H3K4me1 
(n = 10952) and H3K27me3 (n = 7984). (b) H3K4me3, H3K4me1, and H3K27me3 

mean sortChIC signal across B cell-specific marker genes (the same 150 marker 
genes defined from heatmap from Fig. 2e). (c) Same as (b) but for erythroblast 
marker genes. (d) Same as (b) but for HSPC marker genes.

http://www.nature.com/naturegenetics
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