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Single-cell trajectories reconstruction, exploration
and mapping of omics data with STREAM
Huidong Chen 1,2,3,4, Luca Albergante 5,6,7, Jonathan Y. Hsu1,8, Caleb A. Lareau 1,9,

Giosuè Lo Bosco 10,11, Jihong Guan4, Shuigeng Zhou12, Alexander N. Gorban 13,14, Daniel E. Bauer9,15,

Martin J. Aryee 1,3,9, David M. Langenau1,16, Andrei Zinovyev 5,6,7,14, Jason D. Buenrostro 9,17,

Guo-Cheng Yuan 2,3,16 & Luca Pinello 1,9

Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differ-

entiation trajectories, along with the characterization of cellular heterogeneity and state

transitions. Several methods have been developed for reconstructing developmental trajec-

tories from single-cell transcriptomic data, but efforts on analyzing single-cell epigenomic

data and on trajectory visualization remain limited. Here we present STREAM, an interactive

pipeline capable of disentangling and visualizing complex branching trajectories from both

single-cell transcriptomic and epigenomic data. We have tested STREAM on several syn-

thetic and real datasets generated with different single-cell technologies. We further

demonstrate its utility for understanding myoblast differentiation and disentangling known

heterogeneity in hematopoiesis for different organisms. STREAM is an open-source software

package.
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T
he rapid development of single-cell sequencing technologies
has allowed to explore biological systems with unprece-
dented resolution. It is now possible to easily profile indi-

vidual cells instead of cell populations, which advanced our
fundamental understanding of the intrinsic cellular heterogeneity
and dynamics. Single-cell sequencing protocols have been devel-
oped to measure different molecular layers, including tran-
scriptomics1–6, epigenomics7–10, and proteomics11–13. The
combination of these powerful measurements makes it possible to
study important biological processes such as gene regulation on a
multi-omics scale. Despite these technical breakthroughs several
analytical and computational challenges exist due to the intrinsic
characteristics of single-cell sequencing data, including cell-to-cell
variation, sparsity of the data, biological and technical noise, and
dropout events14,15. Several methods have been developed to
detect distinct cell types and to identify rare cell subpopulations by
clustering from single-cell gene expression data16–19. However,
cellular processes, such as cell differentiation and cell maturation,
are dynamic in nature and not always well described by discrete
analysis like clustering. Therefore, other methods such as single-
cell trajectory inference and pseudotime estimation have emerged.
These methods allow to study cellular dynamics, delineate cell
developmental lineages, and characterize the transition between
different cell states. Briefly, single cells are ordered along deter-
ministic20–23 or probabilistic24,25 trajectories and a numeric value
referred to as pseudotime is assigned to each cell to indicate how
far it progresses along a dynamic process of interest.

Although many computational methods have been developed
for this task, these methods have been designed for analyzing
single-cell transcriptomic data only. On the other hand, no end-
to-end and open-source software solution exists, to our knowl-
edge, to characterize epigenomic data such as single-cell chro-
matin-accessibility data (scATAC-seq). In addition, efforts on
trajectory visualization remain limited. Current methods mainly
focus on displaying single cells or clusters (or stable states) along
the pseudotime, which makes it difficult to study subpopulation
composition and its continuous transition along trajectories,
especially for large datasets. Also, no trajectory inference method
provides the possibility to map new cells to previously obtained
reference trajectories without pooling cells and re-computing
trajectories.

To fill these gaps, we have developed STREAM (Single-cell
Trajectories Reconstruction, Exploration And Mapping), a com-
prehensive single-cell trajectory analysis pipeline, which can
robustly reconstruct complex trajectories along with accurate
pseudotime estimation from both single-cell transcriptomic data
and chromatin-accessibility data. STREAM also provides a
mapping feature and a set of interactive tools to explore and
visualize both cell type composition and relevant genes (or
transcription factor binding dynamics for scATAC-seq data)
along the inferred trajectories.

Results
STREAM overview. STREAM is a trajectory inference method
that can accurately reconstruct complex developmental trajec-
tories. It also provides informative and intuitive visualizations to
recover and highlight important genes that define subpopulations
and cell types. STREAM takes as input a single-cell gene
expression (or epigenomic profile) matrix and approximates the
data in three or more dimensions with a structure called the
principal graph, a set of curves that naturally describe the cells’
pseudotime, trajectories, and branching points (Fig. 1a). To
reconstruct this structure, STREAM first identifies informative
features such as variable genes or top principal components.
Using these features, cells are then projected to a lower

dimensional space using a non-linear dimensionality reduction
method called Modified Locally Linear Embedding (MLLE),
which preserves distances within local neighborhoods. In the
MLLE embedding, STREAM infers cellular trajectories using an
Elastic Principal Graph implementation called ElPiGraph26.
ElPiGraph is a completely redesigned algorithm for the previously
introduced elastic principal graph optimization27–29 based on the
use of elastic matrix Laplacian, trimmed mean square error,
explicit control of topological complexity and scalability to mil-
lions of points on an ordinary laptop. In STREAM, the ElPiGraph
was further developed to integrate a new heuristic graph structure
seeding to learn principal graphs in high dimensions with several
problem-specific topological graph grammar rules optimized for
single-cell trajectory inference (Methods, Supplementary Fig. 1).

To illustrate STREAM, we first reanalyzed a published scRNA-
seq dataset from Nestorowa et al.30. In this study, 1656 single
cells from the mouse hematopoietic system were sorted and
profiled. Starting from the hematopoietic stem cells (HSCs),
STREAM accurately recapitulates known bifurcation events in
lymphoid, myeloid, and erythroid lineages and positions the
multipotent progenitors before the first bifurcation event
(Fig. 1b–d). To facilitate the exploration of the inferred structure,
STREAM includes a flat tree plot that intuitively represents
trajectories as linear segments on a 2D plane. In this representa-
tion, the lengths of tree branches are preserved from the MLLE
embedding (Fig. 1b). In addition, cells are projected onto the tree
according to their pseudotime locations and the distances from
their assigned branches. If the process under study has a natural
starting point (for example a known origin in a developmental
hierarchy or a given sampling time point), the user can specify a
root node. This allows easy re-organization of the tree using a
breadth-first search to obtain a subway map plot that better
represents pseudotime progression from a selected starting node
(Fig. 1c). Although these visualizations capture trajectories and
branching points, they are not informative on the density and
composition of cell types along pseudotime, a common challenge
when modeling large datasets. In fact, density information, an
aspect overlooked by existing methods, is important to track not
only how the composition of subpopulations changes along a
trajectory but also how they get partitioned around branching
events. To solve this problem, we develop a trajectory visualiza-
tion method called the stream plot. This compact representation
summarizes cellular developmental trajectories, user-defined
annotations, branching points, cell density, and gene expression
patterns (Fig. 1d). Additionally, STREAM detects potential
marker genes of different types: diverging genes, i.e., genes
important in defining branching points that are differentially
expressed between diverging branches, and transition genes, i.e.,
genes for which the expression correlates with the cell pseudotime
on a given branch. The expression patterns of the discovered
genes can then be visualized using either subway map or stream
plots (Fig. 1e, f, Supplementary Figs. 2–3, Supplementary Note 1).

STREAM mapping procedure. STREAM is the only trajectory
inference method that explicitly implements a mapping proce-
dure, which allows reusing a previously inferred principal graph
as reference to map new cells not included in the original fitting
procedure. Briefly, the STREAM mapping procedure maps new
cells to the inferred structure using the neighbor relationships
between new and old cells and the graph structure (see Methods).
This can be accomplished since all the steps are deterministic and
the MLLE dimensionality reduction provides an explicit function
that maps points from the original space to the target subspace.
A reference structure is important when studying genetic or
epigenetic perturbation, or when comparing different conditions
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(for example normal and cancer, response to stimuli, etc.). In fact,
the mapping procedure not only avoids pooling old and new cells
and re-computing trajectories from scratch (a computationally-
intensive operation), but more importantly does not distort the
original structure. Keeping the original structure unperturbed is
important to avoid incorrect interpretations of the reference
pseudotime.

To illustrate the utility of the mapping feature, we applied
STREAM to analyze a published scRNA-seq dataset from Olsson
et al.31. This study focused on the mouse hematopoietic system,

specifically on the consequences of cell-fate determination
within the granulocyte monocyte progenitors (GMP) population
after the knockout of important master regulators. Using
FACS sorting, 382 cells were isolated and profiled from
different subpopulations, including stem/multipotent progenitor
(LSK; lin−, Sca1+, c-Kit+), CMP, GMP, and LKCD34+ (lin−c-
Kit + CD34+) cells (Fig. 2a left). A key result of this study is the
discovery of metastable mixed-lineage states and the presence of
co-expressed genes at single-cell level from competing lineages.
The authors suggest that these metastable states are important in
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Fig. 1 STREAM pipeline overview on single-cell RNA-seq data from the mouse hematopoietic system. a STREAM trajectory inference. Starting with a

single-cell gene expression matrix, STREAM performs three main steps: selection of informative genes, dimensionality reduction, and simultaneous tree

structure learning and fitting by ElPiGraph. The optimal structure is selected based on the elastic energy minimization among a set of candidate structures

that are constructed every time a tree node is added. The final tree is interpreted as a set of connected curves representing different trajectories.

b–d STREAM visualization of inferred branching points, trajectories, and expression of key genes at both single-cell level and density level. b Flat tree plot,

branches are represented as straight lines and each circle represents a single-cell. The lengths of the branches and the distances between cells and their

assigned branches are preserved from the space where trajectories were inferred. c Subway map plot, after selecting an initial state in the flat tree plot, the

tree is re-ordered to facilitate visualization. Each cell is colored by a cell label, if provided (top), or based on the expression of a gene of interest (bottom).

d Stream plot, an intuitive visualization to show cell density along different trajectories: at a given pseudotime, the width of each branch is proportional to

the total number of cells (top). Stream plots can also visualize the expression of a gene of interest (bottom). e, f STREAM detection of marker genes.

e STREAM automatically discovers important marker genes for each branch. Left, identification of differentially expressed genes between bifurcating

branches. f Identification of transition genes (expression values correlate with pseudotime) along one specific branch. Top two detected differentially

expressed genes (Car2 and Epx) and transition genes (Coro1a and Blvrb) are shown, respectively, with stream plots
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cell-fate decisions and that master regulators play a key role in
this process. In fact, they uncovered and validated two key
transcription factors, i.e., Gfi1 and Irf8, that are co-expressed in a
subpopulation and are shown to be important for the commit-
ment to neutrophils or macrophages. Importantly, this dataset
contains, in addition to wild-type data, genetic perturbations of
those two key regulators.

Using the wild-type data, STREAM unbiasedly and correctly
reconstructed the cell lineage hierarchy as shown by inspection of
the labels proposed in the original study (either cell surface
markers or predicted lineages) (Fig. 2a right). Starting from
hematopoietic stem cell/progenitor (HSCP), cell lineage bifurcates
into an erythrocytic branch (which contains megakaryocytic
(Meg) and erythrocytic (Eryth) cells) and into a multi-lineage
primed (Multi-Lin) branch. Multi-Lin cell lineage further
separates into the granulocytic (Gran) branch and monocytic
(Mono) branch. The hierarchical progression can be easily
visualized by our proposed 2D visualizations: subway map and
stream plots (Fig. 2b). Importantly, STREAM precisely recovers
the bifurcation event from Multi-lineage to Mono and Gran as
shown in the original study within the wild-type GMP cellular
population (Fig. 2b, c), whereas the proposed Monocle2 analysis
of the same dataset20 incorrectly assigns Multi-Lin cells to a very
short erythroid branch. Furthermore, Monocle2 branch lengths
are overall very diverse and distorted in their hierarchical

representation (FE branch in Fig. 2, and Supplementary Fig. 18
of the original paper20). Based on our analysis, the Gran-specific
gene Gfi1, Mono-specific gene Irf8, and Eryth-specific gene Gata1
are highly expressed on their respective inferred trajectories,
confirming the validity of the reconstructed branching structure
(Fig. 2d).

Next, using the STREAM mapping function, we analyzed the
genetic perturbation data to study the consequences on cell-fate
determination of Gfi1 loss (Gfi1−/−), Irf8 loss (Irf8−/−) and
both Gfi1 and Irf8 loss (Gfi1−/− Irf8−/−) within wild-type GMP
cells (Fig. 2e). Gfi1−/− GMP cells tend to differentiate into the
Mono branch and Irf8−/− GMP cells lean toward the Gran
branch. The combined loss of Gfi1 and Irf8 instead does not show
any imbalance of cells differentiating into the diverging branches
(Fig. 2f, g). Our predictions are validated by the original study
where the authors used GMP cells with inducible expression and
GFP reporters for Gfi1 and Irf8. Irf8 loss led to cells that
differentiated toward granulocyte. Conversely, Gfi1 loss led the
cells to differentiate toward monocytes. Interestingly they showed
that cells from the hematopoietic stem cell/progenitor and
myeloid compartments are trapped with the double knockouts
of Irf8 and Gfi1, and in fact, are rarely differentiating towards
monocytes or granulocytes. These results are in full agreement
with our unbiased analysis. In addition, compared to the
Monocle2 analysis of this dataset, our reference structure can
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Fig. 2 Mapping of genetic perturbation data to the inferred trajectories from wild-type mouse hematopoietic cells. a Left, cell subpopulations were isolated

from the mouse wild-type hematopoietic system including stem/multipotent progenitor (LSK), common myeloid progenitor (CMP), granulocyte monocyte

progenitor (GMP), and LKCD34+ and profiled by scRNA-seq. Right, wild-type cells are shown in low dimensional space together with trajectories inferred

by STREAM. Cells are colored by the cluster labels proposed by Olsson at al. b Left, subway map plot; right, stream plot. Both are colored by cluster labels

inferred by Olsson at al. c The same subway map and stream plot as b but colored by FACS gating labels from the original study. d Stream plots of three

key marker genes: Gfi1 for granulocyte, Irf8 for monocyte and Gata1 for Meg and Eryth. e Left, scRNA-seq is performed on genetically perturbed cells within

the GMP populations: Gfi1−/−, Irf8−/−, and Gfi1−/−Irf8−/−. Right, genetically perturbed cells are mapped using STREAM to the low dimensional space

in which cellular trajectories were built based on wild-type cells. f At density level, stream plots easily summarize the effects of the three genetic

perturbations: Gfi1−/− cells are diverted to monocyte-committed branch while Irf8−/− cells are instead diverted to granulocyte-committed branch.

Gfi1−/−Irf8−/− cells have equal chances to differentiate into either branch. g Single-cell level visualization of perturbed cells on the reference flat tree plot

constructed from wild-type cells (top). Genetically perturbed cells are mapped to the flat tree and shown in red. Pie charts show the proportion of

genetically perturbed cells on different branches. Consistently with the stream plot in e, Gfi1−/− cells mainly appear on monocyte-committed branch (S1,

S0), while the majority of Irf8−/− cells appear on granulocyte-committed branch (S1, S2). Gfi1−/−Irf8−/− cells are approximately equally located on the

intermediate state branch (S3, S1), monocyte-committed branch (S1, S0), and granulocyte-committed branch (S1, S2)
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be fixed to recapitulate only the wild-type cells and is not
influenced by the fmapping of new cells, whereas the Monocle2
analysis requires to recompute trajectories (compare A,B with C,
D in Supplementary Fig. 18 of the original paper20).

Taken together, STREAM recovers the correct trajectories for
the wild-type cells and, using the mapping feature, also predicts
and effectively visualizes the consequences of the genetic
perturbation as validated in the original study.

Delineating hierarchies of the zebrafish hematopoiesis. To test
the robustness and scalability of STREAM, we next explored data
derived from different platforms and organisms. To this end, we
used two recently published zebrafish datasets obtained with
single-cell qPCR32 and inDrop33 assays. These data provided the
first comprehensive model of the zebrafish hematopoiesis system
without biases introduced by FACS sorting subpopulations.

The first dataset from Moore et al.32 provided a first model of
the zebrafish hematopoiesis system using a carefully designed
panel of 96 genes. In this study, 166 cells were profiled from the
wild-type (WT) whole-kidney marrow (WKM). STREAM
analysis uncovered four cell lineages trajectories (Fig. 3a left)
and based on the automatic gene detection module, uncovered
marker genes for each trajectory (Fig. 3a right), which includes T
cell marker gene TCR-alpha, B-cell marker gene CD79a, myeloid
marker gene nccrp-1, and erythroid marker gene band3. Based on
this analysis, we hypothesize that the inferred four branches
correspond to T cell, B cell, myeloid, and erythroid lineages
(Fig. 3a middle). To test this hypothesis, we used the STREAM
mapping feature to map fluorescent-labeled and FACS-sorted
cells from WKM: 20 erythroid cells from peripheral blood cells
(per RBC), 24 erythroid cells Tg(gata1:dsRed), 48 myeloid cells
Tg(mpx:GFP), 49 marrow-derived B cells Tg (rag2:dsRed), 83

mature T cells Tg (lck:GFP)cells, 85 HSPCs Tg(CD41:GFP)low.
lck + cells were mapped to the T cell branch, mpx + cells were
mapped to the myeloid cell branch, rag2 + cells were mapped to
the B cell branch, both gata1+ and peripheral RBCs were mapped
to the erythroid branch, while the majority of HSPCs were
mapped to the proposed starting state as expected (Fig. 3b). This
result provides additional support for our hypothesis that the four
branches corresponded to well defined lineages, highlighting the
utility of the STREAM mapping feature.

To test the scalability and robustness of STREAM on a larger
and more challenging scRNA-seq dataset, we next analyzed 9628
unlabeled cells from the zebrafish whole-kidney marrow
generated by Tang et al.33 using the inDrop protocol2. The
original study, based on dimensionality reduction and clustering,
uncovered and annotated 10 different and imbalanced subpopu-
lations (some of which were validated by the authors using
sorting of fluorescent transgenic cell sub-populations) (Fig. 3c).
STREAM correctly recapitulated the hierarchy of the different
lineages and unbiasedly recovered four main hematopoietic
cellular trajectories: starting from HSCs, through blood progeni-
tor cells, cells differentiate into erythroid, macrophage, neutro-
phil, and lymphoid lineages (Fig. 3d). Importantly, we
rediscovered well-known marker genes: hbaa1 for the erythroid
branch, grna for the macrophage branch, mpx for the neutrophil
branch, and igl3c3 for the lymphoid branch (Fig. 3e).

However, we noticed that B and T cells were not separated and
were assigned to the same lineage branch. Therefore, we derived
an improved seeding strategy that is well suited to learn complex
trajectories in high dimensions and that well recapitulates the
known lineage for this dataset as presented in Supplementary
Note 2 and Supplementary Figs. 4–6. This new strategy is
generalizable to other datasets and described in detail in the
method section.
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Fig. 3 STREAM recovers developmental trajectories of hematopoietic cells in zebrafish from qPCR and inDrop data. a STREAM output for single-cell qPCR

on cells from zebrafish wild-type whole-kidney marrow (WKM). The stream plot shows only one color (gray) since no labels to annotate cell-types are

available in this case. Four trajectories are recovered and visualized in the 3D space, flat tree plot and stream plot respectively. Four of the top marker

genes automatically detected by STREAM are visualized as stream plots: TCR-alpha (T cells), cd79 (B cell), nccrp-1(myeloid), and band3(erythroid).

b Validation of the putative cellular differentiation branches. Hematopoietic cells from adult transgenic zebrafish and peripheral blood are mapped to the

trajectories inferred in a. These cells comprise peripheral red blood cells (RBC) and FACS-sorted cells, which include CD41 (hematopoietic stem and

precursor cells), lck (T cells),Mpx (myeloid cells), rag2(B cells), and Gata1 (erythroid cells). c STREAM output for inDrop single-cell RNA-seq data from the
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In summary, these analyses highlight some important points of
our approach: (1) STREAM is able to identify more refined
trajectories increasing the number of dimensions, (2) we can
recover trajectories using unsorted populations, (3) the trajectory
inference is robust to subpopulation imbalance, (4) our gene
expression analysis is a powerful tool to discover marker genes,
and (5) our method is scalable to currently available large-scale
single-cell assays.

Comparison with other methods. Several methods have been
proposed for pseudotime inference or trajectory reconstructions.
In fact, more than 50 methods have been proposed for this task,
making a systematic comparison unfeasible for the scope of this
manuscript. For this reason, we compared STREAM with 10 state-
of-the-art methods well recognized and commonly used by the
single-cell community: Monocle2, scTDA, Wishbone, TSCAN,
SLICER, DPT, GPFates, Mpath, SCUBA, and PHATE20–24,34–38.
An overall summary of these different methods, including their
general features, required inputs, supported assays, scalability, and
execution time, can be found in Supplementary Table 1 and
Supplementary Table 2, and a short discussion about the core
algorithms used by each method is presented in Supplementary
Note 3.

In our quantitative comparison we focused on two important
aspects: topology correctness and pseudotime accuracy. We also
present in our assessment the default visualizations provided by
each method to showcase and easily compare their expressiveness
in representing cellular development trajectories. For each
method, the analyses were performed with standard parameters
when possible (following the guidelines provided in the
documentation) otherwise the parameters were obtained by
contacting the respective authors (Supplementary Note 3).

To evaluate the ability of each method in recovering the correct
topology we used a proposed gold-standard synthetic dataset by
Rizvi et al.34 with known topology and pseudotime: two
bifurcation events and three different time points (Fig. 4a).

First, we started by quantitatively evaluating the number of
correctly detected branching events and the pseudotime accuracy
(Online methods). For topology correctness, STREAM and other
five methods, including scTDA, SLICER, Monocle2, Mpath,
GPfates, PHATE, successfully identified two bifurcation events.
Second, for pseudotime accuracy, we calculated for each method
the correlation between true pseudotime and inferred pseudotime
as proposed before34. Four metrics were used to evaluate this
correlation, including rank-based Pearson correlation, distance-
based Pearson correlation, Spearman’s rank correlation, and
Kendall’s tau coefficient. We use four different correlation metrics
since some methods (scTDA, TSCAN, and Mpath) only return a
simple ordering, i.e., the ranks of cells, and do not provide the
actual pseudotime defined as the distance of each cell from the
origin in the proposed embedding (for Spearman’s rank
correlation and Kendall’s tau coefficient, ranks-based and
distance-based correlations are the same). STREAM has the best
performance for two out of four metrics (and importantly when
using distance-based pseudotime) and second-best performance
for the other two rank-based metrics (following scTDA in which
this synthetic dataset was proposed) (Fig. 4b). Finally, we assessed
the qualitative output of each method using their proposed
visualization. STREAM is the only tool that provides a density-
level visualization to study the composition of different cell types
in different branches. (Fig. 4c, Supplementary Note 3).

To compare the different methods on real datasets, we first
used one of the most commonly used scRNA-seq datasets for this
task, originally generated by Trapnell et al.39. This dataset
contains human skeletal muscle myoblasts (HSMM) cells

differentiating along a linear trajectory. In this analysis, we were
able to evaluate only methods capable to detect the correct
bifurcation event. Regardless, the visual outputs of all the
methods are presented for completeness (Supplementary Fig. 7).
The original study proposed a single bifurcation, which leads to
myoblast cells or separate potentially contaminating cells (Fig. 5a).
To test the quality of pseudotime it has been proposed to
correlate known marker gene expression (a surrogate for the
correct ordering) along the myoblast differentiation trajectory
with the rank or distance-based pseudotime (Online Methods).
To this end, we used the previously proposed genes ENO3,
MEF2C, and MYH220,35. When ordering cells by pseudotime, we
expect a monotonic increase of the marker gene expression.
Importantly, when ordering cells by distance-based pseudotime,
we expect, in the ideal scenario, a continuous and smooth
distribution. For example, STREAM generates a smooth and
monotonically increasing distribution of ENO3 expression based
on the inferred pseudotime as shown in (Fig. 5b). In contrast, we
noticed that for the distance-based pseudotime, in Monocle2, cells
are mainly attracted to the end points of the trajectories, with few
cells in between (Supplementary Fig. 8). In Wishbone and
SLICER, distance-based pseudotime shows a set of unexpected
discrete segments. Neither Mpath nor TSCAN can generate
distance-based pseudotime. In addition, Mpath does not recover a
monotonically increasing trend (Supplementary Fig. 8). STREAM
has also the highest average coefficient on ENO3 based on the
four different metrics (Fig. 5c). When combining all three marker
genes, STREAM has the overall best performance (calculated as
the average rank for the four proposed metrics) (Fig. 5d).

Finally, we analyzed a high-quality single-cell qPCR dataset
containing ~270 blood cells sorted from six different populations:
HSC, MPP, CMP, GMP, MEP, and common lymphoid
progenitor cells (CLPs) profiled for ~170 key transcription
factors important in mouse hematopoiesis40. The output of each
method is shown in Supplementary Fig. 9. STREAM is the only
method that clearly shows the reconstructed developmental
trajectories and the lineage hierarchies using its default visualiza-
tions. STREAM recovers a trajectory that starts from HSCs and
then through MPPs bifurcates into CMPs and a subset of likely
erythroid-poised CMPs shows an early progression into MEP,
consistent with a recently refined model of hematopoiesis41.
STREAM recovers also a second bifurcation event that effectively
captures cell commitment from MPPs into GMPs and CLPs

To assess the quality of the discovered trajectories, we reasoned
that classic marker genes for different lineages should be
expressed in cells belonging to different trajectories with minimal
mixing (i.e., it should be rare to observe single cells that express
simultaneously both markers). To this end, we selected Gata1, a
classic erythroid marker, and Pax5, a classic lymphoid marker.
For each method, we selected the two best branches that
contained the most Gata1 or Pax5-expressing cells, respectively.
Then, each branch is evaluated based on precision, recall and the
F1 score (Methods). The optimal model should balance precision
and recall separating Gata1 and Pax5 in two distinct branches;
whereas under-branching models will have a high recall, but poor
precision and over-branching models will have a high precision
but poor recall (Fig. 5e).

STREAM has the highest F1 score for both Gata1 and Pax5
among all the methods tested and balance well precision and
recall (Fig. 5f, g). SCUBA works reasonably well for both genes
but has a lower recall overall. Monocle2 tends to generate over-
branching structures with high precision but poor recall. Mpath
works well in the case of Gata1 but performs poorly for Pax5.
Wishbone and DPT have relatively low precision scores because
part of cells expressing Gata1 are misplaced on the Pax5-
expressing branch.
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In summary, although many of the existing methods work
reasonably well with simple linear trajectories, they may provide
over- or under-branched models in more complex scenarios and
may mask important trajectories or marker genes.

STREAM reconstructs trajectories from scATAC-seq data. In
addition to single-cell transcriptomic profiling, novel assays have
been proposed to capture chromatin-accessibility at single-cell
resolution7,10. These assays allow to study an important addi-
tional layer in gene regulation. In fact, accessible sites in the
genome can be used to profile the activity of important cell type
specific non-coding regulatory elements such as enhancers. These
regions harbor transcription factor binding sites and can control
the activity of relatively proximal genes via long-range
interactions7.

The analysis of human scATAC-seq data is particularly
challenging because sparsity is intrinsic to these assays. In fact,
the signal is limited by the DNA copy number, which only
consists of 0, 1, or 2 reads within a diploid genome. In addition,
compared to previously published datasets in other model
organisms (mouse, Drosophila melanogaster), the human genome
is larger (respectively, 1.2X and 27X) making this problem even
more accentuated. Although some initial efforts have been made
to adapt existing trajectory inference methods originally devel-
oped for transcriptomic data to scATAC-seq data analysis42,43, to
our knowledge STREAM is the only documented end-to-end
pipeline that provides to users the specific functions to analyze
and visualize scATAC-seq data starting from raw count data and
based on an unbiased approach to model important DNA

sequence features associated with chromatin-accessibility. We
present below how STREAM can be used to infer trajectories
from single-cell epigenomic data and show its application to a
recently published dataset, where a total of 3072 cells were
profiled from the human bone marrow and isolated by FACS into
nine different cellular populations, including HSC, MPP, CMP,
CLP, LMPP, GMP, MEP, mono and plasmacytoid dendritic cells
(pDCs)44.

In STREAM to overcome the sparsity of the data and the
limited ability to capture a given region in a single cell we focus
on chromatin-accessibility variable regions across cells instead of
scoring the entire genome (from 3.3 × 109 potential base pairs in
the human genome we reduce it to ~450,000 regions covering
only ~7%), and then aggregate over general features related to
chromatin accessibility on these regions. To this end STREAM
uses an unbiased set of DNA sequence features i.e., k-mers (word
of length k on the DNA alphabet) and chromVAR45 to calculate
accessibility deviations across cells (Fig. 6a). Briefly, starting from
count data, we construct a matrix of cells x k-mer accessibility
z-scores (in our experiments k= 7). The k-mer accessibility
z-scores can be used by STREAM as features to reconstruct
trajectories. However, we observed that selecting the top principal
components on the scaled z-score matrix allows filtering out
potential small fluctuations further reduces the dimensionality
and improves the quality of the recovered structures (Methods).
This general and unbiased k-mer strategy is agnostic to any
known transcription factor motifs and thus generalizable to other
systems.

After filtering cells as previously described44, single-cell
accessibility profiles for 2034 high-quality cells passed quality
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control. We emphasize that each cell was sorted using multiple
surface markers as previously described44, providing a phenotypic
“true positive” for cell state that would enable us to determine the
accuracy of STREAM.

STREAM not only accurately reconstructs cellular develop-
mental trajectories of the human blood system, but also recovers
key sequence features and master regulators that have been
implicated in differentiation and lineage commitment for
different subpopulations (Fig. 6b, c). In the inferred principal
graph, the HSCs branch segregates through MPP into the
erythrocyte-committed, lymphocyte-committed, and myelocyte-
committed branches. STREAM also reconstructed the bifurcation
from lymphoid multipotent progenitors (LMPP) to CLP and

plasmacytoid dendritic cells (pDC). Interestingly, STREAM
reveals a similar and consistent hematopoietic hierarchy
described by orthogonal assays such as transcriptomic profiling
(Fig. 6b).

STREAM also uncovers annotated (i.e., mappable to transcrip-
tion factors) or unannotated DNA sequences that may be
important in defining the different developmental paths. In fact,
using the inferred structure, STREAM automatically identifies
significant k-mer DNA sequences for each branch. Importantly,
those recovered k-mers can be mapped to known transcription
factors motifs that may drive cell-fate decision and commitment.
We uncovered GATA1 and CEPBA, for erythroid lineage and
myeloid lineages, respectively (Fig. 6c). We also uncovered several
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components are selected as features for the STREAM analysis. b STREAM learns a principal graph from chromatin-accessibility data and accurately

reconstructs cellular developmental trajectories of the human hematopoiesis. As in Fig. 1, the structure can be easily visualized thanks to the subway map

and stream plots. In the first branch, the HSCs segregate through MPP into lymphocyte-committed, erythrocyte-committed and myelocyte-committed

branches. STREAM also reconstructs the bifurcation from lymphoid multipotent progenitors (LMPP) to CLP and plasmacytoid dendritic cells (pDC).

c Discovery of transcription factors important for lineage commitment. 7-mer DNA sequences are automatically detected and their frequencies are

visualized in both the subway map and stream plots. These sequences are mapped to known transcription factors motifs. We recovered GATA1 and CEBPA

as top hits, two classic master regulators in blood development, which correlate with directionality toward erythroid differentiation and myeloid

differentiation, respectively
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additional potential regulators for HSCs (ERG44, HOXB846) and
MEPs (LMO247, TAL144) (Supplementary Fig. 10).

In summary, compared to previous studies, STREAM provides
an unbiased reconstruction of human hematopoiesis using
chromatin-accessibility data at single-cell resolution. STREAM
is able to perform pseudotime ordering on human cell chromatin-
accessibility data without relying on accessibility of known
transcription factor binding sites7 or a priori knowledge of
sampling time42, hence providing an unbiased approach.

Discussion
Large-scale single-cell measurements have opened unprecedented
opportunities to study dynamic processes such as differentiation
or response to stimuli. Trajectory inference methods are impor-
tant tools to describe those processes based on snapshot
measurements.

In this study we presented STREAM, a trajectory inference tool
capable of reliably reconstructing trajectories and inferring
pseudotime from different data types and when multiple
branching points are present. Our method does not require prior
knowledge such as time points, start cell, or the number of
branching events to reconstruct trajectories, and does not need
extensive bioinformatics knowledge thanks to a user-friendly and
interactive web interface. Additionally STREAM introduces four
innovations compared to other existing methods: (1) a density-
level trajectory visualization useful to study subpopulation com-
position and cell-fate genes along branching trajectories, (2) a
documented end-to-end pipeline to reconstruct trajectories from
chromatin-accessibility data, (3) an interactive website that can be
used to not only compute trajectories but also host a database to
readily visualize and explore precomputed trajectories for several
published studies30–33,39,44, and (4) a trajectory mapping proce-
dure to readily map new cells to precomputed structures without
pooling data and re-computing trajectories. This last innovation
allows facile analysis of data from genetic perturbation studies or
to assign diseased/stimulated cells to a normal/resting develop-
mental hierarchy. Existing methods instead require fitting a new
model since the fitting procedure is not deterministic or this
feature is absent. The main problem with re-computing the
structure lies in the fact that it is hard to interpret pseudotime and
cell positioning since trajectories may change based on the den-
sity and/or composition of the new cells to map. Our mapping
procedure is instead deterministic and allows the user to easily
and predict perturbation effects and explore the origin of
unknown cell populations on annotated branching structures or
vice versa (see an example in Fig. 3). However, the mapping
procedure may not be optimal if the new cells have totally dif-
ferent fates compared to the ones present in the reference
structure as discussed in the Methods section.

STREAM has been extensively tested using several published
datasets from different organisms (zebrafish, mouse, human) and
single-cell technologies (qPCR, scRNA-seq, scATAC-seq). Our
comparison of STREAM with 10 other methods shows that it is
among the top scoring methods on both synthetic and real
datasets (best average ranking across several metrics and most
balanced method for branching detection). However, there are
still several general limitations for the current trajectory inference
methods, including STREAM. First, most of the methods are still
based on linear or tree-structure models even though we know
that developmental processes may involve more sophisticated
topologies, e.g., cyclic or disconnected graph. Therefore, further
improvement is necessary to adapt STREAM to properly
describing these more general structures. Although ElPiGraph,
the core algorithm behind STREAM, inherently supports learning
complex graphs, more work is necessary to provide intuitive

visualizations to capture and represent more sophisticated
topologies. Second, recent single-cell assays are now capable of
profiling millions of cells; however, many of the current trajectory
inference methods don’t scale or have been tested only on a few
thousand cells (see Supplementary Table 2). Last but not least,
while integrating multi-omics is crucial to accurately describe the
cellular developmental landscape, so far very few trajectory
inference methods (Monocle2 and STREAM) have been applied
to analyze single-cell chromatin accessibility. Therefore, we
expect further development in this direction and on methods to
properly integrate the different trajectories obtained from dif-
ferent omics data. In fact, in addition to single-cell measurement
of gene expression and chromatin accessibility, single-cell assays
have been proposed to measure other epigenetic information
(such as single-cell methylation48 or nucleosome positioning49)
or other molecular measurements such as protein levels11–13. We
believe that further developments of STREAM to support these
additional assays are important and will require defining appro-
priate informative features together with distance or similarity
metrics to properly compare cells and appropriately define
pseudotime. Regardless of these challenges we believe the visua-
lization procedures proposed in this study can be easily adopted
irrespective of the particular inference procedure and the omics
data used to infer the pseudotime.

Taken together, STREAM is an important tool to study cellular
development and differentiation: it can accurately recover and
describe complex developmental trajectories, it provides infor-
mative and intuitive visualizations to highlight important genes
that define cell-fate decisions and subpopulation composition,
and it is an accessible tool that enables researchers even with
limited computational skills to analyze, explore and share their
single-cell-based trajectory analyses and insights.

Methods
Feature selection. For transcriptomic data (single-cell RNA-seq or qPCR), the
input of STREAM is a gene expression matrix, where rows represent genes, col-
umns represent cells. Each entry contains an adjusted gene expression value
(library size normalization and log2 transformation). The most variable genes are
selected as features, using a procedure we have previously proposed50. Briefly, for
each gene, its mean value and standard deviation are calculated across all the cells.
Then a non-parametric local regression method (LOESS) is used to fit the rela-
tionship between mean and standard deviation values. Genes above the curve that
diverge significantly are selected as variable genes.

Dimensionality reduction. Each cell can be thought as a vector in a multi-
dimensional vector space in which each component is the expression level of a
gene. Typically, even after feature selection, each cell still has hundreds of com-
ponents, making it difficult to reliably assess similarity or distances between cells, a
problem often referred as the curse of dimensionality51. To mitigate this problem,
starting from the genes selected in the previous step we project cells to a lower
dimensional space using a non-linear dimensionality reduction method called
Modified Locally Linear Embedding (MLLE)52.

LLE-based methods generate a compact and continuous embedded structure
that considers the local similarity of each cell with its neighbors. For standard LLE,
each point xi,i= 1, …,N, in Rm is reconstructed from its selected ki neighbors {xj,
j∈Ji}. The optimal single weight vector Wi= {wji,j∈Ji} is determined by solving the
constrained least squares problem:

min xi �
X

j2Ji

wjixj
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; s:t:
X

j2Ji

wji ¼ 1 ð1Þ

Once the reconstruction weight vector Wi is computed, LLE maps the data points
{x1, …,xN} to vectors T = {t1, …,tN} in the lower dimensional space Rd (d < m) by
minimizing the embedding cost function:

min ti �
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; s:t:TTT ¼ I ð2Þ

But using a single weight factor for each data point can result in an instability of the
LLE procedure because of the existence of multiple approximately optimal weight
vectors. MLLE addresses the regularization problem of standard LLE by
introducing multiple weight vectors in each neighborhood rather than a single one,
which makes it more stable and robust. MLLE minimizes the following embedding
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cost function:

min
X

N
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si
i (si ≤ ki) are linearly independent weight vectors, which are obtained

from a matrix of the difference between data point xi and its ki neighbors.
In STREAM, the neighborhood size is chosen based on the number of cells and

is set by default to 10% of the total number of cells. The number of MLLE
components depends on the number of branches and on the complexity of the
structure to learn. Typically, three components capture the main structure for most
datasets (and this space can be readily visualized); however, increasing them may
recover finer structures as discussed in main text under the section “STREAM
trajectory inference in high dimensional spaces”.

Seeding initial tree structure. The principal graph inference is based on a greedy
optimization procedure that may lead to local minima, therefore in STREAM we
proposed an initialization procedure that improves the quality of the inferred
solutions and that speed up convergence. First, cells are clustered in the MLLE
space using the affinity propagation method53. Affinity propagation is based on the
idea of message-passing between sample points and finds a small set of exemplars,
which are considered to be most representative of the other samples. In STREAM
we use the scikit-learn implementation54 with a damping factor set to 0.75. Based
on the exemplars obtained, a minimum spanning tree (MST) is constructed using
the Kruskal’s algorithm. The obtained tree is then used as initial tree structure for
the ElPiGraph procedure.

To learn principal graph in high-dimensional spaces, the procedure is modified
as follows. Let H be the number of MLLE components. We first apply the same
strategy described above using the top L components (~2–5) to obtain a tree in a
low dimensional subspace. Based on this tree we calculate a principal graph in the
L-dimensional space. Next, we map the learnt principal graph to the H-
dimensional space as follows: for the coordinates of each node in the H-
dimensional space, we obtain the first L coordinates from the L-dimensional space.
For the other H−L coordinates, we use the mean values of the coordinate of the
cells assigned to a given node. If a given node does not have any assigned cells, we
infer the coordinates using k-nearest-neighbor strategy, i.e., the mean value of the
nearest k cells is used to infer the node coordinate. The edges are instead preserved
from the L-dimensional space. The node coordinate and edge information are then
used to initialize a second-round of elastic principal graph inference in the H-
dimensional space (Supplementary Fig. 4a).

Elastic principal graph. Elastic principal graphs are structured data approx-
imators27–29, consisting of vertices connected by edges. The vertices are embedded
into the space of the data, minimizing the mean squared distance (MSD) to the
data points, similarly to k-means. Unlike unstructured k-means, the edges con-
necting the vertices are used to define an elastic energy term. The elastic energy
term and MSD are used to create penalties for edge stretching and bending of
branches. To find the optimal graph structure, ElPiGraph uses a topological
grammar (or, graph grammar) approach, which is described below. The core
algorithm behind ElPiGraph was introduced and tested in publications preceding
the development of STREAM27–29. However, the algorithm was further extended
with domain-specific functions for single-cell data (described in the section
Domain-specific optimization introduced to model single-cell). These functions are
used by STREAM to improve the accuracy of the pseudotime and of the inferred
trajectories.

Briefly, an elastic principal graph is an undirected graph with a set of vertices V
and a set of edges E. The set of vertices V is embedded in the multidimensional
space by minimizing the sum of the data approximation term and the graph elastic
energy defined as:
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where X= {Xi},i = 1….|X| is a the set of data points, E(i)(0) and E(i)(1) denote
the two vertices of a graph edge E(i), and S(j)(0),…, S(j)(k) denote the vertices of a
star S(j) in the graph (where S(j)(0) is the central vertex, to which all other vertices
are connected), deg(Vi) is a function returning the order k of the star with
the central vertex Vi, φ(Vj) is the mapping function φ:V→Rm, which defines a
position of the jth graph vertex in the multidimensional space of data,
P(i)= argminj¼1¼ jV j Xi � ϕðVjÞ is a data point partitioning function associating

each data point Xi to the closest vertex index. Finally, R0, λ, μ, and α are
parameters having the following meaning: R0 is the trimming radius such that
points further than R0 from any node do not contribute to the optimization of the

graph, λ is the edge stretching elasticity modulo regularizing the total length of
the graph edges and making their distribution close to equidistant in the
multidimensional space, μ is the star bending elasticity modulo controlling the
deviation of the graph stars from harmonic configurations. For any star S(j), if the
embedding of its central vertex coincides with the mean of its leaf embedding, the
configuration is considered harmonic. α is a coefficient, which allows controlling
the topological complexity of the resulting graph and is helpful in controlling the
branching potential.

Given a set of data points and a principal graph with nodes embedded into the
original data space, a local minimum of Uφ(X,G) can found by applying a splitting-
type algorithm. Briefly, at each iteration given the initial guess of φ, the partitioning
P(i) is computed, and then, given the P(i) partitioning, Uφ(X,G) is minimized by
finding new node positions in the data space. A remarkable feature of ElPigraph is
that the Uφ(X,G) minimization problem is quadratic with respect to vertices
coordinates and can be solved in a very efficient way by computing the roots of a
system of linear equations. Importantly, the convergence of this algorithm has been
proven29,55.

The most innovative aspect of ElPiGraph, when compared to other algorithms,
is the use of topological grammars to more extensively explore the space of possible
graph structures. Briefly, topological grammar rules define a set of possible
transformations of the current graph topology. Afterwards, the graph configuration
of this set possessing the minimal energy Uφ(X,G) after fitting the candidate graph
structures to the data is chosen as the locally best with a given number of nodes.
Topological grammars are then iteratively applied to the selected graph until given
conditions are met (e.g., a fixed number of grammar application, or a given number
of nodes is reached). The graph learning process is in principle similar to a
gradient-based descent approach in the space of all possible graph structures
achievable by applying a set of topological grammar rules (e.g., in the set of all
possible trees). Finally, the use of ElPiGraph results in an explicit definition of
the principal tree embedded into the data space. The explicit tree structure can
be studied independently on the data, or the data can be mapped onto the
principal tree and studied in its intrinsic, geodesic, coordinates. A detailed
description of ElPiGraph and related elastic principal graph approaches is available
elsewhere27–29.

Concerning the choice of the parameter values, in STREAM these default values
are used for the principal graph inference with ElPiGraph: R0=∞, α= 0.02, μ=
0.1, λ= 0.02 . These values worked well across all the single-cell datasets tested.
However, if necessary, these parameters can be easily modified by the user directly
from the STREAM package. The ElPiGraph.R R package, used as part of STREAM
to fit principal trees to the data, is available at https://github.com/sysbio-curie/
ElPiGraph.R.

Domain-specific optimizations to model single-cell data. Although ElPiGraph
is a general approach to construct principal trees (and other topologies), the
obtained structures may not optimally describe biologically relevant trajectories or
accurately capture pseudotime information based on single-cell data. Therefore, in
addition to the described seeding strategy, in STREAM several single-cell specific
optimizations were introduced to the core algorithm of ElPiGraph (Supplementary
Fig. 1):

Control over-branching: A regularization parameter α with range (0,1] was
introduced to explicitly control the complexity of the resulting graph structure.
Larger values of α lower the propensity of ElPiGraph to introduce branching
points. An extreme value close to one prevents the creation of new branches not
present in the initial seeding structure. Users can control this parameter based on
the expected characteristics of noise and dimensionality of the data. By default, α is
set 0.02 and this value was used for all the analyses performed.

Prune branches: The standard elastic principal graph favors harmonicity, i.e.,
star-shape subgraphs with a central node connected with equally spaced nodes. We
have observed that this may lead to trivial branches with few cells. With the
pruning grammar rule, STREAM is able to remove branches that are either
associated with an excessively small number of cells or that are shorter than a
minimal length. This step helps to get rid of spurious and unnecessary branching
events that may not reflect real developmental trajectories.

Shift branching nodes: To minimize the elastic principal graph energy,
ElPiGraph balances the reconstruction error, total length of edges, and the graph
harmonicity. However, it may happen that the optimal solution places branching
nodes to low-density regions with few cells. This can be hard to interpret
biologically since these nodes should correspond to branching cell states within the
cell population. With the shift branching grammar rule, each branching node is
repositioned to the closest area with higher cell density to better match the most
plausible region corresponding to the true branching event.

Finetune branching nodes: The standard elastic principal graph procedure well
summarizes the principal structure. However, branching sections (i.e., regions close
to branching events) may be not described in sufficient details by the obtained
curves due to the limited number of nodes used around branching nodes by the
global optimization. This grammar rule is able to optimize the space around
branching nodes by locally adding a set of nodes in their proximity to better
characterize branching events and to improve the pseudotime inference.

Extend leaf nodes: The standard elastic principal graph penalizes the total edge
length to more robustly capture the main underlying structure. Although this
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strategy works well when optimizing the graph structure, it may lead to border
effects when projecting the data onto the leaf nodes. In fact, edges connecting
internal node to leaf nodes rarely extend to the border of their local cloud of points.
This is not ideal in the context of pseudotime reconstruction since multiple cells
would be mapped to the same leaf node and assigned the same pseudotime. Hence,
we extend the principal tree by attaching a new node to each leaf. The location of
each node is based on the distribution of points around the corresponding leaf
node. This enables the principal graph to better cover terminal cells and infer more
accurately their pseudotime.

These graph grammar rules correspond to separate functions in STREAM and
their usage is described in Supplementary Note 5.

Flat tree plot. The tree structure learned in the 3D space (or higher dimensional
space), is first approximated by linear segments (each representing a branch) and
mapped to a 2D plane based on a modified version of the force-directed layout
Fruchterman-Reingold algorithm56. We adjust each edge length in order to pre-
serve the lengths of the branches of the original tree. Finally, using both the
pseudotime location on the assigned branch and the distance from it in the MLLE
space, we map cells to the obtained tree in the 2D plane. Cells are represented as
dots and randomly placed to either side of the assigned branches. Each node in the
tree indicates one cell state (cell states are sequentially named S0, S1, … starting
from a randomly selected node) and the resulting structure is called flat tree plot.

Subway map plot. Starting from the flat tree plot and with a designated root or
start node, breadth-first search is used to order and arrange nodes and edges
horizontally on a 2D plane. Because we preserve the branch lengths of the original
tree, the x-axis represents the distance (namely pseudotime) from the start node
along the different branches. Cells are then mapped to the obtained structure,
called subway map plot with the same strategy used for the flat tree plot. To display
gene expression, each cell is colored according to its gene expression (the max-
imum value in the colormap is set as 90 percentile of gene expression values across
all cells).

Stream plot. Starting from the subway map plot, for each cell type (if cell labels are
provided), using a sliding window approach, we first calculate the number of cells
in each window along a developmental branch. To provide smooth transitions
around the branching nodes, in those regions the sliding window spans both parent
branch and children branches and then proceeds independently on each branch.
Then, the numbers of cells in all sliding windows are normalized based on the
length of the longest path in the tree. The vertical layout of different branches is
optimized by taking into consideration normalized numbers of cells to make sure
there will not be overlap between branches. Based on the normalized sliding
window values, we first use linear interpolation to construct a set of supporting
points. Then the Savitzky-Golay filter (a smoothing filter able to preserve well the
signal and avoid oscillations)57 is applied to create smooth curves based on the set
of supporting points. Finally, the obtained curves polygons (one for each cell type)
are assembled to form the stream plot. On the stream plot, the length of each
branch is the same as in the subway map plot and represents pseudotime, whereas
the width is proportional to the number of cells at a given position. To display gene
expression, we consider, for each sliding window, not only the number of cells but
also their average gene expression values smoothed by bicubic interpolation (the
maximum value is set as the nintieth percentile of the average gene expression
values from all the sliding windows).

Diverging gene detection. For each pair of branches Bi and Bj, and for the gene E,
the gene expression values across cells from both branches are scaled to the range
[0,1]. For gene expression Ei fromBi and gene expression Ej from Bj, we first
calculate their mean values. Then, we check the fold change between mean values
to make sure it is above a specified threshold (the default log2 fold change value is
>0.25). Mann–Whitney U test is then used to test whether Ei is greater than Ej or Ei
is less than Ej. Since the statisticU could be approximated by a normal distribution
for large samples, and U depends on specific datasets, we standardize Uto Z-score
to make it comparable between different datasets. For small samples where this test
is underpowered (<20 cells per branch), we report only the fold change to quali-
tatively evaluate the difference between Eiand Ej. Genes with Z-score or fold change
greater than the specified threshold (2.0 by default) are considered as differentially
expressed genes between two branches. Formally:

z ¼
U �mU

σU
ð5Þ

Where mU, σU are the mean and standard deviation, and
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Where n= ni+ nj ni,nj are the number of cells in each branch, ti is the number of
cells sharing rank l and k is the number of distinct ranks.

Transition gene detection. For each branch Bi and for each gene E we first scale
the gene expression values to [0,1] for convenience. Then we check if the candidate
gene has a reasonable dynamic range considering cells close to the start and end
points. To this end, we consider the fold change in average gene expressions of the
first 20% and the last 80% of the cells based on the inferred pseudotime. If the
difference is greater than a specified threshold (the default log2 fold change value is
0.25), we then calculate Spearman’s rank correlation between inferred pseudotime
and gene expression of all the cells along Bi. Genes with Spearman’s correlation
coefficient above a specified threshold (0.4 by default) are identified and reported as
transition genes.

Leaf gene detection. For each gene E we scale the gene expression values to [0,1].
Then we calculate the average gene expressions for all leaf branches. Based on the
average expressions, we calculate the Z-scores of all leaf branches. If there is any
leaf branch with an absolute Z-score greater than 1.5, then the leaf branch with the
highest absolute Z-score value will be picked as the candidate leaf branch. Next,
Kruskal–Wallis H-test is computed for all the leaf branches to test if a significant
difference of gene expression median value between leaf branches exists. If it is
significant (p-value < 0.01), then a post-hoc pairwise Conover’s test is computed for
multiple comparisons of mean rank sums test between all leaf branches. If the
p-values between the candidate leaf branch and the other leaf branches are all
below the specified threshold (0.01), then the gene E will be considered as leaf gene
of the candidate leaf branch.

Mapping procedure. The mapping feature aims to map new cells to an inferred
principal tree. For a set of unmapped cells X= {xi|i= 1,…,M} and a fitted tree T
built using the set of cells Y= {yj|j = 1,…,N}, we assume that X and Y have the
same measured genes and are sequenced using the same experimental protocol.
We also assume that both X and Y are library size normalized, log2 transformed
if necessary and that batch effects have been removed. To map cell xi into the
embedding, we first find its nearest K neighbors in Y, based on the same feature
genes and K used to buildT. The largest distance between xi and its K neighbors
is then chosen as the radius r. Then all the cells in Y within the radius Ji= {yj|
d(xj,yj) ≤ r}are used to compute a set of weights Wi= {wji,j ∈ Ji} as defined in
the original MLLE procedure. Finally, using the MLLE embedding vectors V=
{v1,…,vN}, the new cell position x'i is calculated in the embedding with the
following equation:

x′i ¼
X

j2Ji

vj ´wji ð8Þ

After mapping, each cell is assigned to its closest branch in T.
Although this procedure is helpful to compare different conditions, there are

some important points to consider. The mapping feature has some intrinsic
limitations since it cannot introduce new fate branches in addition to the ones
already present in the reference principal tree. In this case, pooling all the cells
together and re-computing the trajectories may be needed to uncover the new fates.
Thanks to the provided visualization tools, it is easy for the user to check if a new
potential branch may be necessary to better describe the new cells. In fact, in both
the flat tree and the subway map plots, the distances between cells and branches are
inherited from the original space so it is easy to determine the confidence in
assigning a given group of cells to their closest branch. If the new cells have much
larger distances than the reference cells in any given branch, this will suggest that
the built trajectory might not cover all the potential fates.

STREAM analysis on scATAC-seq data. For the scATAC-seq analysis, a total of
3,072 cells were profiled using FACS to isolate 9 distinct populations from
CD34+ human bone marrow, which encompassed progenitors for four well-
defined lineages44. Two thousand thirty-four high-quality cells passed quality
control filtering and were used in the downstream analysis with STREAM.
Specifically, cells were filtered so that 1000 unique nuclear fragments were
observed for each cell and at least 60% of these reads aligned in open chromatin
peaks. After filtering low quality cells, the mean intensity and GC content for
each peak that was called for this dataset was computed using the addGCBias
function for the hg19 genome using the BSgenome.Hsapiens.UCSC.hg19 package
available through chromVAR45. These two coordinates were used to infer an
empirically-defined set of background peaks to compute accessibility deviations,
which have been described elsewhere7,44. As features we used an unbiased k-mer
scoring, which is agnostic to any known transcription factor motif and thus
generalizable to other systems. We used the matchKmers function in chromVAR
with parameters k= 7 and genome= BSgenome.Hsapiens.UCSC.hg19, which
returns a matrix of dimension number of peaks by number of k-mers where a 1
indicates that the peak contains the k-mer sequence. The output of this function
was then included in the computeDeviations function to compute chromatin-
accessibility z-scores for each of the k-mers in our dataset. This matrix of cells by
k-mer accessibility z-scores serves as a data-driven dimensionality reduction of
the chromatin-accessibility profiles of these cells. Based on the z-score matrix of
k-mer DNA sequences, all the 7-mer features are standardized to have zero mean
and unit variance. Since the z-score matrix of k-mers has both positive and
negative values, the variable gene selection method based on gene expression
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values is not directly applicable. As such, PCA is performed on the scaled matrix
to convert z-score to principal components. According to the variance ratio elbow
plot we selected the top 15 PCs but excluded the first component since it captured
technical noise. Then the selected PCs are used as features for MLLE to reduce
dimensionality. In the reduced MLLE space, the same strategy is used to
reconstruct trajectories as previously described. Diverging and transition k-mers
were selected with the same procedures used for gene selection. Finally, detected
k-mers were mapped to known transcription factors using Tomtom58(http://
meme-suite.org/tools/tomtom) and a motif database previously assembled
(github.com/buenrostrolab/chromVARmotifs)44.

Comparison on simulated datasets. Given a set of n cells and assuming we know
their developmental/sampling time and topological organization, i.e., how they are
organized in branches, we can easily evaluate a generic reconstruction method with
the following two metrics:

Difference between the number of inferred and true branches.
Correlation between the true sampling time X and the inferred pseudotime Y.

For the pseudotime we use either the proposed ranking or the actual distance from
the starting point as provided by each method. We used three different measure of
correlation: Pearson correlation r, Spearman correlation ρ, and Kendall’s tau
correlation τ, calculated as follow:

rpseudotime ¼

Pn
i¼1 xi � xð Þ yi � yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 xi � xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 yi � yð Þ2

q ð9Þ

rrank ¼

Pn
i¼1 xi � xð Þ rgyi � rgy

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 xi � xð Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 rgyi � rgy

� �2
r ð10Þ

ρ ¼
cov rgX ; rgYð Þ

σrgXσrgY
ð11Þ

τ ¼
1

n n� 1ð Þ

X

i≠j

sgn xi � xj

� �

sgn yi � yj

� �

ð12Þ

Where rgX and rgY are the ranks of cells, cov (rgX, rgY) is the covariance of rank
variables, σrgxand σrgy are the standard deviations of rank variables. Note that since
both Spearman correlation ρ and Kendall’s tau correlation τ are rank-based
methods, the correlation between X and Y and the correlation between X and rgY
are the same, so we consider only the correlation between X and Y.

Comparison on real datasets. To evaluate the quality of reconstruction in real
datasets in which we do not have the real developmental time and topological
information, we used the following two metrics:

(1) Path-specific marker gene correlation analysis: In real datasets oftentimes, we
do not have the sampling time along a branch. In this case, instead, it is helpful to
evaluate how the inferred pseudotime recapitulates the progressive activation or
repression of an important gene along that branch. The main idea here is that
ordering cells based on a marker gene, which is important in defining a
developmental trajectory, as a reasonable surrogate for the correct pseudotime
ordering. As in the simulation case we computed four correlation coefficients using
marker gene expression X and the inferred pseudotime Y.

(2) F1 score analysis on diverging or mutually exclusive marker genes: Let us
consider a pair of diverging or mutually exclusive marker genes, Gi and Gj. These
genes should be highly expressed on different committed branches and rarely co-
expressed in the same cell. We define Bi as the branch, which contains the most
cells express Gi. Then we can define as true positive (TP) for Bi the number of cells
expressing Gi. The number of cells expressing Gi on the other branches is defined as
false negative (FN). The number of cells expressing Gj on Bi is defined as false
positive (FP). Similarly, for Gj, Bj is the branch, which has the most cells expressing
Gj. TP is the number of cells expressing Gj on Bj. FN is the number of cells
expressing Gj on the other branches. FP is the number of cells expressing Gi on Bj.
Based on the following equations, recall, precision and F1 score are calculated,
respectively, for Giand Gj as follow:

Recall ¼
TP

TPþ FN
ð13Þ

Precision ¼
TP

TPþ FP
ð14Þ

F1 ¼ 2 ´
Precision ´ recall

Precision þ recall
ð15Þ

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files (Supplementary Data 1 and 2).

Code availability
STREAM is available as a user-friendly open-source software and can be used
interactively as a web-application at http://stream.pinellolab.org (Supplementary Fig. 11,
Supplementary Note 4), a bioconda package ‘stream’ for step-by-step analysis https://
bioconda.github.io/recipes/stream/README.html (Supplementary Note 5), or as a
standalone command-line tool: https://github.com/pinellolab/STREAM (Supplementary
Note 6). All the analyses presented in this manuscript can be reproduced using the
bioconda package and the provided Jupyter notebooks in Supplementary Data 1 and 2.
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