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Single-cell transcriptional atlas of the Chinese horseshoe bat 1 

(Rhinolophus sinicus) provides insight into the cellular 2 

mechanisms which enable bats to be viral reservoirs 3 
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Abstract 39 

Bats are a major “viral reservoir” in nature and there is a great interest in not only the 40 

cell biology of their innate and adaptive immune systems, but also in the expression 41 

patterns of receptors used for cellular entry by viruses with potential cross-species 42 

transmission. To address this and other questions, we created a single-cell transcriptomic 43 

atlas of the Chinese horseshoe bat (Rhinolophus sinicus) which comprises 82,924 cells 44 

from 19 organs and tissues. This atlas provides a molecular characterization of numerous 45 

cell types from a variety of anatomical sites, and we used it to identify clusters of 46 

transcription features that define cell types across all of the surveyed organs. Analysis of 47 

viral entry receptor genes for known zoonotic viruses showed cell distribution patterns 48 

similar to that of humans, with higher expression levels in bat intestine epithelial cells. In 49 

terms of the immune system, CD8+ T cells are in high proportion with tissue-resident 50 

memory T cells, and long-lived effector memory nature killer (NK) T-like cells (KLRG1, 51 

GZMA and ITGA4 genes) are broadly distributed across the organs. Isolated lung primary 52 

bat pulmonary fibroblast (BPF) cells were used to evaluate innate immunity, and they 53 

showed a weak response to interferon β and tumor necrosis factor-α compared to their 54 

human counterparts, consistent with our transcriptional analysis. This compendium of 55 

transcriptome data provides a molecular foundation for understanding the cell identities, 56 

functions and cellular receptor characteristics for viral reservoirs and zoonotic 57 

transmission. 58 

 59 
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Introduction 62 

Bats function as natural viral reservoirs and are distributed globally; they are unique 63 

as flying mammals. They have high diversity with more than 1,300 bat species having 64 

been identified [http://www.batcon.org]
1,2

. Bats carry some of the deadliest viruses for 65 

humans, including lyssaviruses, Ebola (EBOV) and Marburg (MARV) filoviruses, severe 66 

acute respiratory syndrome coronaviruses (SARS-CoV)-like viruses (SL-CoVs), Middle 67 

East respiratory syndrome (MERS-CoV)-like viruses (ML-CoVs), Hendra (HeV) and 68 

Nipah (NiV) henipaviruses
3,4

. SARS-CoV-2, which emerged in December 2019 and 69 

caused a global pandemic, is also considered as originating in bats
5,6

.  70 

Bats have evolved over eons to sustain infection from pathogens without 71 

succumbing to overt disease, which indicates a uniquely powerful immune system
7
. 72 

According to the comparative genome and transcriptome studies, in vitro bat cell culture, 73 

and experimental infection assays, the diverse bat species may have evolved different 74 

mechanisms to balance between enhanced immune function which clears viral infections 75 

and tolerance on limiting immunopathology
1,8

. However, knowledge of bat immunology 76 

is still poorly understood as current studies used mainly Pteropus alecto, Myotis davidii, 77 

and Rousettus aegyptiacus species, but obtained conflicting findings on the function of 78 

bat immune systems
9,10

. The natural killer (NK) cells and type I interferons (IFNs) 79 

signaling pathways are of great interest. It has been reported a few NK cell receptor genes, 80 

killer cell lectin-like receptor genes  (KLRD and KLRC), exist in the Pteropus alecto 81 

transcriptome and Rousettus aegyptiacus genome
11

. However, the majority of known 82 

canonical NK cell receptor genes are absent in currently known bat genomes
10,12

.  83 

As they have a long life span and continued natural selection, the bat has also been 84 
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considered as an excellent model to study human cellular evolution features compared to 85 

other lab animals
1
. Characterizing the extent to which bat cellular biological functions 86 

mirrors those of humans will enable scientists to understand the characteristics of the 87 

immune system and mechanisms of the zoonotic virus spreading. The exploration of the 88 

organs in single cell level in human, model mouse has provided insights into cellular 89 

diversity and revealed new cell types related to physiological function
13-15

 .   90 

In this study we report the molecular composition of 89 cell types from the Chinese 91 

horseshoe bat (Rhinolophus sinicus), belonging to suborder of Yinpterochiroptera, a 92 

natural reservoir of SL-CoVs. The compendium comprises single-cell transcriptomic data 93 

from cells of 19 organs, including adipose tissues (brown and white), bladder, bone 94 

marrow, brain, heart, intestine, kidney, liver, lung, muscle, pancreas, wing membrane, 95 

spleen, testis, thymus, tongue, trachea and whole blood.  96 

 97 

Results 98 

Transcriptomic characteristics   99 

To ensure accuracy of the single cell sequencing (sc-seq), 12 of the 19 obtained 100 

organs were firstly analyzed by using bulk sequencing (bulk-seq), including adipose 101 

tissues (brown and white), brain, heart, intestine, kidney, liver, lung, muscle, spleen, 102 

tongue, and trachea (Fig. 1a). As the interaction of the virus with its cellular receptor is a 103 

key step in its pathogenesis
16

, we first compared the transcriptomic patterns of viral 104 

receptor genes in different mammals: bat, human and mouse. We analyzed 6 out of 28 105 

known human viral receptor genes as representatives (Fig. 1b), in which five are known 106 

bat zoonotic virus receptors: angiotensin convert enzyme 2 (ACE2) (receptor of 107 
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SARS-CoV, SARS-CoV-2 and human coronavirus (HCoV) NL63), dipeptidyl peptidase 4 108 

(DPP4), (receptor of MERS-CoV), aminopeptidase N (ANPEP) (receptor of 109 

HCoV-229E)
17

, Ephrin-B2 (EFNB2) (receptor of HeV and NiV), NPC intracellular 110 

cholesterol transporter 1 (NPC1) (receptor of EBOV and MARV), coxsackievirus and 111 

adenovirus receptor [CXADR, the human and bat adenovirus (Adv) shared receptor]
18

. 112 

Transmembrane serine protease 2 (TMPRSS2), a protease essential for SARS-CoV and 113 

SARS-CoV-2 entry was also analyzed (Fig. 1b). The data show that TMPRSS2, DPP4 114 

and ANPEP express at high levels in the lung, intestine and kidney in bat, human and 115 

mouse. Although ACE2 is also highly expressed in the intestine and kidney of all three 116 

species, for lung it expresses highly in only mouse but not in human or bat (Fig. 1b, 1c). 117 

Both the ACE2 and TMPRSS2 genes highly express in bat tongue, while only ACE2 118 

highly expresses in mouse tongue and only TMPRSS2 in human tongue. In the heart, 119 

brain, spleen, wing (skin), muscle and adipose tissues, only ACE2 shows highly 120 

expressed in two of the species, but TMPRSS2 shows low expression levels. The neural 121 

cell adhesion molecule 1 (NCAM1) gene, Rabies virus (RABV) receptor, is found mainly 122 

expressed in the brain of all three species, as well as in the human heart, spleen and 123 

muscle. The EFNB2 and NPC1 are distributed in most of the organs in bat, human and 124 

mouse with similar expression level. Such distribution characteristics may be related to 125 

the multiple organs involved infections of HeV, NiV and EBOV
19,20

. Of the other 20 viral 126 

receptor genes, we notice that most of the genes express in a similar patterns between bat 127 

and human, except the low-density lipoprotein receptor (LDLR) gene, the receptor gene 128 

of human rhinovirus, which showes a low expression level in bat intestine and lung 129 

compared to that of human (Extended Data Fig. 1a). Therefore, at the level of bulk 130 
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transcriptomic analysis, it is clear that the ability of bats to avoid overt disease from these 131 

viruses is not due to species specific expression of entry receptors in particular tissues. 132 

Construction of single-cell atlas of bat 133 

For sc-seq, nearly all tissues were obtained from both bats, with the exception of the 134 

intestine and white adipose tissue (Fig. 1a). Overall, 82,924 cells were retained after 135 

quality control. The median number of unique molecular identifiers (UMIs) per cell is 136 

3,081 (Extended Data Fig. 1b). The organs were analyzed independently and cells were 137 

clustered according to the highly variable genes between cells by principal component 138 

analysis (PCA) and nearest-neighbour graph. A total of the 182 clusters were defined 139 

from the 19 organs (Extended Data Fig. 1c, Supplementary Table 1). The cell types in 140 

each cluster were annotated using known genes with differential expression between 141 

clusters. Significant differential transcriptional genes were observed across cell types, 142 

which encompass the gene module repertoire of the bat (Fig. 1d, 1e, Extended Data Fig. 143 

1c). To ensure the accuracy of the single-cell (sc)-RNA seq data for cell typing, we 144 

further analyzed these differential transcriptional genes and found the similar expression 145 

pattern in corresponding organs in the bulk-seq data (Extended Data Fig. 1d). We 146 

constructed a bat cell atlas (http://bat.big.ac.cn/) for data accessing, enabling the 147 

searching of interested genes and browsing of single-cell data for all the organs. 148 

To define whether there are varying gene transcription levels in different species at 149 

the single cell level, we explored differential gene expression by using the data from the 150 

bat lung and compared to that of human and mouse. In the bat lung, total 19 distinct 151 

clusters were classified, including 4 epithelial cells [alveolar epithelial type 1 (AT1) cell, 152 

alveolar epithelial type 2 (AT2) cell, ciliated cell, and mesothelial cell)], 3 endothelial 153 
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cells (capillary type 1 cell, capillary type 2 cell, and lymphatic cell), 3 mesenchymal cells 154 

(adventitial fibroblast, alveolar fibroblast, and myofibroblast), 9 immune cell types 155 

(alveolar macrophage, interstitial macrophage, classical monocyte, non-classical 156 

monocyte, B cell, T cell, natural killer T cell, neutrophil and ALOX5AP
+
 macrophage ) 157 

and one untyped cell cluster, which shows no specific expressed gene compared to other 158 

clusters (Fig. 2a, Extended Data Fig. 2 a-c). The differential genes expressed in epithelial 159 

cells, endothelial cells, mesenchymal and immune cells of lung across the species were 160 

then analyzed (Fig. 2b, Supplementary Table 2). In all the cell types, DAZAP2
21

, related 161 

to the regulation of innate immunity and SUMO2
22
，redundantly prevent host interferon 162 

response, were expressed at a higher level in bat compared to that of mouse. The genes 163 

related to cell proliferation (MED28, TEMD3) 
23,24

, cell cycle (GATAD1) 
25

, regulation of 164 

apoptosis and cell death (ITM2C) 
26

, host defense and inflammatory response (CTSL) 165 

27
expressed in higher levels in bat epithelial cells, endothelial cells and mesenchymal 166 

cells, while the TAPBP
28

, associated with antigen presentation, and ARHGD1A
29

, the 167 

regulator of Rho activity expressed higher in bat immune cells.    168 

When compared to that of human, higher expression of several genes across the bat 169 

cell types were observed, including PSMA6, related to the inflammatory response
30

; 170 

GABARAP, a mediator of autophagy and apoptosis
31

; CDO1, the tumor suppressor genes 171 

32
; and RNASE4

33
 , a member of RNase family associated with host defense-related 172 

activities, assumed to interact with pathogen-derived nucleic acid and facilitate their 173 

presentation to innate immune receptors within the cell as immunomodulatory proteins. 174 

Notably, the gene expressed ribonuclease kappa (RNASEK)
34

, recently identified as a 175 

host dispensable factor for the uptake of acid-dependent viruses, was highly expressed in 176 
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bat lung cells (Fig. 2b and Supplementary Table 2). In bat lung epithelial cells, the gene 177 

encoded Heme oxygenase-1 (HMOX1), were observed at a higher level; this gene has 178 

been recognized as having anti-inflammatory properties and anti-viral activity
35,36

. In the 179 

bat monocytes, macrophages and mast cells, ITGA4 and IRF9 were expressed more 180 

highly compared to that of human. This well-characterized bat altas can gain an insight 181 

into cellular heterogeneity at the single cell resolution. 182 

For viruses with respiratory and enteric tropism, we analyzed the viral receptor gene 183 

expression level across the cells (Fig. 2c, Extended Data Fig. 2d-g, Extended Data Fig. 3). 184 

This analysis shows that the respiratory virus receptor genes, ACE2, DPP4, ANPEP and 185 

CXADR are expressed at a high level in enterocytes, cell cycle-associated cells, 186 

enteroendocrine cells in the intestine, proximal straight tubule epithelial cells, and 187 

collecting duct epithelial cell (principal cells) in the kidney, and also in AT1, ciliated cells 188 

and mesothelial cells in the lung (Fig. 2c). NCAM1 transcripts are mainly in 189 

oligodendrocyte precursor cells, oligodendrocytes, and astrocytes in the brain. EFNB2 is 190 

mainly expressed in endothelial cells in the spleen, heart, and intestine, which is 191 

consistent with the NiV and HeV secondary replication sites, and corresponds to their 192 

important role in virus dissemination
19

. In addition, EFNB2 is also expressed in intestine 193 

epithelial cells, but at a relatively low level, where NiV antigen have been identified in 194 

fatal human cases
19

. The expression of NPC1 is broadly distributed in epithelial cells, 195 

endothelial cells, and mesenchymal cells.  196 

The distribution patterns and expression levels of these receptor genes were then 197 

analyzed in human and mouse. We focused on the receptor genes (ACE2, DPP4, and 198 

ANPEP) of known zoonotic respiratory viruses, shared receptor of human and bat 199 
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(CXADR) and TMPRSS2 in the cell types in the trachea, lung, intestine and kidney. Bat 200 

exhibites more similar expression pattern to human in some organs (ACE2 and ANPEP4 201 

in intestine epithelial cells; TMPRSS2 in lung epithelial cells), comparing to that in mouse 202 

(Extended Data Fig. 2g). Although similar expression patterns were detected in bulk-seq 203 

data at organ level, the differences of cell types among species revealed by single cell 204 

data suggest bat as a better model for viral cross-species transmission research. 205 

The other human viral receptor genes NCL, CD55, HSPG2, and PDGFRA, are 206 

expressed in the epithelial cells in both the respiratory tract and intestine, the viral 207 

tropism cell types (Extended Data Fig. 3). The transcripts of desmoglein 2 (DSG2), the 208 

receptor of Adv, Fc fragment of IgG receptor and transporter (FCGRT), fusion receptor of 209 

enterovirus B, are mainly expressed in epithelial cell and brush cell of the trachea, 210 

ciliated cell of the lung, and enterocytes in the intestine. These findings provide insights 211 

to understand the cellular tropism of respiratory tract and intestinal tract viruses 212 

(Extended Data Fig. 3).  213 

This analysis of cell type specific gene expression data suggests that the distribution 214 

of viral entry receptor genes cannot explain the asymptomatic nature of viral infection in 215 

bats, and nor can it be explained by differential gene expression in those cell types. The 216 

molecular and cellular characteristics of the immune response in the bat were therefore 217 

then analyzed. 218 

 219 

The Adaptive Immune System: T and B cell clustering and analysis 220 

Adaptive immunity in bats has been of great interest to understand their 221 

asymptomatic infection status as “viral reservoirs”. At the single-cell level, we analyzed 222 
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the transcription features exhibited in immune cells. T cells differentially expressed CD3 223 

genes in all organs are analyzed by using unsupervised clustering method implemented in 224 

Scanpy
37

. A total of 13 stable clusters are obtained, and each with unique signature genes 225 

(Extended Data Fig. 3a, 3b, Extended Data Fig. 4a-4c). In many organs, the number of 226 

activated T cells is much more than naïve T cells, such as liver, lung, trachea, intestine, 227 

pancreas, bladder, heart, kidney, and wing membrane (Extended Data Fig. 4d). Five 228 

clusters (C7, C8, C9, C11, and C12) express CD8 genes, and seven clusters (C1‐C6, and 229 

C13) are composed of a mixture of CD4+ and CD8+ T cells. Most of C1, C3, C4 and C6 230 

cluster are CD4+ T cell, while most of C2, C5, and C13 are CD8+ T cells. Cluster 10 is 231 

composed of CD3+CD4-CD8- T cells. Cells of C1_CD4TN and C2_CD8TN clusters 232 

expressing “naïve” marker genes such as LEF1, CCR7, and TCF7 
38

are mostly from 233 

spleen and bone marrow, respectively (Extended Data Fig. 4b, c, e). The cluster of 234 

C3_TREG-like is characterized by the expression of the IL2RA and CCR8 genes, 235 

commonly associated with regulatory T cells (TREG-like). However, the FOXP3 gene 236 

shows no expression in the clustered cells. The C4_TCM cluster characterized by CCR7, 237 

SELL, and GPR183 is composed of central memory T cells (TCM). The C5_TEM cluster is 238 

closest to effector memory (TEM) T cells in many organs, in accordance with the 239 

expression of CD44, CXCR3, GZMK, CCL5, CTSW and NKG7, and the lack of 240 

expression of lymph node-homing receptors CCR7 and SELL. The C6_TEM/TH1-like 241 

cluster characterized by IFNG, CXCR3, GZMK, and CD4, which mainly distributed in the 242 

intestine, lung, and liver. The C7_TH17 cluster contains TH17 cells mainly in the trachea 243 

and lung, with high level expression of IL23R and RORC genes. In addition to TEM cells, 244 

recently activated effector memory or effector T cells (TEMRA) are also identified. The 245 
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C10_TEMRA differentially highly expressed effector molecules such as NKG7, ZNF683, 246 

CTSW, CCL5, GZMA, XCL1, KLRG1, and TBX21. It has been reported that chemokines 247 

XCL1 and CCL5 derived from NK cells recruit cDCs into the tumor microenvironment, 248 

which are critical for antitumor immunity
39

, while KLRG1+TBX21+ T cells are 249 

long-lived effector cells, which contribute to infection control (Fig. 3b, Extended Data 250 

Fig. 4a-c). 251 

The cells in C8_ tissue-resident memory T (TRM)-GZMA
high

, C9-TRM-ZNF683
high

, 252 

and C11_IEL clusters express the ITGAE gene, a known marker of TRM cells. They share 253 

signature genes, such as TIMP1, RGS1, and FCER1G. The cells in C8_TRM-GZMA
high

 254 

are predominantly from the intestine and express cytotoxic molecules such as GZMA, 255 

GNLY, PRF1, and CCL5. Most of the cells in C9_TRM-ZNF683
high

 are from the liver, 256 

which express higher levels of effector molecules such as ZNF683, NKG7, XCL1 and 257 

CCL5, and interferon stimulating genes (ISGs), including IFNG and IRF7. The cells in 258 

the C11_IEL cluster are detected exclusively in the wing membrane, which are 259 

considered as intraepithelial lymphocytes (IEL) as they highly expressed natural killer 260 

cell receptor genes, NCR1 and KLRB1
40

. These cells also display overwhelmingly active 261 

molecules CD44
41

, chemokine XCL1, and ISG CD9 (Fig. 3c, Extended Data Fig. 4e).  262 

The C12_NKT-like cluster characterizes NK cell receptor genes, including KLRB1, 263 

KLRD1, KLRF1, KLRG1, NCR1, and NCR3 genes. All the genes express overlapping 264 

with the CD3 gene and the cluster is considered as NKT-like cells. The C12_ NKT-like 265 

cluster is composed of three subsets and each subset expressed distinct high level genes 266 

in different organs (Fig. 3d-3g). The subset-1 which highly express KLRG1, GZMA, and 267 

ITGA4 is considered as long-lived effector NKT and contribute extensively to immune 268 
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surveillance
42

. The subset-2 highly expresses active gene CRTAM and CD69, peptidase 269 

inhibitor gene (IP3), chemokine XCL1, and immediate early genes (IEGs), such as JUND, 270 

NR4A1, and FOSB. IEGs are rapidly activated at the transcriptional level in the first 271 

round of response to stimulation prior to any nascent protein synthesis. These data 272 

suggest subset-2 NKT-like cells are in active states. The subset-3 NKT-like cells highly 273 

express SCGB3A1, SCGB3A2, MAPT, GNLY, and BCL2. The SCGB3A1 is a tumor 274 

suppressor gene, while SCGB3A2 is a negative inflammation response gene. 275 

C13_proliferating T cells are significantly enriched in the expression of cell cycle genes 276 

(Fig. 3f, Extended Data Fig. 4a-4c), such as MKI67, UBE2C, CENPF, PCLAF, TOP2A, 277 

indicating the proliferative states of the C13 cells. 278 

B cells are annotated into five clusters according to the marker genes (Fig. 3h, 3i). 279 

C1 cluster contains activated B cells expressing high levels of CD86, CAPG, AHNAK, 280 

ANXA2, and PHACTR1. C2 is defined as germinal center B (GC B) cell with the specific 281 

expression of BCL-6, and cell cycle-related genes (MKI67, TOP2A, CENPF, CDCA3, 282 

and CDKN3) C3 cluster is defined as marginal zone B (MZB) cell, which highly 283 

expressed MZB1, DTX1, and NW_017739275.1:124060-124578 (corresponding to 284 

Rousettus aegyptiacus complement component 3d receptor 2 (CR2) gene). Some MZB 285 

cells express SDC1, indicating a conserved maturing location of plasma cells. The C4 286 

cluster is characterized by higher expression of FABP4, RGS1, STAP1, and PIK3R1, 287 

which are defined as naïve/memory B cells. The C5 cluster is annotated as long-lived 288 

plasma cells, in which the transcription genes SDC1, PRDM1, and XBP1 and marker 289 

genes SDC1 and TNFRSF17 expressed at a high level, while CD19 and MS4A1 were 290 

under-expressed. A majority of B cells were in the spleen and adipose tissues (Fig. 3j). 291 
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 292 

The gene expression patterns of mononuclear phagocytes 293 

Mononuclear phagocytes (MNPs) play a critical role in pathogen sensing, 294 

phagocytosis, and antigen presentation. The MNPs in bat tissues are profiled and 12 295 

clusters are grouped according to differentially expressed transcripts (Extended Data Fig. 296 

5a, Supplementary Table 1). C9_granulocyte-monocyte progenitor (GMP) is identified in 297 

bone marrow, with specific expression of CTSG, MPO, ELANE, and RTN3. Two clusters 298 

of monocytes are identified, including C3-classical monocyte (cMo) and C1_nonclassical 299 

monocyte (ncMo). Six clusters are macrophages, including C0_CSF3R
high

 macrophage 300 

(CSF3R
high 

Mac), C10_CD300E
high

 macrophage (CD300E
high

 Mac), C2_Kuffer cells 301 

(KC), C4_SPIC
high

 macrophage (SPIC
high

 Mac), C5_LYVE1
high

 macrophage (LYVE1
high

 302 

Mac), and C6_CCL26
high

 macrophage (CCL26
high

 Mac). The macrophage clusters are 303 

characterized by unique expressed genes, such as CSF3R and SERPINA12 in CSF3R
high 

304 

Mac, CD300E and LPO in CD300E
high

 Mac, MARCO and CLEC4G in KC, CNTNAP2, 305 

SPIC, and VCAM1 in SPIC
high

 Mac, LYVE1 and DAB2 in LYVE1
high 

Mac, CCL26 and 306 

SCD in CCL26
high

 Mac (Extended Data Fig. 5b, Supplementary Table 1). KC, SPIC
high

 307 

Mac, LYVE1
high

 Mac, and CCL26
high

 Mac are tissue-resident macrophages with high 308 

expression of C1QA, C1QB, C1QC, and MAFB. A total of about 600 differentially 309 

expressed genes are identified in cross different tissue-resident macrophage populations. 310 

The differential expressed genes in CSF3R
high

 Mac, mainly identified in the intestine, are 311 

enriched in leukocyte migration, leukocyte chemotaxis, and positive regulation of 312 

response to external stimulus in GO annotations (Extended Data Fig. 5c and 5d). SPIC
high

 313 

Mac mainly comes from the spleen. The enriched genes for GO annotations are mainly 314 
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responsible for signal transduction, activation of the immune response, and regulation of 315 

monocyte chemotaxis. LYVE1
high

 Mac contains many organs macrophages, such as the 316 

bladder, pancreas, thymus, adipose tissue, heart, tongue, trachea, testis, kidney, lung, 317 

muscle, and intestine. The enriched gene functions mainly include wound healing, cell 318 

migration, and protein activation cascade. CCL26
high

 Mac cluster contain macrophages of 319 

the lung and trachea, which are mainly associated with lipid transport and metabolic 320 

process, phagocytosis, and regulation of endocytosis (Extended Data Fig. 5c, d). 321 

Four DCs subtypes are determined (Extended Data Fig. 5a). C7_cDC1 is 322 

characterized by FLT3, CLEC9A, XCR1, IRF8, and CPVL. C12_pDCs highly express 323 

TCF4, IRF8, IL3RA, IRF4, LAMP3, BCAS4, and GPM6B. C11 is annotated as activated 324 

DCs, with high expression of DC hallmark receptor gene FLT3, activation marker gene 325 

LAMP3, co-stimulatory molecule genes ICOSLG and CD83, and chemokine receptor 326 

genes CCR7 and IL7R. C8_Langerhans cells (LCs) are mainly located in the wing 327 

membranes, with highly expressed genes of FLT3, RUNX3, EPCAM, and TACSTD2 328 

(Extended Data Fig. 5b, c). Collectively, monocytes, macrophages, and DCs display 329 

distinct gene landscapes, which likely form the basis of MNPs specificity and plasticity. 330 

The distinct gene profiles of MNPs may contribute to the critical role of MNPs in 331 

pathogen sensing, phagocytosis, antigen presentation, tissue function and homeostasis.  332 

 333 

Innate immunity: the response of bat primary lung fibroblast cells against RNA 334 

virus infection 335 

We then studied the innate immunity activities since it is the first-line to control the 336 

virus infections. Real-time quantitative PCR analysis revealed that innate immunity 337 
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related genes, such as retinoic acid-inducible gene-I (RIG-I), melanoma 338 

differentiation-associated protein 5 (MDA5), toll-like receptor (TLR) 3, TLR7-9, 339 

interferon regulatory factor (IRF) 3, IRF7, IFNα, β, ω, and γ, are expressed in various 340 

tissues (Extended Data Fig. 6). All of these genes are highly expressed in the spleen and 341 

white adipose tissue. Furthermore, TLR3 and TLR7 are highly expressed in the intestine. 342 

RIG-I, MDA-5, TLR-3, TLR-8 and IRF3 are highly expressed in the lung (Extended Data 343 

Fig. 6). 344 

To analyze the innate immune activities at the lung cellular level, we isolated 345 

primary bat lung fibroblasts (BPFs). According to the transcriptomic data, the lung stomal 346 

cells constitutively expressed innate immune genes (Extended Data Fig. 7). An RNA 347 

virus, vesicular stomatitis virus (VSV), and/or the analogs stimulating the signaling 348 

pathways, were used to treat BPFs and human primary lung fibroblasts (HPFs) (Fig. 4a). 349 

The cells were stimulated with poly (I:C), R848, the analogs of RIG-I/MDA-5, TLR3, 350 

and TLR7/8, respectively, as well as VSV. At 4 hours (h), 8h, 12h and 24 h after treatment, 351 

the expression levels of RIG-I, MDA5, IFNα, β, IL-6 and TNFα were analyzed. In 352 

HPF, the transfection of poly (I:C) induces the expression of IFNα, β about 4,000-fold 353 

compared to untreated cells at 4h post-treatment, while the incubation of poly (I:C), for 354 

the purpose of stimulating the TLR3 pathway showed similar results (Fig. 4c-4e). 355 

However, the extent of IFN-β mRNA induction was much lower in BPFs when compared 356 

with HPFs after 4h post-treatments (p=0.000, student t test). The transfection of R848 357 

induces higher expression levels of IL-6 and TNFα mRNA in HPFs, but not in BPFs (Fig. 358 

4b). Similar results were obtained in VSV-infected cells (Fig. 4f). Although the VSV 359 

replicates in a low level in BPFs compared to that of HPFs, the mRNA levels of MDA-5 360 
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and RIG-I increased slightly.  However, the transcription of IFN-β, IL-6, and TNF-α 361 

does not increased significantly compared with that in HPFs.  362 

 363 

Discussion 364 

The single-cell transcriptome data obtained from the model organism mouse and 365 

human has established a reference database in mammals for deep molecular annotation of 366 

cell types
13-15

. Here, we have created a parallel cell atlas in an important organism 367 

trapped from the wild.  368 

Most emerging infectious diseases in humans are dominated by zoonoses
43

. Over 369 

millions of years, bats have evolved a special ability to carry a variety of viruses but 370 

show little or no signs of disease. However, many of these viruses result in devastating 371 

infection when they cross the species barrier to humans
44,45

. Bats are social animals and 372 

diverse viruses circulate within the colony, allowing them to be important natural viral 373 

reservoirs
45

. Viral strains or mutatants adapted to human beings or other species may 374 

occur during the circulation, which can spill over to human beings or other animal 375 

species (intermediate species). This may result in epidemics or outbreaks in human 376 

beings by bat-human or bat-intermediate hosts-human transmissions
46

. Therefore, 377 

bat-borne viruses etiologically play a pivotal role in human emerging infectious diseases 378 

(EIDs), and understandings in how bat carry and transmit viruses has become a priority 379 

issue for the EIDs alert and prevention
47,48

. The infection and replication of viruses rely 380 

on specific host cells due to their parasitic nature. Interactions between the virus and the 381 

host affect the infections and the replicate abilities of the virus, and we have lacked an 382 

understanding of how host cell biology determines whether the infection is asymptomatic 383 

or pathogenic. Furthermore, the pathogen’s shedding route is highly dependent on the 384 
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replication tissue sites. However, the lack of precise annotation of cellular composition of 385 

bat organs/tissues has hindered the understanding on the many key aspects of zoonotic 386 

virus origin in bats, e.g. the mechanisms of asymptomatic bearing of diverse viruses, 387 

tropism and tissue targeting, virus shedding route and interspecies transmission, etc. It is 388 

critically needed to elucidate the cellular composition as well as their functions and 389 

interplay in various bat organs/tissues. However, it is still hard to create bat cell atlas by 390 

conventional immunological or histological approaches due to the lack of sufficient 391 

antibody reagents at present. Single-cell sequencing does not rely on cell surface protein 392 

markers and antibodies. By clustering based on the transcription characteristics and 393 

specifically transcribed genes, cells in organ/tissues can be classified by sc-seq. In this 394 

study, we developed the first bat cell atlas by single-cell RNA-seq, which provides a 395 

powerful tool for in-depth understanding of the cellular mechanisms by which how bats 396 

carry, shed and cross-species transmit viruses. 397 

Binding and entry into the host cell is the first step of virus infection. The specific 398 

receptor molecules on host cell membranes govern whether a virus can enter and infect 399 

the cells. The bat-borne viruses, such as SARS-CoV, MERS-CoV, HeV, NiV, RABV, 400 

EBOV, and MARV, have emerged for more than twenty years and resulted in human 401 

infections in the world. A crucial factor for these viruses infected human is that these 402 

viruses could enter the human cells through specific receptors. In this study, it was found 403 

that bat-borne viruses share similar receptor distributions and expression in bat and 404 

human. For example, the the NPC1 (receptor of EBOV and MARV) are distributed in 405 

most organs in bat and human, with similar expression levels. It has been reported that 406 

patients succumbed to EBOV and MARV infections have extensive necrosis in 407 
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parenchymal cells of many organs, including liver, spleen, kidney, and gonads
49

, which is 408 

consistent with the distribution of receptors in bat in this study. Further, EBOV and 409 

MARV have a broad cell tropism. It has been verified from fatal human cases or 410 

experimentally infected nonhuman primates that EBOV and MARV could infect and 411 

replicate in monocytes, macrophages, dendritic cells, endothelial cells, fibroblasts, 412 

hepatocytes, and several types of epithelial cells
20,50

. The distributions of NPC1 in 413 

immune cells and nonimmune cells further support the broad cell tropism of EBOV and 414 

MARV. ACE2, the SARS-CoV and SARS-CoV-2 receptor, is expressed in epithelial cells 415 

of the lung and the small intestine, which are the primary targets of the two CoVs, as well 416 

as in the heart, kidney, and other tissues
16,51

. In this bat data, it was found that ACE2 is 417 

mainly expressed in different epithelial cells of the intestine, lung and trachea, such as 418 

enterocytes, enteroendocrine cells, goblet cells and tuft cells, and lung and trachea 419 

ciliated cells. TMPRSS2 showes higher expression in enterocyte of the intestine, AT1 in 420 

the lung and collecting duct cells in the kidney. However, most of the receptor genes of 421 

respiratory viruses show a higher expression level in bat intestine epithelial cells. 422 

Previous studies also showed that SL-CoVs are majorly detected in the intestine of bats
3,4

. 423 

These findings indicate that intestine is probably a major site where many viruses reside 424 

and replicate, such as SL-CoVs
4,7

. This may facilitate their dispersal in the nature as feces 425 

harboring the shed viruses can touch other animal species more effectively than the 426 

respiratory route. These data suggest that the similar receptor distribution patterns 427 

between bat and human may be one of the bases of cross-species spread of bat borne 428 

viruses. Further, some virus receptors, such as SARS-CoV, SARS-CoV-2, MERS-CoV, 429 

HeV, NiV, RABV, EBOV, and MARV, are also co-located in the lung, bladder, and 430 
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intestine of both species, which is critical in virus transmission. The clarifications on the 431 

consistence and difference of surface molecular patterns between bat and human across 432 

cell types, for example, the viral receptor gene, would be informative to assess the 433 

cross-species transmission risk of bat borne viruses.   434 

The knowledge of cellular immunity of bats is quite limited. According to the sc-seq 435 

data, we found that CD8
+ 

T cells were predominant over CD4
+
 T cell in Chinese 436 

horseshoe bats (Rhinolophus sinicus). All tissue-resident memory T cells, including 437 

C8-TRM-GZMA
high

, C9-TRM-ZNF683
high

, and C11_IEL, are CD8
+
 T cells. These TRM 438 

cells highly expressed many effector molecules such as GZMA, GNLY, PRF1, ZNF683, 439 

NKG7, XCL1 and CCL5, and so forth. Microbes most often attack body surfaces and 440 

mucosal sites. TRM cells lie in frontline sites of infection and need not proliferate. They 441 

are anatomically positioned to respond most immediately, which contribute to pathogen 442 

control after the initial infection. In addition to TRM cells, most of TEM and NKT-like cells 443 

are CD8
+
 T cells, and they express many effector molecules and IEGs. Specifically, 444 

subset-2 NKT-like cells highly expressed IEGs, which can induce a rapid response to 445 

stimuli before new protein synthesis. At the same time, CD69, an activation inducer 446 

molecule, displayes high enrichment in subset-2 NKT-like cells. These data imply an 447 

active state of the NKT-like cells in subset-2. Collectively, these predominant CD8+ T 448 

cell and their functional states suggest that the immune baseline level of the bat is quite 449 

high and is geared towards fighting microbe infections. The resident tissue CD8+T cells 450 

and NKT-like cells with the higher expression level of immediate early genes indicates 451 

effective cellular immunity response restricting viral infections in bats. 452 

It has been reported that KLRG1
+ 

T cells and NKT are long-lived effectors and 453 
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optimally provide immediate protective immunity against certain pathogens
42,52

. In this 454 

study, subset-1 NKT-like cells display high expression of KLRG1, with co-expressed 455 

ITGA4 and GZMA. These NKT-like cells distribute in different tissues of the bat. This 456 

will help the bat to better conduct immune surveillance and fight against infections and 457 

tumors. TEMRA cells present high expression of KLRG1 and TBX21 in the bat, which have 458 

been reported to be expanded and maintained long term following boosting, without 459 

losing their protective superiority
52

. TRM cells resident in the local environment long after 460 

peripheral infections subside. If an infection is localized to peripheral or extralymphoid 461 

compartments, TRM cells would provide superior immune protection than circulating 462 

memory T cells
53

. The circulating CD8+ memory T cells is failed to control the wing 463 

membrane infection with HSV, while the TRM cells in the wing membrane provide local 464 

protection against infection in the absence of ongoing T-cell stimulation. We found that 465 

there are many TRM cells in the bat intestine, liver, and wing membrane, indicating an 466 

activated adaptive immunity, which may offer effective barrier immune protection for 467 

bat.  468 

The highly activated cellular immunity may protect bats from viral damage. But how 469 

can the virus reside and replicate in bats? The tolerance of viral infections in bats appears 470 

to involve a balance between viral clearance and host tissue damage promoted by 471 

proinflammatory effectors. The innate immune system is the first defense against 472 

invading pathogens in mammals and type I IFNs are induced very early in viral infection. 473 

The magnitude and nature of the IFN response determines whether the resulting effects 474 

on the host are harmful or beneficial
54

. In Chinese horseshoe bats (Rhinolophus sinicus), 475 

the IFN gene loci are still not clarified clearly. However, the critical components of the 476 
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IFN signaling pathway have been investigated
55,56

. For example, the sequences of RIG-I, 477 

STAT-1 and IFN-β have close homology with human, mouse, pig and rhesus monkey in 478 

immortalized embryonic fibroblast (BEF) cell lines from Rhinolophus affinis and 479 

Rhinolophus sinicus
57

. Our data show that the critical host genes in the IFN signaling 480 

pathways are expressed across the cell types. To characterize the innate immunity in bat, 481 

we isolated BPFs from one of the Chinese horseshoe bat (Rhinolophus sinicus) lungs. We 482 

found that the induction of most major pathogen associated recognition pattern (PAMP) 483 

receptors, including RIG-I, TLR-3, and TLR7/8 as well as IFN-β and proinflammatory 484 

factors, such as IL-6 and TNFα, are very low in BPFs compared to HPFs when stimulated 485 

by polyI:C and VSV. These data indicated that the signaling pathways of innate immunity 486 

in bat are tightly suppressed. The low level innate immune response may enable the bats 487 

to asymptomatically harbor viruses.  488 

In conclusion, we show here a first comprehensive bat cell atlas based on single-cell 489 

transcriptional landscape of 19 organs from Chinese horseshoe bat. By combining the 490 

sc-seq and bulk-seq data, we characterized the distribution patterns of multiple known 491 

human viral receptors in bat and human across organs and cell types. We also 492 

demonstrate an orchestration of highly activated adaptive immunity and suppressed 493 

innate immunity status, which may form a precise immune hemostasis which allow the 494 

virus harbor in bats without pathological damage. Our findings provide insights into the 495 

cellular mechanisms to enable bats to serve as natural viral reservoirs, largely informing 496 

an active alert and control of epidemics caused by bat borne viruses. 497 

 498 

Online content  499 
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The methods, additional references, source data, statements of data availability and 500 

associated accession codes are available online.  501 

 502 

Methods 503 

Bat, organs and single cell preparation 504 

The two male Chinese horseshoe bat (Rhinolophus sinicus) were obtained in 505 

October, 2018 from Anhui province, China. The bats were placed separately and 506 

transferred to the lab. The species of each bat was identified by field biologists and 507 

recorded. After anaesthetization with pentobarbital sodium (75mg/kg), bats blood was 508 

drawn via cardiac puncture using sterile syringes, then the other organs and tissues were 509 

isolated as followed, pancreas, intestine, spleen, liver, kidney, brown adipose tissue 510 

(interscapular adipose tissue), white adipose tissue (visceral and subcutaneous adipose 511 

tissue), thymus, heart, lung, trachea, bladder, testis, tongue, brain, muscle, wing 512 

membrane, and bone marrow (forelimb bones). The cell suspensions from each tissue and 513 

organ were prepared and the details were available as followed. The experiments and 514 

programs were reviewed and approved by the Institutional Animal Care and Use 515 

Committee of the Institute of Laboratory Animal Science, Peking Union Medical College 516 

(BYS18003). 517 

Single cell preparations. 518 

The whole blood was quickly transferred into 1.5ml sterile tubes with anticoagulant 519 

EDTA and mixed gently, then suspended with 0.5 ml of red blood cell lysis buffer. Cell 520 

suspension was incubated on ice for 1 min and lysis reaction was quenched by adding 10 521 
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ml Dulbecco's Phosphate Buffered Saline (DPBS) with 2 mM EDTA and 0.5% BSA. 522 

Cells were collected at 200g× for 5 min at 4 � and washed with DPBS for two times to 523 

remove the lysis buffer. The viability of cells was determined with trypan blue stain 524 

method by calculating the rate of bright cells (viable) to stained cells (no-viable) with 525 

hemocytometer.  526 

Spleens were rinsed and dissected quickly in cold DPBS, then squeezed to pass 527 

through a 70 μm strainer using plungers. Cells were collected into a 50ml centrifuge tube, 528 

and then centrifuged at 300 g× for 5 min at 4�. Cells were resuspended with 3 mL of red 529 

blood cell lysis buffer. Cell suspension was incubated on ice for 1 min and lysis reaction 530 

was quenched by adding 20 ml DPBS with 2 mM EDTA and 0.5%BSA. Cells were 531 

collected at 300g× for 5 min at 4� and washed for 2 times with DPBS, then counted 532 

with hemocytometer after Trypan blue staining as described above. 533 

Bone marrow was isolated from bat forelimb bones. Both ends of bones were 534 

carefully trimmed to expose the interior marrow shaft after removed the wing membrane 535 

and muscles. The bone marrow cells were flushed by using 1 ml syringe with DPBS for 536 

several times, all the cells were collected into a 70 μm strainer hanging on a 50 ml 537 

centrifuge tube. Bone marrow cells on the strainer were gently squeezed to pass through 538 

by using plungers. Cells were centrifuged at 200 g for 5 min at 4� and resuspended with 539 

red blood cell lysis buffer. The red blood cell lysis, washing, and cell counting process 540 

were similar as above.  541 

Other organs were minced into pieces on ice with sterile scissors respectively. Tissue 542 

pieces were respectively transferred into a 15 ml centrifuge tube and suspended with 5 ml 543 
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of enzymatic digestion buffer. Samples were treated with different enzymes formula. The 544 

bladder, brain, brown and white adipose tissue, intestine, liver, lung, pancreas, testis, 545 

thymus, and trachea were respectively digested in enzymatic digestion buffer with 546 

0.4mg/ml collagenase IV, 0.4mg/ml collagenase/dispase, 30U/ml DNase, 0.5% BSA in 547 

HBSS, at 37�, 100rpm for 30min. Heart was digested with 1mg/ml collagenase/dispase, 548 

30U/ml DNase, 0.5% BSA in HBSS at 37�, 100rpm for 45min. The intestine, muscle 549 

and testis were digested in enzymatic digestion buffer with 0.4mg/ml collagenase II, 550 

30U/ml DNase,0.5% BSA in HBSS, at 37�, 100rpm for 60min. The kidneys and wing 551 

membrane were digested with 0.25% Trypsin and 30U/ml DNase, at 37� for 15min and 552 

30min, respectively. Tongue was digested with 0.4mg/ml collagenase IV, 30U/ml DNase, 553 

0.5% BSA in HBSS, at 37�, 100rpm for 60min. Tissue pieces were pipetted up and 554 

down gently for several times to dissociate into single cells during digestion. After 555 

passing through a 70 mm strainer, the dissociated cells were centrifuged at 300 g for 5 556 

min at 4� and treated with red blood cell lysis procedure. All the treated cells were 557 

finally diluted to a density of 1000 cells/μl in DPBS with 0.4% BSA. 558 

Single-cell sequencing library construction and sequencing 559 

Sc-seq libraries were constructed by using the Single-Cell Instrument (10 560 

×Genomics, Pleasanton, CA) with Chromium v2 single cell 3’ library and gel bead kit V2 561 

(10 × Genomics, Pleasanton, CA). In brief, cell suspensions were diluted in DPBS with 562 

0.04% BSA to concentration of 1,000 cells/μl and the concentration was measured with 563 

haemocytometer. The volume of single cell suspension required to generate 4,000 single 564 

cell gel beads in emulsion (GEMs) was loaded into a separate channel on the Single Cell 565 

3′ Chip. The final libraries were qualified with Agilent 2100 Bioanalyzer (Agilent 566 
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Technologies, Santa Clara, CA, USA), and quantified by qPCR with the quantification kit 567 

(Tian Gen company, China) for Illumina with QuantStudio 12K Flex Real-time PCR 568 

system (Thermo Fisher Scientific, Waltham, MA, USA). Libraries were diluted to 2 nM 569 

in each and pooled with equal volume before sequenced on Hiseq X Ten (Illumina, Inc., 570 

San Diego, CA, USA) with 150-bp pair-end strategies. 571 

Bulk RNA-seq library construction and sequencing 572 

Approximately 30-50 mg of each tissue was collected from each bat and 573 

homogenized using FastPrep-24 system (MP Biomedicals, France) in 1ml of TRIzol 574 

(Invitrogen, Carlsbad, CA). RNA was then extracted following standard protocol. The 575 

RNA qualities determined by RNA Integrity Number (RIN) were assessed on an Agilent 576 

Bioanalyzer RNA 6000 nano chip (Agilent Technologies, Santa Clara, CA, USA). The 577 

libraries were constructed by using the NEBNext ultra II RNA library prep kit (New 578 

England BioLabs, Ltd., USA) and the qualities were analyzed with Agilent 2100 579 

Bioanalyzer (Agilent, Santa Clara, CA). Libraries were then sequenced on HiSeq X Ten 580 

(Illumina) with 150-bp pair-end strategies. 581 

Single cell sequencing data processing and clustering 582 

Sequencing reads were first aligned to Rhinolophus sinicus genome 583 

(GCA_001888835.1) using CellRanger (version 3.0.0, 10× Genomics) with default 584 

parameters. Then the sequencing data was processed for filtering, variable gene selection, 585 

dimensionality reduction, and clustering by using Scanpy package (version 1.3.7). Cells 586 

with fewer than 500 detected genes were excluded, as well as expressed fewer than 1,000 587 

unique molecular identifiers (UMIs). Gene expressions were normalized as divided by 588 

total UMIs of each cell and multiplied by 10,000. Highly variable genes were selected by 589 
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coefficient of variation with cutoff of 0.5. After log-normalized and scale, the data 590 

dimensionality was reduced by principal component analysis (PCA) by variable genes. 591 

Neighborhood graph of observations were computed based on the Euclidean distance and 592 

parameters were adjusted for each tissue. The Batch balanced KNN package (bbknn, 593 

version 1.3.1) was used for batch correcting followed the procedure by identifying the K 594 

nearest neighbours for each individual cell. Cluster cells using the Leiden algorithm and 595 

cell type of each cluster was determined by using the abundance of known marker genes. 596 

Cells were visualized using UMAP method which is a manifold learning technique 597 

suitable for visualizing high-dimensional data. To compare the human and mouse gene 598 

expression with the bat respectively, we use the public databases of human metadata 599 

available on GEO (accession GSE130148) and mouse metadata online 600 

(http://tabula-muris.ds.czbiohub.org/) for later normalization and gene expression 601 

comparison. 602 

Bulk sequencing data processing 603 

The gene expression profiles of bat tissues from bulk-seq data were performed 604 

following typical RNA-Seq procedure with reference genome. The raw-reads were 605 

treated to generate clean-read datasets by the following procedure. Reads with adaptors 606 

or containing unknown nucleotides more than 5% were removed directly. The 607 

low-quality reads containing more than 20% suspect-nucleotides of Phred Quality Score 608 

less than 10 were then filtered out. The qualified reads were evaluated to trim unreliable 609 

ends containing more than 3 successive suspect-nucleotides. Clean-reads were mapped to 610 

Rhinolophus sinicus genome by hisat2. Read counts of each gene were calculated by 611 

stringtie and prepDE.py scripts. The count matrix was then processed by DESeq2 for 612 
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normalization and expression profiles.  613 

Gene Ontology (GO) analysis 614 

Differential genes were obtained by comparing the each macrophage cluster with 615 

others, than the genes were used for analysis with p-adjust value＜0.05, mean expression 616 

value >1. The differential expression more than two times were further performed Gene 617 

ontology (GO) analysis using clusterprofiler package
58

 with mouse database 618 

(org.Mm.eg.db). A P value ≤0.05 was considered significant and enriched GO terms were 619 

sorted by counts. A column chart was plotted using top 10 GO terms.  620 

Comparative analysis of gene profiles in bulk and single-cell sequencing  621 

The characteristics genes in each tissue were selected from bulk-seq data if their 622 

expression level were more than 50, and 10-fold higher than other tissues. Heat-map was 623 

made by Seaborn package (0.9.0), showing the genes expression level in selected tissue 624 

compared to the average of level in all tissues. These genes were than analyzed in 625 

single-cell sequencing data to decide the distribution in each tissue by average 626 

expression. 627 

To compare the human and mouse gene expression with the bat respectively, we use 628 

the public databases of human metadata available on GEO (accession GSE130148, 629 

GSE134355) and mouse metadata online (http://tabula-muris.ds.czbiohub.org/) for later 630 

normalization and gene expression comparison. 631 

Correlations of cell type specific transcription genes  632 

After the decision of cell types with significant transcription genes (average 633 

difference of > 1), the average gene transcription factor sets that distinguish each 634 

individual cell type from all other cells was calculated. The pearson’s correlations of 635 
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specific cell types were analyzed with corr imbed in pandas package (version 0.23.4). 636 

T cells analysis 637 

T cells analysis was performed by involved all organs. The differential analysis of 638 

each organ was performed, and the gene with log2 fold change ≥2 and pval_adj <1 was 639 

extracted. PCA is used for dimensionality reduction of T cells data. And then T cells 640 

were clustered by using leiden model, and reduced-dimensional mapping by using umap.  641 

Amino acid identity of viral receptor genes 642 

To analyze the identity of viral receptor genes, all related coding sequences were 643 

downloaded from Ensembl and GenBank representing human, bats and mouse. The 644 

sequences were manual checked to avoid false annotation or different isoforms, then 645 

ClustalW Multiple alignment in BioEdit version 7.0.5.3 was used for amino acids 646 

sequence alignment between Chines horseshoe bat (Rhinolophus sinicus) and the other 647 

species. 648 

Single-molecule fluorescent in situ hybridization 649 

Probe libraries were custom designed and constructed by Advanced Cell Diagnostics 650 

(ACD, Newark, CA) for bat SFTPC and CLDN5. The single molecule FISH probe 651 

libraries consisted of 20 probes with length of 50 bps. The probe libraries of SFTPC and 652 

CLDN5 were respectively coupled to HRP-C1 and HRP-C2, then stained with Opal
TM

 653 

fluorescent reagents. The single cells were washed with DPBS, fixed in 10% neutral 654 

formalin buffer for 1h at 37 �, then centrifuged at 250×g for 10 min and resuspended in 655 

70% ethanol for incubating at RT for 10 min and stored at 4°C. Adjust the cell density to 656 

1×10
6
 cells/ml. Cell suspension droplets were added onto the slices and dried, then 657 

incubated in 50% ethanol, 70% ethanol and 100% ethanol, for 5min at each step. The 658 
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slices were dried at 37°C for 30 min, then draw for 2- 4 times around the cell spot by 659 

using the hydrophobic barrier pen. The probes hybridizing was performed in accordance 660 

with the manufacturer’s instructions by using RNAscope® Multiplex Fluorescent 661 

Reagent Kit v2 and hybridization oven (HybEZ™, ACD, Newark, CA). The cells were 662 

incubated with the Hybridize Probes, hybridize Amp 1, Amp 2 and Amp 3 at 40� for 2h, 663 

30min, and 15min, respectively, then incubated with horseradish peroxidase (HRP)-C1 664 

and HRP-C2. The nucleus was stained with DAPI (Invitrogen, Waltham, MA, USA) for 665 

30 second and ProLong™ Gold antifade reagent was placed on the slices. Images were 666 

taken by using Vectra Polaris Automated Quantitative Pathology Imaging System 667 

(PerkinElmer, Waltham, MA, USA).  668 

Cell culture. 669 

Primary bat pulmonary fibroblast (BPF) cells were cultured from one lung of the 670 

Chinese horseshoe bat (Rhinolophus sinicus). The lung was pretreated followed the same 671 

procedure of single cell preparation. The cells were suspended in Roswell Park Memorial 672 

Institute (RPMI)  1640 medium (Thermo Fisher Scientific, CA, USA) containing 10% 673 

fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) and 1% penicillin (10,000 IU) 674 

-streptomycin (10,000μg/mL) (PS) (Thermo Fisher Scientific, CA, USA), then cultured 675 

in a 24-well culture plate for 48 h until the fibroblasts attached to the bottom of the plate. 676 

Then the culture medium was replaced by Fibroblast Medium (ScienCell, Carlsbad, CA, 677 

USA) containing 2% FBS and 1% PS. The BPF cells were tested by mycoplasm 678 

detection kit (Lonza, Walkersville, MD, USA). The cell type was confirmed by in situ 679 

hybridization using RNAscope® Probes (ACD) targeted to fibronectin 1 (FN1) and 680 

asporin (ASPN) genes. 681 
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Cell lines and viruses    682 

Human Pulmonary Fibroblasts (HPFs, ScienCell, Carlsbad, CA, USA) are 683 

characterized by immunofluorescence with antibody specific to fibronectin (Santa Cruz, 684 

CA, USA) and Alexa Fluor 488-ligated second antibody (ZSGB-BIO, China). HPFs were 685 

cultured in Fibroblast Medium (ScienCell). Vesicular Stomatitis Virus (VSV) was stored 686 

in our lab and the viral titer was 5.25×10
9
 plaque forming unit (PFU) /ml.  687 

Quantitative reverse transcription PCR (qRT-PCR) 688 

BPFs and HPFs were cultured in 12-well plate (2.5×10
5 
cells/well) and transfected with 689 

1µg poly (I:C) (InvivoGen, CA, USA) or 2 µg ISD (InvivoGen, CA, USA) by 690 

lipofectamine 2000 reagent (Thermo Fisher Scientific, CA, USA), the culture medium 691 

was replaced with Opti-MEM™ Reduced Serum Medium (Thermo Fisher Scientific, NY, 692 

USA) after 4h transfection, and the cells were collected at 4 h, 8h, 12h and 24h post 693 

transfection. BPFs and HPFs were also stimulated with 10 µg/ml of poly (I:C) or 2µg/ml 694 

of R848 (MCE, NJ, USA), or medium as control. Poly (I:C) low molecular weight (LMW) 695 

and high molecular weight (HMW) (InvivoGen, CA, USA) were used initially and they 696 

would stimulate the signaling pathway in the two cells. Then the poly (I:C) HMW was 697 

then used furtherly. For VSV infection, both cells were infected with VSV at MOI of 0.5. 698 

The cells in each well were collected at 4 h, 8h, 12h and 24h post stimulation or infection. 699 

RNA was isolated as described above. Total 500 ng RNA was used to synthesize cDNA 700 

by using Moloney-murine leukemia virus (M-MLV) reverse transcriptase (Promega, 701 

Madison, WI). Diluted cDNA was used in each quantitative reverse transcription-PCR 702 

(qRT-PCR). Primers used in qRT-PCR were listed in Supplementary material. The 703 

qRT-PCR was performed by using Bio-rad with real-time CFX96 amplifier 704 
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(Bio-Rad Laboratories, Inc., USA) using the TB Greeen
TM

 Premix Ex Taq
TM

 (TaKaRa, 705 

Japan). The primers targeted to human and bat IFNβ, IL-6, TNFα, RIG-I and MDA5 706 

were used. Fold change expression of genes were calculated by
 ΔΔ

CT method. The mean 707 

value was from three replicates, and error bars represent standard deviations. 708 

Data availability 709 

All gene expression data from single cell and bulk sequencing have deposited in the 710 

Genome Sequence Archive (GPB 2017) in National Genomics Data Center (NAR 2020), 711 

under project that is publicly accessible at https://bigd.big.ac.cn/gsa. 712 
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Figure legend 907 

Figure 1. Overview of Chinese horseshoe bat cell atlas. a, Work flow of single cell 908 

sequencing. Cells from two male bat organs were processed for transcriptomic 909 

amplification, sequencing and data analyzing. b, The expression level of viral receptor 910 

genes across organs based on bulk-seq data between bat, human and mouse. The size of 911 

circle represents the gene expression level and the colors showed the species. c, Axis on 912 

the triangular representation of the distributions of viral receptor genes across the organs 913 

in bat, human and mouse. The size of the signals represents the mean gene expression  914 

showed as ln (expression + 1). d, UMAP plots of all cells, colored by organ, overlaid 915 

with the predominant cell type composing each cluster, n = 82,924 individual cells. e, 916 

The number of annotated cell types in each organ.  917 

 918 

Figure 2. Differential expressions of bat lung cells compared to human and mouse, 919 

and the distribution of viral receptor genes across cell types. a, UMAP visualization 920 

and marker-based annotation of lung cells. Cells are colored by cell-type. b, Comparisons 921 

of the differential genes expressed in endothelial cells, epithelia cells, mesenchymal cells, 922 

and immune cells in bat compared to that of human and mouse. Differential expressed 923 

genes with p-adjust<=0.05 were analyzed. Results are visualized by heatmaps of 924 

normalized gene expression and histograms of fold change between cell types. c, Violin 925 

plots of viral receptor genes expression in top 5 cell types.  926 

 927 

Figure 3. Analysis of bat T and B cells.  928 

a, UMAP visualization of all T cells from Chinese horseshoe bats (Rhinolophus sinicus), 929 
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showing the formation of 13 main clusters shown in different colors. The functional 930 

description of each cluster is determined by the gene expression characteristics of each 931 

cluster. n = 9,663 individual cells. b, Violin plots showing the enriched transcripts of 932 

different T cell clusters. c, Violin plots showing the enriched transcripts of 933 

TRM-GZMA
high

, TRM-ZNF683
high

, and IEL. d, UMAP visualization of NKT-like-1, 934 

NKT-like-2, and NKT-like-3 cells. Colors indicate different organs, and shapes indicate 935 

cell types. e, UMAP plots showing expression of selected long-lived effector genes and 936 

immediate early genes (IEGs) in this dataset. f, Violin plots showing the enriched 937 

transcripts of NKT-like-1, NKT-like-2, and NKT-like-3 cells. g, Tissue preference of 938 

each NKT-like cell cluster estimated by proportion. h, UMAP visualization of B cells 939 

from Chinese horseshoe bats (Rhinolophus sinicus), showing the formation of 10 main 940 

clusters shown in different organs. The functional description of each cluster is 941 

determined by the differential expressed genes. i, Dot plot visualization of selected 942 

marker gene for each cell type. The size of the dot encodes the percentage of cells within 943 

a cell type in which that marker gene was detected, and the color encodes the average 944 

expression level. j, Distribution of B cell types in different organs.  945 

 946 

Figure 4. Expression levels of type I interferon in bat primary lung fibroblast. a, 947 

Work flow of bat pulmonary primary fibroblast isolation. b, Cell type confirmation by 948 

single-molecule fluorescence in situ hybridization with fibronectin 1 RNA probe. c, 949 

Expressions levels of MDA5, RIG-I, IFNβ after the transfection of poly (I:C). d, 950 

Expressions levels of IL-6, TNFα after the transfection of B848. e, Expressions levels of 951 

IL-6 and IFNβ after the inoculations of poly (I:C). f, Expressions levels of MDA5, RIG-I, 952 
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IFNβ, IL-6, and TNFα after the infection of vesicular stomatitis virus (VSV). Error bars 953 

represent standard deviation. 954 

  955 

  956 
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Extended Data  957 

Extended Data Figure 1. Transcriptomic analysis by bulk sequencing and the 958 

comparisons to single cell sequencing. a, Expression level of selected viral receptor 959 

genes in organs based on bulk-seq data of bat and human. Adv: Adenovirus; RSV: 960 

Respiratory syncytial virus; MV: measles virus; CAV: Coxsackie virus; CAV-A9: 961 

Coxsackie virus A9; CAV-A16: Coxsackie virus A16; CAV-A13/18/21: Coxsackie virus 962 

A13/18/21; HRV: Rhinovirus; EchoV: Echovirus; DENV: Dengue virus; EV-B: 963 

Enterovirus B; HSV-1:Herpes simplex virus; HCMV:  human cytomegalovirus; VZV: 964 

Varicella zoster virus; VSV: Vesicular stomatitis virus.  b, Histogram of the number of 965 

detected genes (left) and UMIs (right) per cell for each organ. c, Dot plot visualization of 966 

differentially expressed genes across clustered cells. d, The comparison of differential 967 

transcriptional genes between bulk-seq and single cell (sc)-seq data in each organ.  968 

 969 

Extended Data Figure 2.  Analysis of the cell types and receptor genes distribution 970 

patterns in single cell level. a, UMAP plots of expression for genes specifically 971 

expressed in particular cell types (SFTPC in AT2 and CLDN5 in endothelial cells). Gene 972 

expression levels are indicated by shades of red. b, Single-molecule fluorescence in situ 973 

hybridization of SFTPC (Opal 520) and CLDN5 (Opal 690) on lung single cells droplet 974 

slices. c, Dot plot visualization of selected marker genes for each cell type. The size of 975 

the dot encodes the percentage of cells within a cell type in which that marker was 976 

detected, and the color encodes the average expression level. d, UMAP visualization and 977 

marker-based annotation of trachea cells. Cells are colored by cell-type. e, UMAP 978 

visualization and marker-based annotation of kidney cells. Cells are colored by cell-type. 979 
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f, UMAP visualization and marker-based annotation of intestine cells. Cells are colored 980 

by cell-type. g, Comparisons of the expression patterns of the respiratory virus receptor 981 

genes, ACE2, DPP4, ANPEP, CXADR and the TMPRSS2 in endothelial cells, epithelia 982 

cells, and mesenchymal cells in single cell levels in bat compared to that of human and 983 

mouse. Only epithelial cells in intestine and kidney were selected for the comparisons 984 

according to the available data. SARS-CoV, Severe acute respiratory syncytial virus; 985 

HCoV, Human coronavirus; Adv: Adenovirus; CAV: Coxsackie virus. 986 

 987 

Extended Data Figure 3. The known human viral receptors genes expressed in bat 988 

across the cell types.  Dot plots of expression for viral receptor genes in featured cell 989 

types. The size of the dot encodes the percentage of cells within a cell type in which that 990 

marker was detected, and the color encodes the average expression level.  991 

 992 

Extended Data Figure 4. Summary of functional properties of various T cell clusters. 993 

a, Heatmap of unique signature genes for thirteen T cell clusters. Selective specifically 994 

expressed genes are marked alongside. b, UMAP plots of expression levels of selected 995 

genes in different clusters indicated by the colored oval corresponding to Figure 3a. c, 996 

Overview of T cell cluster characteristics. d, The number of activated T cells and naïve T 997 

cells in different tissue.  998 

 999 

Extended Data Figure 5. Analysis of mononuclear phagocytes. a, UMAP visualization 1000 

of mononuclear phagocytes from Chinese horseshoe bats (Rhinolophus sinicus), showing 1001 

the formation of 13 main clusters shown in different organs. The functional description of 1002 
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each cluster is determined by the gene expression characteristics of each cluster. b, Dot 1003 

plot visualization of each cell type and selected marker gene. The size of the dot encodes 1004 

the percentage of cells within a cell type in which that marker was detected, and the color 1005 

encodes the average expression level. c, Tissue preference of mononuclear phagocytes 1006 

estimated by proportion based on 10x data.d, Gene ontology analysis of macrophage with 1007 

high expressions of CCL26, CD300, CSF1R, LYVE1 and SPIC.  1008 

 1009 

Extended Data Figure 6. Analysis of innate immune gene mRNA expression in 1010 

Chinese horseshoe bat tissues. Tissue mRNA expression levels of RIG-I, MDA5, TLR3, 1011 

TLR7, TLR8, TLR9, IRF3, IRF7, IFNα, IFNβ, IFNω and IFNr were determined by 1012 

qRT-PCR and normalised relative to GAPDH. Error bars represent standard deviation. 1013 

 1014 

Extended Data Figure 7. Heatmap of innate immune response genes expression in 1015 

lung epithelial cells, endothelial cells and stromal cells.  1016 

   1017 

 1018 

 1019 

  1020 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.30.175778doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.175778


45 

 

Supplementary Material 1021 

KEY RESOURCES TABLE 1022 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Cell Lines   

Human Pulmonary Fibroblasts ScienCell, CA, USA Cat# 3300 

Critical Commercial Assays   

RNAscope® Probe-Rs-SFTPC-C1 ACD, CA, USA Cat# 583421 

RNAscope® 

Probe-Rs-CLDN5-C2 

ACD, CA, USA Cat# 583431-C2 

RNAscope® 2-plex Negative 

Control Probe 

ACD, CA, USA Cat# 320751 

RNAscope® Multiplex 

Fluorescent Reagent Kit v2 

ACD, CA, USA Cat# 323100 

RNAscope® Probe-Rs-SFTPC-C1 ACD, CA, USA Cat# 583421 

RNAscope® Probe-Rsi-ASPN ACD, CA, USA Cat# 826121 

RNAscope® Probe-Rsi-FN1-C2 ACD, CA, USA Cat# 826111-C2 

RNAscope® Probe-Rsi-AQP5-C3 ACD, CA, USA Cat# 826131-C3 

MycoAlert Mycoplasma Detection 

Kit 

Lonza, ME, USA Cat# LT07-701 

Enzymes, Culture medium and Chemicals  

Collagenase/dispase Roche, Germany Cat# 11097113001 

Collagenase II Sigma, Israel Cat# C6885 

Collagenase IV Sigma, Israel Cat# C5138 
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RQ1 RNase Free DNase Promega, WI, USA Cat# M610A 

Trypsin-EDTA (0.25%), phenol 

red 

Thermo Fisher Scientific, NY, 

USA 

Cat# 25200114 

BSA Sigma, Australia Cat# B2064 

DPBS Thermo Fisher Scientific, NY, 

USA 

Cat# 14190144 

Red blood cell lysis buffer TBD, China Cat# NH4CL2009 

HBSS Thermo Fisher Scientific, NY, 

USA 

Cat# 14025092 

Trypan Blue solution Sigma, UK Cat# T8154 

10% neutral formalin buffer Slarbio, China Cat# G2161 

EDTA (0.5M) Thermo Fisher Scientific, CA, 

USA 

Cat# 15575020 

ProLong™ Gold antifade reagent Thermo Fisher Scientific, OR, 

USA 

Cat# P10144 

Fibroblast Medium (FM) ScienCell, CA, USA Cat# 2301 

Mouse Anti- Fibronectin 

monoclonal antibody（EP5） 

SANTA CRUZ, TX, USA Cat# sc-8422 

M-MLV Promega, WI, USA Cat# M1701 

Poly(I:C) low Molecular Weight 

(LMW)  

InvivoGen, CA, USA Cat# tlrl-picw 

Poly(I:C) high Molecular Weight InvivoGen, CA, USA Cat# tlrl-pic 
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(HMW) 

R848 MCE, NJ, USA Cat#HY-13740/CS-1

706 

Lipofectamine™ 2000 reagent Thermo Fisher Scientific, CA, 

USA 

Cat# 11668019 

TB Greeen
TM

 Premix Ex Taq
TM

 TaKaRa, China Cat# RR420A 

Opti-MEM™ Reduced Serum 

Medium 

Thermo Fisher Scientific, 

NY, USA 

Cat# 31985088 

Roswell Park Memorial Institute 

(RPMI)  1640 medium 

Thermo Fisher Scientific, NY, 

USA 

Cat# 21870-076 

Fetal bovine serum Hyclone, UT, USA Cat# SH30396.03 

L-Glutamine Thermo Fisher Scientific, 

NY, USA 

Cat# 25030081 

Penicillin-Streptomycin Thermo Fisher Scientific, 

CA, USA 

Cat# 15140122 

Alexa Fluor® 488 - Conjugated 

Goat anti-Mouse IgG（H+L） 

ZSGB-BIO, China Cat# ZF-0512 

ISD Naked InvivoGen, CA, USA Cat# tlrl-isdn 

Software and Algorithms   

Matplotlib (Python package)  

version 3.0.2 

NA https://pypi.org/proje

ct/matplotlib/ 

Python Python Software https://www.python.
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org/ 

Scanpy (Python package) 

version1.3.7 

F. Alexander Wolf et al., 

2018 

https://pypi.org/proje

ct/scanpy/ 

Scikit-learn (Python package) 

version0.20.2 

David Cournapeau et al., 

2007 

https://pypi.org/proje

ct/scikit-learn/ 

Seaborn (Python package) 

version0.9.0 

NA https://pypi.org/proje

ct/seaborn/ 

 1023 

Primers for qRT-PCR 1024 

Species Target gene Primer sequence 

Rhinolophus 

sinicus 

RIG-I 

F CTGCAAACTGTGTGCGTCTC 

R CCTGAAAAACTTCTGCGGCT 

MDA5 

F CCTCTGAAAGCAATGCAGAAACT 

R GACTTGCCTGATCTGTGGCT 

IFN-α 

F GACGGGAGCCAGTTTGAGAA 

R TAAGAGAGCCACTTGTGCCG 

IFN-γ 

F CACGAAACGGACCCTGACTC 

R AGTGGCTCAGAATGCAGACA 

IFN-ω 

F CACGAAACGGACCCTGACTC 

R AGTGGCTCAGAATGCAGACA 

IFNβ
1
 

F TCGTCTGGAGACAGCCTTGGAGG 

R TGGCTTTCAAGTGCCGCCTGAT 

GAPDH F TTGTCAGCAATGCGTCCTGT 
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R AGTGATGGCATGGACTGTGG 

IL-1β 

F AGAAGCTGAGGAACATGCCC 

R GCAGCTGACGGGTTCTTCTT 

TNF-α 

F GGAAGAGTTCCCAGCTGACC 

R CTTGAGCTGTCCCTCGGTTT 

IL-6 

F AACTCCCTCTCCACAAGCAC 

R GGGGTAGGGAAAGCAGTAGC 

TLR3 

F AGCTCACAGGTGACGAATGG 

R GAAGACTTGGAACCGAGGCA 

TLR7 

F CCAAGGTGCTTTCCAGTTGC 

R ACCAGACAAACCACACAGCA 

TLR8 

F AACCTTTCCCAAGTGCCACA 

R TGACAATTGAAGCGCCTCCT 

IRF3 

F TTGAGGTGACCGCCTTCTAC 

R GTCTGGCAGTGTTACTGGCT 

IRF7 

F GAGCTTGGTCTTGACCTCCC 

R AAGCAGCGCTTCTACACCAA 

Homo sapiens   

 

RIG-I 

F AGAGCACTTGTGGACGCTT 

R TGTTTTGCCACGTCCAGTCA 

MDA5 

F TGCGCTTTCCCAGTGGATTA 

R TTTGTTCATTCTGTGTCATGGGT 

IFN-α F GGGAGGTTGTCAGAGCAGAAA 
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R GGTGAGCTGGCATACGAATC 

IFN-γ
2
 

F CCAACGCAAAGCAATACATGA 

R TTTTCGCTTCCCTGTTTTAGCT 

IFN-ω 

F GCCCATGTCATGTCTGTCCT 

R AAGCAGGTCTCCAGGTGTTG 

IFNβ 

F TAGCACTGGCTGGAATGAG 

R GTTTCGGAGGTAACCTGTAAG 

GAPDH 

F CGGAGTCAACGGATTTGGTCGTA 

R AGCCTTCTCCATGGTGGTGAAGAC 

IL-1β 

F ACAGATGAAGTGCTCCTTCCA 

R GTCGGAGATTCGTAGCTGGAT 

TNF-α 

F CCCAGGGACCTCTCTCTAATC 

R ATGGGCTACAGGCTTGTCACT 

IL-6 

F GCCCTGAGAAAGGAGACAT 

R CTGTTCTGGAGGTACTCTAGGTAT 

TLR3
3
 

F AGCCTTCAACGACTGATGCT 

R TTTCCAGAGCCGTGCTAAGT 

TLR7
3
 

F AATGTCACAGCCGTCCCTAC 

R TTATTTTTACACGGCGCACA 

TLR8
3
 

F TCCTTCAGTCGTCAATGCTG 

R CGTTTGGGGAACTTCCTGTA 

IRF3
3
 

F GAGGTGACAGCCTTCTACCG 

R TGCCTCACGTAGCTCATCAC 
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IRF7
4
 

F TGGTCCTGGTGAAGCTGGAA 

R GATGTCGTCATAGAGGCTGTTGG 
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Figure 1. Overview of Chinese horseshoe bat cell atlas. a, Work flow of single cell 

sequencing. Cells from two male bat organs were processed for transcriptomic 

amplification, sequencing and data analyzing. b, The expression level of viral receptor 

genes across organs based on bulk-seq data between bat, human and mouse. The size 

of circle represents the gene expression level and the colors showed the species. c, 

Axis on the triangular representation of the distributions of viral receptor genes 

across the organs in bat, human and mouse. The size of the signals represents the 

mean gene expression  showed as ln (expression + 1). d, UMAP plots of all cells, 

colored by organ, overlaid with the predominant cell type composing each cluster, n = 

82,924 individual cells. e, The number of annotated cell types in each organ.
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Figure 2. Differential expressions of bat lung cells compared to human and mouse, and the 
distribution of viral receptor genes across cell types. a, UMAP visualization and marker-based 
annotation of lung cells. Cells are colored by cell-type. b, Comparisons of the differential genes 
expressed in endothelial cells, epithelia cells, mesenchymal cells, and immune cells in bat 
compared to that of human and mouse. Differential expressed genes with p-adjust<=0.05 were 
analyzed. Results are visualized by heatmaps of normalized gene expressionand histograms of 
fold change between cell types. c, Violin plots of viral receptor genes expression in top 5 cell 
types.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.30.175778doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.175778


UMAP1

U
M

A
P

2

C2_CD8T
N

C1_CD4T
N

C11_IEL

C8_T
RM

-GZMAhigh

C9_T
RM

-ZNF683high

C12_NKT-like

C13_Prolife
ratin

g T

C4_T
CM

C5_T
EM

C10_T
EMRA

C7_T
H
17

C3_T
REG

-like

C6_T
EM

/T
H
1-like

a b
LEF1

CCR7

TCF7

IL2RA

CCR8

CTLA4

GPR183

CXCR3

GZMK

NKG7

IFNG

GNLY

ITGAE

ZNF683

KLRD1

KLRF1

NCR1

CD44

RORC

IL23R

MKI67

CD4
T

N

CD8
T

N

Proliferating

 T 

T
REG

like

T
CM

T
EM

T
EM

T
H
1-like

T
H

17 T
RM

GZMA+

T
RM

ZNF683+

T
EMRA

IEL NKT

like

0 4 8

ln(exp + 1)

T
N

TREG

T
EM

/T
H
1-like

T
H
17

NKT-like

0

2

4

6

T
R

M
-G

Z
M

A
h

ig
h

0

2

4

6

T
R

M
-Z

N
F

6
8

3
h

ig
h

ITGAE TIMP1 RGS1 FCER1G

0

2

4

6
IE

L

GZMA GNLY PRF1 APOA4 FABP1 MAPT

ZNF683 IFNG IRF7 TBX21 APOC1 APOE

CD44 FKBP5 CD9 PI3 RND3 LGALS3

c

UMAP1

U
M

A
P

2

Bladder

Bone Marrow

Brown Adipose Tissue

Kidney

Liver

Lung

Pancreas

Spleen

Thymus

Trachea

White Adipose Tissue

Whole Blood

NKT-like-1

NKT-like-2

NKT-like-3

UMAP1

U
M

A
P

2

0

2

4

6

8

10

UMAP1

U
M

A
P

2

0

2

4

6

8

10

UMAP1

U
M

A
P

2

0

2

4

6

8

10

UMAP1

U
M

A
P

2

0

2

4

6

8

10

UMAP1

U
M

A
P

2

0

2

4

6

8

10

UMAP1

U
M

A
P

2

0

2

4

6

8

10

FOSBNR4A1JUND

0 2 4 6 8

ITGA4

KLRG1

KLF2

GZMA

CRTAM

PI3

CMC1

ITGAE

SCGB3A1

MAPT

GNLY

BCL2

NKT-like-1 NKT-like-2 NKT-like-3

GZMAKLRG1 ITGA4

d e f g

0 20 40 60 80 100

Whole Blood

White Adipose Tissue

Trachea

Tongue

Thymus

Spleen

Skin (wing)

Pancreas

Lung

Liver

Kidney

Intestine

Brown Adipose Tissue

Bone Marrow

Bladder

NKT-like-1

NKT-like-2

NKT-like-3

UMAP1

U
M

A
P

2

Bladder
Bone Marrow
Brown Adipose Tissue
Heart
Intestine
Kidney
Liver
Lung
Muscle
Pancreas
Spleen
Thymus
Tongue
Trachea
White Adipose Tissue
Whole Blood

C1_Activated B cell

C2_Germinal center B cell

C3_Marginal Zone B cell

C4_Naive/memory  B cell

C5_Plasma cell

B
C

L
6

M
Y

B
L
1

R
G

S
1
3

M
K

I6
7

T
O

P
2
A

C
E

N
P

F

K
IF

1
1

C
D

C
A

3

U
B

E
2
C

C
D

K
N

3

N
W

_
0
1
7
7
3
9
1
7
9
.1

:4
1
1
7
1
6
-4

1
4
9
3
8

F
A

B
P

4

C
D

6
9

N
W

_
0
1
7
7
3
9
4
1
0
.1

:9
3
8
1
4
6
-9

3
8
7
8
5

R
G

S
1

S
T

A
P

1

N
W

_
0
1
7
7
3
9
1
7
9
.1

:1
2
8
3
4
7
2
-1

2
8
5
4
3
0

E
G

R
1

P
IK

3
R

1

L
O

C
1
0
9
4
5
1
4
6
4

C
A

P
G

A
H

N
A

K

A
N

X
A

2

D
T

N
B

P
1

A
R

ID
5
B

Z
B

T
B

3
8

P
H

L
D

A
2

P
H

A
C

T
R

1

N
W

_
0
1
7
7
3
9
1
1
1
.1

:2
5
4
9
2
1
5
-2

5
4
9
6
2
5

N
W

_
0
1
7
7
3
9
2
7
5
.1

:1
2
4
0
6
0
-1

2
4
5
7
8

N
W

_
0
1
7
7
3
9
4
5
1
.1

:4
7
5
8
7
5
-4

7
6
2
2
5

M
A

R
C

K
S

A
B

L
IM

1

L
O

C
1
0
9
4
5
8
6
2
9

N
W

_
0
1
7
7
3
8
9
5
7
.1

:1
4
4
0
3
8
0
9
-1

4
4
0
5
1
7
3

N
W

_
0
1
7
7
3
9
1
1
1
.1

:5
5
5
9
1
2
6
-5

5
5
9
5
7
3

N
W

_
0
1
7
7
3
9
0
6
3
.1

:2
4
7
0
0
7
-2

5
3
7
2
7

D
T

X
1

L
A

M
P

3

C
D

8
6

M
S

4
A

1

C
D

1
9

T
X

N
D

C
5

T
N

F
R

S
F

1
7

F
K

B
P

1
1

M
Z

B
1

L
O

C
1
0
9
4
5
7
9
6
8

N
W

_
0
1
7
7
3
9
3
8
4
.1

:7
1
3
7
8
2
-7

1
4
1
8
9

P
T

C
R

A

D
P

E
P

1

K
D

E
L
R

3

S
D

C
1

X
B

P
1

Germinal center B cell

Naive/memory  B cell

Activated B cell

Marginal Zone B cell

Plasma cell

1

2

3

0.2

0.4

0.6

0.8

1.0

0

0 500 1000 1500

Bladder

Bone Marrow

Brown Adipose Tissue

Heart

Intestine

Kidney

Liver

Lung

Muscle

Pancreas

Spleen

Thymus

Tongue

Trachea

White Adipose Tissue

Whole Blood

Naïve/memory  B cell

Activated B cell

Plasma cell

Germinal center B cell

Marginal Zone B cell

c
lu

s
te

r

h

i

j

Figure 3. Analysis of bat T and B cells.  a, UMAP visualization of all T cells from Chinese horseshoe bats, 

showing the formation of 13 main clusters shown in different colors. The functional description of each cluster is 

determined by the gene expression characteristics of each cluster. n = 9,663 individual cells. b, Violin plots 

showing the enriched transcripts of different T cell clusters. c, Violin plots showing the enriched transcripts of TRM-

GZMAhigh, TRM-ZNF683high, and IEL. d, UMAP visualization of NKT-like-1, NKT-like-2, and NKT-like-3 cells. 

Colors indicate different organs, and shapes indicate cell types. e, UMAP plots showing expression of selected long-

lived effector genes and immediate early genes (IEGs) in this dataset. f, Violin plots showing the enriched 

transcripts of NKT-like-1, NKT-like-2, and NKT-like-3 cells. g, Tissue preference of each NKT-like cell cluster 

estimated by proportion. h, UMAP visualization of B cells from Chinese horseshoe bats, showing the formation of 

10 main clusters shown in different organs. The functional description of each cluster is determined by the 

differential expressed genes. i, Dot plot visualization of selected marker gene for each cell type. The size of the dot 

encodes the percentage of cells within a cell type in which that marker gene was detected, and the color encodes the 

average expression level. j, Distribution of B cell types in different organs.
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Figure 4. Expression levels of type I interferon in bat primary lung fibroblast. a, Work flow of bat pulmonary 

primary fibroblast isolation. b, Cell type confirmation by single-molecule fluorescence in situ hybridization with 

fibronectin 1 RNA probe. c, Expressions levels of MDA5, RIG-I, IFNβ after the transfection of poly (I:C). d, 

Expressions levels of IL-6, TNFα after the transfection of B848. e, Expressions levels of IL-6 and IFNβ after the 
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vesicular stomatitis virus (VSV). Error bars represent standard deviation.
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Extended Data Figure 1. Transcriptomic analysis by bulk sequencing and the comparisons to single cell 

sequencing. a, Expression level of selected viral receptor genes in organs based on bulk-seq data of bat and human. 

Adv: Adenovirus; RSV: Respiratory syncytial virus; MV: measles virus; CAV: Coxsackie virus; CAV-A9: 

Coxsackie virus A9; CAV-A16: Coxsackie virus A16; CAV-A13/18/21: Coxsackie virus A13/18/21; HRV: 

Rhinovirus; EchoV: Echovirus; DENV: Dengue virus; EV-B: Enterovirus B; HSV-1:Herpes simplex virus; HCMV:  

human cytomegalovirus; VZV: Varicella zoster virus; VSV: Vesicular stomatitis virus.  b, Histogram of the 

number of detected genes (left) and UMIs (right) per cell for each organ. c, Dot plot visualization of 

differentially expressed genes across clustered cells. d, The comparison of differential transcriptional genes 

between bulk-seq and single cell (sc)-seq data in each organ.  
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genes specifically expressed in particular cell types (SFTPC in AT2 and CLDN5 in endothelial cells). Gene expression levels are indicated 

by shades of red. b, Single-molecule fluorescence in situ hybridization of SFTPC (Opal 520) and CLDN5 (Opal 690) on lung single cells droplet slices. 

c, Dot plot visualization of selected marker genes for each cell type. The size of the dot encodes the percentage of cells within a cell type in which that 

marker was detected, and the color encodes the average expression level. d, UMAP visualization and marker-based annotation of trachea cells. Cells are 

colored by cell-type. e, UMAP visualization and marker-based annotation of kidney cells. Cells are colored by cell-type. f, UMAP visualization 

and marker-based annotation of intestine cells. Cells are colored by cell-type. g, Comparisons of the expression patterns of the respiratory virus 
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levels in bat compared to that of human and mouse. Only epithelial cells in intestine and kidney were selected for the comparisons according to the 
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Extended Data Figure 3. The known human viral receptors genes expressed in 

bat across the cell types.  Dot plots of expression for viral receptor genes in featured 

cell types. The size of the dot encodes the percentage of cells within a cell type in 

which that marker was detected, and the color encodes the average expression level. 
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Extended Data Figure 5. Analysis of mononuclear phagocytes. a, UMAP visualization of mononuclear 

phagocytes from Chinese horseshoe bats, showing the formation of 13 main clusters shown in different organs. 

The functional description of each cluster is determined by the gene expression characteristics of each cluste r. 

b, Dot plot visualization of each cell type and selected marker gene. The size of the dot encodes the percentage 

of cells within a cell type in which that marker was detected, and the color encodes the average expression level. 

c, Tissue preference of mononuclear phagocytes estimated by proportion based on 10x data.d, Gene ontology 

analysis of macrophage with high expressions of CCL26, CD300, CSF1R, LYVE1 and SPIC.
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Extended Data Figure 6. Analysis of innate immune gene mRNA expression in Chinese horseshoe bat 

tissues. Tissue mRNA expression levels of RIG-I, MDA5, TLR3, TLR7, TLR8, TLR9, IRF3, IRF7, IFNα, 

IFNβ, IFNω and IFNr were determined by qRT-PCR and normalised relative to GAPDH. Error bars 

represent standard deviation. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.06.30.175778doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.175778


A
T

1
 c

e
ll

A
T

2
 c

e
ll

C
ili

a
te

d
 c

e
ll

C
a
p
ill

a
ry

 t
y
p
e
 1

 c
e
ll

C
a
p
ill

a
ry

 t
y
p
e
 2

 c
e
ll

A
lv

e
o
la

r 
fi
b
ro

b
la

s
t

A
d
v
e
n
ti
ti
a
l 
fi
b
ro

b
la

s
t

M
e
s
o
th

e
lia

l 
c
e
ll

M
y
o
fi
b
ro

b
la

s
t

RIG-I

MDA5

MAVS

TLR1

TLR2

TLR3

TLR4

TLR5

TLR6

TLR7

TLR8

TLR9

TLR10

TRIF

MYD88

CXCR5

NFKB1

NFKB2

CGAS

STING

IFNB1

IRF3

IRF7

IL1β
TNFα

0.0

0.8

1.6

2.4

3.2

4.0

Extended Data Figure 7. Heatmap of innate immune response genes expression  in lung 
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